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ABSTRACT

Concurrent error detection (CED) techniques are widely used to ensure data

integrity in digital systems.  Data integrity guarantees that the system outputs are either

correct or an error is indicated when incorrect outputs are produced.  This dissertation

presents the results of theoretical and simulation studies of various CED techniques.  The

CED schemes studied are based on diverse duplication, simple duplication of identical

implementations, and error-detection techniques like parity checking.  The study aimed at

(1) a quantitative comparison of the effectiveness of different CED schemes, and (2)

developing design techniques for efficient concurrent error detection.

A CED scheme based on diverse duplication compares the outputs of two

different implementations of the same function and indicates an error when a mismatch

occurs.  The idea of such a CED technique is derived from the general concept of design

diversity.  The conventional notion of design diversity is qualitative and relies on

independent generation of different implementations.  In this dissertation, a metric to

quantify design diversity is presented and used for analyzing CED schemes based on

diverse duplication.

A comparative study of different CED schemes by means of simulation

experiments and theoretical analysis concludes that, in the worst-case, diverse duplication

provides significantly better data integrity against multiple failures compared to other

CED schemes.  This result is especially significant in the context of Common-Mode

Failures (CMFs).  CMFs undermine the data integrity of any system with CED and

belong to a special class of multiple failures whose probability of occurrence can be as

high as that of single failures.

New techniques and synthesis algorithms have been developed for the first time to

efficiently design systems based on diverse duplication.  New fault models for CMFs are

proposed and the possible failure mechanisms for the modeled CMFs are analyzed.  In

addition, techniques for designing CED-based systems with guaranteed data integrity in

the presence of modeled CMFs are described.
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 Chapter 1 

Introduction

1.1 Background

Dependability is one of the keys to business success.  An Internet search on the

keyword “dependability” reveals that quality, integrity and dependability are among the

key selling points (in diverse sectors like aeronautics, avionics, pharmaceuticals, service

providers as well as automobile, chemical, computer hardware and software, electrical,

mechanical, medical equipment industry) for demonstrating the competitive advantages

of various products or services over others.  Dependability can be defined as “the ability

to deliver highest quality product or service to the customer over a product life-cycle.”1

In a nutshell, dependability is one of the key areas in which a customer of a product or

service expects significant ROI (Return On Investment).

Since the inception of digital electronics, dependability has been an area of active

interest in the computer engineering community.  The use of dependability features like

error-control coding and redundancy techniques in digital systems dates back to the

1950’s.  Since then dependability techniques have been incorporated for a wide range of

applications, mainly in telephone switching networks, mainframe computers and servers,

military equipment, nuclear power plants, avionics and aircraft control systems.  Today,

digital electronic components are used almost everywhere from the satellites in the space,

nuclear reactors, aircrafts, pace-makers, cars and computer servers to consumer goods

like phones, digital watches, video games, washing machines and dish-washers.

Anomalous behavior of these electronic components can have dangerous implications

leading to catastrophic accidents and even possible loss of human life.  Hence, these

components must be “dependable”.  At this point, it must be emphasized that the intended

system application determines its dependability requirements.  As observed in

[McCluskey 85], since computers are used in a vast variety of applications, reliability

requirements vary tremendously.  McCluskey uses the following two extreme examples

to illustrate the point:  “For very low cost systems such as digital watches, small

calculators or games, the dependability requirements are minimal.  The products are

expected to operate for a reasonable time after purchase.  At the opposite extreme are

                                                  
1 We got this definition from an Internet web-site that no longer exists.
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systems like nuclear power plants or active control systems for civil aircraft in which

errors can cause loss of human life.”

Many publications on dependable computing can be obtained from archival

journals (e.g., the IEEE Transactions on Computers, IEEE Transactions on Reliability,

etc.), conference proceedings (e.g., Fault Tolerant Computing Symposium, International

Test Conference, etc.), text books (e.g. [Wakerly 78][Siewiorek 92], [Pradhan 96], etc.)

and the web pages of many research groups (e.g., Stanford Center for Reliable

Computing http://crc.stanford.edu, Center for Reliable and High Performance Computing

http://crhc.uiuc.edu).

One way to guarantee 100% dependability of computer systems is to produce

perfect hardware and software.  However, this is not feasible.  Even in a hypothetical

situation where perfect hardware or software can be shipped to the customer, there are

numerous sources (e.g., radiation, EMI, power-supply disturbances, noise, etc.) of system

errors in the field.  For example, a survey on radiation induced failures in computer

electronics is available in [Ziegler 96].  In addition, the problems of various noise

sources, coupling effects and soft-errors are becoming even more critical in the era of

nanometer (Very Deep Sub-micron) technology [EE Times 99]; tackling these problems

with less aggressive design rules affects system performance, reducing expected revenue.

Thus, any system guaranteeing high dependability must be able to provide quality service

in the presence of errors that can affect the system in operation.  A recent article in IEEE

Computer observes that the computer industry and computer research must focus on

availability, maintainability and scalability of computer systems; performance should be

less of an emphasis [Hennessy 99].  In addition, for emerging future technologies like

molecular computing [Collier 99] dependability will be a major cause of concern.  This

concern has been expressed in many articles on molecular computing, including

[Peterson 00][Quinlan 99][Wall Street 99].

Some of the major components of dependability are reliability, availability,

testability, maintainability, data integrity and fault-tolerance.  Reliability is the ability to

continue correct operation and is estimated by the probability that a system will survive

to time t.  Availability is defined as the probability that a system is operational at time t

under maintenance.  Testability can be defined as the ease of detecting and locating the

presence of a fault.  Maintainability estimates the ease of repairing a system after a

failure.  Data integrity is the property which ensures that the system outputs are either

correct or an error indication is generated when incorrect outputs are produced.  In the

fault-tolerance literature, this is also referred to as the fault-secure property.  The ability

to continue correct operation after a failure is called fault-tolerance.
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The problem of assuring the required dependability of a digital electronic system

can be broadly classified into the following three different categories.

•  Verification: It must be ensured that the system (hardware and software) design is

correct and free from design errors and bugs.  For example, any error in the design of

electronic controllers used in cars must be identified and fixed.  The problem of

design verification belongs to this category.

•  Testing for manufacturing defects: For hardware designs, the manufactured parts

must be tested after fabrication [Abramovici 90][Needham 91].  This is because no

fabrication process is perfect and defects are introduced during manufacture.  It is

undesirable to use these defective parts for designing systems (e.g., in motor cars,

pace-makers, etc.).  Some of these defective parts can be identified during the testing

phase.  However, some parts may have latent defects or weaknesses (also called

flaws) that may cause the part to fail (permanently or intermittently) in the field.

These defects are the sources of early-life failures (also called infant mortality).

Reliability screening techniques [Hnatek 95][Hao 93][Chang 96][Gulati 93] can be

used to reduce the number of shipped parts with these latent defects.

•  Failure detection and recovery in the field: In addition to latent defects that can cause

intermittent failures, there are many sources of failures during system operation in the

field.  The effects of these failures can be temporary or permanent.  For systems with

high dependability, it is important to be able to detect errors affecting the system in

operation so that appropriate action can be initiated.  For example, for satellites in the

space or air-craft control systems, field failures can have catastrophic consequences

(e.g., loss of human lives) or can cause huge monetary losses.

Concurrent error detection (CED) is a technique that checks the system operation

on-line to detect the presence of any temporary or permanent failure.  The primary

objective of any CED technique is to make a system dependable against field failures.

The primary focus of this dissertation is on concurrent error detection.

1.2 A Brief Background on Concurrent Error Detection

Concurrent error detection (CED) techniques have been widely used in

commercial digital systems since the 1960’s.  Almost all CED techniques function

according to the following principle: Let us suppose that the system under consideration

realizes a function f and produces output f(i) in response to an input sequence i.  A CED

scheme generally contains another unit which predicts some special characteristic of the

system-output f(i) for every input sequence i.  Finally, a checker unit checks whether the
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special characteristic of the output actually produced by the system in response to input

sequence i is the same as the one predicted and produces an error signal when a

mismatch occurs.  Some examples of the characteristics of f(i) are f(i) itself, its parity

(indicating whether the number of 1’s in an output word is even or odd), 1’s count, 0’s

count, transition count, residue modulo a fixed number, etc.  For a detailed explanation of

these techniques please refer to Appendix C.  The architecture of a general CED scheme

is shown in Fig. 1.1.  Any CED scheme is characterized by the class of failures in the

presence of which the system data integrity is preserved.

Input

Function f
      Output
 Characteristic
     Predictor

Output

Predicted Output
  Characteristic

Checker

Error

Figure 1.1.  General architecture of a concurrent error detection scheme

CED techniques have been used for both combinational and sequential logic

modules.  The basic objectives behind the use of concurrent error detection are: (1)

detection of errors as early as possible so that corrective action can be initiated before

data corruption; and (2) identifying the Field Replaceable Unit (FRU) (e.g., a chip or

board).  An overview of the CED techniques used in IBM mainframes from 1960’s to

1981 have been reported in [Hsiao 81].  For example, in the IBM 7030 system, parity

checking was used for the dataflow paths and a CED scheme based on modulo-3 residue

codes was used for floating point arithmetic.  In addition, CED techniques based on

parity prediction and duplication were used.  CED techniques have also been used in the

IBM S/360, IBM Enterprise System/9000 Type 9021 processors, IBM S/390 consisting

of G4 CMOS processor chip, the HP Enterprise server, VAX 8600 and systems from

companies like Tandem (Compaq), Hitachi, Sperry/Univac and many other companies.

While many publications are available on IBM systems, information on CED techniques
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used by other companies can be obtained by searching for patents from the IBM patent

server (http://womplex.patents.ibm.com).  In the IBM 9021 system, concurrent error

detection based on parity prediction was used for adders, counters, shifters, comparators,

etc. and for some sequential control logic modules; residue codes (modulo-3) were used

for a high-speed multiplier; for combinational control logic, hardware duplication was

used [Chen 92].  In the IBM S/390 system [Webb 97], the instruction unit and the

execution unit are duplicated in toto on the G4 CMOS processor chip.  The execution unit

consists of the fixed-point (binary adder, BCD adder, bit-rotator, mask generator, bit-wise

logical and merge elements) and the floating-point units.  For the VAX-8600 case,

mainly parity prediction has been used for concurrent error detection in the ALU and the

floating-point units [Siewiorek 92].

In [Siewiorek 92], an overview of different CED techniques used for general-

purpose processors and high-availability systems are presented.  Among the high-

availability systems, CED techniques based on duplication and parity prediction have

been used in the AT&T telephone switching processors, and systems from Tandem and

Stratus.

In this dissertation, the problem of concurrent error detection is studied in the

context of reliable reconfigurable systems [Saxena 00].  Systems designed using Field

Programmable Gate Arrays (FPGAs) (from companies like Actel, Altera, Atmel, Xilinx)

or special processors (from companies like Chameleon Systems

http://www.chameleonsystems.com) are examples of reconfigurable systems.  The

hardware available in these systems can be programmed in the field depending on the

application to be executed.  The reconfigurability of these systems can be utilized to

obtain reliability by detecting the presence of errors using CED techniques, locating the

faulty parts and reconfiguring the system for the given application so that the faulty parts

are not used.  For a reconfigurable system, the Field Replaceable Unit (FRU) is not the

entire chip or board, but only a small part of the reconfigurable system (e.g., logic blocks

or interconnection switches in FPGAs).  With such a fine granularity of the FRU, it is

important to incorporate CED techniques at the module level for the combinational or

sequential logic circuits implemented on a reconfigurable system.

