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Abstract

We propose a general strategy named ‘divide,

conquer and combine’ for multimodal fusion.

Instead of directly fusing features at holis-

tic level, we conduct fusion hierarchically so

that both local and global interactions are con-

sidered for a comprehensive interpretation of

multimodal embeddings. In the ‘divide’ and

‘conquer’ stages, we conduct local fusion by

exploring the interaction of a portion of the

aligned feature vectors across various modal-

ities lying within a sliding window, which en-

sures that each part of multimodal embeddings

are explored sufficiently. On its basis, global

fusion is conducted in the ‘combine’ stage to

explore the interconnection across local inter-

actions, via an Attentive Bi-directional Skip-

connected LSTM that directly connects distant

local interactions and integrates two levels of

attention mechanism. In this way, local inter-

actions can exchange information sufficiently

and thus obtain an overall view of multimodal

information. Our method achieves state-of-

the-art performance on multimodal affective

computing with higher efficiency.

1 Introduction

Multimodal machine learning, as prior research

shows (Baltrušaitis et al., 2019), always yields

higher performance in multimodal tasks compared

to the situation where only one modality is in-

volved. In this paper, we aim at the multimodal

machine learning problem, with an emphasis on

multimodal affective computing where the task is

to infer human’s opinion from given language, vi-

sual and acoustic modalities (Poria et al., 2017a).

Finding a feasible and effective solution to

learning inter-modality dynamics has been an in-

triguing and important problem in multimodal

learning (Baltrušaitis et al., 2019), where inter-

modality dynamics represent complementary in-

formation contained in more than one involved

Figure 1: Schematic Diagram of our fusion strategy.

Here the window size and stride are both set to 2.

modality to be detected and analyzed for a more

accurate comprehension. For this purpose, a large

body of prior work mostly treats the feature vec-

tors of the modalities as the smallest units and fuse

them at holistic level (Barezi et al., 2018; Poria

et al., 2016a, 2017b; Liu et al., 2018). Typical-

ly, Zadeh et al. (2017) propose a tensor-based fu-

sion method which fuses feature vectors of three

modalities using Cartesian product. Despite the

effectiveness this type of methods have achieved,

they give little consideration to acknowledging the

variations across different portions of a feature

vector which may contain disparate aspects of in-

formation and thus fail to render the fusion proce-

dure more specialized. Additionally, they conduct

fusion within one step, which can be intractable

in some scenarios where the fusion method is sus-

ceptible to high computational complexity.

Recently, Convolution Neural Networks (CN-

N) have achieved compelling successes in com-

puter vision (Krizhevsky et al., 2012; Mehta et al.,

2019). One of core spirits in CNN lies in the use

of convolutional operation to process feature map-

s, which is a series of local operations with kernels

sliding through the object. Inspired by it, we pro-

pose local fusion to explore local interactions in

multimodal embeddings, which is in spirit simi-

lar to convolution but basically is a general strate-
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gy towards multimodal fusion with multiple con-

crete fusion methods to choose from. Specifical-

ly, as shown in Fig. 1, we align feature vectors

of three modalities to obtain multimodal embed-

dings and apply a sliding window to slide through

them. The parallel portions of feature vectors

within each window are then fused by a specific

fusion method. By considering local interaction-

s we achieve three advantages: 1) render fusion

procedure more specialized since each portion of

modality embeddings contains specific aspect of

information intuitively; 2) assign proper weight-

s to different portions; 3) reduce computational

complexity and parameters substantially by divid-

ing holistic fusion into multiple local ones. Many

approaches can be adapted into our strategy for lo-

cal fusion, and we empirically apply outer product,

following (Zadeh et al., 2017). While using out-

er product (bilinear pooling) always brings heavy

time and space complexity (Lin et al., 2015; Zade-

h et al., 2017; Wu et al., 2017), we show that our

method can achieve much higher efficiency.

