
Divertible Protocols and

Atomic Proxy Cryptography

Mat t Blaze Gerri t Bleumer Mart in Strauss

AT&T Labs - Research
Florham Park, NJ 07932 USA

{mab, bleumer, mst raass }@research. a r t . tom

Abstract. First, we introduce the notion of divertibility as a proto-
col property as opposed to the existing notion as a language property
(see Okamoto, Ohta [0090]). We give a definition of protocol divertibil-
ity that applies to arbitrary 2-party protocols and is compatible with
Okamoto and Ohta's definition in the case of interactive zero-knowledge
proofs. Other important examples falling under the new definition are
blind signature protocols. We propose a sufficiency criterion for divertibil-
ity that is satisfied by many existing protocols and which, surprisingly,
generalizes to cover several protocols not normally associated with di-
vertibility (e.g., Diffie-Hellman key exchange). Next, we introduce atomic
proxy cryptography, in which an atomic proxy]unction, in conjunction
with a public proxy key, converts ciphertexts (messages or signatures) for
one key into ciphertexts for another. Proxy keys, once generated, may be
made public and proxy functions applied in untrusted environments. We
present atomic proxy functions for discrete-log-based encryption, iden-
tification, and signature schemes. It is not clear whether atomic proxy
functions exist in general for all public-key cryptosystems. Finally, we
discuss the relationship between divertibility and proxy cryptography.

1 I n t r o d u c t i o n

This paper investigates two general ways in which an intermediary sitting be-

tween the participants of a 2-party protocol might t ransform the communica-

tion messages without "destroying" the protocol. First, we consider protocol
divertibility, in which the (honest) intermediary, called a warden, randomizes

all messages so tha t the intended underlying protocol succeeds, but informa-

tion contained in subtle deviations from the protocol (for example, information

coded into the values of supposedly random challenges) will be obliterated by

the warden's transformation. Next, we introduce atomic proxy cryptography, in

which two parties publish a proxy key that allows an untrusted intermediary to

convert ciphertexts encrypted for the first par ty directly into ciphertexts tha t

can be decrypted by the second. The intermediary learns neither cleartext nor

secret keys.

Our paper is organized as follows. In Section 2 we discuss divertible proto-

cols. In Section 2.1 we define protocol divertibility. We propose a slightly stricter

definition than the original one by Okamoto and Ohta [0090]. In Section 2.2,

128

we present a sufficiency criterion for divertibility. Its usefulness is demonstrated
by many examples of known diverted protocols from the literature. Also many
known blind signature protocols can be interpreted as diverted proofs of knowl-
edge and in this form they satisfy our criterion (see [Bleu97]). In Section 3,
we introduce atomic proxy cryptography and propose a taxonomy for proxy
schemes. In Sections 3.1 to 3.3 we give proxy schemes for encryption, identifi-
cation, and signature. In Section 4, we discuss the deeper relationship between
protocol divertibility and proxy cryptography.

2 D i v e r t i b l e P r o t o c o l s

The idea of divertibility entered the cryptographic literature during the mid 80's
with applications to identification protocols. The basic observation was that some
2-party identification protocols could be extended by placing an intermediary--
called a warden for historical reasons [Sim84]--between the prover and verifier so
that, even if both parties conspire, they cannot distinguish talking to each other
through the warden from talking directly to a hypothetical honest verifier and
honest prover, respectively. Since identification protocols were developed in close
relation to interactive zero-knowledge proofs (ZKP), Okamoto and Ohta [0090]
(and later Desmedt and Burmester [BD91] and Ihto et al [ISS91]) established
the notion of divertibility as a language property, i.e., a language is considered
divertible if it can be recognized by a diverted interactive zero-knowledge proof
system. In this paper, we establish divertibility as a 2-party protocol property,
which is orthogonal to zero knowledge or any other particular protocol property.

2.1 Def in i t ions

In order to deal with protocols of more than two parties, we generalize the notion
of interactive Turing machine (ITM) by Goldwasser et al [GMR89]. Then we
define connections of ITMs and finally give the definition of protocol divertibility.

Def in i t ion 1 (m, n) - In terac t ive Tur ing Machine.
An (m, n)-Interact ive Turing Machine ((m, n) - I T M) is a Turing machine with
m E IN read-only input tapes, m write-only output tapes, m read-only random
tapes, a work tape, a read-only auxiliary tape, and n E IN0 pairs of communicat ion
tapes. Each pair consists of one read-only and one write-only tape that serves for
reading in-messages from or writing out-messages to another ITM. (The purpose
of allowing n = 0 will become clear below.) The random tapes each contain an
infinite stream of bits chosen uniformly at random. Read-only tapes are readable
only from left to right. If the string to the right of a read-only head is empty,
then we say the tape is empty.

Associated to an ITM is a security parameter k E IN, a family D = {D,~}~
of tuples of domains, a probabilistic picking algorithm pick(k) and an encoding
scheme S. Each member

D~r = (In(1), . . . ,In(rm), O u t (I) , . . . , Out~m), i2~l),. . . , f2 (m),

(I M (1), O M (')), . . . , (I M (n), OM(n)))

129

of D contains one input (output, choice, in-message, out-message) domain for

each of the m input (output, random) tapes and n (read-only, write-only) com-

munication tapes. The algorithm pick(k) on input some security parameter k

outputs a family index 7r. Finally, there is a polynomial P(k) so that for each 7r

chosen by pick(k), S encodes all elements of all domains in D . as bitstrings of

length P(k).
ITMs proceed in rounds. During each round, an ITM first reads the messages

from all its read-only communication tapes, then performs some computations

and finally writes a message to each of its write-only communication tapes.

