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Abstract. Divertible proofs are extensions of interactive proofs in which an active
eavesdropper, the warden, makes the prover and the verifier untraceable. The warden is
transparent to both the prover and the verifier. With subliminal-free proofs the warden
controls subliminal messages. In this paper we present divertible and subliminal-free
zero-knowledge proofs for various languages. We consider both graph isomorphism and
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was supported by NSF Grant NCR-9004879 and NSF Grant INT-9123464. This work was done while Kouichi
Sakurai was working for Mitsubishi Electric Corporation.
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graph nonisomorphism. We show that under a cryptographic assumption, any language
in NP has a divertible and a subliminal-free zero-knowledge proof, and then extend
this result to IP for subliminal-free proofs. Finally we discuss various applications of
divertible and subliminal-free zero-knowledge proofs.

Key words. Zero-knowledge, Untraceability, Divertibility, Subliminal-free, Crypto-
graphic protocols, Proof systems, Identification.

1. Introduction

Interactive proofs systems (of membership) were introduced by Goldwasser et al. [17].
Earlier Babai [2] considered Arthur—Merlin games, a somewhat similar type of proof
system. Informally, amteractive proof(P, V) for alanguagé is an interactive protocol
between a computationally unbounded probabilistic Turing machirtee prover, and

a probabilistic polynomial-time Turing maching, the verifier, which accepts € L
almost always, but rejects¢ L almost certainly. Zero-knowledge [17] was introduced

to restrict the amount of knowledge revealed by the prover during the execution of the
proof. Informally an interactive proafP, V) is zero-knowledgéf, when x € L, the
prover reveals no more than the assertion xha¢longs toL.

The formal setting for interactive zero-knowledge proofs prevents a dishonest party
(who uses a different program from the one specified by the proof) from cheating an
honest party. It does not deal with the case whethparties are dishonest. Indeed there
seems to be little justification for designing such systems. However, one can envisage
a scenario in which a dishonest prover may use an interactive proof to send secret
subliminal information, even if this means that the honest verifier will not accept. A
well-designed system should prevent this. In this paper we address such issues, and
propose interactive proofs in which dishonest parties are prevented from using the proof
system for a different purpose than intended.

Simmons has shown that it is possible to hide a subliminal message inside an authen-
ticator [23]. In a similar way subliminal channels can be introduced in zero-knowledge
interactive proofs [12]. These channels are closely related to covert channels, an im-
portant topic in computer security [10]. Desmedt et al. first introduced subliminal-free
proofs for quadratic residuocity [12]. The aspect of subliminal-freeness has also been
discussed in [11], in particular in the context of authentication. Okamoto and Ohta [21]
considered a setting in which an active eavesdropper, the wivddiverts an interactive
proof (P, W) to a proof(W, V) in such a way that any relationship between the proofs
is concealed. So if prover®, and P, prove to a verifielV thatx € L, thenV cannot
trace back the proof to eithéh or P,. Similarly a proverP cannot trace the verifier.
FurthermoreW is transparent, that is, W is removed, ther{P, V) is an interactive
proof. Such proof system@, W, V) are calleddivertible proofs! Okamoto and Ohta
proved that there exist divertible zero-knowledge proofs for any commutative random
self-reducible language [21].

The main similarity between divertible and subliminal-free proofs is that for both a

1 The first divertible zero-knowledge proof was presented on pp. 37—38 of [12] in the context of subliminal-
free proofs.
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wardenW tries to enforce the honest distribution, when the prover or verifier are possibly
dishonest. The essential differences are that with divertible piboifisust enforce the
honest distribution and must be transparent, while with subliminal-free pkloéain

halt if (he thinks) there is a subliminal message #vids not necessarily transparent.

In this paper we consider both subliminal-free and divertible zero-knowledge proofs.
We show that any language in NP hastatistically divertible proof (Definition 7) which
iscomputationallyzero-knowledge (Theorem 3) under the assumption that secure homo-
morphic commitments exist (Definition 12). A similar result applies to subliminal-free
proofs (Theorem 4). We also show that graph isomorphism Iséatiaticallydivertible
proof which isperfectlyzero-knowledge (Theorem 1) with no cryptographic assump-
tions, and a subliminal-free proof which perfectlyzero-knowledge (Theorem 2). We
consider graph nonisomorphism, and show that it has a subliminal-free proof which is
perfectlyzero-knowledge (Theorem 5). Finally we show that any language in IP (the
class of languages which have interactive proofs) has a subliminal-free proof.

This paper is organized as follows. In Section 2 we give our definitions. In Section 3 we
discuss our basic technique for obtaining divertible and subliminal-free zero-knowledge
proofs and describe such a protocol for graph isomorphism. Then in Section 4 we
show that any language in NP has a divertible and subliminal-free zero-knowledge
proof. In Section 5 we extend our result for subliminal-free zero-knowledge proofs
to graph nonisomorphism, and in Section 6 to any language in IP. In Section 7
we consider applications. We conclude in Section 8 with general remarks and discuss
open problems.

2. Model and Definitions

2.1. Background

We use the Goldwasser—Micali-Rackoff [17] model for interactive proofs(ReY) be
an interactive protocol, withP, VV probabilistic Turing machines which share the same
input tape and have communication tapes and private workt&pisshe prover which
has unlimited computational power, wherégghe verifier, is computationally bounded
by a polynomial inx|, the length of the input. A probabilistic Turing machine which
replacesP in (P, V) is calleddishonestf it has a different program fror®. We denote
by P’ a possibly dishonest prover. SimilaNy/ is a possibly dishonest verifier.

We assume that all machines havastorytape on which a string is written. Thisisin
contrast to most current applications in which only dishonest machines use such tapes.
However, our setting is more general (see for example Section 2.4.2).

Definition 1. (P, V) is aninteractive proof[17] for a languagd. C {0, 1}* if (Com-
pleteness), for any constaktfor any sufficiently longx € L given as input ta P, V):
V accepts with probability at least- |x| ™ (taken over the coin tosses BfandV),
and (Soundness), for any constlnfor any sufficiently long ¢ L, for anyP’, on input

2 By using a weaker definition of divertibility we could obtgierfectdivertibility.
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x to (P, V): V accepts with probability at most| ™ (taken over the coin tosses Bf
andV).

Theview[17] of V" when interacting withP in (P, V') on inputx and historyh, consists
of the bit strings (messages) thatreceives fronP and the portion of the random tape
thatV’ reads.(P, V')(x, h) is the random variable whose value is the view/of The
corresponding ensemble (family of random variablesj s V') (x, h)}.

LetU (x) andV (x) be random variables with parameter

Definition 2. U (x) andV (x) arestatistically k-close for xf

Z |Prob U (x) = @) — Prob(lV(x) = a)| < |x|‘k.

ae{0,1}*

U (x) andV (x) arestatistically indistinguishabl§l7] on L C {0, 1}* if they are statis-
tically k-close, for all constants and sufficiently longc € L.

For the computational equivalent we consider Boolean circuitsOydbe a Boolean
circuit with one Boolean output and Iét(x) be a random variable. We denote by
Prol(F (x), Cx, X) the probability thaC outputs 1 on input a random string distributed
according ta~ (x) [17]. A family of Boolean circuitsC = {C} with one Boolean output
is apoly-size family of circuite, for some constant > 0, all C, € C have at mosix|°®
gates.

Definition 3. U (x) andV (x) arecomputationally k-close for x with respect tq @

| Prob(U (x), Cy, X) — Prol(V (x), Cy, X)| < |x]7K. U (x) andV (x) arecomputationally
indistinguishabld17] on L < {0, 1}* if, for all poly-size families of circuit<C = {Cy},
for all constant¥k, and sufficiently longx € L: U(x) andV (x) are computationally
k-close with respect to the circui€.

Definition 4. An interactive proof P, V) is perfectly(statistically) (computationally
zero-knowledgen L [17] if, for any polynomial-time machin®’, there is an expected
polynomial-time machin&ly., called thesimulator, such that the ensemblgdy. (x, h)}
and{(P, V')(x, h)} are perfectly (statistically) (computationally) indistinguishable on
L' = {(x,h) | x e L and|h| = |x|°}, ¢ > O constant.

2.2. Proofs with Warden

We next consider three party proofs. K&, W, V) be an interactive protocol in which a
proverP and a verifie communicate with each other only through an active eavesdrop-
perW. P has unlimited computational power whera&lsandV are polynomial-time.