Nonetheless, local fusion alone is not adequate

for a comprehensive analysis of opinion. In fact,

local interactions may contain complementary in-

formation to each other, which should be drawn

upon for overall comprehension. Moreover, a

small-sized sliding window may not be able to

cover a complete interaction. Thus, we propose

global fusion to explore interconnections of lo-

cal interactions to mitigate these problems. In

practice, RNN variants (Goudreau et al., 1994),

especially LSTM (Hochreiter and Schmidhuber,

1997), are suitable for global fusion for their im-

pressive power in modeling interrelations. How-

ever, in vanilla RNN architecture, only consecu-

tive time steps are linked through hidden states,

which may not be adequate for conveying infor-

mation to local interactions that are far apart. Re-

cently, some works have focused upon introducing

residual learning into RNNs (Tao and Liu, 2018;

Wang and Wang, 2018; Wang and Tian, 2016; He

et al., 2016). Motivated by these efforts, we pro-

pose an Attentive Bi-directional Skip-connected

LSTM (ABS-LSTM) that introduces bidirection-

al skip connection of memory cells and hidden

states into LSTM, which is effective in ensuring

sufficient flow of information in multi-way and

handling long-term dependency problem (Bengio

et al., 1994). In the transmission process of ABS-

LSTM, the previous interactions are not equally

correlated to the current local interaction, i.e., they

vary in the amount of complementary information

to be delivered. In addition, given that the local in-

teractions, which do not contain equally valuable

information, are used as input into ABS-LSTM

across time steps, it is understandable that the pro-

duced states do not contribute equally to recog-

nizing emotion. Thus, we incorporate two levels

of attention mechanism into ABS-LSTM, i.e., Re-

gional Interdependence Attention and Global In-

teraction Attention. The former takes effect in the

process of delivering complementary information

between local interactions, identifying the various

correlation of previous t local interactions to the

current one. The latter serves the purpose of allo-

cating more attention to states that are more infor-

mative so as to aid a more accurate prediction.

To sum up, we propose a Hierarchical Feature

Fusion Network (HFFN) for multimodal affective

analysis. The main contributions are as follows:

• We propose a generic hierarchical fusion s-

trategy, termed ‘divide, conquer and com-

bine’, to explore both local and global inter-

actions in multiple stages each focusing on

different dynamics.

• Instead of conducting fusion on a holistic lev-

el, we innovate to leverage a sliding window

to explore inter-modality dynamics locally.

In this way, our model can take into account

the variations across portions in a feature vec-

tor. Such setting also brings about an impres-

sive bonus, i.e., significant drop in computa-

tional complexity compared to other tensor-

based methods, which is proven empirically.

• We propose global fusion to obtain an over-

all view of multimodal embeddings via a

specifically designed ABS-LSTM, in which

we integrate two levels of attention mech-

anism: Regional Interdependence Attention

and Global Interaction Attention.

2 Related Work

Previous research on affective analysis focuses on

text modality(Liu and Zhang, 2012; Cambria and

Hussain, 2015), which is a hot research topic in the

NLP community. However, recent research sug-

gests that information from text is not sufficient

for mining opinion of humans (Poria et al., 2017a;

D’Mello and Kory, 2015; Cambria, 2016), espe-
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cially under the situation where sarcasm or ambi-

guity occurs. Nevertheless, if the accompanying

information such as speaker’s facial expressions

and tones are presented, it would be much easier

to figure out the real sentiment (Pham et al., 2019,

2018). Therefore, multimodal affective analy-

sis has attracted increasing attention, whose ma-

jor challenge is how to fuse features from vari-

ous modalities. Earlier feature fusion strategies

can be roughly categorized into feature-level and

decision-level fusion. The former seeks to ex-

tract features of various modalities and conduc-

t fusion at input level, by mapping them into the

same embedding space simply using concatena-

tion (Wollmer et al., 2013; Rozgic et al., 2012;

Morency et al., 2011; Poria et al., 2016a, 2017b;

Gu et al., 2017). The latter, by contrast, draws

tentative decisions based on involved modalities

separately and weighted-average the decisions, re-

alizing cross-modal fusion (Wu and Liang, 2010;

Nojavanasghari et al., 2016; Zadeh et al., 2016a;

Wang et al., 2016). These two lines of work do

not effectively model cross-modal or modality-

specific dynamics (Zadeh et al., 2017).

