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Abstract—In this paper we show that all processes associated
to the move-sense-update cycle of EKF SLAM can be carried
out in time linear in the number of map features. We describe
Divide and Conquer SLAM, an EKF SLAM algorithm where
the computational complexity per step is reduced from O(n2) to
O(n) (the total cost of SLAM is reduced from O(n3) to O(n2)).
In addition, the resulting vehicle and map estimates have better
consistency properties than standard EKF SLAM in the sense
that the computed state covariance more adequately represents
the real error in the estimation. Both simulated experiments and
the Victoria Park Dataset are used to provide evidence of the
advantages of this algorithm.

Index Terms—SLAM, Computational Complexity, Consistency,
Linear Time.

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM) prob-

lem deals with the construction of a model of the environment

being traversed with an onboard sensor, while at the same

time maintaining an estimation of the sensor location within

the model [1], [2]. Solving SLAM is central to the effort

of conferring real autonomy to robots and vehicles, but also

opens possibilities in applications where the sensor moves with

six degrees of freedom, such as egomotion and augmented

reality. SLAM has been the subject of much attention since

the seminal work in the late 80s [3], [4], [5], [6].

The most popular solution to SLAM considers it a stochastic

process in which the Extended Kalman Filter (EKF) is used

to compute an estimation of a state vector x representing the

sensor and environment feature locations, together with the

covariance matrix P representing the error in the estimation.

Currently, most of the processes associated to the move-sense-

update cycle of EKF SLAM are linear in the number of map

features n: vehicle prediction and inclusion of new features

[7], [8], continuous data association [9], global localization

[10]. The exception is the update of the covariance matrix of

the stochastic state vector that represents the vehicle and map

states, which is O(n2). The EKF solution to SLAM has been

used successfully in small scale environments, however the

O(n2) computational complexity limits the use EKF-SLAM

in large environments. This has been a subject of much interest

in research. Postponement [11], the Compressed EKF filter [8],

and Local Map Sequencing [12] are alternatives that work on

local areas of the stochastic map and are essentially constant

time most of the time, although they require periodical O(n2)

updates (given a certain environment and sensor characteris-

tics, an optimal local map size can be derived to minimize the

total computational cost [13]). More recently, researchers have

pointed out the approximate sparseness of the Information

matrix Y, the inverse of the full covariance matrix P. This

suggests using the Extended Information Filter, the dual of the

Extended Kalman Filter, for SLAM updates. The Sparse Ex-

tended Information Filter (SEIF) algorithm [14] approximates

the Information matrix by a sparse form that allows O(1)
updates on the information vector, and O(n) computations of

the state vector x. Nonetheless, data association becomes more

difficult when the state and covariance matrix are not available,

and the approximation can yield overconfident estimations

of the state [15]. This overconfidence is overcome by the

Exactly Sparse Extended Information Filter (ESEIF) [16] with

a strategy that produces an exactly sparse Information matrix

with no introduction of inaccuracies through sparsification.

The Thin Junction Tree Filter algorithm [17] works on

the Gaussian graphical model represented by the Information

matrix, and achieves high scalability by working on an approx-

imation, where weak links are broken. The Treemap algorithm

[18] is a closely related technique, which also uses a weak link

breakage policy. Recently
√

SAM [19] provided the insight

that the full SLAM problem, the complete vehicle trajectory

plus the map, is sparse in information form (although ever

increasing). Sparse linear algebra techniques allow to compute

the state, without the covariance, in time linear with the

whole trajectory and map size. The T-SAM algorithm [20]

provides a local mapping version to reduce the computational

cost. However, the method remains a batch algorithm and

covariance is not available to solve data association.

A second important limitation of standard EKF SLAM is

the effect that linearizations have in the consistency of the

final vehicle and feature estimates. Linearizations introduce

errors in the estimation process that can render the result

inconsistent, in the sense that the computed state covariance

does not represent the real error in the estimation [21], [22],

[23]. Among other things, this shuts down data association,

which is based on contrasting predicted feature locations with

observations made by the sensor. Thus, important processes in

SLAM like loop closing are crippled. The Unscented Kalman

Filter [24] avoids linearization via a parametrization of means

and covariances through selected points to which the nonlinear

transformation is applied. Unscented SLAM has been shown



to have improved consistency properties [25]. These solutions

however ignore the computational complexity problem. All

algorithms for EKF SLAM based on efficiently computing an

approximation of the EKF solution [17], [18] will inevitably

suffer from this problem.