We callW thewarden All three parties?, W, V are interactive probabilistic Turing ma-
chinesW<Y means\ with oracleV, whereV is consulted through the communication

3 Perfectly indistinguishable ensembles are equal.



Divertible and Subliminal-Free Zero-Knowledge Proofs for Languages 201

tapes that it shares with/. So (P, W<V) is the interactive protocdalP, W) for which
V is an oracle fow. Similarly (°P<W, V) is the interactive protocalW, V) for which
W consultsP as an oracle. Lelt = (hp/, hy/) be the histories foP’, V'. The history
of P’ can be used to share information (with entropy greater than 0)WitlAs with
two party protocols(” < W, V/)(x, h) is the random variable whose value is the view of
V'’ when interacting withN, which consists of the messages tatreceives from,
while interacting withP’, and the portion of the random tape thétreads. Similarly
(P’, W=V (x, h) is the random variable whose value is the viewPoivhen interacting
with W. (P, W', V)(x, hyy) is the random variable whose value is bt view of
W’ andV’ when interacting withP, which consists of the messages tRasends and
the portion of the random tapes that, V' read. Heréhy- is the joint history ofW’
andV’. The corresponding ensembles & <W, V') (x, h)}, {(P’, W<V')(x, h)}, and
{(P, W, V')(x, hwv)}, respectively. The honest wardéhas an empty history tape.

Definition 5. (P, W, V) is aninteractive proof with wardefor L if:

1. Completeness for MFor anyk, for any sufficiently longk € L given as input to
(P, W, V): V accepts with probability at least1|x|~* (taken over the coin tosses
of P, W, V).

2. Soundness for VIFor anyk, for any sufficiently longk ¢ L, for any P” andW’,
oninputx to (P’, W', V): V accepts with probability at most| ¥ (taken over the
coin tosses oP’, W', V).

Definition 6. An interactive proof(P, W, V) with warden isperfectly(statistically)
(computationally zero-knowleddeon L if, for any polynomial-time machined/’, V',
there is an expected polynomial-time machihdy, such that the ensemble
{Mw (X, hyy, hy)}isperfectly(statistically) (computationallyindistinguishable from
{(P, W, V)X, hw, hv)} on L" = {(x, hw, hy) | x € L and|(thw, hy)| = [x|%,

¢ > 0 constant. That idMy simulates the joint view ofV’ andV’ on L.

From this definition it follows that the viel("<W, V/)(x, hy)} of V’ while interacting
with (an honestyV in an interactive zero-knowledge proof with warden can be simulated.

2.3. Divertible Proofs

We now consider interactive proof®, W, V) in which the warden is transparent and
the prover and verifier are untraceable.

Transparency requires the®, W, V) remains a proof foL. even when the warden
W is inactive (or “removed”): that is, wheW simply relays the messages Bfand
V. For untraceability we consider a provef that will be accepted by whenx € L.
Such aP’ should not see any difference between the honest ve¥ifiand any other
possibly dishonest verifie?’ when interacting throughV. Also a possibly dishonest
verifier V' should not see any difference between the honest piewand a proveP’
when interacting throughv, even if P’ tries to be traceable.

4 This definition is based on [17] and [21].
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Definition 7.  An interactive proof with wardeqP, W, V) for L is perfectly(statisti-
cally) (computationally divertible® if:

1. Transparency(P, V) is an interactive proof fok in which P andV interact, each
running as the respective Turing machinesih W, V).

2. (P, W<V)-proof.

(a) Completeness for WFor anyk, for any sufficiently longk € L given as input
to (P, W, V): W accepts with probability at least-4 |x| =% (taken over the
coin tosses oP, W, V).

(b) Weak soundness for ViFor anyk, for any sufficiently long« & L, for any P’,
oninputx to (P’, W, V): W accepts with probability at most| ¥ (taken over
the coin tosses d?’, W, V).

3. Untraceability Let L’ = {(x, h) | x € L and|h| = |x|®, h = (hp;, hy/)}, c > 0.
For any proveP’ for which(P’, V) is an interactive proof fok, for any verifietvV':
(@) the ensemble&P’, W<V')(x, h)} and{(P’, V)(x, h)} are perfectly (statisti-

cally) (statistically) indistinguishable of.’, and

(b) the ensembleg® W, V/)(x, h)} and{(P, V')(x, h)} are perfectly (statisti-

cally) (computationally) indistinguishable dri.

Remarkl. Aweakerform of untraceability could restrietto provers who are accepted
by V with the same probability a¥ accepts the honest provér. We feel that this
restriction is too severe and does not capture the essence of untraceability.

Remark2. If the dishonest prove’ tries “too hard” to be traceable, then the honest
verifierV will rejectx € L, in which casé/’ may see a difference. However, then we do
not have an interactive proof any more. With divertible proofsrasdrict ourselves to
proversP’ for which (P’, V) is an interactive proof. A stronger condition would allow
for anydishonest proveP’. In the following section we consider such a scenario.

2.4. Subliminal-Free Proofs

With a subliminal-free proof the warden will detect any attempt by the prover (or verifier)

to exchange subliminal messages. There are two ways in which a subliminal channel can
be established. The first one is by abusing the system. In this case the prover (or verifier)
tries to hide secret messages in the strings it exchanges while the protocol is executed.
This can be prevented by requiring that the system is abuse-free. The second way is to use
a nonminimal protocol which is specifically designed to allow for subliminal channels.
We discuss this in Section 2.4.2.

2.4.1. Abuse-Free Proofs

A proof is abused if it is used for a different purpose than intended. In this case we
cannotrestrict ourselves to dishonest prov&svhich the honest verifiev will accept.

5 This definition is based on [17] and [21]. We have made some changes to allow for proofs of membership.
6 P has unlimited computational power, so it makes no sense for these ensembles to be computationally
indistinguishable.
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Indeed a dishonest verifiaf’ may accept &’ which V would have rejected, iV’

can somehow benefit from this, e.g., establish a subliminal channel. With abuse-free
protocols the wardelV should detect abuses. For this purpdgeeturns a bitwy as
special output which it sets to 1 if it detects an abuse.

We demand that two conditions be satisfied for a proof to be abuse-free. The first is
fairness. That is, wheR andV are honest and € L, the warden should not detect an
abuse. The second is detectability. That is, if the warden fails to detect an abuse, then:
(i) a possibly dishonest prové?’ cannot see any difference between the bit strings it
gets from a conspiriny’ and those it gets from the honest verifigrand (ii) a possibly
dishonest verifie’ cannot see any difference between the bit strings it gets om
and those it gets fror®. The formal definition follows.

Let W setwyq = O if it fails to detect an abuse and €t <W, V) ws=0(X, h) be
("W, V')(x, h) restricted tavg = 0, and(P’, WV"),,,,—o(X, h) be(P’, W=V')(x, h)
restricted tawyq = O.

Definition 8. Let A = (P, W, V) be an interactive proof with warden far, and let
L’ = {(x, h) | x € L and|h| = |X|%, h = (hp/, hy/)},c > O constantA is abuse-freéif:

1. FairnessForanyk, for any sufficiently long« € L givenasinputté\: Proby (wq =
0) > 1 — |x|7%, where ProR(wq = 0) is the probability thaivg = 0 during the
execution of the proof.

2. Detectability For anyk, for any sufficiently longx, h) € L’, for any P’ andV’
which communicate througW, on inputx and historyhto A’ = (P’, W, V') we
have, either Prab(wg = 0) < |x| 7K, or
(@) Conditionally perfect (P', W=V"),,,—0(X, h) = (P, WV),,,,—0(X, h) and

(P’<—>W’ M/)\wd:O(X’ h) = (PHW’ M/)de:O(Xv h)

(b) Conditionally statistical The ensembles{(P’, W*’V')‘wd:o(x, h)} and
{(P', W=Y),,=0(X, h)} are statisticallyk-close for(x, h) in L', and the en-
sembleg (P W, V') ,,—o(X, )} and{(P<W, V') ,,,—0(X, h)} are statistically
k-close for(x, h) in L.

(c) Conditionally computationalThe ensembleg(P’, W<V"),,,,—o(X, h)} and
{(P', W=Y),,,=0(X, h)} are statistically k-close for(x, h) in L', and the en-
sembles((P W, V') ,,,—0(X, )} and {(P<W, V') ,,,—0(X, h)} are computa-
tionally k-close for(x, h) in L’ with respect to the Boolean circuiGx n),
providedV' is polynomial-time.