It may write an empty s t r ing--denoted c. If, at the beginning of a round, an

ITM finds all its input tapes and all its read-only communication tapes empty,

then it performs a last computation, writes empty strings to all its write-only

communication tapes, writes results to all its output tapes, and then stops. The

overall number of reading, writing and computation steps during an execution

of an ITM is bound by a polynomial in the security parameter k.

An (m, n)-ITM is an m-party protocol if n = 0, and linear if n < 2. The

native functions of an ITM A are defined as the family

r n j ~ m n n
nativ~ : I-L=1 ~,i • l-Ii=l I n , j • 1-I3=1 IM,~,j --+ 1-I3=10M,,j

of functions that , on input (rnd, in, im), return the respective out-messages that

A would write to its write-only communication tapes would it read this data

from its random, input and read-only communication tapes.

Let A be an (mA,n)-ITM and B be an (mB,n)-ITM, which together make

up a protocol P = (A,B). Let m* < min(mA,ms) be the number of pairs of
communication tapes shared by A and B. Then the view of A on B on respective

inputs, denoted as,

view(A) p ([inA j , . . . , inA,mal A, [laB, i , . . . , in.,=~l') ,

is defined as everything that A sees from B, i.e., the probability distribution of

all m*-tuples of pairs of in-messages sent by A to B and out-messages returned

from B to A, where the probabilities are taken over the choices of the viewer
A. 1

For m-party protocols P , we adopt the following interface notation:

(o u t , , . . . , outm) +- P (i n l , . . . , inrn) ,

where the left arrow indicates a probabilistic assignment. If the inputs or outputs
consist of several components, we delimit them by square brackets.

Def in i t ion 2 C o n n e c t i o n s o f I T M s .

Let A be an (ma,na)- ITM and B be an (mB,nB)-ITM with equal picking

algorithm pick. Then a connection C = (A, B) is any ITM consisting of A and

B sharing c < min{na,nB} pairs of their communication tapes. The picking

t This is a generalization of the definition given by Goldwasser, Micali and Rackoff

[GMR891.

130

algorithm of C is pick, and the domains of C are defined as the cartesian products

of the respective domains of A and B. (>

Obviously, the linear connection operator (*, *) is associative and we can there-
fore omit brackets in the usual way:

(A, B, C) d__ef ((A, B), C) = (A, (B, C)) �9

All connections we consider in the following are linear and have a small constant
number of rounds.

Definit ion 3 Divert ibi l i ty of Protocols .

Let P = (A, B) be a two-party protocol with interface P([y, xA] A, [y, XB] B)
and input domains In , = (Y~ • XA,,) • (Y~ • XB,,). Common inputs y are
taken from Y~, whereas private inputs XA, xB are taken from XA,, and XB,,~,
respectively. The product domain of private inputs is denoted X . = XA,, • XB,,~.
Furthermore, let R = {R,},~ be a family of relations R~ C_ Y. • X. .

The protocol P is called perfectly (computationally) divertible over R iff a
(1,2)-ITM W exists such that the following properties hold:

EXTENSIBILITY: For all indices ~r, all common and private inputs (y, XA, XB) E
R. , the ensembles of views of B on W and on A, i.e.,

w, B)@, xA] A, w, [y, and

view(B) (A, B)([y, xA] A , [y, xB] B)

as well as the views of A on W and on B, i.e.,

view(w A) (A, W, U)([y, xA] A, [Yl w, [y, XB]'), and

view (A) (A, B)([y, XA] A , [y, XB] B)

are equal (polynomially indistinguishable).
PERFECT (COMPUTATIONAL) INDISTINGUISHABILITY: For all polynomial-time

actively adversary ITMs .4, /~, for all indices 7r, all common and private
inputs (y, XA, XB) E R~ and all polynomial size strings q representing shared
a priori knowledge of 3, and/Y, the ensembles of simultaneous views of
and/~ upon W and of their views upon honest B and A, i.e.,

~ ~

view(~'B) (fi, W,[~)([y, xA, q]A,[y]W,[y, XB, q]B) and

(view (A) (fi, B)([y, XA, qlA, [y, xslB), view([~) (A, /~) ([y, XA] A, [y, XB, q]B))

are equal (polynomially indistinguishable). 2 3

2 By view(A)P, we denote the view of A on B in a protocol P. This notion as well
as that of polynomial indistinguishability of families of random variables is defined,
e.g., by Goldwasser, Micali and Rackoff [GMR89].

3 Equality (polynomial indistinguishability) is required only for the views on complete
runs of the diverted protocol, i.e., runs that the warden has not aborted, for example,
because he has detected either .4 or/~ cheating.

131

An ITM W that satisfies extensibility and perfect (computational) indistin-

guishability is said to perfectly (computationally) divert protocol P over R.

Divertibility as defined by Okamoto, Ohta [0090] and almost equivalently by
Itoh et al [ISS91] has been introduced as a language property. A language L is
considered divertible, if there exists a diverted zero knowledge proof system for
proving membership in L. In contrast, we define divertibility as a 2-party proto-
col property. The main difference between the two definitions is that we ask for a
concrete protocol P to be divertible, whereas they ask for existence of a divert-
ible protocol meeting a certain specification S (namely to be a zero-knowledge
proof). Consequently, Definition 3 (extensibility) relates the two interfaces of
the diverted protocol P~ to the interface of the given protocol P, where their
definition relates them to S. Another difference is, that we suggest a stronger
definition than Okamoto and Ohta's. We require Indistinguishability even for
two attackers A a n d / ~ who know of each other (a-priori common knowledge
q) and who therefore know which of their views result from the same diverted
protocol instance. We discuss this further in Section 2.4.

An immediate consequence of the definition is that if a protocol P is di-
vertible, then we can insert second and third wardens and we, again, obtain a
diverted protocol.

2.2 Main Divertibil ity Result

Theor e m 4 Criterion for Perfect Divertibility.