In this paper we describe Divide and Conquer SLAM (D&C

SLAM), an EKF SLAM algorithm that overcomes these two

fundamental limitations:

1) The computational cost per step is reduced from O(n2)
to O(n); the total cost of SLAM is reduced from O(n3)
to O(n2);

2) the resulting vehicle and map estimates have better

consistency properties than standard EKF SLAM in the

sense that the computed state covariance adequately

represents the real error in the estimation.

Unlike many current large scale EKF SLAM techniques,

this algorithm computes an exact solution, without relying

on approximations or simplifications to reduce computational

complexity. Also, estimates and covariances are available

when needed by data association without any further com-

putation. Empirical results show that, as a by-product of

reduced computations, and without losing precision because of

approximations, D&C SLAM has better consistency properties

than standard EKF SLAM.

This paper is organized as follows: in section II we briefly

review the standard EKF SLAM algorithm and its compu-

tational properties. Section III contains a description of the

proposed algorithm. We study of its computational cost in

comparison with EKF SLAM, as well as its consistency

properties. In section IV we describe an algorithm for carrying

out data association in D&C SLAM also in linear time.

In section V we use the Victoria Park dataset to carry out

an experimental comparison between EKF SLAM and D&C

SLAM. Finally in section VI we draw the main conclusions

of this work.

II. THE EKF SLAM ALGORITHM

The EKF SLAM algorithm (see alg. 1) has been widely

used for mapping. Several authors have described the compu-

tational complexity of this algorithm [7], [8]. With the purpose

of comparing EKF SLAM with the proposed D&C SLAM

algorithm, in this section we briefly analyze its computational

complexity.

A. Computational complexity of EKF SLAM per step

For simplicity, assume that in the environment being

mapped features are distributed more or less uniformly. If the

vehicle is equipped with a sensor of limited range and bearing,

the amount of measurements obtained at any location will be

more or less constant. Assume that at some step k the map

contains n features, and the sensor provides m measurements,

r of which correspond to re-observed features, and s = m− r
which correspond to new features.

The computational complexity of carrying out the move-

sense-update cycle of algorithm 1 at step k involves the com-

putation of the predicted map x̂k|k−1,Pk|k−1, which requires

Algorithm 1 : ekf_slam

z0,R0 = get measurements

x̂0,P0 = new map(z0,R0)

for k = 1 to steps do

x̂
Rk−1

Rk
,Qk = get odometry

x̂k|k−1,Fk,Gk = prediction(x̂k−1, x̂
Rk−1

Rk
)

Pk|k−1 = FkPk−1F
T
k + GkQkG

T
k (1)

zk,Rk = get measurements

Hk,HHk
= data assoc(x̂k|k−1,Pk|k−1, zk,Rk)

SHk
= HHk

Pk|k−1H
T
Hk

+ RHk
(2)

KHk
= Pk|k−1H

T
Hk

/SHk
(3)

Pk = (I − KHk
HHk

)Pk|k−1 (4)

νHk
= zk − hHk

(x̂k|k−1) (5)

x̂k = x̂k|k−1 + KHk
νHk

(6)

x̂k,Pk = add feat(x̂,Pk, zk,Rk,Hk)

end for

return m = (xk,Pk)

obtaining also the computation of the corresponding jacobians

Fk,Gk, and the updated map xk,Pk, which requires the

computation of the corresponding jacobian HHk
, the Kalman

gain matrix KHk
, as well as the innovation νHk

, and its

covariance Sk (the complexity of data association is analyzed

in section IV).

The fundamental issue regarding computational complexity

is that all jacobians are sparse matrices [7], [8], [19]. Thus,

their computation is O(1), but more importantly, since they

take part in the computation of both the predicted and updated

map, the computational cost of eqs. (1) to (6) can also be

reduced. Consider as an example the innovation covariance

matrix Sk in eq. (2). Normally, the computation of this

r × r matrix would require rn2 + r2n multiplications and

rn2 + r2n + r2 sums, that is, O(n2) operations (see fig. 1).