2.4.2. Minimal Proofs

While subliminal channels of the first type deal with dishonest provers or verifiers who
abuse a properly designed protocol, subliminal channels of the second type deal with
dishonestly designed, or faulty, protocols. We describe one such protocol based on the
Goldwasser—Micali—-Rackoff proof for quadratic residuocity [17]. This uses an “atomic”
subroutine with three steps in which first the prover “commits” to a particular string, then
the verifier asks arandomly selected “query” bit, and finally the prover sends her “answer”

7 This definition is a particular case of the general definition in [13].
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which the verifier checks. The subroutine is repeatdganes, wheran is polynomial in

the length of the input. We now modify this protocol by having the (honest) verifier take
as its last query bit (thath bit) an appropriate bit of its history tape, instead of a random
bit: in this case we assume that the honest verifiarses its history tape. Clearly, the
modified protocol is still a perfect zero-knowledge proof of quadratic residuocity. Indeed
the last bit of the verifier has no significant effect on the completeness or soundness of
the proof, and the view of the verifier can be perfectly simulated. However, the modified
proof allows the verifier to send to the prover, additionally, one subliminal bit with each
execution of the protocol.

Minimal proofs will prevent this. Informally, a proof is minimal if it does ho more
than what is strictly required [13]. With such proofs the verifier learns only one bit of
knowledge (thak € L or otherwise), and the prover leamsthing in an information
theoretic sense. From our previous example we see that zero-knowledge proofs are not
necessarily minimal. This is because zero-knowledge addresses only the knowledge that
the verifier may get, not the information theoretic knowledge that the prover may get.

Definition 9. Let(P, W, V) be an interactive zero-knowledge proof fowith warden
in which P andV may have been specified to use their history tage.W, V) is
minimal if there is an expected polynomial-time machikk such that the ensemble
{Mp(x, hp)} is statistically indistinguishable frof(P, W<V)(x, (hp, hy))} onL’ =
{(X, (hp, hy)) | X € L and|hp| = |hy| = |X|°}, ¢ > 08 Thatis,Mp simulates the view
of P when interacting withvV<Y onL’.

Observe that with minimal proofs we are only concerned with the view of honest parties,
and that the simulatoMp only receives the historiip. We now combine abuse-free
proofs and minimal proofs to get subliminal-free proofs.

2.4.3. Subliminal-Free ProofdFair Wardens

Definition 10. An interactive zero-knowledge progP, W, V) for L is subliminal-
freeif it is abuse-free and minimal. We say that tharden is(unrestricted fair if the
fairness condition extends to all strings{dy 1}*.

A warden who is (unrestricted) fair will not detect any abuse wkenL if the prover
and verifier are honest.

2.5. Other Types of Proofs
Definition 11. A divertible (subliminal-free) interactive progP, W, V) for L is:

e Sound for Wif, for any constank, for sufficiently longx ¢ L, for any P’ andV’,
for anyh = (hp/, hy), on inputx and historyh to (P’, W, V’): W accepts with
probability at mostx| ¥ (taken over the coin tosses Bf, W, V).

8 This condition is only sufficient for zero-knowledge proofs. In a more general context the knowledge that
each party may get must be minimal.
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e Sabotage-fre€for W) if, for any constank, for sufficiently longx € L, for anyV’,
for anyhy, on inputx and historyhy to (P, W, V’): W accepts with probability
at least 1— |x| ¥ (taken over the coin tosses Bf W, V).

Remark3. With a divertible proof P, W, V) which is not sound foW, only V is a
verifier in the Goldwasser—Micali—-Rackoff [17] sense. That is, dhhlyill rejectx ¢ L

with overwhelming probability whatever prograrRsandW’ use. Due to the sequential
nature of the setting for divertible (subliminal-free) proofs, it is not possible to have
sabotage-free proofs fof, i.e., proofs in which the verifier accepts (R, W', V) for
anyW’ andx € L, whenL is not in BPP. For this reason we have not defined it.

A divertible proof(P, W, V) which is sound and sabotage-free & is asequential
multiverifier proof. In this case bothv andV are verifiers and are convinced uncondi-
tionally, and we have an interactive proof for béhandV (provided thatV is honest)

in the Goldwasser—Micali-Rackoff [17] sense.

2.6. Commitment Functions and General Notation

The following definition is based on the definition of probabilistic encryptions in [16]
and [15].

Definition 12. A bit commitmenfunctior® is a polynomial-time computable function
f: {0,1} x {0, 1}* — {0, 1}* for which f(0,t) # f(1,t) for all t,t' € {0, 1}*. Let
fn(b), b € {0, 1}, be the random variablé(b, t), t €r {0, 1}". We calln the security
parameter off,. A commitmentf is secure[16], [15] if the ensemble$f,(0)} and
{fn(1)} are computationally indistinguishable.

Finally, the commitmenf (b, t) is openedby revealingb andt.

A well-known [16] example of a bit commitment is based on the function
Gsmb,r) = s°r?modm  if be{0,1) and re Z, (1)

where the modulusis a Blum integer [3] and is an appropriate quadratic nonresidue.
It is secure if it is hard to decide quadratic residuocity modulo a Blum integer. Here
f(b,t) = (gsm(b, ), s, m), where one part of the bit stringdenoted bypar is used
to obtain the prime factors ah (for example,p andq) and the nonresidue (the
parameters of the commitment), and the other part is used to determine the argument
(sopar = (p, q, s) in the example). The commitment is opened by revedting the
prime factors® of m, ands.

We next consider homomorphic commitments and blindings of commitments. Let
a egr Amean that the elemeatis selected from the se¥ uniformly and independently
of other selections.

9 Here we only consider unconditionally secure commitments for the verifier. We also have unconditionally
secure commitments for the prover (hiding commitments) [5], but these are not used in this paper.
10 50 “opening” is total: opened functions cannot be reused.
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Definition 13. Let {F,} be a partitioning of the commitmerit in which, for eachn,

Fn consists of the restrictionfy,, of f obtained by limiting the length of its argument
t to n, and by using one part df to determine the parametepsr of f,, and the
remaining part of lengtl(n), v(n) > n° ¢ > 0 constant, as the argumendf fpa. SO
foar(b, 1) = f(b, t), wheret = (par, r) with |t| = nand|r| = v(n).

We say thatf is homomorphidf, for eachn and fpar € Fn, @ binary polynomial-time
operation “ " is defined on thef,4(b, r)’s such that there is a polynomial-time algorithm
which, oninpub, b’ € {0, 1}andr,r’ € {0, 1}*™, willoutputanr” € {0, 1}*™ forwhich
foar(D, 1) - fpar(D', 1) = fra(b @ B, 1), where “® " is addition mod 2; furthermore, if
r’ e {0, 1}*™ is uniformly distributed, then so ig’.

The commitmentf,a(b, r) is openedoy revealingb, r, and the parameters dfa, if
necessary.

Definition 14. Letg: {0, 1}* x {0, 1}* — {0, 1}* be a polynomial-time computable
function and le{G,} be a partitioning 0§ which consists of the restrictiogg,, obtained

by limiting the length of its argumeritto n, as in Definition 13, and taking one part
to determine the parameters parggf, and the other part to determine the arguments
u,r’. We say thag is ablinding of the commitmentf if, for eachn and fyar € Fi,
there isam’ < n° ¢ > 0 constant, andpar € Gy such that, givem = fya(b, r) and

r' er {0, 1}V ™, there is an” eg {0, 1}*™ for which gpar ( fpar(0, 1), ") = fparb, r").

The function (1) can also be used to define homomorphic commitments. For this purpose
we take the length of the argumentg@to ben = 3|m|, and use the first|in| bits to
determine the prime factors af and the nonresidug, and the remainingm| bits to
determine . The functiongpa(u, r) = ur2modm,u,r € Z}, can be used for a blinding
of the bit commitment (1).

Below we use the following notation. L&t be a finite set. Then Sy is the group
of all permutations, oiv. Furthermore, ifr, 7 € SymV are permutations thetn o =’
is their composition (s@ o 7'(X) = 7 (r'(x)) for x € V).

3. Basic Technique

To illustrate our technique (see [6]) we first consider a protocol for Graph Isomorphism
(GI) which is obtained by adapting the Goldreich—Micali-Wigderson [15] proof to suit
our needs. Then we extend this to get a divertible proof.