Recently, word-level fusion methods have re-

ceived substantial research attention and been

widely acknowledged for effective exploration of

time-dependent interactions (Wang et al., 2019;

Zadeh et al., 2018a,b,c; Gu et al., 2018a; Ra-

jagopalan et al., 2016). For example, Chen et al.

(2017) and Gu et al. (2018b) leverage word-level

alignment between modalities and explore time-

restricted cross-modal dynamics. Liang et al.

(2018a) propose Recurrent Multistage Fusion Net-

work (RMFN) which decomposes multimodal fu-

sion into three stages and uses LSTM to perform

local fusion. RMFN adopts the strategy of ‘di-

vide and conquer’, while our method extends it

by adding ‘combine’ part to learn the relations be-

tween local interactions. Liang et al. (2018b) con-

ducts emotion recognition using local-global emo-

tion intensity rankings and Bayesian ranking algo-

rithms. However, the ‘local’ and ‘global’ here is

totally different from ours, with its ‘local’ refer-

ring to an utterance of a video while our ‘local’

represents a feature chunk of an utterance.

Tensor fusion has also become increasingly

popular. Tensor Fusion Network (TFN) (Zadeh

et al., 2017) adopts outer product to conduct fu-

sion at holistic level, which is later extended by

Liu et al. (2018) and Barezi et al. (2018) that try to

improve efficiency and reduce redundant informa-

tion by decomposing weights of high-dimensional

fused tensors. HFFN mainly applies outer product

as local fusion methods, and it improves efficien-

cy by dividing modality embeddings into multiple

local chunks before fusion which prevents high-

dimensional fused tensor from being created. Ac-

tually, HFFN can adopt any fusion strategy in local

fusion stage other than only outer product, show-

ing high flexibility and applicability.

3 Algorithm

As shown in Fig. 2, HFFN consists of: 1) Local

Fusion Module (LFM) for fusing features of dif-

ferent modalities at every local chunk; 2) Global

Fusion Module (GFM) for exploring global inter-

modality dynamics; 3) Emotion Inference Module

(EIM) for obtaining the predicted emotion.

3.1 Divide and Conquer: Local Fusion

At the local fusion stage, we apply a sliding win-

dow that slides through the aligned feature vec-

tors synchronously. At each step of operation, lo-

cal fusion is conducted for the portions of feature

vectors within the window. In this way, features

across all modalities at the same window are able

to fully interact with one another to obtain locally

confined interactions in a more specialized way.

Assume that we have three modalities’ feature

vectors as input, namely language l ∈ R
k, visual

v ∈ R
k and acoustic a ∈ R

k (we only consider

the situation where all modalities share the same

feature length k since they can be easily mapped

into the same embedding space via some transfor-

mations). In ‘divide’ stage, we align these feature

vectors to form the multimodal embedding M ∈
R
3×k and leverage a sliding window of size 3× d

to explore inter-modality dynamics. Through the

sliding window, each feature vector can be seen as

segmented into multiple portions, each termed as

a local portion. The segmentation procedure for

feature vector of one modality is equivalent to:

mi=[ms·(i−1)+1,ms·(i−1)+2, ...,ms·(i−1)+d] (1)

where m ∈ {l, v, a} is the modality m, d is the

window size, s is the stride and mi denotes the ith

local portion of modality m (i ∈ [1, n], n is the

number of local portions for each modality). Ob-

viously, for each modality, we have n = k−d
s

+ 1
local portions in total, provided that k−d is divisi-

ble by s. Otherwise the feature vectors are padded

with 0s to guarantee divisibility and in this case we
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Figure 2: The Detailed Structure of HFFN.

have n =
⌊
k−d
s

⌋
+ 2 local portions. In practice,

both d and s can be set freely (see Section 4.3.5).