But given that matrix Hk is sparse, with an effective size

of r × c, the computation requires rcn + r2c multiplications

and rcn + r2c + r2 sums, that is, O(n) operations. Similar

analysis leads to the conclusion that the cost of computing

both the predicted covariance Pk|k−1 and the Kalman gain

matrix KHk
is O(n), and that the greatest cost in an EKF

SLAM update is the computation of the covariance matrix

Pk, which is O(n2). Thus, the computational cost per step of

EKF SLAM is quadratic on the size of the map:

CEFK,k = O(n2) (7)

Figure 3 shows the results of carrying out EKF SLAM
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Fig. 1. Computation of the innovation covariance Sk matrix: the computation
requires O(n) operations (rn2 + r2n multiplications and rn2 + r2n + r2

sums).

in four simulated scenarios. In an environment with uniform

distribution of point features, the vehicle performs a 1m
motion at every step. The odometry of the vehicle has standard

deviation error of 10cm in the x direction (the direction of

motion), 5cm in y direction, and (0.5deg) for orientation. We

simulate an onboard range and bearing sensor with a range

of 3m, so that 16 features are normally seen at every step.

The standard deviation error is 5% of the distance in range,

and 1deg in bearing. Four different trajectories are carried

out: straight forward exploration (first column); loop closing

(second column), lawn mowing (third column), and snail path

(fourth column). The execution time of EKF SLAM per step

for each of these trajectories is shown in fig. 3, second row.

B. Total computational complexity of EKF SLAM

Assume that the process of building a map of size n features

is carried out with an exploratory trajectory, in which the

sensor obtains m measurements per step as said before, s of

which are new (all four examples in fig. 3, straight forward,

loop closing, lawn mowing and spiral path, are exploratory

trajectories). Given that s new features are added to the map

per step, n/s steps are required to obtain the final map of size

n, and thus the total computational complexity will be:

CEKF = O





n/s
∑

k=1

(ks)2





= O



s2

n/s
∑

k=1

k2





= O

(

s2 (n/s)(n/s + 1)(2n/s + 1)

6

)

= O

(

1

6
2n3/s + 3n2 + ns

)

= O(n3) (8)

The total cost of computing a map is cubic with the final

size of the map. The total execution time of EKF SLAM for

each of these trajectories is shown in fig. 3, third row.

III. THE DIVIDE AND CONQUER ALGORITHM

The Divide and Conquer algorithm for SLAM (D&C

SLAM) is an EKF-based algorithm in which a sequence of
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Fig. 2. Binary tree representing the hierarchy of maps that are created and
joined in D&C SLAM. The red line shows the sequence in which maps are
created and joined.

local maps of minimum size p is produced using the standard

EKF SLAM algorithm [26]. These maps are then joined using

the map joining procedure of [12], [27] (or the improved

version 2.0 detailed in [26]) to produce a single final stochastic

map.

Instead of joining each new local map to a global map

sequentially, as Local Map Sequencing does [12], D&C SLAM

carries out map joining in a binary hierarchical fashion, as

depicted in fig. 2. Although algorithms like Treemap [18] use

a similar structure, the tree is not used to sort features, here it

represents the hierarchy of local maps that are computed. The

leaves of the tree are the sequence of local maps of minimal

size p that the algorithm produces with standard EKF-SLAM.

The intermediate nodes represent the maps resulting form the

intermediate map joining steps that are carried out, and the

root of the tree represents the final map that is computed. D&C

follows algorithm 2, which performs a postorder traversal of

the tree using a stack to save intermediate maps. This allows

a sequential execution of D&C SLAM.

A. Total computational complexity of D&C SLAM

In D&C SLAM, the process of building a map of size n
produces l = n/p maps of size p, at cost O(p3) each (see

eq. (8)), which are joined into l/2 maps of size 2p, at cost

O((2p)2) each. These in turn are joined into l/4 maps of size

4p, at cost O((4p)2) each. This process continues until two

local maps of size n/2 are joined into 1 local map of size n,

at a cost of O(n2). Thus, the total computational complexity

of D&C SLAM is (note that the sum represents all costs

associated to map joining, which is O(n2) [12]):

CDC = O



p3l +

log
2

l
∑

i=1

l

2i
(2i p)2





= O



p3n/p +

log
2

n/p
∑

i=1

n/p

2i
(2i p)2





= O



p2n +

log
2

n/p
∑

i=1

p
n

2i
(2i)2
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Fig. 3. Four simulated experiments for comparing the EKF and D&C SLAM algorithms: detail of a straight forward trajectory (first colum); loop closing
(second column); lawn mowing (third column); snail path (fourth column). Ground truth environment, trajectory and first and second halves n/2 of maps
features for data association analysis (top row); execution time per step of EKF .vs. D&C SLAM (second row); total execution time of EKF .vs. D&C SLAM
(third row); execution time per step of EKF .vs. amortized execution time per step of D&C SLAM (bottom row).