Let G = (V, E) be a graph with vertex s&t and edge seE. If = € SymV, then
7 G is the graph(V, F) with (u, v) € E if and only if (w(u), 7 (v)) € F. We use the
notationA = (A, A;) for ordered pairs. The (external) operator “swap” is defined by
swape, A) = (Ae, As), wheree € {0,1} ande = 1d e. Let G = (Ggp, G1) be a pair
of graphs on the same vertex 8&tand letw = (7o, 1) be a pair of permutations of
SymV. We definerG to be the pair of graph&rGo, 71G1). It is easy to check that

swape, 7G) = swafe, ) swage, G). (2)
More generally

swape, w) swaf f, G) = swape, w swage® f, G)), 3
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for anye, f € {0, 1}. Finally if o = (09, 01) is a pair of permutations of Sym, then
7 o o = (7o o 0g, 1 0 01), Where 0" is the composition of permutations.

Protocol 1 (An Interactive Zero-Knowledge Proof for Gl).
Common inputA pair of graphsG = (Gg, G;) with vertex setv andm edges.

V rejects ifGg, G are not proper descriptions of graphs which have the same num-
ber of vertices and edges. Otherwise the following four steps are repeatiedes,
independently:

P1. P selects a pair of permutatiomseg SymV x SymV and send¥ the pair of
graphsH = 7 (Go, Go).

V1. V sendsP a bitq €g {0, 1}.

P2. P sendsV the pair of permutationgy = 7 o (69, 09), wheres: G; — Gy is an
isomorphism¢ ¢ {0, 1} is handled ag = 0).

V2. V checks that) € SymV x SymV and thatH = v swapq, G). If this falls, it
halts and rejects.

If V has completed successfullyiterations of the above steps, then it accepts.
(End of Protocol)

Observe that the main difference between this protocol and the one in [15] is that here
the proverP sends gair of permutations and then answers a pair of complementary bit
queries.

Lemma 1. Protocollis an interactive proof for Gl which is perfectly zero-knowledge
Proof. This follows directly from the proof on pp. 703—706 of [15]. O

We now extend Protocol 1 to get a divertible proof for Gl [6].

Protocol 2 (A Divertible Zero-Knowledge Proof for Gl).
Common inputA pair of graphsz = (Gg, G;) with vertex setv andm edges.

W, V reject if Gg, G; are not proper descriptions of graphs which have the same
number of vertices and edges. Otherwise the following seven steps are rep¢iated,
independently:

P1. P selectsr egr SymV x SymV and send®: H = 7 (Gg, Go).
W1. W selectsr’ eg SymV x SymV, e e {0, 1}, and send¥: H' = swape, 7'H).
V1. V sendsW: q €r {0, 1}.
W2. WsendsP: g1 =q @€ q ¢ {0, 1} is handled ag = 0.
P2. P sendsW the pair of permutationsp = m o (6%, o%), whereo: G; — Gy is
an isomorphismd; ¢ {0, 1} is handled as; = 0).
W3. W checks that) € SymV x SymV and thatH = v swagq,, G). If this fails it
rejects.W sendsV the pair of permutationa)’ = swape, 7’ o v).
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V2. V checks that)’ € SymV x SymV and thatH’ = ¢’ swagq, G). If this fails it
halts and rejects.

V andW accept if they have completed successfutlyiterations of the steps above.
(End of Protocol)

We now show that the warden’s strategy of swapping graphs and permutations makes
the prover and verifier untraceable, whilst the warden is transparent.

Theorem 1. Protocol 2 is a statistically divertible interactive proof for GI which is
perfectly zero-knowledge and sabotage-free

Proof. Whenx € L andP andW are honest then, for any’,
P swapqy, G) = m(0%Gq,, 0" Gg,) = 7(Go, Go) = H. (4)

So the warden will accept and the protocol is sabotage-free. Furthermé&aMf and
V are honest, then

v’ swapg, G) = swape, 7’ o 1) swafq, G) = swape, (' o 1) swage ® q, G))
= swape, 7' (b swapge ® q, G))) = swape, 7’'H) = H’

by using the swap conditions (3) and (4). So the protocol is complete. Soundn&ss for
andW is reduced to that of the two party protog8i<W’, V), by takingP’, W’ as one
machine. Then we use the soundness proof on p. 703 of [15]. Zero-knowledge follows
from Lemma 1.

To prove that the proof is divertible we must show that it ifPa W<V)-proof, and
that we have transparency and untraceability. Completeness and weak soundwéss for
follow immediately from our earlier discussion since, wh&handV are honestW
accepts if and only i¥/ accepts. Transparency is obvious. We first discuss untraceability
informally. Consider the proafP’, W, V') whereP’ is a prover accepted by the honest
verifier with inputx € L, i.e., Go and G; are isomorphic. Then we must hake =
1 swap(q;, G) with overwhelming probability, because the completeness condition of
interactive proofs allows for a small probability of error. Suppose that thisis the case. Then
H is a pair of graphs, not necessarily random, which are both isomorp8ig 8ecause
the permutationg’ are uniformly distributed, the graph8 = swape, «'H) in Step W1
are uniform (isomorphic t6¢ and G,), and the permutationgy’ = swape, ©’ o 1))
in Step W3 are uniform. Sq ande are independent and therefore the bifs=q & e
in Step W2 are uniform. Letp be the portion of the random tape thRat reads and
letry. be the portion of the random tape théatreads. Therrp/, ;) occurs with the
same probability as when the verifier\s and (ry:, H’, 1") occurs with (almost) the
same probability as when the proverRs By taking into account the fact that there is
a small probability of error, we see that the viewRfin (P’, W<V') is statistically
indistinguishable from the view & in (P’, V). Similarly the view ofV’ in (F =W, V')
is statistically indistinguishable from that {i°, V’). We shall prove this formally for
the view ofV’. The other case is similar.

Let x € L. DefineZ = 0 to be the event that, for all iterations (', W, V'),
H = v swapdq;, G), and letz = 1 be the event that this is not so. Also e 0 and
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z = 1 be the corresponding events @, W, V’). Then clearly Prokz = 0) = 1 (P

is honest) and one can prove that Rmb= 0) > 1 — |x|~¥, from the completeness
of (P',W,V). Letv' = (P<W, V')(x, h) be the view ofV’ when interacting with
P’ and letv = (P, V')(x, h) be the view ofV’ when interacting withP. We have
Probv' = o) = Prob(v' = «,7 = 0) + Prob(v' = «,Z = 1) and Proliv = o) =
Probv = «,z = 0). From our earlier discussion on the uniformity kf and ',
Prob(v' = o | Z = 0) = Prohlv = « | z = 0). Using these facts, and the fact that
Proha, b) = Prob(a | b) - Prok(b) for eventsa, b, we see that

Z |Prol(v’ = a) — Prob(v = )|

ae{0,1}*

< Y |Probv' =7 =0) — Probv = a, z= 0)|
ae{0,1}*
+ Z Prob(v' =, 7 =1)

ae{0,1}*

= Z Problv =a | z=0) |Prok(z’ =0) — Proh(z = 0)[ +ProbhZ =1)
«e(0,1}*

<IXI™* Y Probv =« | z=0)+ |x|7* < 2x| 7,

«e{0,1}*
and this is true for anik > 0. So we have statistical untraceability. |

Remark4. The weaker form mentioned in Remark 1 would have given us perfect

divertibility in Theorem 1.
We now show that Protocol 2 can be modified to get a subliminal-free proof for GI [6].

Protocol 3 (A Subliminal-Free Zero-Knowledge Proof for Gl).
Common inputA pair of graphss = (Gg, G;) with vertex setv andm edges.

W setswqy = 0. If Gg, G; are not proper descriptions of graphs which have the same
number of vertices and edga¥/, setswy = 1. Otherwise the seven steps of Protocol 2
are repeateth times independently, with Steps W2 and W3 replaced by:

W2'. W setswyg = 1ifq ¢ {0,1}. WsendsP: q; = g®e(q ¢ {0, 1} is handled as
q=0).

W3'. W checks that) € SymV x SymV and thatH = v swagqy, G). If this fails
it setswg = 1. W sendsV the pair of permutationgp’ = swage, ' o 1).