Let P = (A, B) be a two-party protocol with interface P([y, X A] A, [y, xB]B). Let
the input domains be (Y,~ • XA,r) • (Y,~ x X B , ~) , the random domains be ~A,Tr •

~2B,~, the out-message domains be OM A,~ • OM B,~, and let the native functions
of A and B be

nativA,~ : ~2A,Tr X Y~ x XA,Tr X OMB,~ --~ OMA,r ,

nativB,r : ~B,Tr X Y• • XB, ~ • OM A,~r --~ OM B,n �9

Furthermore, let R = {R~}~ be a family of relations R,~ C_ Y~ x (XA,,~ x XB, ,) ,
which capture the correspondence between the private and the public inputs.

Then P is perfectly divertible over R if only there exist:

(i) a family (~2~, | 1) of (not necessarily commutative) groups, and
(ii) three families of functions

base,r : Y,r • XA,Tr • XB,rc --~ OMA,n X OMB,Tr ,

join~ : ~A,~ X ~2B,~ X Y~ x XA,~ X XB,~ --~ ~2~ ,

divrt~ : ~2~ x Y~ • OM A,, x OM B,Tr --~ OM A,~r x OM B,, ,

with the following properties:
Function divrt(w, y, OA, OS) is defined only for (OA, Os) that live in the re-
spective image OM~,u of nativeA and nativeB, i.e.,

OM,,u = nativeA(~A, y, XA, OB) X nativeB(~B, y, XB: OA) ,

132

where (y, XA, XB) e R~r. 4

Second, for each fixed a, 13, y, XA, XB E RTr, the functions,

join~(a',13, y, XA, xn) and join,(a,13', y, XA, XB) ,

are each bijective on J'~A and 12B, respectively.
(iii) a warden W that on input two in-messages OA, OB computes two out-

messages dA, o~ such that

(O'A, 0 .) = di.rt(, y, (OA, o ;)) .

Now, for every 7r, for all random choices a E J?A,~,13 E J'~B,rr, all common
and corresponding private inputs (y, X A , X B) E R;r, and all out-messages OA E
OM A,~ , OB E OM B,~ the following three conditions must hold:

DECOMPOSITION:

GROUND:

(nativA(c~, y, XA, 0/3), nativB(13, y, XB, OA))

= divrt(join(a, t3, y, XA, XB), y, base(y, XA, XB)) ,

divrt(1, y, (OA, OB)) = (OA, OB) ,

MIXED ASSOCIATIVITY:

divr t (o f , y, divrt(od, y, (OA, OB))) ~- divrt(w | w', y, (OA, OB)) �9

(>

Proof. First observe that if divrt satisfies the premises GROUND and MIXED

ASSOCIATIVITY, then it is injective as a function of w: For all (OA, Os) E OM~,v,
we have:

(OA, OB) = divrt(1, y, (OA, OB))

divrt(w 63 w - I , y, (oh, OB)) (for any w)

divrt(w -1 , y, divrt(w, y, (OA, oB))) .

So, function divrt turns out to be bijective on a2,~ for the entire parameter domain
OM~,u. We may thus write: divrt -1 (w, *) = divrt(w -1 , *).

In order to infer extensibility and indistinguishability of P, we look separately
at the out-messages between (A, W) and B and those out-messages between A

and (W, B). We deal with the former case in detail and argue that the latter case

can be handled analogously due to symmetry reasons. Using DECOMPOSITION

4 Note that the input variables Oa and OB in the definition of OM~,y refer to the
output of nativ B and nativa, respectively. This recursion is guaranteed to terminate
by the following requirement (iii) below.

133

and MIXED ASSOCIATIVITY, we rewrite the above mentioned out-messages as
follows:

(nativ(A, W)(w, a, y, XA, Os), nativB (j3, y, x . , OA))

= divrt(w, y, (nativA(a, y, xA, o~), nativB(~, y, XB, O~A)))

= divrt(w, y, divrt(w', y, base(y, XA, XB))),

where w' = join(a, fl, y, XA, XB)

= d ivr t (J | w, y, base(y, xa, XB))

= (nativA(a', y, XA, OB), nat ivs(w, j3', y, XB, OA)) ,

where (a',/~') = join -1 (w' | w, y, XA, xB) �9

It then follows from the bijectiveness of join and the fact that | is a group
operation that the probability of each pair of out-messages is the same over
Bob's choices ~ and over/3'. Together with the analogous result for out-messages
between A and (W, B) (this is where invertibility of divrt is needed), this settles
extensibility.

N ~

For perfect indistinguishability, we need to deal with arbitrary attackers A, B,
instead. Assume, these attackers produce their out-messages with a certain distri-
bution D that respects the domain of function divrt. Otherwise, divrt is undefined
and the distribution could be ignored according to indistinguishability. Then by
decomposition, we see that this given distribution D can also be achieved by
honest Alice and Bob if Bob would chose his ~ according to some appropriate
distribution d. Following the above rewriting, and again taking into account that
join is bijective and (D is a group operation, we conclude, that the distribution
of w' | w is d because, by presumption, the warden is honest and therefore w
is uniformly distributed. Hence, the out-messages of (A, W) and B are also dis-
tributed according to D, if the probabilities are taken over/?'. Together with the
analogous result for out-messages between A and (W, B), this in addition settles
perfect indistinguishability and therefore perfect divertibility. [3

2.3 N e w Example of Diverted Protoco l

The most prominent examples of diverted protocols in the literature are diverted
interactive proofs and blind signatures. Since divertibility has been introduced
only in the former context, blind signatures are a good example to illustrate
the more general concept of divertibility of protocols as proposed in Defini-
tion 3. The practical value of Theorem 4 is demonstrated in [Bleu97] by proving
many protocols unconditionally divertible; in particular (i) the diverted ZKP
that Okamoto and Ohta used to prove their main theorem [0090] and (ii) a
blind modified EIGamal Signature, which was presented by Horster, Michels
and Petersen [HMP95] who built on ideas of Camenisch, Piveteau and Stadler
[CPS95].