= O



p2n + p n

log
2

n/p
∑

i=1

2i





The sum in the equation above is a geometric progression of

the type:

k
∑

i=1

ri =
r − rk+1

1 − r

Thus, in this case:

CDC = O

(

p2n + p n
2log

2
n/p+1 − 2

2 − 1

)

= O
(

p2n + p n(2 n/p − 2)
)

= O
(

p2n + 2n2 − 2pn
)

= O(n2) (9)

This means that D&C SLAM performs SLAM with a total

cost quadratic with the size of the environment, as compared

with the cubic cost of standard EKF-SLAM. The difference

between this approach and other approaches that also use

map joining, such as Local Map Sequencing, is that in D&C

SLAM the number of map joining operations carried out is

proportional to log(n), instead of n. This allows the total cost

to remain quadratic with n.

Figure 3, second and third rows, show the execution time

per step and total execution time, respectively, for D&C SLAM

.vs. EKF SLAM for the four simulations of straight forward,

loop closing, lawn mowing and spiral path. It can be seen that



Algorithm 2 : dc_slam

sequential implementation using a stack.

stack = new()

m0 = ekf_slam()

stack = push(m0, stack)

{
Main loop: postorder traversing of the map tree.

}
repeat

mk = ekf_slam()

while ¬ empty(stack) and then

size(mk) ≥ size(top(stack)) do

m = top(stack)

stack = pop(stack)

mk = join(m, mk)

end while

stack = push(mk, stack)

until end_of_map

{
Wrap up: join all maps in stack for full map recovery.

}
while ¬ empty(stack) do

m = top(stack)

stack = pop(stack)

mk = join(m, mk)

end while

return (mk)

the total cost of D&C SLAM very quickly separates from the

total cost of EKF SLAM. The reason is that the computational

cost per step of D&C SLAM is lower than that of EKF SLAM

most of the time. EKF SLAM works with a map of non-

decreasing size, while D&C SLAM works on local maps of

small size most of the time. In some steps though (in the

simulation those which are a multiple of 2), the computational

cost of D&C is higher than EKF. In those steps, one or more

map joining operations take place (in those that are a power

of 2, 2l, l map joining operations take place).

B. Computational complexity of D&C SLAM per step

In D&C SLAM, the map to be generated at step k will

not be required for joining until step 2 k. We can therefore

amortize the cost O(k2) at this step by dividing it up between

steps k to 2 k − 1 in equal O(k) computations for each step.

We must however take into account all joins to be computed

at each step. If k is a power of 2 (k = 2l), i = 1 · · · l joins

will take place at step k, with a cost O(22) . . . O((2l)2). To

carry out join i we need join i−1 to be complete. Thus if we

wish to amortize all joins, we must wait until step k+k/2 for

join i−1 to be complete, and then start join i. For this reason,

the amortized version of this algorithm divides up the largest

join at step k into steps k + k/2 to 2 k − 1 in equal O(2 k)
computations for each step. Amortization is very simple, the

computation of the elements of Pk|k is divided in k/2 steps.

If Pk|k is of size n×n, 2n2/k elements have to be computed

per step.

Fig. 3 (bottom row) shows the resulting amortized cost per

step for the four simulated experiments. Note that at steps

i = 2l, the cost falls steeply. As said before, in these steps l
joins should be computed, but since join i required the map

resulting from join i − 1, all l joins are postponed. We can

see that the amortized cost of D&C SLAM always lower than

that of EKF SLAM. D&C SLAM is an anytime algorithm, if

at any moment during the map building process the full map

is required for another task, it can be computed in a single

O(n2) step.

C. Consistency in Divide and Conquer SLAM

Apart from computational complexity, another important as-

pect of the solution computed by the EKF has gained attention

recently: map consistency. When the ground truth solution x

for the state variables is available, a statistical test for filter

consistency can be carried out on the estimation (x̂, P), using

the Normalized Estimation Error Squared (NEES), defined as:

D2 = (x − x̂)
T

P−1 (x − x̂) (10)

Consistency is checked using a chi-squared test:

D2 ≤ χ2
r,1−α (11)

where r = dim(x) and α is the desired significance level

(usually 0.05). If we define the consistency index of a given

estimation (x̂, P) with respect to its true value x as:

CI =
D2

χ2
r,1−α

(12)

when CI < 1, the estimation is consistent with ground truth,

and when CI > 1, the estimation is inconsistent (optimistic)

with respect to ground truth.