1.3 Concurrent Error detection and Diversity

Any CED technique introduces some redundancy into the system.  Duplication in

the form of self-checking pairs is the simplest form of redundancy that can be used for

concurrent error detection.  Figure 1.2 illustrates the use of duplication for concurrent
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error detection.  In the duplex system in Fig. 1.2, there are two modules (with identical or

different implementations) performing the same function.  The outputs of the two

modules are compared and any mismatch prompts a corrective action (maintenance,

replacement with standby spares, etc.).  The system data integrity is guaranteed as long as

at least one module produces correct outputs.

Module 1 Module 2

Comparator

Error

Figure 1.2.  A Duplex System for Concurrent Error Detection

Let us suppose that the probability that any one of the modules fails and produces

incorrect outputs is 10-6.  If failure events are independent, the probability that both the

modules fail and produce incorrect outputs (leading to possible loss of data integrity) is

10-12.  Classical analysis assumes that the system fails (data integrity compromised)

when both modules fail — thus, the probability that the duplex system fails with respect

to independent failures is 10-12.  Thus, under the assumption of independence of module

failures, a duplex system provides 6 orders of magnitude improvement in data integrity

compared to a simplex system (consisting of a single module).

The above assumption of the independence of module failures is extremely

critical to the analysis of redundant systems.  It has been observed in the literature that

Common-Mode Failures (CMFs) is a significant source of failures in redundant systems.

In a redundant system, CMFs result from failures that affect more than one module at the

same time, generally due to a common cause [Lala 94].  These include operational

failures that appear during system operation and may be due to external (such as EMI,

power-supply disturbances and radiation) or internal causes.  Design mistakes also

constitute a significant source of CMFs [Avizienis 84].  For a redundant system with

identical modules, it is likely that a CMF will have identical error effects in the individual

modules [Tamir 84].  A detailed survey of common-mode failures in redundant systems

has been presented in Appendix A and [Mitra 00c].  A formal definition of a common-

mode failure is given below.
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“A common-mode failure (CMF) is the result of an event(s) which, because of

dependencies, causes a coincidence of failure states of components in two or more

separate channels of a redundancy system, leading to the defined system failing to

perform its intended function” [sic][Watson 79].

For a duplex system with two identical modules, if the CMF probability is 10-7,

then the probability that the duplex system fails is 10-7.  Thus, the simple addition of

redundancy through replication does not help protect the system against CMFs.

A natural component of the study of common-mode failures is the study of

diversity.  As early as 1970, diversity was identified as an effective antidote for common-

mode failures [Jacobs 70].  However, the major thrust was on incorporating diversity at

various steps in the design of a nuclear reactor control.  Design diversity was proposed in

[Avizienis 77] to protect redundant computing systems against common-mode failures.

Design Diversity is an approach in which the hardware and software elements that are to

be used for multiple computations (in a redundant system) are not just replicated, but are

independently generated to meet a system's requirements [Avizienis 84].  Thus, the basic

idea behind using design diversity is that, with different implementations, the error

effects of a CMF will possibly be different so that error detection is possible.

The concept of design diversity has been used in both software and hardware

systems.  N-version programming [Chen 78] is a technique in which three different

versions of the same software (generated independently) are used to design a redundant

software system.  In addition to N-version programming, there are other diversity

techniques (e.g., data diversity, functional diversity, etc.) for protecting redundant

software systems against common-mode failures.  A comprehensive report on these

techniques is given in Appendix A.  Hardware design diversity has been used in the past

to design redundant hardware systems.  Examples of systems using hardware design

diversity include the Primary Flight Computer (PFC) system of Boeing 777 [Riter 95],

the space shuttle, Airbus 320 [Briere 93] and many other commercial systems.  For the

Boeing 777, three different processors with different architectures (from AMD, Intel and

Motorola) are used in the PFC system.

1.4 Contributions

From the previous discussion, it is clear that the concept of diversity is qualitative.

This means, given two diverse duplex systems, for example, there is no way to tell which

one should be used so that the system data integrity is maximized.  Thus, as pointed out

in [Littlewood 96], there is a need to answer questions such as: “what is diversity?  Are
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these designs more diverse than those?  How diverse are these two designs?”  In the

literature, these questions are not answered clearly; the need for answering these

questions has also been expressed in [Tamir 84].

This dissertation presents a metric for design diversity.  The metric is very simple

and can be applied to both hardware and software systems.  It has also been shown that

the metric can be used to perform reliability and availability analysis of redundant

systems to quantify the gains obtained from using diversity in redundant systems.  Thus,

for the first time, it is possible to make quantitative comparisons among different diverse

redundant systems.

With the new concept of a diversity metric, it is possible to quantify the

vulnerability of diverse duplex systems to multiple failures and CMFs.  In this

dissertation, the concept of the diversity metric has been used to quantify the

vulnerability of other popular CED schemes (e.g., parity checking) to multiple failures

and CMFs.  While these CED techniques have been well-known for many years and the

problem of multiple failures and CMFs affecting these schemes has been acknowledged,

there has been no systematic study comparing the vulnerability of these CED schemes to

these failures.  Almost all earlier studies considered only the area overhead as a criterion

for comparing these different CED schemes.  A study (using computer simulations and

theoretical analysis) was conducted, for the first time, to compare different CED schemes

based on their area overhead and their vulnerability to multiple failures and CMFs.  The

study reveals that diverse duplication provides significantly better protection (data

integrity) against multiple failures and CMFs compared to other CED techniques.

It has been observed earlier that the conventional notion of diversity relies on

“independent” generation of “different” implementations.  However, with the help of the

diversity metric, it is possible to develop algorithms for synthesizing “different”

implementations in order to guarantee that the diversity is maximized.  New synthesis

algorithms for designing two-level and multi-level combinational logic circuits, using

diversity as a component of the cost function during synthesis, have been presented in

this dissertation.

While diversity can provide some protection against multiple failures and CMFs,

it is well-known that the data integrity of a diverse duplex system is not guaranteed in the

presence of these failures.  Thus, it is important to detect these failures so that appropriate

actions can be initiated.  New test point insertion techniques for detecting multiple

failures (CMFs constitute a subset of multiple failures) in duplex systems have been

developed in this dissertation.  The proposed algorithm developed for implementing these

techniques show orders of magnitude improvement over a conventional exact algorithm
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with minimal loss in the accuracy of the results.  Moreover, the approximate algorithm is

very flexible, its execution time can be tuned according to user requirements (accuracy,

processing time, etc.), and it is pessimistic.  This guarantees that all fault pairs (and

hence, CMFs) can be detected with minimal overhead.

Finally, new CMF models have been proposed for the first time.  While numerous

publications discuss the problem of CMFs, the absence of CMF models impedes research

progress in this field.  Special techniques for designing redundant systems that guarantee

full protection against the modeled CMFs have been presented in this dissertation.

While redundancy based on duplication is useful for concurrent error detection,

Triple Modular Redundancy (TMR) is widely used for masking faults during system

operation.  A TMR system contains three modules (with the same or different

implementations) performing the same function and their outputs are connected to a

majority voter.  The majority voter produces the system outputs.  A new voter design for

TMR systems has been developed in this dissertation.  The advantages of the new voter

design over conventional voters in enhancing the data integrity of TMR systems have

also been demonstrated.

The major contributions of this dissertation are:

•  A metric for quantifying diversity in redundant systems has been developed for the

first time.  Such a metric permits quantitative comparisons of different redundant

systems.

•  Reliability and availability of redundant systems using this metric have been

analyzed.

•  The idea of the diversity metric has been extended to quantify the vulnerability of

different CED techniques to multiple failures and CMFs.

•  A study comparing the advantages and disadvantages (e.g., area overhead,

vulnerability to multiple failures and CMFs) of different CED techniques has been

presented.  The comparative study quantifies the advantages of diverse duplication

techniques over other CED schemes.

•  Test point insertion techniques that guarantee detection of multiple failures and CMFs

in duplex systems have been developed.

•  New combinational logic synthesis algorithms have been formulated for designing

duplex systems in order to maximize the gains obtained from diversity.

•  A thorough characterization of common-mode failures in redundant systems has been

developed.

•  A new voter design for Triple Modular Redundant systems has been developed.

Simulation results demonstrate that the data integrity of TMR systems with the new
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voter is at least an order of magnitude better than that of TMR systems with

conventional voters.

•  New CMF models have been proposed and techniques for designing redundant

systems protected against modeled CMFs have been described.

1.5 Outline

Chapter 2 presents the design diversity metric and reliability analysis of redundant

systems.  Chapter 3 presents a study conducted to compare different concurrent error

detection techniques based on their area overhead and their vulnerability to multiple

failures and CMFs.  Techniques that guarantee 100% detection of multiple and common-

mode failures in duplex systems are developed in Chapter 4.  Chapter 5 presents

combinational logic synthesis techniques for diversity.  Fault models for CMFs and

techniques to design redundant systems protected against modeled CMFs are proposed in

Chapter 6.  Chapter 7 concludes this dissertation.
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 Chapter 2 

A Design Diversity Metric and Analysis of Redundant
Systems

Design diversity has long been used to protect redundant systems against

common-mode failures (CMFs).  In [Avizienis 84], design diversity was defined as “the

independent generation of two or more software or hardware elements to satisfy a given

requirement”.  The conventional notion of diversity is qualitative and does not provide a

basis to compare reliabilities of two diverse systems.  For quantitative analysis, a metric

for design diversity is needed.  In this chapter, a metric to quantify diversity among

several designs has been presented.  Based on this metric, analytical models have been

derived to perform reliability and availability analysis of redundant systems.  A detailed

discussion and the simulation results can be found in Appendix B.

2.1 D: A Design Diversity Metric

Assume that we are given two implementations (logic networks) of a logic
function, an input probability distribution and faults fi and fj that occur in the first and the

second implementations, respectively.  The diversity di,j with respect to the fault pair (fi,

fj) is the conditional probability that the two implementations do not produce identical

errors, given that faults fi and fj have occurred [Mitra 99a].

For a given fault model, the design diversity metric, D, between two designs is the

expected value of the diversity with respect to different fault pairs.  Mathematically, we
have D = P f f di j i j

f fi j

( , ) ,
( , )
∑ , where P (fi, fj) is the probability of the fault pair (fi, fj).

D is the probability that the two implementations either produce error-free outputs

or produce different error patterns on their outputs in the presence of faults affecting the

two implementations.

Consider any combinational logic function with n inputs and a single output.  The

fault model considered is such, that a combinational circuit remains combinational in the

presence of the fault.  Let us consider two implementations (N1 and N2) of the given

combinational logic function.
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The joint detectability, ki,j, of a fault pair (fi, fj) is the number of input patterns that detect

both fi and fj.  This definition follows from the idea of detectability developed in

[McCluskey 88].