Here, we consider a new sort of protocol for divertibility, namely key ex-
change. In Figure 1, we present a diverted Diffie-Hellman key exchange protocol
[DH76]. Let p be a k-bit prime (k E IN), q be a large prime divisor of p - 1 and

134

Gq be the unique (multiplicative) subgroup of order q in 7/~. Furthermore, g ~ 1
denotes a randomly chosen element of Gq. (The restriction to g ~ 1 asserts that
g generates Gq). p, q and g are global system parameters and neither Alice nor
Bob have private inputs.

([a,,]A, [b-]U) +_ DDH(~A, ~w, ~B)

Alice W a r d e n B o b

(1) a ER Zq w ER Zq ~ ER Zq
(2) a~--g ~ b~--g B

(3) ~ ~ (a' ,b') ~- (a ~ , b ~) ~ b

b~ al b" (4) a" +-- b '~ ~) +- a '~

Fig. 1. Diverted Diffie-Hellman Key Exchange

P r o p o s i t i o n 5. The warden of protocol DDH computationally diverts the Dime-

Hellman protocol between Alice and Bob over R = O. 0

Proof Sketch. If for given (a, b), an attacker could distinguish valid from invalid
diverted out-messages (a',b ~) with non-negligible probability, i.e., probability
-> P--~k) for some polynomial P, then he had broken the simultaneous discrete

log assumption [CEG88]. []

2.4 W h y t h e P r e v i o u s D e f i n i t i o n is a L i t t l e t o o W e a k

The previous definition of divertibility by Okamoto and Ohta [0090], and by
Itoh et al [ISS91] as well, requires that two attackers 4 , /~ who on the one hand
form a linear 3-party protocol P ' with an intermediate warden and on the other
hand form 2-party protocols (4, B) with an honest B and C A,/~) with an honest
A cannot distinguish their views in (4, B) and C A,/~) from those in separate
instances of (4, W,/~). More formally, they require indistinguishability of the
two ensembles (protocol inputs exactly as in Definition 3 before):

(view~)(~i, W, B), view~)(~, W, B)) (1)

and (view(A) (A, B), view(AB) (A,/Y)). (2)

However, the attacker model that seems to underly the literature on divertibility
is stronger than expressed by the above requirement. The attackers 4 and/~ are
usually assumed to know when they engage in a protocol with the warden and
so they know which of their views result from the same protocol instances.

135

A good example to illustrate this difference is protocol DDH in Section 2.3.
The two ensembles according to (1) and (2) above are equal and thus protocol
DDH would have to be regarded as perfectly diverted. This is counterintuitive
because the warden in DDH uses less random coins than Alice and Bob together.
On the other hand, according to Definition 3, DDH is only computationally
diverted, which is the most we would expect.

3 A t o m i c P r o x y C r y p t o g r a p h y

A basic goal of public-key encryption is to allow only the key or keys selected
at the time of encryption to decrypt the ciphertext. To change the ciphertext
to a different key requires re-encryption of the message with the new key, which
implies access to the original cleartext and to a reliable copy of the new encryp-
tion key. Intuitively, this seems a fundamental, and quite desirable, property of
good cryptography; it should not be possible for an untrusted party to change
the key with which a message can be decrypted.

Here, on the other hand, we investigate the possibility of atomic proxy func-
tions that convert ciphertext for one key into ciphertext for another without
revealing secret decryption keys or cleartext messages. An atomic proxy func-
tion allows an untrusted party to convert ciphertext between keys without access
to either the original message or to the secret component of the old key or the
new key. In proxy cryptography, the holders of public-key pairs A and B cre-
ate and publish a proxy key 7~ A-+ B such that D(I I (E (m , eA), 7~ A-+B), dB) = m,
where E(m, e) is the public encryption function of message m under encryption
key e, D(c, d) is the decryption function of ciphertext c under decryption key
d, H(c, ~) is the atomic proxy function that converts ciphertext c according to
proxy key ~, and CA, eB, dA, dB are the public encryption and secret decryption
component keys for key pairs A and B, respectively. The proxy key gives the
owner of B the ability to decrypt "on behalf of" A; B can act as A's "proxy."
In other words, t h e / I function effectively allows the "atomic" computation of
E (D (c, d A) , e B) without revealing the intermediate result D (c, d A) .

We consider atomic proxy schemes for encryption, identification and signa-
tures. An encryption proxy key 7rA_._~B allows B to decrypt messages encrypted
for A and an identification or signature proxy key 7rA--~B allows A to identify
herself as B or to sign for B (i.e., transforms A's signature into B's signature).
Generating encryption proxy key 7~A_~B obviously requires knowledge of at least
the secret component of A (otherwise the underlying system is not secure) and
similarly generating identification or signature proxy key 7~A___~B requires B's
secret, but the proxy key itself, once generated, can be published safely.

Categories of proxy schemes Encryption proxy functions (and similarly but
contravariantly, identification or signature proxy functions) can be categorized
according to the degree of trust they imply between the two key holders. Clearly,
A must (unconditionally) trust B, since the encryption proxy function by defi-
nition allows B to decrypt on behalf of A. Symmetric proxy functions also imply

136

that B trusts A, e.g., because ds can be feasibly calculated given the proxy key
plus dA. Asymmetric proxy functions do not imply this bilateral trust. (Note
that this model implies that proxy cryptography probably makes sense only in
the context of public-key cryptosystems. Any secret-key cryptosystem with an
asymmetric proxy function could be converted into a public-key system by pub-
lishing one key along with a proxy key that converts ciphertext for that key into
ciphertext for a second key (which is kept secret.))