For descriptive convenience we also term the par-

allel local portions corresponding to all modalities

within the sliding window as a local chunk.

Many fusion methods can be chosen for fusing

features within each local chunk to explore inter-

modality dynamics in ‘conquer’ stage. In practice,

we apply outer product for it provides the best re-

sults in our experiments. Firstly, each local portion

is padded with 1s to retain interactions of any sub-

set of modalities as in (Zadeh et al., 2017):

mi′ = [mi, 1], 1 ≤ i ≤ n, m ∈ {l, v, a} (2)

Then we perform outer product from feature vec-

tors padded with 1s, defined as (Liu et al., 2018):

X
f
i =

⊗

m

mi′ , mi′ ∈ R
d+1 (3)

where
⊗

denotes tensor outer product of a set of

vectors. The final local fused tensor for ith local

chunk is X
f
i ∈ R

(d+1)3 which represents the ith

local interaction. We group all n local fused ten-

sors to obtain the overall fused tensor sequence:

Xf = [Xf
1 ; X

f
2 ; ... ; X

f
n ] ∈ R

n×(d+1)3 . A

tensor fusion diagram is shown in LFM module

of Fig. 2. Compared with other models adopt-

ing outer product (Zadeh et al., 2017), our mod-

el achieves a marked improvement in efficiency

by dividing holistic tensor fusion into multiple lo-

cal ones, which is shown in Section 4.3.3. Actu-

ally, we can apply other fusion methods that are

suitable for local information extraction, which

demonstrates the broad applicability of our strat-

egy and is left for future work.

3.2 Combine: Global Fusion

In the ‘combine’ stage, we model global interac-

tions by exploring interconnections (complemen-

tary information) and context-dependency across

local fused tensors to obtain an overall interpre-

tation of interactions comprehensively. In addi-

tion, the limited and fixed size of sliding window

may lead to division of the complete process of ex-

pressing emotion into different local portions, in

which case sufficient flow of information between

local chunks is warranted to compensate for this

problem. Therefore, we design ABS-LSTM, an

RNN variant, to make sense of the cross-modality

dynamics from an integral perspective. In ABS-

LSTM, we introduce bidirectional residual con-

nection of memory cells and hidden states as well

as integrate attention mechanisms to transmit in-

formation and learn overall representations more

effectively, as shown in Fig. 2. Now that we ob-

tain the local fused tensor sequence Xf in LFM,

global interaction learning can be expressed as:

Xg = ABS-LSTM(Xf ) (4)

where ABS-LSTM is activated by tanh nonlinear

function, Xg = [Xg
1 ; X

g
2 ; ...; X

g
n] ∈ R

n×2o is

the global fused tensor sequence, and 2o is the di-

mensionality of ABS-LSTM’s output. A detailed

illustration of ABS-LSTM is shown below.

3.2.1 ABS-LSTM

ABS-LSTM is specifically designed for modeling

the interconnections of local fused tensors to dis-

till complementary information. Since local in-
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teractions within a certain distance range are mu-

tually correlated, it is necessary for ABS-LSTM

to operate in a bidirectional way. As opposed

to conventional bidirectional RNNs, ABS-LSTM

has a set of identical parameters for both for-

ward/backward passes which ensures a smaller

number of parameters. Further, ABS-LSTM di-

rectly connects the current interaction with its sev-

eral neighbors so that information can be suffi-

ciently exchanged. Given its ability to bidirection-

ally transmit information in multiple connections,

it is powerful in modeling long-term dependency,

which is crucial for long sequences.