Assuming all input patterns are equally likely, di,j = 1 -
ki j

n
,

2
.

For example, consider the two implementations of the logic function Z = AB + AC

shown in Fig. 2.1.

& &

+

AB C

Z

W

+

&

CB A

Z

Y

(a) (b)
Figure 2.1.  Example of diversity

Consider the fault f1 = w stuck-at-0 in the implementation of Fig. 2.1a and the

fault f2 = y stuck-at-0 in the implementation of Fig. 2.1b.  The set of input combinations

that detect f1 is {ABC = 101}.  The set of input combinations that detect f2 is {ABC =

111, 101, 110}.  It is clear that ABC = 101 is the only input combination that detects both

f1 and f2.  Hence, the joint detectability k1,2 of the fault pair (f1, f2) is 1.  If a duplex system

consisting of the two implementations in Fig. 2.1 is affected by the fault pair (f1, f2), then

ABC = 101 is the only input combination for which both implementations will produce

identical errors.  If we assume that all input combinations are equally likely, then the d1,2

for the fault pair (f1, f2) is 1
1
8

7
8

− = .

The di,j’s generate a diversity profile for the two implementations with respect to a

fault model.  Consider a duplex system consisting of the two implementations under

consideration.  In response to any input combination, the implementations can produce

one of the following cases at their outputs:  (1) Both of them produce correct outputs.  (2)

One of them produces the correct output and the other produces an incorrect output.  (3)

Both of them produce the same incorrect value.

For the first case, the duplex system will produce correct outputs.  For the second

case, the system will report a mismatch so that appropriate recovery actions can be taken.
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However, for the third case, the system will produce an incorrect output without reporting

a mismatch — thus, for the third case, the system data integrity of the system is not

preserved.

Assuming all fault pairs are equally probable and there are m fault pairs (fi, fj),

then the D metric for the two implementations is: D = 
1
m

di j
i j

,
,
∑ .

The above illustration of the design diversity metric can also be extended to

multiple-output combinational logic circuits (shown in Appendix B), sequential circuits,

software programs and for redundant systems with more than two modules.  For small or

medium-sized systems, the exact value of the diversity metric can be calculated manually

or using computer programs.  For large systems, the value can be estimated by using

simulation techniques.

2.2 Analysis

Analysis of redundant systems using the design diversity metric has been reported

in detail in Appendix B and [Mitra 99a].  This section presents some important results

obtained from the analysis.

For the ease of analysis, we assume a discrete time model for the system.  In such

a model, the time axis is broken up into discrete time cycles and we apply inputs and

observe outputs only at cycle boundaries.  As shown in Fig. 2.2, input combination
(vector) vi is applied at the beginning of the ith cycle.  Also, in Fig. 2.2, the first system

becomes faulty (f1) during cycle i and the second system becomes faulty (f2) during cycle

j.  For our analysis, we assume that the faults are permanent.  However, our analysis can

be extended for temporary faults.

0 1 i j t

Time

v1 vi vj

f1 f2

Figure 2.2.  A discrete time model of the system
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Time
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f1 f2

d1,2 d1,2 d1,2

0

Figure 2.3.  Common-Mode failure affecting both modules of a duplex system

As shown in Fig. 2.3, suppose that faults f1 and f2 affect modules 1 and 2 of a

duplex system, simultaneously at cycle i, perhaps due to the presence of a common-mode

failure.  Let p be the probability that the system is affected by a CMF affecting both

modules at any cycle.  The probability p can be considered as the failure rate per cycle.

Classical analysis of a duplex system assumes that the system ceases to be fault-secure

when a CMF affects both modules of the system.  Hence, according to the classical

analysis, the probability that the system data integrity is guaranteed up to time t is (1-p)t.
However, if we consider the di,j values of the different fault pairs, the probability

that the data integrity of the duplex system is preserved up to time t is given by the

following expression (proved in Appendix B):

( ) ( , ) ( , , )
,

1 1 2 1 2

1 2

− + ∑p P f f z f f tt

f f

P(f1, f2) is the probability of the fault pair (f1, f2).  In the above expression, z(f1, f2, t) is

given by the following formula (proved in Appendix B):

z(f1, f2, t) = pd
d p

d p

t t

1 2
1 2

1 2

1

1,
,

,

[ ( ) ]

[ ( )]

− −
− −

It is clear from the above expression that, in the presence of a CMF, we can obtain
appreciable improvement in data integrity over classical systems when the value of d1,2 is

greater than or equal to (1-p).  Consequently, the following observations can be made

•  When the failure rate is high, even a little diversity can help enhance the

system data integrity over traditional replication.
•  If the failure rate is low, then d1,2 must be extremely high for appreciable

improvement in system data integrity.  As a limiting case, consider the

situation when the CMF failure rate is 0.  In that case, we do not need any

diversity.

In Fig. 2.4, we show the plots of data integrity of duplex systems (corresponding
expressions shown above) for different values of d1,2.  Along the X-axis, we plot time.

The MTTF (Mean Time To Failure in cycles) of a simplex system corresponds to 1 time
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unit.  Along the Y-axis, we plot the probability of data integrity (fault-secure probability)

of a duplex system.  The CMF rate per cycle (p) is 10-13.  It is clear that we get
appreciable improvement in data integrity when the value of d1,2 is very high (1-10-12 or

more).

Time (MTTF of Simplex = 1)

Probability
       of
Data Integrity

0.02 0.04 0.06 0.08 0.1

0.92

0.94

0.96

0.98

Classical

d1,2 = 1-10-12

d1,2 = 1-10-11

d1,2 = 0

Figure 2.4.  Data integrity of a duplex system against common-mode failures

Time (MTTF of Simplex = 1)

Gain

0.05 0.1 0.15 0.2 0.25 0.3

2

4

6

8

Figure 2.5.  Effect of diversity vs. time (for common-mode failures)

In Fig. 2.5, we show how the improvement in data integrity obtained from

diversity depends on time.  On the Y-axis of the graph in Fig. 2.5, we plot the ratio of the

following two quantities.
1. The probability that a duplex system is not fault-secure at time i, for a fault pair (f1,

f2) with d1,2 = 1-10-11.  The curve for the fault-secure probability with d1,2 = 1-10-11 is

shown in Fig. 2.4.
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2. The probability that a duplex system is not fault-secure at time i, for fault pair (f1, f2)

with d1,2 = 1-10-12.  The curve for the fault-secure probability with d1,2 = 1-10-12 is

also shown in Fig. 2.4.  The failure rate per cycle is 10-13.

We call this ratio the gain.  This quantity gives us a measure of the data integrity
improvement obtained by using the second duplex system (with d1,2 = 1-10-12) instead of

the first (d1,2 = 1-10-11).  Along the X-axis, we plot time.

As Fig. 2.5 shows, the gain obtained from diversity diminishes with time.  For

some applications (e.g., control hardware for aircraft landing), the system may be used

only for a certain amount of time; this period of operation of the system is called the

mission time of the system.  From the graph in Fig. 2.5 we can conclude that if the

mission time (time of operation) of the system is short, we can obtain around an order of

magnitude improvement in data integrity by using a diverse duplex system.  However, if

the mission time is too long, we may not get any improvement in data integrity by using

diversity.  Thus, our analysis technique enables us to derive relationships among the data

integrity of a duplex system, the diversity incorporated to protect the system against

common-mode failures and the mission time.  Hence, our design diversity metric is a

very fundamental property and can be used to understand different trade-offs associated

with the design of dependable systems using redundancy.

The importance between data integrity analysis and the system mission time is

demonstrated using the following example.  Consider two duplex systems A and B.  Let

us suppose that system A and B  contain identical and diverse implementations of the

same logic function, respectively.  Suppose that the analysis of data integrity

improvement (similar to the curve in Fig. 2.5) shows that the gain value is around 10
when the mission time is T1 but decreases to 1 at mission time equal to T2.  This implies

that, for applications with mission time less than or equal to T1, the system data integrity

obtained by using system B  (diverse) will be an order of magnitude better than system A.
However, if the mission time of the application is greater than T2, there will be no gain in

data integrity by choosing system B over system A.  This can probably mean that neither

system is worth using and we must design another system with sufficient diversity to

obtain significant data integrity improvement for such long mission time.  Another

alternative is to reduce the mission time and periodically test and/or checkpoint the

system.

The design diversity metric can be used to perform availability analysis of duplex

systems in the presence of CMFs [Mitra 99b].  These analysis techniques have been

reported in Appendix B.
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2.3 Results Demonstrating the Effectiveness of Diversity

In order to quantify the effectiveness of diversity in redundant systems, we

present some results obtained through computer simulations.  We considered

combinational logic circuits from the MCNC benchmark suite for simulation purposes.

For generating different designs, we synthesized logic circuits after applying multi-level

optimizations using the rugged script available in sis [Sentovich 92].  We subsequently

mapped the multi-level logic circuits to the LSI Logic G-10p technology library [LSI 96].

Next, we complemented the outputs in the truth tables of the benchmark circuits to

generate new truth tables.  We used the same synthesis procedure for these new truth

tables.  Finally, we added inverters at the outputs of the new designs obtained.

Since we did not find any data on common-mode failure mechanisms, we

performed the following sets of experiments to estimate the effect of diversity in the

presence of common-mode failures.  In a duplex system with identical implementations,

we can find a one-to-one correspondence between the leads of the two copies.  Hence, for
these duplicated systems, we injected single stuck-at fault pairs (f1, f2) such that f1 and f2

affect lead i of Module 1 and Module 2, respectively.  This corresponds to a worst-case
scenario.  Note that, in the presence of f1 and f2, the two modules behave exactly in the

same way.  Hence, they can be called common-mode faults.  In the presence of these

faults, the two implementations never produce different erroneous outputs; hence, the
presence of these faults cannot be detected.  Let us suppose that the faults f1 and f2,

resulting from a CMF, affect the two implementations of the duplex system at cycle c.

The data-corruption latency is defined to be the number of cycles from c until both

implementations produce the same erroneous output.  The idea of data-corruption latency

similar to the concept of error-latency defined in [Shedletsky 76].  For the benchmark

circuits, we calculated the data corruption latency for these common-mode faults using

exhaustive simulation (the formula is derived in Appendix B).

For duplex systems with different implementations, we cannot establish a one-to-
one correspondence between the leads of the two copies.  Hence, for each fault f1 in

Module 1, we found the fault f2 in Module 2 with the minimum value of the data

corruption latency using exhaustive simulation.  Hence, the fault pair (f1, f2) is called the

worst-case fault pair with the worst-case data corruption latency.  Table 2.1 compares the

data-corruption latencies of diverse and non-diverse duplex systems for some MCNC

benchmark logic circuits in the presence of CMFs.
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Table 2.1.  Simulation results
Circuit
Name

Duplex System
Type

Worst Data-Corruption
Latency (cycles)

Z5xp1 Identical 10
Diverse 1711

clip Identical 35
Diverse 372

inc Identical 16
Diverse 1645

rd84 Identical 21
Diverse 301

The results in Table 2.1 show a distinct advantage in using different

implementations over non-diverse designs for common-mode faults.  This is because the

worst-case data-corruption latency of a CMF in a diverse duplex system is at least an

order of magnitude greater than that of a CMF in a duplex system with identical

implementations.  It may be argued that a system may produce an error signal before

producing corrupt outputs; in that case, the system data integrity will be preserved.  As

mentioned earlier in this section, this scenario cannot happen in the presence of a CMF in

a duplex system with identical implementations (assuming that a CMF affects identical

leads in both modules for a duplex system with identical implementations); it can only

happen in the presence of CMFs in diverse duplex systems.  Hence, the results in Table

2.1 are pessimistic for diverse duplex systems.