If V has completed successfullyiterations of the steps above, then it acceyitssets
wg = 1if P orV halt prematurely. (End of Protocol)

Theorem 2. Protocol3is a subliminal-free interactive proof for Gl which is perfectly
zero-knowledgeT he detectability is conditionally perfect

Proof. Clearly, the modified protocol remains perfectly zero-knowledge. Fairness fol-
lows trivially from the completeness ¢P, W, V). The proof of detectability is similar
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to that for untraceability in Theorem 1. Consid&’, W, V') whenwyg = 0 andx € L.
From the check in Step W31 = ¢ swapqi, G), so the graphs oH are isomor-
phic to Gg. Again, because the permutationSare uniformly distributed, the graphs
H’ = swape, «'H) are uniform and the permutations = swape, 7’ o 7)) are uni-
form. Furthermoreq ande are independent ang} is uniform. Thus the conditional
(wg = 0) view of P” when interacting withv’: (--- (rp/, Q1) ---) is identical to that
when interacting withv. Similarly, the conditional view oV’ when interacting with
P (--- (ry, H, %) ---) is identical to that when interacting with. So we have de-
tectability. The system is minimal because the view of the honest pRoigesimulatable.
Therefore the proof is subliminal-free. O

Remark5. By extending the argument used in the last part of the proof we see that
(P, W, V) is not sound folV. Indeed, suppose th& is not isomorphic tds; and that

P’ choose$l = swapd, wG) in Step P1, wherd is arandom bit aner is a random pair

of permutations of the vertex set. Then if the verifi€rhas unlimited resources it can
find d @ e by checking which one of the two graphstéf = swage, 7w'H) is isomorphic

to Gp. Consequently, i/’ sendsgy = d @ ein Step V1 andP’ takesy) = swapd, =)

in Step P2, we havg; = d and the warden will accept sin¢é = 1 swapq, G) as
follows from (2). So, the warden may accept whegd L.

4. Graph Hamiltonicity

In this section we present a divertible and a subliminal-free zero-knowledge proof for
any language in NP. A protocol for SAT was sketched in [6], but here we give a protocol
for Hamilton cycles which is easier to explain [20].

Our protocol employs a homomorphic commitment functibnThe commitment
is unconditional (lying is not possible) but privacy (hiding) is only conditional. As is
typical with such protocols [14], the zero-knowledge simulation involves commitments
toillegal values which are hidden and cannot be distinguished from random commitments
by a polynomial-time verifieN’. However, if f has a trapdoor (as in the case of the
commitment in Section 2.6), then a dishonest pravércan write this on the history
tape of a verifierV'. In this caseV’ will distinguish its actual view (in which legal
values are hidden) from the simulated view, and we lose zero-knowledge. This must
be prevented. We do this by having an oracle select independently, and uniformly, the
parametergar of the commitmentfp,, € F, for each execution of the protocol. The
oracle is not needed if there exist homomorphic commitmémigth no trapdoor
is then part ofP, W, andV as on p. 713 of [14]). For convenience we represent the
commitments irF, by f (we drop the subscrigtar) and assume that they requireoin
tosses.

Protocol 4 (A Divertible Zero-Knowledge Proof for graph Hamiltonicity).
Common inputA graphG = (V, E) with vertex seV, edge seE, n = |V|, m = |E]|.
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An oracle selects the parameters of a homomorphic commitinesmidomly inF, and
gives them toP, W, V. ThenW set$! w, = 0. W, V reject andW setsw, = 1if G is

not a proper description of a graph. Otherwise the following seven steps are exacuted
times, independently:

P1. P selectst eg SymV x SymV and coin tosseeri?, rﬁ) er {0, 1}¥ x {0, 1}?,
and commits to the pair of adjacency matrides= ({31-01 1, {ailj }) of the graphs
G = 7 (G, G) by using the homomorphic commitmerfit Let (bﬂ,bilj) =
(f(aﬂ , ri‘J?), f(ailj, rﬁ)). P sendsW the pair of matrice® = ({bioj 1, {bilj 1.
W1. W selects random coin toss@},alj) er {0, 1}¥ x {0, 1}* and computes the
pair of matricesC = ({ f (0, q‘}) : bioj }, {(f(0,8) - b} }). ThenW selects a bit
e er {0, 1}, the pair of permutations’ egr SymV xSymV, and send¥ the pair
of matricesD = ({di?}, {dilj 1 = swape, «'C) (=’ permutes the corresponding
rows and columns of the matrices@).
V1. V sendsW a bitq er {0, 1} as a challenge.
W2. W sendsP the bitg; = q & eas a challengey ¢ {0, 1} is handled ag = O.
P2. P sendsW: the permutationrg,, all the coin tosseq?l, a Hamilton cycleHg,

in Gg,, and then coin tossesi?ﬁz, ....Tr used in its commitmentyg ¢ {0, 1)
is handled as; = 0).

W3. W checks thaBy, is a commitment of the adjacency matrix=f,G and that
b = f@rl). ... b0 = f@ k). If either fails, then it setsv, = 1

and send¥/ a string of zeros. Otherwise it computes, forrﬁllreceived from

P, the coin tosses¢ such thatf (aff, uf) = f(0,sf) - f(aff.rf), and then
P i qa _ &
W sendsV: nj = mg o mq,, all the coin tosse§; = Uns Gy, ()" the cycle
I — ! H- ; a _ & a _ &
Hg = 74, Ha,, and then coin tosses;;; = uﬂél(il)ﬂél(iz)’ N uﬂéh(in)rrél(il)

used for its commitment.
V2. V checks thatDq is a commitment of the adjacency matrix of G and that

dd = f@, t4 ) R dd = f@, t4 ). If either fails,V halts and rejects.

i1i2 i1i2 > Mlinig ini1

If V has completed successfullyiterations of the steps above, then it accepissets
wy = 1if P halts prematurelyW accepts ifw, = 0, otherwise it rejects.
(End of Protocol)

k

Observe that can computex;;

a homomorphic commitment.

from aff, ri¢, andsf{ in polynomial-time sincef is

Theorem 3. If there exist secure homomorphic commitmentshén ProtocolM is a
statistically divertible interactive proof for graph Hamiltonicity which is computation-
ally zero-knowledge and sabotage-frepeovided that the parameters of f are selected
randomly in K by an oracle

11 The Boolean variabley is not required for divertibility. It will be needed for the subliminal-free proof.
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Proof. The proof is an extension of that in [4] and is based on the one in [15].i¢f
honest, therB, is a commitment of the adjacency matrixf G andHg, is a Hamilton
cycle in Gg,, so W accepts and the protocol is sabotage-freeviorlf P andW are
honest, therDy is the encryption ofryG and H; is a Hamilton cycle inzg"G, and
soV accepts and we get completeness. The proof for soundness is the same as for the
two-party protocol P, V) in [4].

It follows that (P, W<V) is a proof. Clearly we have transparency. For untraceability
we only need to consider provePswho are accepted by the honest veriffeThen both
By, B; are almost always commitments for adjacency matrices.ofhis implies that
almost always (i) theli‘} are proper commitments with the appropriate distributions and
so (ii) theqg ande are uncorrelated and henge= g & eis uniform, because €g {0, 1}
[22]. ThereforeP’ cannot distinguish between the challenges it gets directly from an
honestV and those it gets fronv’ throughW, and similarlyVV’ cannot distinguish
between the bit strings it would get directly frafand those it gets fror®’ throughW.
Asin Theorem 1 we have statistical indistinguishability. The proof for zero-knowledge is
similar to that for the two party protocoP, V) [4]. A formal proof for zero-knowledge
is obtained by extending the argument used in Theorem 2, pp. 716—721, of [13]

We will now show that Protocol 4 can be modified to get a subliminal-free proof for
Hamilton cycles.

Theorem 4. If there exist secure homomorphic commitmentshén Protocol4 can
be modified to obtain a subliminal-free proof for graph Hamiltonicfiyovided the
parameters of f are selected randomly inlfy an oracle The proof is computationally
zero-knowledge and detectability is conditionally statistical

Proof. We modify the protocol by havingV initialize with wy = 0, and setwyq = 1 if

g ¢ {0, 1} in Step W2. Then at the end of the pro&f,proves toW in zero-knowledge
the NP statement that all the pairs of matriBeare properly constructed (e.g., by using
one of the proofs in [14] and [4]). That i®, proves toW using a zero-knowledge proof
(P, W) that pairs of permutations were used to obtain the adjacency matriceS,aind
that the elements of the matricBsare proper encryptions (i.e., there exist coin tosses
ri suchthabli = f(aff, rf)). If P orV halt prematurelyWV setsw, = 1. If the (P, W)
proof fails, or ifw, = 1, thenW sets? wy = 1.