Firstly we illustrate the pipeline of ABS-LSTM

in forward pass stage. Assume that t previous lo-

cal interactions are directly connected to the cur-

rent one (t is set to 3 in our experiment), it is

beneficial to identify the various correlation be-

tween previous t interactions and the current in-

teraction. To this end, we integrate Regional In-

terdependence Attention (RIA) into ABS-LSTM,

so that previous local interactions containing more

complementary information to the current one are

given more importance in the information trans-

mission process. The equations for previous infor-

mation fusion of cells and states for lth interaction

in forward pass are as follows:

scl−i
=tanh(Wc(

−→c l−i ⊕X
f
l ) ), 1 ≤ i ≤ t

shl−i
= tanh(Wh(

−→
h l−i ⊕X

f
l ) ), 1 ≤ i ≤ t

(5)

sc = [‖scl−t
‖2, ‖scl−t+1

‖2, ..., ‖scl−1
‖2],

sh = [‖shl−t
‖2, ‖shl−t+1

‖2, ..., ‖shl−1
‖2]

(6)

γc = softmax(sc),γh = softmax(sh) (7)

c̃l=a(
t∑

i=1

γcl−i

−→c l−i), h̃l=a(
t∑

i=1

γhl−i

−→
h l−i)

(8)

where
⊕

denotes vector concatenation and

Wh,Wc ∈ R
o×(o+(d+1)3) are parameter matri-

ces that determine the importance of previous cells
−→c l−i and states −→c l−i, respectively. Eq. 5 map-

s the cell and state at the (l − i)th time step in-

to two o-dimensional vectors respectively. Instead

of merely using −→c l−i or
−→
h l−i to obtain their im-

portance towards local interaction at current time

step, we also utilize current time step’s input X
f
l

to reflect the correlation between the cell and s-

tates of (l − i)th interaction and current lth time

step’s input, which provides a better measuremen-

t of attention score by learning inter-dependency

correlation between interactions. We take the 2-

norm of each vector in Eq. 6 as the importance

score of each previous cell and state and then for-

m a t-dimensional importance score vector for al-

l states and cells, respectively. In Eq. 7 we use

softmax layer to normalize both vectors and ob-

tain the final attention scores, which, according to

Eq. 8, are used as weights for the combination of

previous t local interactions. The function a in E-

q. 8 is a nonlinear activation function that helps to

improve expressive power of ABS-LSTM, which

we empirically choose ReLU . Overall, Eq. 5 to E-

q. 8 realize transmission of information from pre-

vious multiple local interactions to the current one,

using the first level of attention mechanism, i.e.,

RIA, which is able to properly distribute attention

across the previous t local interactions to focus on

the ones that contain information most relevant to

the current local interaction.

After the combination of previous information,

we further define:

fl = σ(Wf1X
f
l +Wf2h̃l) (9)

il = σ(Wi1X
f
l +Wi2h̃l) (10)

−→c l=fl⊙c̃l+il⊙tanh(Wm1
X

f
l +Wm2

h̃l) (11)

−→
h l = σ(Wo1X

f
l +Wo2h̃l)⊙ tanh(−→c l) (12)

where σ denotes sigmoid function. Eq. 9 - 12

denote the routine procedure of LSTM except that
−→
h l−1 and −→c l−1 are replaced with h̃l and c̃l, re-

spectively. The output of lth time step in forward

pass stage is
−→
h l (1 ≤ l ≤ n). To make ABS-

LSTM bidirectional, in backward pass stage, we

reverse input Xf so that the last interaction arrives

in first place and again feed it into Eq. 5 - 12,

whose output becomes
←−
h l. The output of ABS-

LSTM at lth time step is: hl =
←−
h l

⊕−→
h l ∈ R

2o

Global Interaction Attention (GIA): Inher-

ently, LSTM has the capability to ‘memorize’, and

uses the memory to sequentially model long-term

dependency. Thus, the hidden states output by

ABS-LSTM synthesize the information from cur-

rent time step’s input interaction and that from pre-

vious input, respectively. In this sense, at each

time step new information is processed and pre-

vious information still exists but is ‘diluted’ in the

hidden state (due to the forget gate). Therefore,

as some local interactions that are more informa-

tive, e.g. revealing a sharp tone or sheer alteration

of facial expressions, are input to ABS-LSTM, the

produced states should be given more importance
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over others since they have just synthesized an in-

formative interaction and not yet been ‘diluted’.