2.4 Conclusions

The conventional concept of design diversity is qualitative and does not provide a

basis to compare the reliabilities of two diverse systems.  For the first time, a metric has

been developed to quantify diversity among several designs.  Analytical models for

reliability and availability analysis using the design diversity metric have been derived.

In this chapter, the analysis technique has been used to quantify the data integrity of

duplex systems with diversity.  The analysis shows simple relationships among system

data integrity, design diversity, system failure rate, and mission time.  Since CMFs can be

viewed as worst-case multiple module failures, the above observations can be made for

multiple module failures in redundant systems.
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 Chapter 3 

Comparison of Various Concurrent Error Detection
Techniques

As observed in Chapter 1, concurrent error detection (CED) techniques are widely

used to enhance system dependability [Sellers 68, Kraft 81, Wakerly 78, Chen 92,

Pradhan 96].  Conventional CED techniques are based on hardware duplication (duplex

systems) and error-detection codes (e.g., parity codes).  In this chapter, we present

quantitative results to compare six CED schemes based on their area overhead and their

vulnerability to multiple and common-mode failures.  Complete details of our analysis

technique and the simulation results are presented in Appendix C.

3.1 Concurrent Error Detection

The basic objective of using concurrent error detection is to perform on-line

checks on the system outputs in order to guarantee data integrity by detecting temporary

or permanent failures while the system is in operation.  Almost all CED techniques

function according to the following principle: Let us suppose that the system realizes a

function f and produces output f(i) in response to an input sequence i.  A CED scheme

generally contains another unit which predicts some special characteristic of the output

f(i) for every input sequence i.  Finally, a checker unit checks whether the special

characteristic of the output actually produced by the system in response to input

sequence i is the same as the one predicted and produces an error signal when a

mismatch occurs.  Some examples of the characteristics of f(i) are f(i) itself, its parity, 1’s

count, 0’s count, transition count, etc.  The architecture of a general CED scheme is

shown in Fig. 3.1.
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Checker
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Figure 3.1.  General architecture of a concurrent error detection scheme

3.2 An Overview of Various Concurrent Error Detection Techniques

In this section, we present a brief overview of several CED schemes based on

duplication, parity prediction, Berger codes and Bose-Lin codes.  These techniques are

very general and can be applied to any system, unlike some other application-specific

error detection techniques like inverse checking [Sellers 68], assertion checking

[Mahmood 84] and algorithm-based fault tolerance [Huang 84].

3.2.1 Concurrent Error Detection using Duplex Systems

A duplex system is an example of a classical redundancy scheme which can be

used for concurrent error detection [Sellers 68, Kraft 81, Sedmak 78].  Figure 3.2 shows

the basic structure of a duplex system.  Hardware duplication has been used for

concurrent error detection in numerous systems including the Bell System No. 2

Switching System [Kraft 81] and systems from companies like Stratus and Sequoia

[Siewiorek 92, Pradhan 96]; hardware duplication is also used in the IBM G6 processor.

Module 1 Module 2

Comparator

Error

Figure 3.2.  A Duplex System
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In any duplex system there are two modules (shown in Fig. 2.1 as Module 1 and

Module 2) that implement the same logic function.  The two implementations are not

necessarily the same; for example, one can be the complement of the other.  A

comparator is used to check whether the outputs from the two modules agree.  If the

outputs disagree, the system indicates an error.  For a duplex system, data integrity is

preserved as long as both modules do not produce identical errors (assuming that the

comparator is fault-free).  Since the comparator is crucial to the correct operation of the

duplex system, special designs are needed to ensure that the data integrity of the system is

not compromised due to comparator failure.  The comparator design technique in

[Hughes 84] guarantees data integrity against single faults in the comparator.

3.2.2 Concurrent Error Detection through Parity Prediction

Parity prediction is a well-known CED technique that is widely used in

dependable systems.  The even/odd parity function indicates whether the number of 1’s in

a set of binary digits is even or odd.  Techniques for designing datapath logic circuits and

general combinational circuits with parity prediction have been described in [Sellers 68,

Kraft 81, De 94, Touba 97].  Figure 3.3 shows the basic architecture of a system with

concurrent error detection using a single parity bit.  The circuit has m outputs and is

designed in such a way that there is no sharing among the logic cones generating each of

the outputs.  Thus, a single fault can affect at most one output bit position.  The parity of

the outputs is predicted independently.  The parity checker checks whether the actual

parity of the outputs matches the predicted parity [McCluskey 90].

Z1 Z2 Zm Predicted Parity P

Parity Checker

ErrorOutputs Z1 - Zm

Figure 3.3.  A Concurrent Error Detection technique using a single parity bit

The restriction of no logic sharing among different logic cones results in large

area overhead for circuits with a single parity bit.  Hence, the idea of using a single parity

bit can be extended to multiple parity bits.  This technique partitions the primary outputs
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into different parity groups.  Logic sharing is allowed only among logic cones of the

outputs that belong to different parity groups.  There is a parity bit associated with the

outputs in each parity group.  The outputs of a parity group are checked using a parity

checker.  Figure 3.4 shows the general structure of a combinational logic circuit with two

parity groups.

Z1 Zm

Parity Checker

P1

Outputs Z1 - Zk

Zk Zk+1 P2

Parity Checker

Outputs Zk+1 - ZmError1 Error2

Figure 3.4.  Multiple parity bits for concurrent error detection

In the circuit of Fig. 3.4, there are two parity groups G1 and G2.  The parity group

G1 contains the outputs Z1, …, Zk.  P1 is the predicted parity for this parity group.  It

predicts the parity of the primary outputs in G1.  The parity group G2 contains the outputs

Zk+1, …, Zm.  P2 is the predicted parity bit associated with this parity group.  There is

logic sharing between outputs Zk and Zk+1.  No logic sharing is allowed among the cones

corresponding to outputs Z1, …, Zk (Zk+1, …, Zm).  Sharing is allowed among logic cones

corresponding to other output groups such as Zh and Zj, 1 ≤ h ≤ k, k+1 ≤ j ≤ m.

3.2.3 Concurrent Error Detection using Unidirectional Error Detecting Codes

CED techniques based on unidirectional error detecting codes have been proposed

in the past [Jha 93].  A unidirectional error detection code assumes that all errors are

unidirectional; i.e., they change 0s to 1s or 1s to 0s but never both at the same time.  Two

unidirectional error-detecting codes used for concurrent error detection are: (i) Berger

codes [Berger 61], and (ii) Bose-Lin codes [Bose 85].

For the Berger code, a code-word is formed by appending the number of 0s (or

the bit-wise complement of the number of 1s) in the given information word to form a

code-word.  Thus, for an information word consisting of n bits, the Berger code requires
 log2n  extra bits to represent the number of 0s (or the bit-wise complement of the

number of 1s) in the information word.  The Berger code has the capability of detecting
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all unidirectional errors.  Figure 3.5 shows a concurrent error detection technique using

Berger codes.

Output

Logic Function
 (Inverter-free)

Predict 1s
   count
(Inverter-
    free)

Checker

Error

Figure 3.5.  Concurrent Error Detection Using Berger Codes

Since the Berger code is a unidirectional error detection code, it is important to

ensure that a single fault causes unidirectional errors at the outputs of the logic circuits.

This imposes a restriction that the logic circuits should be synthesized in such a way that

they are inverter-free [Jha 93].  Inverters can only appear at the primary inputs.  In

general, for Berger codes used to detect unidirectional errors on communication channels,

the check-bits represent the bit-wise complementation of the number of 1’s in the

information word.  However, since concurrent error detection techniques are designed to

guarantee data integrity in the presence of single faults, a single fault can affect either the

actual logic function or the logic circuit that predicts the number of 1’s at the output, but

never both at the same time.  Thus, we need not obtain a bit-wise complementation of the

number of 1’s.  The checker circuit for the Berger codes used can be obtained from

[Marouf 78].

Bose-Lin codes are capable of detecting t-bit unidirectional errors in the code-

word.  The construction of Bose-Lin codes for t = 2 and t = 3 are given in [Bose 85].  The

design of logic circuits with concurrent error detection based on Bose-Lin codes has been

reported in [Das 98].  Figure 3.6 shows the architecture of a system with concurrent error

detection based on a 2-bit unidirectional error detecting Bose-Lin code. We want the

circuit, like Berger codes, to be inverter-free (except at the primary inputs) so that any

single fault creates unidirectional errors at the outputs.  We also need a restriction on the

amount of logic sharing since the code is capable of detecting at most 2 unidirectional

errors.  The restriction is that, any logic gate in the circuit can be shared by the logic
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cones of at most two primary outputs.  Checker circuits for Bose-Lin codes can be

obtained from [Jha 91].

Output

Logic Function
 (Inverter-free)

    Predict 1s
  count mod 4
 (Inverter-free)

Checker

Error

Max. Fanout:
   2 outputs

Max. Fanout
   2 outputs

Figure 3.6.  Concurrent error detection using Bose-Lin codes

3.3 Vulnerability to Multiple Failures and CMFs: Simulation Results

In this section, we present simulation results on the vulnerability of the CED

techniques to multiple failures and CMFs.  We considered some circuits from the MCNC

91 benchmark suite for simulation purposes.  Since these circuits have fewer than 10

inputs, they can be simulated exhaustively.  The details of the techniques used for

synthesizing the circuits are reported in Appendix C.

Table 3.1.  Comparison of area overhead of CED schemes

Circuit Identical
Duplex

Diverse
Duplex

Single
Parity

Multiple
Parity

Berger
Code

Bose-Lin
Code (t = 2)

Z5xp1 822 836 897 840 1335 1068
inc 743 751 735 692 854 807

squar5 507 485 446 465 627 570
ex5.20 646 649 732 593 815 755
rd84 768 684 1015 971 1135 1056

Table 3.1 shows a comparison of the area overhead of six CED schemes for some

MCNC benchmark circuits.  The results in Table 3.1 do not consider the area required by

the input and output registers.  In Table 3.1, for each circuit, the minimum area figures

are highlighted in bold type.  It is clear from Table 3.1 that the area overhead of CED

techniques based on Berger codes and Bose-Lin codes are much higher than those based
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on parity prediction or duplication.  A similar observation has been made by earlier

researchers [Zeng 99].  Hence, for the rest of the chapter, we will focus mainly on a

comparative analysis of CED techniques based on duplication and parity prediction.

In dependable systems, it is realistic to assume that corrective action is initiated

after the system generates an error signal.  Thus, for any system with concurrent error

detection, data integrity is guaranteed as long as the system does not produce an

undetected corrupt output before indicating the presence of an error.  In the following

discussion, we focus on systems consisting of combinational logic circuits.  However, the

entire discussion can be extended for sequential logic circuits.