We can also categorize the asymmetric proxy schemes that might exist ac-
cording to the convenience in creating the proxy key. In an active asymmetric
scheme, B has to cooperate to produce the proxy key 7rA-~B feasibly, although
the proxy key (even together with A's secret key) might not compromise B's
secret key. In a passive asymmetric scheme, on the other hand, A's secret key
and B's public key suffice to construct the proxy key. Clearly, any passive asym-
metric scheme can be used as an active asymmetric scheme, and any asymmetric
scheme can be used as a symmetric scheme.

Finally, we can (informally) distinguish proxy schemes according to the "meta-
data" they reveal about the identity of the secret-public key-pairs being trans-
formed. Transparent proxy keys reveal the original two public keys to a third
party. Translucent proxy keys allow a third party to verify a guess as to which
two keys are involved (given their public keys). Opaque proxy keys reveal noth-
ing, even to an adversary who correctly guesses the original public keys (but
who does not know the secret keys involved).

Proxy schemes in theory and practice The proxy relationship is necessarily
transitive. If there are public proxy keys 7rA___~ B and 7rB.-~C, then anyone can
compute a proxy function for A -~ C. Symmetric proxy schemes further establish
equivalence classes of keys where the secret component of any key can be used to
decrypt messages for any other key in the same class. Note that creating a single
symmetric proxy key between a key in one class and a key in another effectively
joins the two classes into one.

The notion of proxy cryptography is a rather natural generalization of public-
key cryptography and has some nice theoretical properties. The proxy schemes
we consider below have the additional property that anyone can use the proxy
key 7rA_.+B to transform the public key of A to the public key of B. For such
proxy schemes, as we will see in the various examples below, certain aspects of
the security of publishing a proxy key actually follow from the fact that anyone,
trusted or not, can use a proxy key to transform ciphertext and keys.

For example, suppose random messages ra and m ~ are encrypted with random
secret keys a and b as E(m, a), E(m ~, b). Suppose that knowing the proxy key
7rA_~B enables Eve, who knows neither a nor b, to recover m or ra'. Then, ignoring
B altogether and starting with just two (presumably secure) ciphertexts E(ra, a)
and E(m ~, a), Eve can pick a random proxy key r = 7rA-~Q for some Q, transform
E(m ~, a) to E(ra I, q) (where q is the unknown secret key of Q), transform A's
public key into Q's public key, and proceed with the hypothesized cryptanalysis.
We conclude that if it is safe for A to publish k messages then it is safe for A

137

and B to publish a total of k messages and to publish a proxy key, provided
only that Eve can successfully apply the proxy key to transform ciphertext and
public keys.

Because proxy keys are tied to specific key pairs, it is not necessary in many
applications to certify or otherwise take special care in distributing them (except
to prevent denial-of-service). In particular, it is generally sufficient to rely on
the certification and trust established in A (for encryption) or B (for signatures)
when using proxy key 7rA-~S, since a valid proxy key can by definition only be
generated with the cooperation of the owner. Furthermore, the proxy function
can be safely applied at any convenient time or place, by the message's sender or
receiver, or at any intermediate (and possibly untrusted) point in the network.

Proxy functions potentially also have practical utility for key management
in real systems. For example, some pieces of secure hardware (e.g., smartcards)
limit the number of secret keys that can be stored in secure memory, while some
applications might require the ability to decrypt messages for more keys than
the hardware can accommodate. With proxy cryptography, once a new key is
created and a corresponding proxy key generated, the secret component of the
old (or new) key can be destroyed, with the (public and externally-applied) proxy
key maintaining the ability to decrypt for both. In effect, proxy functions allow
us to increase the number of public keys without also increasing the number of
secret bits or the amount of secret computation. Because proxy functions can
be computed anywhere, messaging systems, such as electronic mail, can proxy
"forward" messages encrypted with one key to a recipient who holds a different
key. Proxy functions make it possible to associate a single key with a network
or physical address but still decrypt messages forwarded (and proxied) from
other addresses. Finally, proxy functions effectively allow changing or adding a
key without obtaining new certificates or altering the distribution channel for the
previous public key; this could be useful when it is difficult to distribute or certify
new keys (e.g., old keys were published in widely-distributed advertisements or
embedded in published software, or the certification authority charges high fees
for new certificates).

Security of proxy schemes and ad hoc subst i tutes If Alice wants Bob
to be able to read her mail, instead of issuing a proxy key she might just give
Bob her secret key (perhaps, obviating the need to involve Bob, by encrypt-
ing it in Bob's public key and publishing it). This would be inferior to using
a proxy scheme for several reasons. First, as discussed above, Bob's computing
environment may be limited and therefore incapable of automatically processing
encrypted secret keys; any new software to decrypt and manage such keys would
have to run within the environment trusted by Bob. Proxy processing, on the
other hand, can take place entirely outside of Alice's and Bob's trusted envi-
ronments and without their active involvement. Furthermore, encrypting one's
secret key with another's public key is not in general secure. The cryptosys-
tem we present below, a variant of EIGamal [ElG85], is thought to be secure in
part because the cryptanalysis problem is random-self-reducible--which allows

138

one to assert mathematically that recovering m from the public information

(ea,E(m, ea),eb) is hard on average if it is hard at worst. The task of recov-

ering m from (ea, E(m, ea), E(da, eb), eb), however, may be considerably easier

since E(da, eb), in the context of ea and eb, may leak information about d a - -

specifically, the new cryptanalysis problem is probably not random-self-reducible

and due to the problem's obscurity it is not clear what, if any, mathematical guar-

antees of security can be given. By contrast, the proxy scheme we give below is

just as strong as the underlying cryptosystem. 5

R e l a t e d w o r k A natural question to ask is whether there exist atomic proxy

functions (and feasible schemes to generate proxy keys) for any public key cryp-

tosystems.