Hence, it is justifiable to employ a specifically de-

signed attention mechanism, termed Global Inter-

action Attention (GIA), to properly assign impor-

tance across states. GIA is formulated as follows:

ωh=ReLU(Wh′hl + bh′) (13)

ωx = ReLU(WxX
f
l + bx) (14)

ha
l = tanh((Wh2

ωh) · hl +Wx2
ωx) (15)

where Wh′ ∈ R
o×2o and Wx ∈ R

o×(d+1)3 are t-

wo parameter matrices and bh′ , bx ∈ R
o are two

bias vectors to be learned. Wh2
,Wx2

∈ R
1×o are

two parameter matrices that determine final im-

portance scores. Through affine transforms and

nonlinearities in Eq. 13 and Eq. 14, the lth state

hl and the corresponding input X
f
l are embed-

ded into two o-dimensional vectors ωh and ωx that

contain information regarding importance of lth s-

tate and local interaction, respectively. In Eq. 15,

Wh2
and ωh first form a scalar via matrix multi-

plication, which reflects the importance of the lth

hidden state to be used as its weight. Meanwhile,

we pre-multiply ωx by Wx2
and obtain a scalar to

be added to each entry of weighted state, which

functions as a bias containing input information.

By this means, the attended state at current time

step is able to focus more on the information from

current interaction instead of the previous ones.

Considering that X
f
l and hl are two intrinsically

disparate sources of information, we only formu-

late the impact of X
f
l as a scalar that biases the

state, rather than as a vector which has much more

complex influence to the state and empirically de-

grades performance. In this way, if X
f
l is more

important, the lth attended state ha
l will receive

a more significant shift towards a higher position

with respect to all high-dimensional coordinates,

and thus ha
l is more attended. In a sense, every

element of the original state undergoes a transfor-

mation, with a specifically determined weight and

a fixed bias across all entries. GIA enables ABS-

LSTM to enhance the states of greater importance,

aiding a more accurate classification. The final

output of ABS-LSTM is the concatenation of at-

tended states: Xg =
⊕n

l=1 h
a
l ∈ R

n×2o.

3.3 Emotion Inference Module

After obtaining the global interactions, the final e-

motion is obtained by:

E = f(We1X
g + be1) (16)

I = softmax(We2E) (17)

where f contains a tanh activation function and

a dropout layer of dropout rate 0.5, We1 ∈
R
50×n·2o, be1 ∈ R

50 and We2 ∈ R
N×50 are the

learnable parameters, and I ∈ R
N is the final e-

motion inference (N is the number of categories).

4 Experiments

4.1 datasets

CMU-MOSI (Zadeh et al., 2016b) includes 93

videos with each video padded to 62 utterances.

We consider positive and negative sentiments in

our paper. We use 49 videos for training, 13

for validation and 31 for testing. CMU-MOSEI

(Zadeh et al., 2018c) has 2928 videos, and each

video is padded to 98 utterances. Each utterance

has been scored on two perspectives: sentiment in-

tensity (ranges between [-3, 3]) and emotion (six

classes). We consider positive, negative and neu-

tral sentiments in the paper. We utilize 1800, 450

and 678 videos respectively for training, validation

and testing. IEMOCAP (Busso et al., 2008) con-

tains 151 videos and each video has at most 110

utterances. IEMOCAP contains following label-

s: anger, happiness, sadness, neutral, excitement,

frustration, fear, surprise and other. We take the

first four emotions so as to compare with previous

models. The training, validation and testing sets

contain 96, 24 and 31 videos respectively.