The probability that the data integrity of a combinational logic system is
guaranteed up to time t in the presence of a fault pair (fi, fj) is derived in the following

way.  Let us suppose that the probability that the system produces correct outputs in the
presence of (fi, fj) is yi,j.  The probability that the system produces incorrect outputs that

can be detected is zi,j.  Figure 3.7 shows a Venn diagram that can be used to explain the

significance of yi,j and zi,j.

Correct Outputs
yij

   Detected
     Errors

zij

Undetected
     Errors
1 - yij - zij

Figure 3.7.  Venn diagram showing yi,j and zi,j

The probability that the system data integrity is guaranteed up to time t is:
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The above expression can be derived from the fact that the system must either

produce correct outputs up to time t or indicate an error signal for the first time without

producing any corrupt data before t.  From the above expression for data integrity, it is

clear that the term wi,j = 
z

y
i j

i j

.

,1 −
 plays an important role in determining the system data

integrity up to time t.  The term wij (the detected fraction) is the fraction of output error
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events detected in the presence of the fault pair (fi, fj).  If the value of this term is 1 the

system either produces correct outputs or indicates erroneous situations when incorrect

outputs are produced.  If the value is 0 the system never produces any error signal when

incorrect outputs are produced.  Note that, if a CED-based system produces correct

outputs for all input combinations even in the presence of a fault, then the fault is

redundant.

We used the following procedure to estimate the protection against multiple and

common-mode failures provided by CED techniques based on duplication and parity
prediction.  For each single-stuck-at fault fi in each of these circuits, we identified another

single-stuck-at fault fj in the same circuit so that the value of wi,j is the minimum over all

fj’s through exhaustive simulation of all fault pairs and all input combinations.  Hence,

the fault pair (fi, fj) can be regarded as a worst-case fault pair.  Finally, we averaged the

wi,j’s over all the worst-case fault pairs to obtain the average value of the worst-case

detected fraction of incorrect outputs.  Such a metric is pessimistic because we are

considering the worst-case fault pairs.  The results are shown in Table 3.2.  The

benchmark circuits are small enough so that exhaustive simulation is possible.

Table 3.2.  Detection probability of erroneous outputs for CED schemes

Circuit Identical
Duplex

Diverse
Duplex

Multiple
Parity

Z5xp1 0 0.70 0.46
inc 0 0.68 0.45

squar5 0 0.55 0.53
ex5.20 0 0.3 0.2
rd84 0 0.66 0.51

For duplex systems with identical implementations of the two modules, the worst-

case fault pairs affect the corresponding leads of both modules.  In that case, the system

produces correct outputs or identical errors that cannot be detected.  Hence, the value of
wi,j is 0 for all worst-case fault pairs in duplex systems with identical implementations.

Table 3.3 shows the improvement in the probability of detecting incorrect outputs in

diverse duplex systems compared to other CED techniques.  The improvement in the

probability of detecting erroneous outputs obtained by diverse duplication over any other

CED scheme is defined as: 
system)duplex  diversein  detected outputsct Pr(Incorre-1

)scheme CED by the detected outputsIncorrect Pr(1− .

For example, consider the example of the benchmark circuit Z5xp1.  For a duplex system

with identical implementations, the probability that erroneous outputs will be detected in

the presence of worst-case fault pairs is 0; i.e., the probability that erroneous outputs will
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not be detected is 1.  Likewise, for a diverse duplex system, the probability that erroneous

outputs will be detected in the presence of worst-case fault pairs is 0.7; therefore, the

probability that erroneous outputs will not be detected is 0.3.  Thus, we obtain around 3

times improvement in the detectability of erroneous outputs by using diverse duplication

instead of identical duplication.

Table 3.3.  Improvement of detection probability of incorrect outputs using diverse duplication
over other schemes

Circuit Identical
Duplex

Multiple
Parity

Z5xp1 3 1.8
inc 3 1.7

squar5 2 1.04
ex5.20 1.5 1.14
rd84 3 1.5

Tables 3.2 and 3.3 demonstrate the advantages of using diverse duplex systems

over other CED schemes.  It may be noted that for diverse duplex systems, we found
worst-case fault pairs with the value of wi,j equal to 1.  This means that, even in the

worst-case, system data integrity is guaranteed for these fault pairs in the diverse duplex

system.  However, we did not find such worst-case fault pairs for systems with parity

checking.

The analysis presented in this section is pessimistic because it considers only the
worst-case fault pairs.  For the best case analysis, for every fault fi in the circuit we can

always identify a fault fj such that the value of wi,j is 1.  These two can be faults in the

same module of a duplex system or the same logic cone for a CED scheme based on

parity prediction.  Thus, a best-case analysis does not help us in comparing the

vulnerability of various CED schemes to CMFs and multiple failures.  Additional results

on the comparison of the multiple and common-mode failure vulnerability of various

CED techniques are reported in Appendix C.

The simulation results demonstrate the advantages of diverse duplication in

providing protection against multiple failures and CMFs compared to other CED

schemes.  Analytical techniques to quantify the vulnerability of various CED techniques

to multiple failures and CMFs, and to explain the above simulation results are presented

in Appendix C.  These techniques make assumptions about the behavior of CED systems

in the presence of failures.  Open problems for more sophisticated and general analysis of

failure behaviors in CED systems are also presented in Appendix C.
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Figure 3.8.  Systems with CED: (a) Example. (b) Duplication (identical or diverse). (c) Parity
prediction. (d) Diverse duplication for combinational logic; parity prediction for registers and

bus

In the previous sections, we mainly focused on CED techniques for combinational

logic blocks.  In Fig. 3.8, we present a system-level view of concurrent error detection.

The system in Fig. 3.8a contains a combinational logic block implementing a logic

function f; the logic block obtains its inputs from register X and the outputs are stored in

register Z.  In Fig. 3.8b, we present a duplication-based CED technique (identical or
diverse) for the system in Fig. 3.8a.  The combinational logic blocks N1(f) and N2(f)

implement function f.  Registers X and Z and the system bus are duplicated; this can

possibly cause high area overhead.  In order to create diversity in the register contents,
register X2 (Z2) can store the complemented forms of the contents of register X1 (Z1).

Figure 3.8c presents a CED scheme based on parity prediction for the system in Fig. 3.8a.
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Each register has a single parity bit (Px for X and Pz for Z).  It has been demonstrated in

this chapter through simulation that the area overhead of combinational logic blocks with

parity prediction is marginally less than that of duplication; however, if the number of

register flip-flops and bus lines are counted, the scheme in Fig. 3.8c has significantly less

area overhead than Fig. 3.8b.  Figure 3.8d presents a CED scheme that uses diverse

duplication for combinational logic blocks and parity prediction for registers and bus

lines.  Thus, we can achieve significant improvement in protection against multiple and

common-mode failures (through diverse duplication) while the total area overhead is

comparable to that of parity prediction (Fig. 3.8c).  For this purpose, we need a tree of

XOR gates, as shown in Fig. 3.8d.  The CED scheme in Fig. 3.8d needs two extra 2-input

XOR gates and one 2-input OR gate (XOR-tree and the equality checker) for each output

of the combinational logic block compared to the CED scheme in Fig. 3.8c.  Note that,

the XOR tree may have significant delay overhead.  This delay overhead can be reduced

by increasing the number of parity bits (i.e., the number of extra flip-flops in the

registers).  Interesting problems analyzing this area-delay trade-off can be studied in this

context.  The XOR-tree of Fig. 3.8d can be eliminated if the parity bit is generated from a

dual-rail checker that can be used to check the outputs of the combinational logic

[Nicolaidis 93].  Routing overhead of the designs in Fig. 3.8b, 3.8c and 3.8d has not been

considered in the above discussion and is a topic of further research.

3.4 Conclusions

There are many publications on the use of various CED techniques in computer

systems demanding high dependability [Carter 64, Sellers 68, Carter 77, Sedmak 78,

Wakerly 78, Kraft 81, Chen 92, Siewiorek 92, Pradhan 96].  The problem of multiple

failures and CMFs in redundant systems has long been recognized, although no study of

the vulnerability of different CED schemes to these failures has been reported in the past.

The simulation results on benchmark circuits reveal that diverse duplex systems with

different implementations of the same logic function provides significant protection

against multiple failures compared to other CED schemes.  This result is especially useful

in the context of CMFs.  This advantage makes diverse duplex systems a prominent

candidate for implementing concurrent error detection in reliable systems.  This result

supports many of the observations in [Sedmak 78] and suggests that research efforts must

be spent on developing techniques to design high-quality diverse duplex systems.  This is

the focus of the next three chapters of this dissertation.
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 Chapter 4 

Self-Testability of Duplex Systems

From the discussions in Chapter 3, the competitive advantage of using diverse

duplication for concurrent error detection is clear.  It is also evident from the previous

discussions that diverse duplex systems are not fully protected against CMFs and

multiple failures that can compromise system data integrity.  Hence, techniques must be

devised to detect these faults so that appropriate repair action can be initiated.

The main objective of this chapter is to analyze the detectability of multiple

failures and CMFs affecting duplex systems and describe special techniques to guarantee

that all these failures are detected.  A detailed description of the analysis and the

detection technique is reported in Appendix D.

4.1 Self-Testability

Consider a duplex system consisting of two implementations (N1 and N2) of the

same combinational logic function and a comparator comparing the outputs obtained

from these implementations.  The duplex system is self-testing with respect to a fault pair

(f1, f2) (f1 affecting N1 and f2 affecting N2) if there exists an input combination for which

the two implementations produce different outputs in the presence of the faults.  The

corresponding fault pair is said to be self-testable.  If the two implementations produce

different outputs in the presence of the fault pair, then the comparator will produce a

Mismatch signal.

We consider single stuck-at fault pairs in the two implementations of the same

combinational logic function that are used in a duplex system.  In Table 4.1, results

comparing the percentage of non-self-testable fault pairs in duplex systems with identical

and diverse implementations of some MCNC benchmark circuits are presented.  These

results were obtained by exhaustive simulation of all fault pairs using all input

combinations.  These circuits were chosen because they are small enough so that

exhaustive simulation is possible.  It is clear from the results that the number of non-self-

testable fault pairs in the diverse duplex systems simulated is at least an order of

magnitude smaller than that in duplex systems with identical implementations.
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Table 4.1.  Self-testing properties of duplex systems

Circuit
Name

Duplex
System Type

# Single-stuck-at fault
pairs (millions)

% non-self-
testable

Z5xp1 Identical 0.30 0.73
Diverse 0.36 0.02

clip Identical 0.49 0.58
Diverse 0.46 0.02

inc Identical 0.26 0.84
Diverse 0.25 0.03

rd84 Identical 0.16 1.1
Diverse 0.23 0.04

For duplex systems with identical implementations, a common-mode failure

(CMF) can be considered as one for which the corresponding leads in the two

implementations are stuck at the same value.  This is because, it is very likely that a

single cause of failure will have identical effect on the two implementations [Tamir 84].

It is obvious that the self-testability of common-mode failures covered by this model is 0

% in a duplex system with identical implementations.  However, for a duplex system with

different implementations, we have very few non-self-testable fault pairs.  Special

techniques have been developed for detecting the fault pairs that are not self-testable.