Previous work on delegating the power to decrypt has focused on develop-

ing efficient transformations that allow the original recipient to forward spe-
cific ciphertexts to another recipient. Mambo and Okamoto [MO97] develop this

formulation and give efficient transforms (more efficient than decryption and

re-encryption) for E1Gamal and RSA. Mambo, Usuda and Okamoto [MUO96]
apply a similar notion to signature schemes.

While such schemes have value from the standpoint of efficiency, they are not,

however, "atomic proxy cryptosystems" by our definition because the transform-

ing function must be kept secret and applied online by the original keyholder on

a message-by-message basis (the schemes are not atomic). The security seman-

tics of these systems are essentially the same as a decryption operation followed

by a re-encryption operation for the new recipient. Our formulation of proxy

cryptography is distinguished from the previous literature by the ability of the

keyholder to publish the proxy function and have it applied by untrusted parties

without further involvement by the original keyholder.

3.1 Proxy encryption

Although the problem of proxy cryptography seems like a natural extension

of public-key cryptography, existing cryptosystems do not lend themselves to

obvious proxy functions. RSA [RSA78] with a common modulus is an obvious

candidate, but that scheme is known to be insecure [Sire83, DeL84]. Similarly,

there do not appear to be obvious proxy functions for many of the previous
discrete-log-based cryptosystems. This is not to say, of course, that proxy func-

tions for existing systems do not exist.

5 Note that Bob of this example may be a government mandating that Alice provide
him with access to her key. It has been argued that such a scheme makes the system
as a whole less trustworthy due to the extra engineering effort involved; we argue here
that in the case of random-self-reducible cryptosystems such as EIGamal variants,
requiring Alice to encrypt her secret key using the government's public key may also
weaken the underlying cryptosystem in the precise mathematical sense of spoiling
the random-self-reducibility.

139

We now describe a new secure discrete-log-based public-key cryptosystem

that does have a simple proxy function. The scheme is similar in structure to

E1Gamal encryption [ElG85], but with the parameters used differently and the

inverse of the secret used to recover the message. 6 (This approach has merit

beyond proxy encryption; [Hug94] proposed a Diffie-Hellman-like key agreement

protocol based on the inverse of the secret, which allows a message's sender to

determine the key prior to identifying its recipient).

C r y p t o s y s t e m X (e n c r y p t i o n) Let p be a prime of the form 2q + 1 for a

prime q and let g be a generator in 77p; p and g are global parameters shared

by all users. A's secret key a, 0 < a < p - 1, is selected at random and must
be in 77~q, i.e., relatively prime to p - 1. (A also calculates the inverse a -1 mod

2q). A publishes the public key ga mod p. Message encryption requires a unique

randomly-selected secret parameter k E 77~q. To encrypt m with A's key, the

sender computes and sends two ciphertext values (cl, c2):

cl = m g k mod p

c2 = (ga)k mod p

Decryption reverses the process; since

c(2 a- ') = gk (mod p)

it is easy for A (who knows a -1) to calculate gk and recover m:

- - 1 (~) - 1 m = c l ((c 2)) m o d p

The efficiency of this scheme is comparable to standard E1Gamal encryption.

S y m m e t r i c p r o x y f u n c t i o n for X Observe that the Cl ciphertext component

produced by Cryptosystem X is independent of the recipient's public key. Re-

cipient A's key is embedded only in the c2 exponent; it is sufficient for a proxy

function to convert ciphertext for A into ciphertext for B to remove A's key a

from c2 and replace it with B's key b. Par t of what a proxy function must do,

then, is similar to the first step of the decryption function, raising c2 to a -1 to

remove a. The proxy function must also contribute a factor of b to the exponent.

Clearly, simply rasing c2 to a -1 and then to b would accomplish this, but obvi-

ously such a scheme would not qualify as a secure proxy function; anyone who

examines the proxy key learns the secret keys for both A and B.

This problem is avoided, of course, by combining the two steps into one.
Hence, the proxy key 7fA-+B is a - l b and the proxy function is simply c~ A--*B
Note that this is a symmetric proxy function; A and B must trust one another

bilaterally. B can learn A's secret (by multiplying the proxy key by b- l) , and A

can similarly discover B's key. Observe that applying the proxy function is more

efficient than decryption and re-encryption, in tha t only one exponentiation is

required.

6 David Wagner notes that this proxy scheme can be extended to work with standard
EIGamal encryption.

140

S e c u r i t y o f ~" First, we show that 9:' is secure that cleartext and secret

keys cannot be recovered from ciphertext and public keys. Beyond that , we also

show that publishing the proxy key compromises neither messages nor secret

keys. Since recovering a secret key enables an adversary to recover a message

and since cryptanalysis is easier with more information (i.e., a proxy key), it is

sufficient to show that no cleartext is recoverable from ciphertext, public keys,

and proxy keys. Specifically, we will show that the problem of recovering m from

(g~, gb, gO,.. . , mgk, g~k, a - l b, a - l c, . . .).

is at least as hard as Diffie-Hellman.

T h e o r e m 6. Suppose there exists a randomized algorithm f that with probability
> 1/Ipl ~ succeeds in recovering m from the public information

(ga, gb, . . . , mgk, gak, b /a , . . .)

where the probability is taken over f ' s random choices as well as over m and the

parameters a, b, and k. Then, for each ~ = 2 -Ipl~ there exists a randomized
polynomial-time algorithm for Diffie-Hellman that succeeds with probability 1 - ~ .

Proof. The proof is found in [BS98].

Similarly one can show that recovering a from (g~, gb, mgk, gak, b/a) is as

hard as the discrete log, so publishing the proxy key does not compromise a - -

not even to the level of Diffie-Hellman.