We tested consistency of both standard EKF and D&C

SLAM algorithms by carrying 20 Monte Carlo runs on the

simulated experiments. We have used simulated experiments

to test consistency because this allows to have ground truth

easily available. Additionally, Monte Carlo runs allow to

gather statistically significant evidence about the consistency

properties of the algorithms being compared, while a single

experiment allows to carry out only one run of the algorithms.

Figure 4 (top) shows the evolution of the mean consistency

index of the vehicle orientation during all steps of the straight

forward trajectory simulation. We can see that the D&C

estimate on vehicle location is always more consistent than

the standard EKF estimate, EKF falls out of consistency

while D&C remains consistent. In order to obtain a value for

consistency in all steps, we emptied the stack and carried out

all joins at every step to obtain the full map, but this is not

done normally.

Figure 4 (bottom) shows the evolution of the mean absolute

angular error of the vehicle. The 2σ bounds for the theoretical

(without noise) and computed (with noise) uncertainty of both

standard EKF and Divide and Conquer SLAM algorithms are

also drawn. We can see how the error increases more slowly
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Fig. 4. Mean consistency index for the robot orientation(top); Mean absolute
angular robot error (bottom).

in the case of D&C SLAM, but we can also see that the

main cause of inconsistency in the standard EKF SLAM is

the fast rate at which the computed uncertainty falls below its

theoretical value.

IV. DATA ASSOCIATION FOR DIVIDE AND CONQUER

SLAM

The data association problem in continuous SLAM consists

in establishing a correspondence between each of the m sensor

measurements and one (on none) of the n map features.

The availability of a stochastic model for both the map and

the measurements allows to check each measurement-feature

correspondence for individual compatibility using a hypothesis

test on the innovation of the pairing and its covariance [9]. In

standard EKF SLAM, and for a sensor of limited range and

bearing, m is constant and thus individual compatibility is

O(nm) = O(n), linear on the size of the map. This cost can be

easily reduced to O(m), constant, by a simple tessellation or

grid of the map computed during map building, which allows

to determine candidates for a measurement in constant time

simply by checking the grid element in which it falls.

In cases where clutter or vehicle error are high, there

may be many more than one possible correspondence for

each measurement. More elaborate algorithms are required

to disambiguate in these cases. Nevertheless, the overlap

between the measurements and the map is the size of the

sensor range plus the vehicle uncertainty, and thus more or

less constant. After individual compatibility is sorted out,

any disambiguation algorithm, such as JCBB [9], will then

disambiguate between the m measurements and a region of

the map of constant size, regardless of map size, and thus will

execute in constant time.

We use JCBB in the case of building the local maps of size

p, given that it is a standard EKF-SLAM process. However,

data association for D&C SLAM is a critical issue because

map joining involves finding correspondences between two

local maps of similar size in accordance with their level in the

tree. For instance, before of obtaining the final map, the data

association problem has to be solved between two maps of size

n/2 maps and so computing individual compatibility becomes

O(n2). Fortunately, this can be easily reduced to linear again

using a simple tessellation or grid for the maps.

The size of the region of overlap between two maps in D&C

SLAM depends on the environment and type of trajectory.

Consider the simulated examples of fig. 3 where two n/2
maps are shown (features in the first map are red crosses,

features in the second are blue circles). In the second case,

the square loop, the region of overlap between two maps will

be of constant size, basically dependent on the sensor range.

In the case of the lawn mowers trajectory, the overlap will be

proportional to the length of the trajectory before the vehicle

turns back, still independent of map size, and thus constant. In

the fourth case, the snail path, the region of overlap between

the inner map and the encircling map is proportional to the

final map size. In these cases, data association algorithms like

JCBB will not execute in constant time.

In order to limit the computational cost of data association

between local maps in D&C SLAM, we use a randomized joint

compatibility algorithm. Our RJC approach (see algorithm 3)

is a variant of the linear RS algorithm [10]) used for global

localization.