This approach ensures that all single stuck-at fault pairs are detectable in a duplex

system.

4.2 Identification of Non-Self-Testable Fault Pairs

The first step towards detecting all non-self-testable fault pairs is to actually

identify these fault pairs.  This problem is NP-complete [Gary 79] because the worst case

complexity of this problem is proportional to pq2m, where m is the number of inputs of

the implemented logic function and p  and q  are the number of leads in the two

implementations.  For designs of even moderate size, the pq term is of the order of 100

million and can be a bottleneck (as can be seen from our simulation results presented

later in this chapter and in Appendix D).  To overcome these problems, an approximate

algorithm for identifying the non-self-testable fault pairs has been developed [Mitra 00a].

The actual algorithm and the proof of its correctness are presented in Appendix D.  The

major advantages of this approximate algorithm are:

1.  The algorithm is pessimistic.  This implies that a self-testable fault pair may be

identified as being non-self-testable.  However, the reverse situation cannot happen.

This feature of the algorithm guarantees that no non-self-testable fault pair is missed

by the fault detection technique.
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2. The execution time of the algorithm can be tuned according to the desired level of

accuracy and the availability of resources (e.g., processor time).

3. For the simulated designs, the algorithm achieves significant speedup (several orders

of magnitude) compared to exact techniques using Automatic Test Pattern Generation

(ATPG) techniques.  Moreover, there is no significant degradation in accuracy

compared to results obtained from an exact technique.

4. The algorithm is flexible so that preprocessing steps can be incorporated to achieve

further speed-ups and higher accuracy of results.

In the next section, we describe test point insertion techniques so that non-self-

testable fault pairs become self-testable [Mitra 00a].

4.3 Self-Testability Enhancement Using Test Points

In the literature on digital testing, test points have been used to enhance fault-

coverage of logic circuits [Eichelberger 83, Abramovici 90, Touba 96].  In this section,

test point insertion techniques are used to enhance the self-testability of duplex systems.

There are two types of test points: control test points and observation test points.  In Sec.

4.3.1 and 4.3.2, self-testability enhancement techniques using control and observation test

points, respectively, are described.

4.3.1 Control Test Points

Consider the duplex system consisting of two identical modules with each

implementing the logic circuit shown in Fig. 4.1a.  Consider the fault pair in which the

signal line corresponding to Z1 is stuck-at-0 in both modules.  It is obvious that the

duplex system will never produce any mismatch signal in the presence of these two

faults.  Thus, the fault pair is not self-testable.  Next, suppose that for one of the two

modules, we add test points T1 and T2 as shown in Fig. 4.1b.  When T1 = 0 and T2 = 0

and a test pattern for Z1 stuck-at-0 (w = 1, x = 1 and y = 0) is applied, a mismatch signal

will be produced if the fault pair is not present (the reverse of the usual situation).  If the

fault pair is present, no mismatch signal will be produced.  This observation can be used

to detect the presence of the fault pair.  A similar case arises when the fault pair Z1 is

stuck-at-1 in both the modules.  Thus, control test points can enhance the self-testability

of fault pairs in a duplex system.  Note that in a duplex system with two identical

implementations as in Fig. 4.1b, the fault pairs affecting the same leads in the two

implementations are not self-testable.  Thus, we have to add these test points at each lead

of the circuit in Fig. 4.1a for non-diverse duplex systems.
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Figure 4.1.  Control Test Points

The advantages of using control points for self-testability enhancement are:

(i) No additional resources are needed for observing system responses.

(ii) There is no need to store simulated fault-free responses and compare the system

response with these pre-stored responses to detect the presence of faults.

(iii) During idle cycles of the system, the test points can be activated to detect different

fault pairs.

The disadvantages of control points are the following: They require extra area,

may affect the performance of the circuit and may require more design effort.

We discuss the effects of faults in the test point circuitry using our example in

Fig. 4.1b.  A stuck-at-0 fault on T1 will be detected when we detect Z1/0.  A stuck-at-1

fault on the test point T2 of Fig. 4.1b will be detected when we test for Z1/1.  Since T1/0 is

equivalent to Z1/0 and T2/1 is equivalent to Z1/1, it is guaranteed that faults on the test

points do not produce additional non-self-testable fault pairs.  A stuck-at-1 fault on T1

and a stuck-at-0 fault on T2 will not affect the data integrity of the duplex system in Fig.

4.1b.
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4.3.2 Observation Test Points

Instead of adding control points, the self-testability of the duplex system in Fig.

4.1 can be enhanced by observing the node Z1 of the circuit in Fig. 4.1a.  The logic value

on node Z1 can be observed directly or can be compacted using signature analysis

[McCluskey 86].  Hence, fault simulation and storage of fault-free signatures are

necessary.  This approach has a distinct advantage over control points because there is no

need to add extra gates.  However, observation points must be routed to signature

analyzers and comparison of the computed signature of the logic values on the

observation test points with the fault-free signature must be performed.  For detecting the

non-self-testable fault pairs, each application must be preceded and followed by testing

phases as shown in Fig. 4.2.  However, for detecting self-testable fault pairs, idle cycles

of the system can still be used.  It is clear that any fault on the observation points can be

detected when we observe the value on that test point.

Header

           Application
       (e.g. Compress,
        FFT, Robotics,
          Encryption)

Activate Test Points

Apply Patterns

Faulty/Correct ?

Footer

Figure 4.2.  Applications with testing phases

Table 4.2 summarizes the relative advantages and disadvantages of using control

and observation test points for self-testability enhancement.  Given a duplex system and a

set of non-self-testable fault pairs, a technique for choosing appropriate test points has

been described in Appendix D.

Table 4.2.  Comparison of control and observation test points

Control Points Observation Points
Area

Overhead
Extra gates,
Routing Area

Routing

Circuit
Performance

May be affected Maybe negligible

Test
Strategy

Idle Cycles Start and End of
application

Extra
Effort

Fault
Simulation

Fault Simulation,
Response Analysis

Extra Pins Possible Required
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4.4 Simulation Results

In this section, we present simulation results for duplex systems with some

MCNC benchmark circuits.  Full details of the simulation setup can be found in

Appendix D.  For generating different implementations, we synthesized some MCNC

benchmark logic circuits using Sis [Sentovich 92].  We subsequently mapped the multi-

level logic circuits to the LSI Logic G-10p technology library [LSI 96].  Next, we

complemented the outputs in the truth tables of the benchmark circuits to generate new

truth tables with complemented outputs.  We used the same synthesis procedure for these

new truth tables.

The results comparing the number of test points needed for diverse and non-

diverse duplex systems (to achieve full self-testability) are presented in Table 4.3.  These

benchmarks were chosen because, for a given multiple-output function in the pla format

(used in Sis), it is very difficult to generate an implementation for the same function but

with complemented outputs without regenerating the whole truth table by enumerating all

the 2n minterms for an n input function; this is impractical for functions with a large

number of inputs (more than 20).  Table 4.3 also compares the accuracy of the results

obtained by using the approximate algorithm of Appendix D to those obtained from an

ATPG (Automatic Test Pattern Generation) based exact algorithm.  For each circuit, the

minimum number of test points is highlighted in bold.  Table 4.4 shows the execution

times of the approximate algorithm (of Sec. 4.2) compared to an ATPG-based exact

algorithm.  For each circuit, the minimum execution time is highlighted in bold.  The

ATPG tool available in Sis was used to implement the exact algorithm.

Table 4.3.  Test points for 100% self-testability

Circuit Duplex # Circuit # Fault pairs # Test Points
Name System Type Leads (Million) Exact Approximate
Z5xp1 Identical 610 0.37 305 305

Diverse 590 0.36 9 9
clip Identical 698 0.49 349 349

Diverse 659 0.46 13 13
inc Identical 506 0.26 253 253

Diverse 494 0.25 12 12
apex4 Identical 8578 74 — 4289

Diverse 9675 83 — 46
rd84 Identical 398 0.16 199 199

Diverse 577 0.23 10 11
ex1010 Identical 11922 142 — 5961

Diverse 9142 109 — 15



36

Table 4.4.  Execution time using different techniques on Sun Ultra-Sparc-2

Circuit # Fault pairs
(Million)

Exact
Algorithm

Approximate
Algorithm

Z5xp1 0.36 2 min 6 sec
clip 0.46 4 min 34 sec
inc 0.25 1 min 4 sec

apex4 83 > 1 day 85 min
rd84 0.23 2 min 6 sec

ex1010 109 > 1 day 4 hours

The following observations can be made from the simulation results in Tables 4.3

and 4.4.  It is clear that the number of test points needed for 100% self-testability is

orders of magnitude smaller for diverse duplex systems than for duplex systems with

identical implementations.  The approximate algorithm (of Sec. 4.2) for identifying non-

self-testable fault pairs achieves significant speedup compared to ATPG-based exact

techniques.  The degradation in accuracy of the results obtained by using the approximate

algorithm of Appendix D is almost negligible.

4.5 Conclusions

In this chapter, we described test point insertion techniques for achieving 100%

self-testability against common-mode and multiple failures in duplex systems.  The

chapter also demonstrates the usefulness of diverse duplex systems in enhancing the self-

testability of multiple and common-mode failures through simulation.  This result is

useful because it gives a competitive advantage to diverse duplex systems for concurrent

error detection.  The approximate algorithm for identifying the non-self-testable fault

pairs shows orders of magnitude improvement in execution time compared to other

techniques with minimal loss of accuracy for the circuits simulated.  The number of test

points needed for 100% self-testability of diverse duplex systems are orders of magnitude

fewer than that of their non-diverse counterparts for the simulated designs.  There are

further opportunities to reduce the execution time using fault-list pruning (see Appendix

D) and the number of test points using fault equivalence relationships (described in

Appendix D).  The test point insertion techniques presented in this chapter can be

combined with other test point insertion techniques used in the context of digital testing

[Touba 96] to reduce test length.
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 Chapter 5 

Combinational Logic Synthesis Techniques for Diversity

One of the major advantages of the diversity metric, introduced in Chapter 2, is

that it can be used to compare two diverse duplex systems quantitatively using the metric.

This aspect of the design diversity metric was covered in Chapter 2.  Another potential

advantage of the metric is its use as a cost function in synthesis tools to synthesize two

diverse implementations of the same logic function.  Logic synthesis techniques can be

developed to synthesize two implementations in order to maximize the diversity cost

function (while performing optimizations for other cost functions like area, delay, power,

etc., depending on the application).  This provides a new dimension to the conventional

synthesis problems.

In this chapter, a systematic procedure is developed to synthesize combinational

logic circuits in order to maximize the diversity among them.  Appendix E presents a

complete description of the procedure along with the relevant theorems and proofs.

While the primary focus of this chapter is on combinational logic circuits, the ideas

presented can be extended for sequential circuits.  Given the specification of a sequential

logic circuit and an encoding of the internal states, the problem of synthesizing the

sequential circuit can be mapped to a combinational logic synthesis problem.  However,

if we have the freedom to choose internal state encoding, then diversity can be created by

encoding the internal states in different ways.  This problem is outside the scope of this

chapter.