3 . 2 P r o x y i d e n t i f i c a t i o n

In this section we describe a discrete-log-based identification scheme. With p, g, a

as before, Alice wishes to convince Charlotte that she controls a; Charlotte will

verify using public key ga. As before, the proxy key 7fA__~B will be a/h- - i t will

be safe to publish a/b and Alice and Charlotte can easily use a/b to transform

the protocol so Charlotte is convinced that Alice controls b.

Note that in the case of a secure identification proxy key that transforms

identification by A into identification by B, it is B whose secret is required

to construct the proxy key because identification as B should not be possible

without B's cooperation.

C r y p t o s y s t e m y (iden t i f i ca t i on) Let p and g be a prime and a generator in
F/p, respectively. Alice picks random a E Z~q to be her secret key and publishes

ga as her public key. Each round of the identification protocol is as follows:

- Alice picks a random k E 27~q and sends Charlotte Sl = gk.
-- Charlotte picks a random bit and sends it to Alice.

- Depending on the bit received, Alice sends Charlotte either s2 -- k or s~ --

k/a.
- Depending on the bit, Charlotte checks that (ga)8~ = sx or that g~2 = gk.

This round is repeated as desired. As with existing protocols, there may be

ways to perform several rounds in parallel for efficiency [FFS88].

141

S y m m e t r i c p r o x y f u n c t i o n for y A symmetric proxy key is a/b. Suppose

Charlotte wants to run the protocol with gb instead of ga. Either Alice or Char-

lotte or any intermediary can use the proxy key to convert Alice's responses k /a
to k/b.

Security of

Theorem 7. Protocol y , with or without proxy keys published, is a zero knowl-
edge protocol that convinces the verifier that the prover knows the secret key.

Proof. The proof is found in [BS98].

3.3 P r o x y s i g n a t u r e

The concept of proxy cryptography also extends to digital signature schemes.
A signature proxy function transforms a message signature so that it will verify

with a public key other than that of the original signer. In other words, a signa-

ture proxy function H(s, 7~A___~B) with proxy key 7~A_~B transforms signature s

signed by the secret component of key A such that V(m, I I (S (m, A), ~rA-~S), B)
returns VALID, where S(m, k) is the signature function for message m by key k

and V(m, s, k) is the verify function for message m with signature s by key k.

Again, existing digital signature schemes such as RSA [RSA78], DSA [NIS91],

or E1Gamal [E1G85], etc. do not have obvious proxy functions (which, again, is
not to say that such functions do not exist).

As in the case of proxy identification, in order to construct a proxy key

that transforms A's signature into B's signature, B's secret must be required to

construct the proxy key because signing for B should not be possible without
B's cooperation.

Now we will see how to use the proxy identification scheme to construct a

proxy signature scheme. We suppose there exists a hash function h whose exact

security requirements will be discussed below. The parameters p, g, a, b are as
before.

C r y p t o s y s t e m Z (s i g n a t u r e) To sign a message m, Alice picks kl, k2, . . , k/
at random and computes gkl , . . .gk~. Next Alice computes h(gk l , . . .gk t) and

extracts g pseudorandom bits i l l , - . . , ill. For each i, depending on the i ' th pseu-
dorandom bit, Alice (who knows a) computes s2,i = (k~ - mfli)/a; that is,

s2,i = (ki - m) /a or s2,i = k~/a. The signature consists of two components:

Sl = (gk l , . . . , gk ,)

= ((k x - - m)la)

To verify the signature, first the fli's are recovered using the hash function.
The signature is then verified one "round" at a time, where the i ' th round is

(gk,, (ki - mfli)/a). To verify (gk, (k - mfl) /a) using public key ga, the recipient
Charlotte raises (ga) to the power (k - m f l) / a and checks that it matches gk/gmZ.

142

S y m m e t r i c p r o x y f u n c t i o n for Z A symmetric proxy key 7rA___~ B for this

signature scheme is a/b. The proxy f u n c t i o n / / l e a v e s Sl alone and maps each

component S2, i to s2,iTrA-+B.

S e c u r i t y of Z This scheme relies on the existence of a "hash" function h.

Specifically (Hash Assumption), we assume there exists a function h such that:

- On random input (g~, m), it is difficult to generate {ri} and {fli} such that

h(garl+rn~l,..., 9art+rn~t) : (~1 . . - , ~g).

- More generally, it is difficult to generate such {ri} and {fli} on input ga, m,

and samples of signatures on random messages signed with a.

It is not our intention to conjecture about the existence of such functions h.

In particular, we do not know the relationship between the hash assumption and
assumptions about collision freedom or hardness to invert. 7 We note that this

generic transformation of a protocol to a signature scheme has appeared in the

literature [FS87].

We now analyze the hash assumption. Note that in order to produce a legit-

imate signature on m that verifies with ga, a signer needs to produce (gk~) and

((k i - m~i)/a). Thus, putt ing (~) = h((g k')) and then (ri) = ((k~- rn~)/a), it

is straightforward to see that the signer could actually produce ri's and ~i's of

the stated type in the course of producing the signature.
While we do not address the security of h, we can state that issuing proxy

keys does not weaken the system.

T h e o r e m 8. Suppose h satisfies the hash assumption. Then, for most b, it is
also hard to produce {ri} and {/3i} given additional input a/b,g b, and samples
of messages signed with b.

Proof. The proof is found in [BS98].

4 C o n c l u s i o n s

Conceptually, divertibility and proxiability of protocols are both defined in terms

of an effectiveness property and one or two security properties. The effectiveness

property is basically the same in both cases, namely extensibility as in Defini-

tion 3. Our more recent work shows that a proxy key can be naturally incorpo-
rated into (and makes sense for) divertibility as well. In the case of divertibility,

the security requirement is that Alice and Bob cannot communicate any sub-

liminal message through the warden. In the case of proxiability, the security

requirement is that the proxy key releases no more information than what ei-

ther Alice or Bob would release in the original protocol. A complete unifying

framework remains as future work.