4.2 Experimental details

HFFN is implemented using the framework of

Keras, with tensorflow as backend. The in-

put dimensionality k for CMU-MOSI and CMU-

MOSEI datasets is 50, while for IEMOCAP, k is

set to 100. We use RMSprop for optimizing the

network, with cosine proximity as objective func-

tion. The output dimension 2o of ABS-LSTM is

set to 6 for CMU-MOSI and CMU-MOSEI but 2

for IEMOCAP. Note that ABS-LSTM is activated

by tanh and followed by a dropout layer.

For feature pre-extraction, our setting on CMU-

MOSI and IEMOCAP datasets are identical to

that in (Poria et al., 2017b)1. The features

are extracted from each utterances separately.

For language feature, a text-CNN is applied.

Each word is first embedded into a vector us-

ing word2vec tool (Mikolov et al., 2013). Then

1https://github.com/soujanyaporia/multimodal-
sentiment-analysis
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the vectorized representations for all words in

an utterance are concatenated, which afterward-

s is processed by CNNs (Karpathy et al., 2014).

For acoustic feature, an open-source tool openS-

MILE (Eyben, 2010) is utilized to generate high

dimensional vectors comprised of low-level de-

scriptors (LLD). 3D-CNN (Ji et al., 2013) is ap-

plied for visual feature pre-extraction. It learn-

s relevant features from each frame and the al-

terations across consecutive frames. By contrast,

on CMU-MOSEI dataset we follow the setting as

in (Zadeh et al., 2017; Liu et al., 2018)2. GloVe

(Pennington et al., 2014), Facet (iMotions, 2017)

and COVAREP (Degottex et al., 2014) are applied

for extracting language, visual and acoustic fea-

tures respectively. Word-level alignment is per-

formed using P2FA (Yuan and Liberman, 2008)

across modalities. Eventually the unimodal fea-

tures are generated as the average of their feature

values over word time interval (Chen et al., 2017).

Subsequent to pre-extraction, similar to BC-

LSTM (Poria et al., 2017b), we devise a Unimodal

Feature Extraction Network (UFEN): R
u×dj →

R
u×k, which consists of a bidirectional LSTM lay-

er followed by a fully connected (FC) layer, for

each separate modality. Here, u denotes the num-

ber of utterances that constitute a video and dj is

the dimensionality of raw feature vector for jth

modality. Through UFEN, feature vectors of al-

l modalities are mapped into the same embedding

space (have the same dimensionality k). UFEN

for each modality, is individually trained followed

by a FC layer: R
k → R

N using Adadelta (Zeil-

er, 2012) as optimizer and with categorical cross-

entropy as loss function. The precessed feature

vectors of each utterance will be sent into HFFN.

4.3 Results and Discussions

4.3.1 Comparison with Baselines

We compare HFFN with following multimodal

algorithms: RMFN (Liang et al., 2018a), MFN

(Zadeh et al., 2018a), MCTN (Pham et al., 2019),

BC-LSTM (Poria et al., 2017b), TFN (Zadeh et al.,

2017), MARN (Zadeh et al., 2018b), LMF (Li-

u et al., 2018), MFM (Tsai et al., 2019), MR-

RF (Barezi et al., 2018), FAF (Gu et al., 2018b),

RAVEN (Wang et al., 2019), GMFN (Zadeh et al.,

2018c), Memn2n (Sukhbaatar et al., 2015), MM-

B2 (Liang et al., 2019), CHFusion (Majumder

et al., 2018), SVM Trees (Rozgic et al., 2012),

2https://github.com/A2Zadeh/CMU-MultimodalSDK

Methods Acc F1 Score

BC-LSTM 77.9 78.1
CAT-LSTM 76.6 76.2

MFN 77.4 77.3
FAF 76.5 76.8

RAVEN 78.0 -
CHFusion 80.0 -

MMB2 75.2 75.1
MFM 77.4 77.3
RMFN 78.4 78.0
MCTN 79.3 79.1
GMFN 77.7 77.7

TFN 74.6 74.5
LMF 76.4 75.7

MRRF 73.0 73.1

HFFN(d, s = 2, 2) 80.19 80.34

Table 1: Performance on CMU-MOSI dataset.