5.1 Problem Formulation

The input to the problem is the truth table of a combinational circuit to be
implemented and one implementation (N1) of the combinational circuit.  The goal is to

synthesize another implementation (N2) of the same combinational circuit such that the

expected data-corruption latency (defined in Chapter 2) of the worst-case fault pairs is

maximized.  The expected data-corruption latency of the worst-case fault pairs is
calculated in the following way.  For each fault f1 in N1, fault f2 in N2 with the minimum

value of d1,2 is identified (The definition of d1,2 for a fault pair (f1, f2) was introduced in

Chapter 2).  The fault pair (f1, f2) is a worst-case fault pair (explained in Chapter 2) and
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the data-corruption latency of this fault pair is min(T, 
1

1 1 2( ),− d
), where T is the mission

time of the system.  The derivation of the expression for the data corruption latency is

presented in Appendix B and follows from the expression for the expectation of a
geometric distribution with parameter (1-d1,2).  In the expression for data corruption

latency, we need T because the data corruption latency is theoretically infinite when d1,2

is equal to 1.  The objective in this chapter is to maximize the expected value of the data-

corruption latencies of the worst-case fault pairs.  Note that, if we want to maximize the
data-corruption latency, then we must minimize (1-d1,2) which means that we must

maximize d1,2.  Thus, maximizing the worst-case data-corruption latency is synonymous

to maximizing the diversity of the worst-case fault pairs — hence, we will use both these

terms interchangeably in this chapter.

Conventional logic synthesis techniques consist of two steps: (i) two-level

minimization [McCluskey 56][Brayton 84] followed by (ii) the application of multi-level

transformations [Rajski 92][De Micheli 94].  In this chapter, the same flow will be
followed for synthesizing implementation N2.

5.2 Two-level Logic Synthesis

The first important observation about synthesis of diverse implementations has

been formalized in Theorem 1 of Appendix E.  The theorem states that for single-output
functions, any two-level logic implementation for N2 will produce the same expected

data-corruption latency for the worst-case fault pairs.  Thus, for single-output logic

functions, there is not enough scope to increase the diversity cost function through logic

synthesis.

The proof of Theorem 1 stated above provides a deep insight into the root of the

problem under consideration.  It immediately follows from the proof that the amount of

sharing of logic gates among different output functions is the key to achieving high

values of the diversity cost function.  For two-level logic implementations, the amount of

sharing of logic gates directly translates to the fanout structure of the implementation.
Thus, the fanout structure of the given implementation N1 must be analyzed so that

implementation N2 can be synthesized with sufficient diversity in the fanout structure.

For two-level multiple output logic circuits, the amount of logic sharing (and

hence, the fanout structure) can be controlled during logic synthesis.  The conventional

algorithm for two-level synthesis of multi-output logic functions [McCluskey 86] is an

extension of the classical Quine-McCluskey two-level logic minimization procedure
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[McCluskey 56].  In Appendix E, the conventional two-level synthesis technique for

multiple-output logic functions has been extended to synthesize logic circuits with

maximum diversity and minimal area.

The new algorithm consists of three major steps: (i) Multiple-Output Prime

Iimplicant (MOPI) generation, (ii) Construction of the MOPI Covering Table and (iii)

Choosing a set of MOPIs to cover all the minterms of the given logic functions.  The first

two steps of the new algorithm are exactly the same as those in the conventional logic

minimization technique.  However, while performing the MOPI covering in the third

step, some extra processing has to be done in order to find the worst-case fault pairs and

calculate the expected data-corruption latency of the worst-case fault pairs.  This extra

processing is needed to compute the diversity cost function that must be maximized.  The

area cost function computation remains the same as in the conventional algorithm.

Section 6.1 of Appendix E provides a detailed description of the cost function

computation during MOPI covering.

The important features of the new algorithm are:

•  The basic steps followed by conventional two-level logic synthesis technique are not

altered.  Thus, there is no major change in the synthesis flow.

•  The data-structures used by the new technique are almost the same as those used by

the conventional technique.

•  All the information needed for calculating the diversity cost function can be derived

from the existing data-structures (which are also used by the conventional technique).

•  The algorithm is exact and produces optimal results (maximized diversity, minimized

area).  This may be computationally intensive for practical circuits; however,

heuristic techniques can be developed to reduce the complexity.  Thus, the new

algorithm can be easily incorporated in any synthesis tool that uses the exact or

approximate forms of the conventional technique.

•  The computations associated with the diversity cost function calculation are

extremely simplified if the given truth table with complemented outputs is
synthesized for the implementation of N2.  Hence, for synthesizing N2, our algorithm

uses the truth table with complemented outputs.

 The entire procedure, together with examples, is described in detail in Appendix

E.
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5.3 Multi-level Logic Synthesis

The conventional techniques for synthesis of multi-level logic circuits rely on a

set of logic transformations that are applied systematically to the input Boolean network

to obtain a final network.  Since the multi-level transformations change the structure of

the Boolean network under consideration, they can potentially increase or decrease the

degree of diversity between two logic networks.  Hence, it is important to examine the

effects of these transformations on a Boolean network as far as its diversity with respect

to a given Boolean network is concerned.

There are mainly five types of transformations that are used during multi-level

logic synthesis.  These are: (i) Single-cube extraction, (ii) Double-cube extraction, (iii)

Re-substitution, (iv) Elimination and (v) Simplification.  These transformations are also

included in the widely used rugged script that is provided by the Sis [Sentovich 92] logic

optimization system.  Definitions for these transformation functions can be obtained from

[Rajski 92][De Micheli 94].  For most of the cases, the definitions in [Rajski 92] will be

followed in this chapter.

The basic objective in this section is to identify a set of multi-level logic

transformations that can be used safely without decreasing the diversity cost function

obtained from two-level synthesis.  It is thus guaranteed that the application of any

sequence of these transformations preserves the value of the diversity cost function (and

hence the gains from diversity) which was maximized during two-level logic synthesis.

This idea is somewhat (but not fully) similar to the notion of testability preserving

transformations that are used by synthesis-for-testability techniques [Devadas 92][Rajski

92].

It may be noted that by applying some of these transformations the diversity cost

function can actually be increased.  This observation leads to interesting optimization

problems that are outside the scope of this chapter.

5.3.1 Single-Cube Extraction

“Single-cube extraction is the process of extracting cubes which are common to

two or more cubes” [Rajski 92].  For example, let us suppose that we have a logic

function f = abA1 + abA2 + … + abAn.  When single-cube extraction is performed, we

have an intermediate node (AND gate) C = ab and f = CA1 + CA2 + … + CAn.  Figure 5.1

illustrates this procedure.  It is shown in Appendix E that the application of single-cube
extraction on a logic network K to obtain a new implementation for N2 does not change

the expected worst-case data-corruption latency of the duplex system.  Hence, the
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expected worst-case data-corruption latency of a duplex system is invariant under single-

cube extraction on the implementation of N2.

a b A1 a b A2 a b An

& & &

+

A1 A2 An

& & &

+

a b

&

C

f f
Figure 5.1.  Illustration of Single-Cube extraction

5.3.2 Double-Cube Extraction

“The double-cube extraction transformation consists of extracting a double cube

from a single-output sum-of-products sub-expression, AC + CB ⇒  C(A + B)” [Rajski 92].

Figure 5.2 shows an example of double-cube extraction.
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Figure 5.2.  Illustration of double-cube extraction
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Suppose that we are given an implementation N1 of a logic function and we are

supposed to synthesize another implementation N2 of the same logic function.  It is

proved in Appendix E that the worst-case diversity of the diverse duplex system is
invariant under double-cube extraction on implementation N2.

5.3.3 Substitution

The substitution transformation is used to reduce the complexity of a function by

using an additional input that was not previously in its support set.  It can be shown that,

in general, the invariance relationship relating the expected worst-case data-corruption

latency of the networks before and after the application of the transformation does not

hold.  In fact, under the substitution transformation, it is not guaranteed that the expected

diversity of the transformed network will not decrease.  Thus, it is tricky to apply the

substitution transformation for generating multi-level logic networks while preserving the

diversity measure between two designs.  However, application of synthesis scripts with

and without the substitution transformation shows results indicating that fairly area-

efficient logic circuits can be designed while avoiding the substitution transformation.

The results are presented in Sec. 7.6 of Appendix E.

5.3.4 Elimination

In the elimination transformation, an internal node is eliminated from the Boolean

network and the variable corresponding to that node is replaced by the corresponding

occurrences in the logic network [De Micheli 94].  This transformation guarantees that

the expected data-corruption latency of the worst-case fault pairs in the transformed

circuit is never less than that in the circuit on which the transformation is applied.  Thus,

intelligent use of this transformation can possibly increase the diversity cost function.

This is a new optimization problem, which has not been considered in this thesis.

5.3.5 Simplification

The simplification transformation performs two-level minimization of the internal

nodes of a Boolean network (if the nodes represent complex Boolean functions).  The

internal nodes of a Boolean network can be treated as single-output logic functions.

From Theorem 1 (proved in Appendix E and described in Sec. 5.2), it is clear that two-

level minimization (simplification) of internal nodes will not have any effect on the

diversity cost function.  Thus, the simplification transformation can be used freely during

multi-level logic synthesis.
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5.4 Conclusions

In this chapter, for the first time, techniques have been developed to synthesize

diverse implementations of combinational logic circuits for duplex systems so that the

advantages obtained from using diverse implementations are maximized.  Unlike

previous approaches for designing diverse implementations that depended on

independent generation, a concrete diversity cost function has been identified.  A two-

level logic synthesis procedure to maximize the diversity of the cost function without

drastically affecting the area cost function has been described.  Multi-level logic

transformations that can be applied without affecting diversity in the resulting logic

structure have also been identified in this chapter.  New optimization problems involving

the maximization of the diversity cost function during multi-level synthesis have also

been formulated.  Future research in this area must focus on identifying new multi-level

logic transformations that can maximize the diversity cost function while minimizing the

area/delay/power-consumption of the resulting implementation.
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 Chapter 6 

Common-Mode Failure Models and Redundant System
Design

This chapter introduces fault models for CMFs in digital redundant systems and

presents techniques for designing redundant systems with guaranteed data integrity

against modeled CMFs.  A detailed description of the topics discussed in this chapter can

be obtained from Appendix F and Appendix G.

6.1 Common-Mode Fault Models

Consider a redundant system with separate input registers associated with each

module of the system.  In such a system, consider the class of failures, in the presence of

which, the same bit positions in two or more input registers are stuck at the same value.

In classical redundant systems, these failures will have identical effects on all the

implementations and will go undetected when producing incorrect outputs.  Hence, these

failures are possible CMF candidates.  These CMFs are called Input-Register-Common-

Mode-Failures and the corresponding fault model is called Input-Register-CMF Model-1

(IR-CMF-1).  This fault model includes transient faults from radiation upsets, permanent

faults that result from permanent system interference caused by the operational

environment, and some design weaknesses that can be caused due to design faults.  An

analysis of the possible failure modes covered by this fault model is presented in

Appendix G.