Clearly, the modified protocol remains computationally zero-knowledge. However, it
is not transparent. To show that it is subliminal-free we must show that it is fair, that we
have detectability, and that it is minimal knowledge. Fairness follows directly from the
modified (P, W, V). We shall now prove that we have detectability for the case when
the subliminal receiver is the verifier. The other case is similar.

We first sketch the outline of our proof. To begin with, in Part 1, we show that if the
probability that the wardeW detects an abuse is not overwhelming, then the conditional
probability that a dishonest prove¥ uses proper encryptions and thtaccepts, given

12 Note that it is not necessary that accepts or rejects in the modified protocol.
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thatW fails to detect the abuse, is overwhelming. In Part 2 we use this to show that we
have detectability. We now proceed with the proof.

We make three key observations. Izt 0 be the event thab, = 0 and that the
matricesB are proper encryptions. Otherwise= 1. The first observation is that when
x € L (i.e., the graphG has a Hamilton cycle) the conditional probability that the
verifier's view has a certain value, given= 0, is the same whether the prover is honest
or not. That is,

PI’OQP/,WA’V/)(U/ =« | zZ= 0) = PrObpywﬁv/)(U = | Z= 0), (5)

wherev' = (W, V') ,,—0(X, h) andv = (P W, V'),,,,—0(X, h). This follows from
the untraceability of Protocol 4, because wier- 0 the encryptions are proper and
wa = 0. The second observation is that for dgsufficiently longx € L,

Probp wyv)(wg=1]z=1) > 1—|x| (6)

This follows from the soundness of thE, W) proof that all the matriceB are properly
constructed (the reason why we take the exponent tipélBsoon become clear). The
third observation is that for arly; sufficiently longx € L,

Probe wvy(wg =0]z=0) > 1— |x|* %
and
Probp wy)(wg=0|v =a,z=0) > 1— [x|"*  (whendefineyl (8)
This follows from the completeness of the, W) proof.
Part 1. Our first goal is to show that for aty sufficiently longx € L,
max(Prole wv, (wa = 1), Prolp wyvy (Z=0]wg =0) > 1—|x| ™. (9

Indeed, suppose that Prabg = 1) < 1 — |x|~¥ so that Proliwg = 0) > |x| ¥ (to
avoid cumbersome notation we drop the subscripts when there is no ambiguitg)=tet
Prob(wg = 0| z=0), B = Prol{wg = 0 | z= 1). Then by (6) we hav8 < |x|~%, so
that, by (7), - |x|~*—|x|~* < A—B < 1,and, therefore, & (A—B)~! < 1+2|x|~%.
Also, Profwg =0) = A-Proliz=0)+ B- (1 — Probiz=0)) = (A— B) - Prob(z =
0) + B, so that Protz = 0)/ Probwg = 0) = (A — B)~1(1— B/ Prob(wg = 0)), and
therefore

1 x% < F = PrORPwv)(2=0)
Prolyp w vy (wyg = 0)

since 1— |x|~% < 1 — B/ Prollwgq = 0) < 1. Then, by Bayes’ law,

< 14 2]x|7%, (10)

PFOQP"W’V')(Z =0|wg=0) = PrObp/,W_Vr)(wd =0|z=0-F
> (1-|x]7%) - 1—|x|72) > 1—|x|7*/2 (11)

using (7). This proves (9).
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Part2. For conditionally statistical detectability we must show that forkasgfficiently
longx € L, if Probp w,v,(wg = 0) > |x|7%, then

> IProbewvy (' =a | wa=0) — Prohp wy)(w=c | wg=0)| <|x|™*. (12)
ae{0,1}*

We expand the left-hand side of this expression by splitting the views into those for
which z = 0 and those for whiclza = 1. Sincez = 0 when(P, W, V') is executed, we
get,

Z |Probv’ = o, z= 0] wg = 0) + Probv' =&, z= 1| wg = 0)
ae{0,1}*
—Problv =a,z=0| wg = 0)|
< Y |Probv' =, z=0]wg=0)—Probv =a,z=0|wg =0)| (13)
ae{0,1}*

+ Z Probv' =a,z=1]|wqg=0). (14)
€01}

Now the sum in (14) is Pralz = 1 | wq = 0). By (11) this is less than or equal to
x| ~3%/2, if Probypr w,v) (wg = 0) > |x|7K. So we only need to focus on the rest of the
sum, that is (13). We shall show that the probabilities in this sum are statistically close.
First observe that

Prob(v' =a,z=0] wqg = 0)
PI’Opr!W,Vf)(ZZO)

= Prol(wg=0| v =«, z=0)-Prob(v' =« | z=0)- ,
¢ Prolp/ w, vy (wg=0)

(15)

and that Proy’ = « | z= 0) = Prol(v = « | z = 0) by (5). Then by (10) and (8),

Probpr_w,v/)(v’ =a,2=0 | wq = 0)
PFOQP,W’V/)(U =a|z=0)

1—|x|7*? < <1+42)x7* (16

Next we consider Probw,vH(v = «,z = 0 | wg = 0). For this we get a similar
expansion to (15), but with’, P’ replaced by, P. That is,

<142x™*. @7

1 |X|_3k/2 - Probpwvy(v =a,2=0] wy = 0)
Probpwvy(v=a | z=0)

Combining (17) and (16), we see that the sum in (13) is less than

@XI7*+1x7%%) . Y Probv =« |z=0) < 2/x|"*/2
ae{0, 1)

Since we have already bounded (14)/ky 3</2, we get (12). This completes the proof
for detectability. The proof is minimal because the view of the honest prover can be
simulated. We have shown that the modified protocol is fair, detectable, and minimal. It
follows that it is subliminal-free. O



Divertible and Subliminal-Free Zero-Knowledge Proofs for Languages 215

Remark6. We can use bit commitments with blindings instead of homomorphic bit
commitments in Protocol 4. Theorems 3 and 4 will still hold, provided the parameters of
the commitment scheme and its blinding are selected randomly by the oracle. The oracle
is not needed if there exist commitmeritsvith blindings for which there is no trapdoor.

5. Graph Nonisomorphism

We show that Graph Non-lsomorphism (GNI) has a subliminal-free zero-knowledge
proof with no unproven assumption. It should be noted that GNI is known to be in AM
butis conjectured not to be in NP. Our protocol is based on the proofin [15] and [20] and
uses our swapping technique for Gl. In this protocol we use expressions sn%:hrg\s

etc.: in these the j, k are all indices.

Protocol 5 (A Subliminal-Free Zero-Knowledge Proof for GNI).

Common inputA pair of graphsG = (G, G1) with vertex setV, n vertices, andn
edges.

W setswyq = 0. If G is not a proper description of graphs, théhsetswy = 1 andV
rejects. If the number of vertices, or edges, are distinct, thacepts. Otherwise, the
following ten steps are executedtimes, independently:

V1. V selectsy €r {0, 1}, m egr SymV x SymV and constructs the pair of graphs
H = mswap, G). ThenV selectsrk egr SymV x SymV andyX er {0, 1},
and constructs the grapfi$ = ¥ swagy*, G),i = 1,...,n%, k =0, 1, and
sendsW the pairsH and{(T?, T1)}.

W1. W proceeds similarly. It seleces er {0, 1}, ¢ €r SymV x SymV and con-
structs the pair of graphs= ¢ swapa, H). ThenW selectScr}‘ €r SymV x
SymV andcik er {0, 1}. In addition, it selectg eg {0, 1} and swaps to obtain
the pairs of graph§ = o+*® swapc®®, T¥*®),i = 1,...,n2,k =0, 1, and
sendsP the pairs and{(S’, SH}.

P1. P selects bits} eg {0,1},i =1,...,n? and send$V the string{q; }.

W2. W sendsV the bitsg/, whereq =g ®e,i =1,..., n?. If g ¢ {0, 1}, thenW

setswyg = 1.

V2. V sendsW {(yI ,7- )} and{(g p,')} wheres1 = ad® yiqi/ and u?" =
' oswage @y, w L) 13

W3. W checks for each' = 1,...,n? that the'riqi/ are isomorphisms from

swap(yI ,G) to T , and that theu?', are isomorphisms from sw&g')j‘/ H) to
Tql If eltherfalls |t setavg = 1. Other\lee itsendB: {(t*, "))}, Wheretq' =
Yag ,uq' =o; oswap(c ) ), and{(tq',uq')} wheret® =5 @a@c

yiq‘—a o swapc’ ,ul)oswaﬁs vadc b

13 |n this protocol for each the verifier sends four permutations, whereas in [15] either one or two permu-
tations are sent. This is made possible by the “doubling” of the original protocol.
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P2. P checks, for eaci = 1,...,n? that the uq' are isomorphisms from
swapt?, G) to S* and that the/q' are isomorphisms from swa . 1) to .
If either fails, P setswq = 1. OtherW|se it computeg € {0, 1} such that the
graphd and swapgs, G) are isomorphic, and sends thisAb If no suchg exists,
it halts.