The hash assumption does imply that, on random input ga, it is hard to find (r,)
making all the ~ ' s zero, i.e., such that h(garl,... ,gart)= O.

143

We have introduced the notion of perfect and computational protocol divert-

ibility, and have given a sufficiency criterion for the former. All existing diverted

protocols we have found in the literature turned out to satisfy this criterion. The

first example of a diverted key distribution protocol was given. This is also the

first computationally divertible protocol we know of.

Intuitively, atomic proxy cryptography is a fairly natural extension of the

basic notion of public-key cryptography. It surely seems plausible, given that

there exist cryptosystems that can grant the ability to encrypt without granting

the ability to decrypt, that there might also exist cryptosystems that can grant

the ability to re-encrypt without granting the ability to decrypt. However, it is

not at all obvious whether there exist atomic proxy schemes in general.

Indeed, while this paper demonstrates that there do exist efficient and se-

cure public-key encryption and signature schemes with symmetric atomic proxy

functions, this observation probably raises more new questions than it answers.

In particular, do proxy functions exist for public-key cryptosystems based on

problems other than discrete-log? (One possibility is that , for some cryptosys-

tems, proxy functions do exist but it is infeasible to find a proxy key.) More

importantly, we have yet to discover a secure asymmetric proxy function of any

kind; asymmetric proxy functions are probably much more useful in practice,

since there are likely many situations where trust is only unidirectional. Are

there cryptosystems for which asymmetric proxy functions exist?

5 Acknowledgements

We thank Steve Bellovin, Matthew Franklin, Jack Lacy, Dave Maher, Andrew

Odlyzko and David Wagner for helpful discussions and comments.

References

[BS98]

[Bleu97]

[BD91]

[CEG88]

[CPS951

[DeL84]

[DH76]

Matt Blaze, Martin Strauss. Atomic Proxy Cryptography. AT&T Labs-
Research TR98.5.1 < h t t p : / / ~ . research, a r t . com/l ibrary/ t rs>
Gerrit Bleumer. On Protocol Divertibility. AT~zT Labs-Research
TR97.34.2 < h t t p : / / ~ . research, a t t . com/l ibrary/ t rs>
Mike V. D. Burmester, Yvo Desmedt. All languages in NP have divertible
zero-knowledge proofs and arguments under cryptographic assumptions.
Eurocrypt '90 LNCS 473, Springer-Verlag 1991, 1-10.
David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf. An improved
protocol for demonstrating possession of discrete logarithms and some
generalizations. Eurocrypt '87. LNCS 304, Springer-Verlag 1988, 127-141.
Jan L. Camenisch, Jean-Marc Piveteau, Markus A. Stadler. Blind Sig-
natures Based on the Discrete Logarithm Problem. Eurocrypt '9~. LNCS
950, Springer-Verlag 1995, 428-432.
John M. DeLaurentis. A Further Weakness in the Common Modulus Pro-
tocol for the RSA Cryptoalgorithm. Cryptologia 8/3 (1984) 253 259.
Whitfield Diffie, Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory. 22/6 (1976) 644-654.

144

[E1G85]

[FFS88]

[FS87]

[GMR89]

[HMP95]

[Hug94]

[ISS91]

[M097]

[MUO96]

[NIS91]

[0090]

[RSA78]

[Sim83]

[Sim841

Taher E1Gamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE Transactions on Information Theory.
31/4 (1985) 469-472.
Uriel Feige, Amos Fiat, Adi Shamir. Zero-Knowledge Proofs of Identity.
Journal of Cryptology 1/2 (1988) 77-94.
Amos Fiat, Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. Crypto '86. LNCS 263, Springer-
Verlag 1987, 186-194.
Shaft Goldwasser, Silvio Micali, Charles Rackoff. The Knowledge Com-
plexity of Interactive Proof Systems. SIAM J. Computing. 18/1 (1989)
186-207.
Patrick Horster, Markus Michels, Holger Petersen. Meta-Message Recov-
ery and Meta-Blind Signature Schemes Based on the Discrete Logarithm
Problem and Their Applications. Asiacrypt '94. LNCS 917, Springer-
Verlag 1995, 224-237.
Eric Hughes. An encrypted key transmission protocol. Crypto '94 Rump
Session presentation, August 1994.
Toshija Itoh, Kouichi Sakurai, Hiroki Shizuya. Any Language in IP has a
Divertible ZKIP. AsiaCrypt '91. Springer-Verlag 1993, 382-396.
Masahiro Mambo, Eiji Okamoto. Proxy cryptosystems: delegation of the
power to decrypt ciphertexts. IEICE Trans. Fund. Electronics Communi-
cations and Comp Sci. E80-A/1 (1997) 54-63.
Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures:
delegation of the power to sign messages. IEICE Trans. Fund. of Electronic
Communications and Comp Sci. E79-A/9 (1996) 1338-1354.
NIST. A proposed federal information processing standard for digital sig-
nature standard (DSS). Draft Tech. Rep. FIPS PUB XXX, August 1991.
Standards Publication (FIPS
Tatsuaki Okamoto, Kazuo Ohta. Divertible zero-knowledge interactive
proofs and commutative random self-reducibility. Eurocrypt '89 LNCS 434,
Springer-Verlag 1990, 134-149.
Ronald L. Rivest, Adi Shamir, Leonhard Adleman. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems. CACM21/2 (1978)
120-126, reprinted: 26/1 (1983) 96-99.
Gustavus J. Simmons. A "Weak" Privacy Protocol Using the RSA Crypto
Algorithm. Cryptologia 7/2 (1983) 180-182.
Gustavus J. Simmons. The Prisoners' Problem and the Subliminal Chan-
nel. Crypto '83. Plenum Press, New York 1984, 51-67.