As mentioned in Appendix G, the CMF model IR-CMF-1 is mainly suitable for

digital designs containing register-files.  However, not all designs contain register-files

and the IR-CMF-1 model must be extended.  Under the extended fault model, called IR-

CMF-2, the constraint that only the corresponding bit-positions of the input registers can

be stuck at the same value is relaxed.  For example, in the presence of IR-CMF-2 in a

duplex system, the second bit position of the input register of the first module and the

fifth bit position of the input register of the second module may be stuck at same or

different values at the same time.  IR-CMF-2 is a generalized version of IR-CMF-1.  A

motivating factor and the explanation of possible scenarios in which IR-CMF-2 should be
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used have been discussed in Appendix G.  Many other extensions of IR-CMF-1 that are

not as generalized as IR-CMF-2 are also possible.

In the next section, techniques for designing redundant systems that are protected

(data integrity guaranteed to be preserved) against IR-CMF-1 and IR-CMF-2 are

presented.

6.2 Redundant System Design

All the CMFs modeled by IR-CMF-1 and IR-CMF-2 can be detected if all

registers in a given design are protected by error-detection codes (e.g., parity bits).  Such

a technique has the overhead of parity generation and parity checking circuits for each

register in the design, in addition to at least one extra register bit needed to store the

parity.  Techniques to design redundant systems that are protected against IR-CMF-1 and

IR-CMF-2 with no assumption about the presence of register parity bits have been

described in Appendix G.  Sections 6.2.1 and 6.2.2 present overviews of these

techniques.

6.2.1 Redundant Systems Protected Against IR-CMF-1

In this section, we present techniques to design redundant systems that are

protected against CMFs modeled by IR-CMF-1.  For duplex systems, the technique stores

the actual input values in the input register of one of the modules and the complemented

input values in the input register of the other module.  For Triple Modular Redundant

(TMR) systems, the technique stores the actual input values in the input register of the

first module, the complemented input values in the input register of the second module

and a transformation of the input values in the input register of the third module.  An

example of the technique for TMR systems is provided next.

Consider a simple combinational logic circuit, N, with three inputs x, y and z and
two outputs.  The two output functions are f1 = xy ′  + yz and f2 = xy′  + yz′ .  The logic

diagram is shown in Fig. 6.1a.
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Figure 6.1.  Conventional TMR (a) A multi-output circuit (b) TMR implementation

Figure 6.1b shows a TMR system for the logic function in Fig. 6.1a.  There are

three 3-bit registers A, B and C and three copies of the original circuit N.  The first copy
of N gets its inputs from the 3 bits of register A; i.e., A1 stores values corresponding to X,

A2 stores Y values and A3 stores Z values.  The same scenario holds for registers B and

C.  The common-mode faults involving the first bit position are {A1/1, B1/1}, {A1/1,

C1/1}, {A1/1, B1/1, C1/1}, {B1/1, C1/1}, {A1/0, B1/0}, {A1/0, B1/0, C1/0}, etc.  These

common-mode faults affect a single bit position of two or more input registers and can

produce erroneous outputs.

A1 A2 A3 B1 B2 B3 C1 C2 C3

Word-Voter

N N1 N2

f1 f2

X Y Z X Y Z Y Z X

2 2
2

Error

Figure 6.2.  TMR implementation of the circuit of Fig. 6.1a protected against IR-CMF-1

Consider the TMR system of Fig. 6.2.  The word-voter used in Fig. 6.2 performs a

word-wise comparison of the outputs from the three modules and indicates an error signal
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if the three output words are different [Mitra 00b].  If the output words from two modules

match, the voter produces that word at its outputs.  The design of the word-voter is

described in Appendix F.  Note that the three registers A, B and C contain different

values.  The first bit of register A stores the value of variable X, the second bit stores Y’s

and the third bit stores Z’s.  The first, second and third bits of register B store values

corresponding to X′, Y′ and Z′, respectively.  The first, second and third bits of register C

store values corresponding to Y, Z and X, respectively

Table 6.1 Truth tables (a) Network N (b) Network N1 (c) Network N2
(a) (b) (c)

A1 A2 A3 f1 f2 B1 B2 B3 f1 f2 C1 C2 C3 f1 f2
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 1 1 1
0 1 0 0 1 0 1 0 1 1 0 1 0 0 0
0 1 1 1 0 0 1 1 1 1 0 1 1 1 1
1 0 0 1 1 1 0 0 1 0 1 0 0 0 1
1 0 1 1 1 1 0 1 0 1 1 0 1 0 1
1 1 0 0 1 1 1 0 0 0 1 1 0 1 0
1 1 1 1 0 1 1 1 0 0 1 1 1 1 0

The networks are implemented in such a way that for a particular combination of

X, Y and Z, all three networks produce the same outputs.  When X = 1, Y = 0 and Z = 0,

all three networks produce 11.  The system architecture may be such that, for example,

the second module will have complemented inputs and will produce complemented

outputs.  In that case, the voter design can be changed to incorporate this architectural

requirement.  Note that the input register of the third module contains a rotated version of
the content of the input register of the first module.  Hence, network N2 can be

implemented with the same number of logic gates as network N.  The truth tables of N,
N1 and N2 are shown in Table 6.1a, 6.1b and 6.1c, respectively.

Consider the common-mode fault {A1/1, B1/1, C1/1}.  If we apply X = 0, Y = 0

and Z = 1, the network N sees 101 (since A1 is stuck at 1) at its inputs and produces f1 =

1 and f2 = 1.  The network N1 sees 110 at its inputs and produces 00 at its output.

Network N2 sees 110 at its input (because C1 is stuck at 1 and X = 0, Y = 0 and Z = 1)

and produces 10 at its output.  Thus, when X = 0, Y = 0 and Z = 1, the three modules

produce three different vectors at their outputs.  This is an erroneous situation for the

word-voter and an error is indicated by the word-voter.  Hence, we can detect the

common-mode fault under consideration.  In a similar way, it can be shown that other

common-mode faults can be detected by the TMR system in Fig. 6.2.
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In Appendix G, a Boolean Satisfiability technique is developed to obtain the

transformation for the third module so that the data-integrity of the resulting system

against IR-CMF-1 is guaranteed.  In Appendix G, it is also proved that for arbitrary logic

networks it is always possible to design TMR systems with full data integrity against IR-

CMF-1 by possibly adding at most one extra output to the implemented logic function.

6.2.2 Redundant Systems Protected Against IR-CMF-2

Since IR-CMF-2 is a generalized version of IR-CMF-1, techniques to design

redundant systems protected against IR-CMF-2 are more complicated than those for IR-

CMF-1.  A complete explanation of the entire technique is reported in Appendix G.  In

this section, the basic idea behind the technique is illustrated for duplex systems.

However, the whole idea can be extended for TMR systems.

Table 6.2.  An example logic function

x y z f1 f2
0 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 1 1
1 1 0 0 1
1 1 1 1 0

Consider the example logic function of Table 6.2.  The goal is to design a duplex

system for this logic function, protected against IR-CMF-2.  Call the two modules of the
duplex system N1 and N2.  The first module (N1) of the duplex system is obtained by

normal synthesis of the function — its input register contains the values of x, y and z in

the three flip-flops.
For the second module (N2), we want to find a good transformation T of the

inputs of the logic function.  The outputs of the network implementing the transformation

T will be connected to the input register of the second module.  Finally, the second

module will take inputs from its input register and produce outputs.  The scheme is

depicted in Fig. 6.3.



49

Transformation
           T

x y z

Register

Network N2

2

Outputs
Figure 6.3.  The basic scheme for the second module in a duplex system

The transformation T can be specified in the following way.  For each
combination i of x, y and z, transformation T produces a particular output Wi.  The actual

value of Wi, in terms of 1s and 0s, depends on the logic function implemented by T.

Tables 6.3 and 6.4 show the specification of T and N2, respectively.

Table 6.3.  Transformation T                             Table 6.4. Specification of N2

Inputs Output Input Outputs
x y z Symbols Symbols f1 f2
0 0 0 W0 W0 0 0
0 0 1 W1 W1 0 0
0 1 0 W2 W2 0 1

0 1 1 W3 W3 1 0
1 0 0 W4 W4 1 1

1 0 1 W5 W5 1 1
1 1 0 W6 W6 0 1
1 1 1 W7 W7 1 0

Finding the transformation T is equivalent to efficiently encoding the Wi's in

Tables 6.3 and 6.4 using 1s and 0s in the presence of some distance constraints that will

make the duplex system fault-secure or self-testing with respect to the IR-CMF-2.  The

problem can be modeled as a constrained simultaneous input and output encoding

problem for the specification in Tables 6.3 and 6.4.  The constraints to be satisfied are

detailed in Appendix G.  This problem is a new encoding problem in logic synthesis.  The

entire flow of our technique and the simulation results are also reported in Appendix G.
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6.3 Conclusions

The major contributions of this chapter are:

•  Two fault models (IR-CMF-1 and IR-CMF-2) have been developed for common-

mode failures.

•  IR-CMF-2 is very general and can also be used to model failures in multiple input

registers of redundant systems.

•  A new voter design for TMR systems (Appendix F) has been introduced.

•  Techniques to design redundant systems protected (guaranteed data integrity or self-

testability) against the modeled CMFs have been described.

•  A new encoding problem in logic synthesis has been developed.
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 Chapter 7 

Concluding Remarks

In this dissertation, a study has been conducted to quantitatively analyze the

effectiveness of various concurrent error detection (CED) schemes and techniques for

efficient concurrent error detection have been developed.

For the first time, a metric to quantify design diversity in redundant systems is

presented and used for analyzing CED schemes based on diverse duplication.  This

analysis technique provides a quantitative definition of design diversity and helps

designers determine design choices by deriving quantitative relationships among

diversity, data integrity, failure rate and mission time.  This quantitative analysis also

enables a comparative study of different CED schemes.  The study, by means of

simulation experiments and theoretical analysis, concludes that diverse duplication

provides significantly better data integrity against multiple and common-mode failures

(CMFs) compared to other CED schemes.

New fault models for CMFs are proposed and the possible failure mechanisms for

the modeled CMFs are analyzed.  New design techniques and synthesis algorithms with

diversity as a cost function have been developed, for the first time, to efficiently design

systems based on diverse duplication.

As mentioned in Chapter 1, noise sources from transients, coupling effects and

soft-errors constitute a major cause of concern for the future nanometer integrated circuit

technologies (0.1µ or smaller) with smaller geometries; this problem has been publicly

acknowledged by leading semiconductor companies.  Simple fault-avoidance techniques

(e.g., less aggressive design rules, extra noise margins) may not be effective under such

circumstances.  Concurrent error detection can provide a cost-effective solution to

guarantee data integrity in complex VLSI systems in the era of nanometer technologies.

In addition, CED techniques can provide protection against upsets in radiation

environment and can be used as an alternative to expensive fault-avoidance techniques

based on radiation-hardening.  With the study presented in this dissertation, it is now

feasible to use cost-effective diverse duplication techniques for efficient concurrent error

detection.  This research enables quantification of the effectiveness of design diversity as

a CED technique and allows the user to design diverse implementations with a complete
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control of the associated trade-offs (e.g., effectiveness during concurrent error detection,

area, delay, power consumption, etc.).

Future research should focus on developing efficient algorithms for applying the

ideas presented in this dissertation for the analysis of large systems (e.g.,

microprocessors, software, etc.) and synthesis techniques for sequential logic circuits

with concurrent error detection based on diverse duplication.
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