W4. If B £ {0, 1}, thenW setswyq = 1. Otherwise it send¥: 8’ = a ® 8.

V3. V checks thatr = g'. If this fails it halts and rejects. Otherwis&sendsW the
permutationsr.

W5. W checks thaH = = swagg’, G). If this fails it setswg = 1.

If V has completed successfully rounds it acceptsW setswy = 1 if P or V halt
prematurely. (End of Protocol)

Theorem 5. Protocol 5 is a subliminal-free proof for GNI which is perfectly zero-
knowledgeThe detectability is conditionally perfect

Proof. For fairness we use the swap conditions (2) and (3). The checks in Step W3 are
valid whenP, W, V are honest since
i swaps”, H) = (7- o swap(s .7 h) swaps”, H) = 7-? swags® , w1H)
=T swaus1 swafa, G)) = 7- swap(s1 Da,G)

= % swapyt, G) = TV (18)
For completeness we use the swap condition (3). The checks in Step P2 are valid since

v swapt®, G) = (o' oswa}:(cI T ))swa;:(tq'
= a'i' swap(ci‘,Ti') = sq'@a = S{‘
and
v swagt? 1) = (o o swapc?, p) o swapt®, 1) swaptd |
= (o o swapc, ut)) swapt™, swapa, H))
= (0} oswapc. i) swanc! @5, H)
= o} swanc?, pf swaps® H) = S = &,

using (18) in the last line. The check in Step V3 is obviously valid. So the protocol is
complete fol . Soundness fov is reduced to that of the two party proto¢8i<W’, V)
by taking P’, W' as one machine, using the proof on p. 708 of [15]. We get zero-
knowledge by extending the argument on pp. 709-711 of [15].

We will now show that the protocol is subliminal-free. The proof of detectability is
as in Theorem 1. Consid¢P’, W, V') whenwg = 0 andx € L. Then from Step W5,
H = 7 swap, G). So the graphs whicWW sends tdP’ in Step W1 are uniform random
swaps of pairs of uniform random graphs isomorphiGt@and the bits tha¥V sends in
Step W2 occur with the same probability as wh&ris V. Also, the bits, permutations,
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and graphs whicW sends in Steps W3 and W4 occur with the same probability as in
the casgP, W, V). So the conditionaly = 0) view of P’ when interacting withv’
is identical to that when interacting witi. Similarly for the conditional view of/’.
Clearly, the proof is minimal. So it is subliminal-free. O

Remark7. This proof is not divertib because the wardéh cannot produce the ap-
propriate distribution{( P, V)(x, h)}) when a dishonest verifigt halts in(P’, W<V").
Observe that this proof is not sabotage-free. Furthermore, it cannot be soid for

Remark8. Itis easy to see that Protocol 5 can be applied to quadratic nonresiduocity
(QNR), and to nonmembership of a langudge- (a),, wherep is a prime and € Zj
(however, both languages are in NP).

6. A Subliminal-Free Zero-Knowledge Proof for Languages in IP

In this section we consider languages in IP, the class of languages which have interactive
proofs. We will show that if there exist secure homomorphic bit commitments, then any
languagel e IP has a subliminal-free interactive zero-knowledge proof. Our proof is
based on a system proposed in [19] which uses as a building block an Arthur—Merlin
proof [2] for L (not necessarily zero-knowledge). Arthur—Merlin proofs, denoted by
A-M, are interactive proofs in which the verifier, Arthur, is allowed only to send his coin
tosses to the prover, Merlin. Sodf, 0, . . ., g, are the strings which Arthur sends to
Merlin during the execution of the protocol, then the concatenagigy- - - . = g must

be the string that Arthur reads from his random tape.

Lemma 2[19]. If there exist secure bit commitmeritsen any language itP has an
interactive proof which is computationally zero-knowledge

Proof. Goldwasser and Sipser [18] have shown that any langliage IP has an
Arthur—Merlin proof A-M, which is not necessarily zero-knowledge. Suppose that in
this proof, on inpui € L, Arthur sendsy;, Qp, . . ., g, and Merlin sendys, Vo, ..., Y.
Lets be the concatenation gf, y1, Oz, Vo, - . ., G, Yi, With g = ¢ the empty string, and

let M(s, g+1) = Yi+1 mean that Merlin, on inputs, g 1), produces the next message
yi+1. Furthermore, in the last round Iét(x, s,) = 1 or 0 mean that Arthur accepts or
rejects Merlin’s proof.

To prove the lemma we describe the Impagliazzo—Yung protgeoV) for an in-
teractive zero-knowledge proof farin which the proverP and verifierV emulate the
protocol A-M. P andV will jointly compute the coin tosses = q:10; - - - q¢ of Arthur,
and therP will prove toV, in zero-knowledge, that Arthur would have accepted Merlin’s
proof in A-M, had Arthur's messages begn o, ..., Q.

We explain this in more detail. For convenience we assume that the length of the
messages of Arthur and Merlin ate(which must be polynomially bounded in the

14 A variant of this protocol was presented in [20]. However, a different definition of divertibility was used
there.
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length of the input), and that is a bit commitment function which requirescoin
tosses.

Todeterminebit, ;,1 < j < v, of Arthur'sfirstmessagg:, P sendd/ acommitment
(for which lying is unconditionally impossible)(gp 1. re.1,j), re,1,j €r {0, 1}, fora
bitgp 1, andV sendsP a bitqy 1, 1 < j < v. ThenP opens his commitment tg.
The bitgp 1,j @ Qv,1,j is taken as the joint bt ;, that is,g1; = dp.1j ® dv,1,j, and
gy is the bit stringgy1 - . . 01.,- ThenP commits toV the messagg; of Merlin. That
is, if y11,..., Y1, are the bits ofy;, P sendsV the commitmentsl, ; = f(yyj,t1;),
t1jer{0,1}",1<j <w.

The procedure is repeated fogy andy,. Then forgz andys, and so on, unti, and
Y. ThenP proves toV the NP statement:

Ay, LYt oot tor, oty

AX, 80) A N @i=fopt) | =1 (19
1<i<¢t
1<j<v

wheres, = Quyi---QeYe, ¥i = Vi1 - Vi, DY UsSing one of the zero-knowledge proofs
in [14] or [4].

Completeness follows immediately. For soundness observe that if a promecceeds
in convincingV that the predicate (19) is satisfied with a probability which is not
negligible then, from the soundness of the zero-knowledge proof of the NP statement, it
follows that Merlin would also succeed in convincing Arthur with a probability which is
not negligible (by using the same protocolRsbut this time sending thg’s instead of
just committing to them). Since the Arthur—Merlin proof is sound we must kavd..
Finally, for zero-knowledge the simulator selects, foreaghil< ¢,1 < j < v,random
bitsgp,; j for the prover and sends commitments of these to a blackbox simulation of the
verifierV'. From this it gets bitsly ; ; and thus computes the biis;. By concatenating
these it gets all the. For eachi, 1 < i < ¢, the simulator s:elect\;zifj er {0, 1},
ti/,j er {0, 1}*, and computes commitmendﬁj = f()/i’,j,ti”j), 1< j < v (which
are indistinguishable from the “proper” commitmeudtg for the bits ofy;). Then the
simulator runs the simulation of the zero-knowledge proof for the predicaté{19p

We now consider a subliminal-free proof for IP. Our protocol uses homomorphic
commitments. We remind the reader that, for convenience, the commitmefisane
represented by (we drop the subscrigdar from f,a).