Consider two consecutive maps m1 and m2, of size n1 and

n2 respectively, to be joined. First, the overlap between the

two maps is identified using individual compatibility. Second,

instead of performing branch and bound interpretation tree

search in the whole overlap as in JCBB, we randomly select

b features in the overlapped area of the second map and use

JCBB*: a version of JCBB without exploring the star node,

i.e., considering all b measurements good. This produces a

hypothesis H of b jointly compatible features in the first

map. Associations for the remaining features in the overlap

are obtained using the simple nearest neighbor rule given

hypothesis H, which amounts to finding pairings that are

compatible with the first b features. In the spirit of adaptative

RANSAC [28], we repeat this process t times, so that the

probability of missing a correct association is limited to Pfail.

Since JCBB is executed using a fixed number of features,



Algorithm 3 :RJC

Pfail = 0.01, Pgood = 0.8, b = 4
i = 1, Best = []
while (i ≤ t) do

m∗
2 = random select(m2, b)

H = JCBB*(m1, m∗
2)

H = NN(H, m1, m∗
2)

if pairings(H) > pairings(Best) then

Best = H
end if

Pgood = max(Pgood, pairings(Best)\m)
t = log Pfail/ log(1 − Pb

good)
i = i + 1

end while

its cost remains constant. Finding the nearest neighbor for

each remaining feature among the ones that are individually

compatible with it, a constant number, will be constant. The

cost of each try is thus O(n). The number of tries depends

on the number of features randomly selected (b), on the

probability that a selected feature in the overlap can be

actually found in the first map (Pgood), and on the acceptable

probability of failure in this probabilistic algorithm (Pfail). It

does not depend on the size of either map. In this way, we

can maintain data association in D&C SLAM linear with the

size of the joined map.

V. EXPERIMENTS

We have used the well known Victoria Park data set to vali-

date the algorithms D&C SLAM and RJC. This experiment is

particulary adequate for testing SLAM due its large scale, and

the significant level of spurious measurements. The experiment

also provides critical loops in absence of reliable features.

For RJC, we chose b = 4 as the number of map features

to be randomly selected as seed for hypothesis generation.

Two features are sufficient in theory to fix the relative location

between the maps, but we have found 4 to adequately disam-

biguate. The probability that a selected feature in the overlap

is not spurious, Pgood is set to 0.8, and the probability of not

finding a good solution when one exists, Pfail is set to 0.01.

These parameters make the data association algorithm carry

out 9 random tries.

Figure 5 shows the resulting maps from standard EKF

SLAM .vs. D&C SLAM, which are essentially equivalent;

there are some minor differences due to missed associations

in the case of EKF. Figure 6, top, shows the amortized cost of

D&C SLAM. We can see that in this experiment an EKF step

can take 0.5 seconds, while the amortized D&C SLAM step

will take at most 0.05 seconds. In this experiment, the total

cost of D& C SLAM is one tenth of the total cost of standard

EKF (fig. 6, bottom).

VI. CONCLUSIONS

In this paper we have shown that EKF SLAM can be carried

out in time linear with map size. We describe and EKF SLAM
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Fig. 5. Map for Victoria Park dataset: according to the standard EKF
SLAM algorithm (top); according to the D &C SLAM algorithm. The results
are essentially equivalent; some missed associations may result in minor
differences. The estimated position along the whole trajectory is shown as a
red line for EKF SLAM, and the vehicle locations are drawn as red triangles
when available in D&C SLAM. Green points are GPS readings in both cases.

variant: Divide and Conquer SLAM, a simple algorithm to

implement. In contrast with many current efficient SLAM

algorithms, all information required for data association is

available when needed with no further processing. D&C

SLAM computes the exact EKF SLAM solution, the state and

its covariance, with no approximations, and with the additional

advantage of providing always a more precise and consistent

vehicle and map estimate. All information is available for data

association, which can also be carried out in linear time per

step. We hope to have shown that D&C SLAM is the algorithm

to use in all applications in which the Extended Kalman Filter

solution is to be used.

Despite of the differences with other methods presented in

section I, a very important fact to be emphasized is that the

D&C map splitting strategy can also be incorporated in those

recent algorithms. This idea is part of our future work.
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Fig. 6. Time per step of EKF and D&C SLAM for Victoria experiment
(top); time per step of EKF SLAM .vs. amortized time per step of D& SLAM
(middle); accumulated time of EKF SLAM .vs. D& SLAM.
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