Theorem 6. If there exist secure homomorphic commitmentghén any language
in IP has a subliminal-free proof which is sabotage-freeovided that the param-
eters of f are selected randomly in, By an oracle The proof is computationally
zero-knowledge and detectability is conditionally computational

15 Although the predicate might not be satisfiable, this does not affect the total simulation.
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Proof. We extendthe argumentused inthe Impagliazzo—Yung proofto getasubliminal-
free zero-knowledge prodfP, V). For simplicity we assume as in Lemma 2 that the
messages of Arthur and Merlin and the coin tosses have length

The outline of our proof is as follows. To start with, in Subroutine 1, the préver
the wardenw, and the verifielV construct jointly the messageg of Arthur in the
proof A-M. This must be done in such a way tHaendV are prevented from sending
each other subliminal messages either directly or indirectly by halting prematurely when
the message stream does not have a particular pattern. In the latter case, nonhalting
would leak information (halting can have irreparable consequences with cryptographic
protocols [9]). For this purpose the warden blinds the commitments of the prover, and
uncovers the blindingnly at the very end of the entire protocol, when the protocol
halts in any case. After each messagé computedP commits to Merlin’s replyy;.
Again the warden must blind the commitment. In Subroutine groves, by using a
subliminal-free zero-knowledge proof, that Arthur would have accepted Merlin's proof
if the message stream was the one determined in Subroutine 1. Finally in Subroutine 3
the warden unblinds his commitments and the verifier does all the necessary checks. The
protocol is as follows.

Protocol 6 (A Subliminal-Free Zero-Knowledge Proof for IP).
Common inputx € L

An oracle selects randomly the parameters of a homomorphic commitimerf, and
gives them toP, W, V. W setswy = 0. Then the following subroutines are executed
sequentially.

Subroutine 1.(Simulating the prooA-M: P, W,V commit to Arthur's messagep and
then P commits to Merlin’s repliesy;.) Seti = 1. The following steps are executéd
times, incrementing by one each time:

P1. P selects bitglp; ; €r {0, 1} and coin tossesss; ; €r {0, 1} and send$V the
commitmentgp; ; = f(p,ij, reij) 1< J <v.

W1. W checks that thep i j are bit commitments, usifg P if necessary, and sets
wy = 1if this is not the case. TheW selects bitsiw;i ; er {0, 1} and coin
tossesw,ij €r {0, 1}* to flip and blind the commitments d?. W sendsV the
resulting commitmentspw, j = Cpij - f(@Qw,ij.Tw,i,j), 1 <] <w.

V1. V selects bitsjy ; j €r {0, 1} and flips the commitments aW. Letcpwy, j =
Cpw,i,j - f(Qv,i,j,0Y,1 < j < v. (These commitP, W, V to the joint bits
Gi,j =0p,i,j ® Aw,i,j D qv.i,j-) V sends all the bitgy; j to W.

W2. W computes the commitmentswy;i j. Then it selects coin tossee,i;(,,i’j €R
{0, 1}* to blind thecpwy,,j. W sendsP the resulting commitments; ; =
Cewv,i,j - FO. Iy ) 1<]=<v.

16 1f W cannot check this, theR proves tow in zero-knowledge that there exist bits i, j and coin tosses
rpi,j € {0,1}V suchthatp; ; = f(Qp,,j.rp,,j). With the commitment scheme in [18) just has to check
that the Jacobi symbol of the commitmentig.
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P2. P can now compute the jointly committed bds; of Arthur’'s message; from
the ¢ j (since P has unlimited resources). Théh computes Merlin’s reply
Yi, and selects coin tossés;; er {0, 1}’ and sendsV the commitments
dpij = f(yij, trij)l1<j=<v.

W3. W checks that these are bit commitments, USiRjif necessary, and seis; = 1
ifthisis notthe case. Thenitselects cointosggs, ty; ; €r {0, 1}" toblind the
commitmentslp; ;. W sendsP the commitmentslpw,; j = dpi j - T (0, tw j),
1< j <wv,andV the commitmentspwez; j = dpw; j - f (O, t\’,\,,i,j), l1<j=<w.

Subroutine 2.(The(P, W, V) proof: P proves that Arthur would accept Merlin’s proof.)
The proverP proves the NP statement:

3001, Ous e Ao Yo o os Yhus v os Yeus Z01s oo o5 Z2s oo Zows U105 oo Ty,

R VS

A(X, ) A /\ ©€j="f@;.z)) A /\ dpwi,j = f(yij, i) | =1

1<i<¢t 1<i<¢
1<j=<v 1<j=v

wheres, = a1y1---qcYe, the bits ofg; areq; j, and the bits ofy; arey; j, by using
Protocol 4. (Observe that onW can verify this proof. Indeed/, while asking its
queries, does not know the commitmeatsanddpyy;, j, only thecpwyi,j anddpwe;; ;.

So it keeps a record of all the received messages, and will verify these in the following
subroutine.) If in this proof the warden outputs the local varialyje= 1, thenW sets

wy = 1.

Subroutine 3. (V checks the proof in Subroutine 2 sendsV all the coin tosses
r{,\,yiqj andt{,\,yi,j used to blind the commitmentswy;i,; anddpw; ;. V uses these to
compute thes j anddpwe,; j and then verifies the proof in Subroutine\2rejects if the
verification fails.

Ifinthe subroutines abowey = 1, orif P, V, orW halt before the end of the protocaol,
thenW outputswy = 1. (End of Protocol)

Proof (continued). Completeness follows directly. For soundness we use the argument
in Lemma 2. From the same lemma we get zero-knowledge. For subliminal-freeness
observe that fairness is obvious. Detectability follows from Theorem 4 and from the fact
that the commitment scheme is homomaorphic. Observe that a dishonest Werifiggh
unlimited resources could compute the committed bits of Arthur's mesgagad halt
prematurely if a particular pattern is not present. This is why we only get conditionally
computational detectability. The proof is clearly minimal. O

Remarkd. This protocol is not divertible because it is not transparent.
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7. Applications

Okamoto and Ohta have described various applications of divertible zero-knowledge
proofs, such as untraceability, blind signatures, and elections [21, p. 143]. A problem
with the subliminal-free proofs presented in the previous sections is thatxwiidnthe
honest prover will halt and the warden will 3e§ = 1 (observe that the common input

is not generated by the prover or verifier). Since the warden cannot distinguish between
the casex € L andx ¢ L, in areal life situation it will “apprehend” the honest prover,

or verifier. Such a warden is not “fair” and will not be very popular! In this section we
consider a scenario in which the warden is fair (Definition 10), and describe protocols
which implement it.

Theorem 7. Protocol 3 can be modified to obtain a subliminal-free zero-knowledge
proof for GI for which the detectability is conditionally statisticaihd for which the
warden is(unrestricted fair. Similarly Protocols4, 5,and 6 can be modified to obtain
subliminal-free zero-knowledge proofs for HGNI, and IP for which the warden is
(unrestricted fair. For HC and GNI the detectability is conditionally statisticér IP

it is computationalZero-knowledge is as in Theores4, 5,and 6, respectively

Proof. If Gg, G; are not isomorphic, theP sendsW the bitbp = 1 and proves to

W that Gg, G; are not isomorphic. If this proof fails, theW setswy = 1. If Gg, G1

are isomorphic, the® sendsW the bitbp = 0 and Protocol 3 is executed. Obviously
the warden is (unrestricted) fair. Since the cdse= 1, x € L, wg = 0) happens with
negligible probability, we only have conditionally statistical detectability. The proof for
Protocols 4-6 is similar. O

A nice application of divertible proofs would allow a prover to convist@ultane-
ouslytwo (or more) verifiersW, V (Wi, Wy, ..., V). We call such proofs sequential
multiverifier proofs. This would save the prover having to give two (or more) indepen-
dent proofs. Such proofs give the wardéhin real-timesome power. An example of a
multiverifier proof is given in the Appendix of [8].

8. Conclusions

It is known that there exist statisticatfdivertible perfectly zero-knowledge proofs for
any commutative random self-reducible language [21]. In this paper we have shown
that (i) GI (which is not commutative random self-reducible [1], [21]) has a statistically
divertible proof which is perfectly zero-knowledge, and (ii) any language in NP has a
statistically divertible proof which is computationally zero-knowledge, provided secure
encryption homomorphisms exist. We have also shown that (iii) GI and GNI (which is
seemingly not in NP but in AM) have subliminal-free zero-knowledge proofs, and that
(iv) any language in NP has a subliminal-free zero-knowledge proof, provided secure
encryption homomorphisms exist, and then (v) extended this last result to IP.

17 perfectly divertible using the weaker definition (Remark 1).
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We have also discussed applications in the context of untraceability, and
subliminal-free channels. The following are open problems:

e Which classes of languages have statistically (computationally) divertible proofs
which are perfectly (statistically) (computationally) zero-knowledge?

e Which classes of languages have subliminal-free proofs with conditionally per-
fect (statistical) (computational) detectability, fair warden, and perfect (statistical)
(computational) zero-knowledge?

For a survey on subliminal-free channels the reader is refered to [7].
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