Models Acc F1 score

TFN 59.40 57.33
LMF 60.27 53.87

CHFusion 58.45 56.90
BC-LSTM 60.77 59.04
CAT-LSTM 60.72 58.83

HFFN(d, s = 2, 2) 60.37 59.07

Table 3: Performance on CMU-MOSEI dataset.

CMN (Hazarika et al., 2018), C-MKL (Poria et al.,

2016b) and CAT-LSTM (Poria et al., 2017c).

As presented in Table 1, HFFN shows improve-

ment over typical approaches, setting new state-

of-the-art record. Compared with the tensor fu-

sion approaches TFN (Zadeh et al., 2017), M-

RRF (Barezi et al., 2018) and LMF (Liu et al.,

2018), HFFN achieves improvement by about 4%,

which demonstrates its superiority. It is reason-

able because these methods conduct tensor fusion

at holistic level and ignore modeling local interac-

tions, while ours has a well-designed LFM mod-

ule. Compared to the word-level fusion approach-

es RAVEN (Wang et al., 2019), RMFN (Liang

et al., 2018a) and FAF (Gu et al., 2018b), etc.,

HFFN achieves improvement by about 2%. We

argue that it is because they ignore explicitly con-

necting locally-constrained interactions to obtain a

general view of multimodal signals, while we ex-

plore global interactions by applying ABS-LSTM.

The results on IEMOCAP and CMU-MOSEI

datasets are shown in Table 2 and Table 3, re-

spectively. We can conclude from Table 2 that

HFFN achieves consistent improvements on accu-

racy and F1 score in IEMOCAP 4-way and indi-

vidual emotion recognition tasks compared with

other methods. Specifically, HFFN outperform-

s other methods by a significant margin on the

recognition of Angry and Neutral emotions. For

CMU-MOSEI dataset, as shown in Table 3, the

accuracy of HFFN is lower than that of BC-LSTM

and CAT-LSTM, but it achieves the highest F1 s-
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IEMOCAP (Individual) IEMOCAP (4-way)

Models F1-Angry F1-Happy F1-Sad F1-Neutral Models Acc F1

MFM 86.7 85.8 86.1 68.1 C-MKL 74.1 -
MARN 84.2 83.6 81.2 66.7 CHFusion 76.5 76.8
MFN 83.7 84.0 82.1 69.2 SVM Trees 67.4 -

RMFN 84.6 85.8 82.9 69.1 BC-LSTM 77.57 77.80
TFN 84.2 83.6 82.8 65.4 CAT-LSTM 80.47 80.27

MRRF 86.0 85.6 85.8 67.9 Memn2n 75.08 -
GMFN 85.5 84.2 83.0 68.9 CMN 77.62 -
RAVEN 86.7 85.8 83.1 69.3 TFN 75.83 75.99

LMF 89.0 85.8 85.9 71.7 LMF 76.32 76.49

HFFN(d, s = 2, 2) 94.31 88.65 86.24 76.24 HFFN(d, s = 2, 2) 82.37 82.42

Table 2: Performance of HFFN on IEMOCAP dataset. Here F1- means F1 score.

CMU-MOSI IEMOCAP

Methods Acc F1 Acc F1

L 78.59 78.52 81.46 81.54
A 48.14 48.30 38.08 38.17
V 56.97 57.48 34.52 29.15

L+A 78.06 78.29 80.38 80.60
L+V 79.39 79.38 80.05 80.26
A+V 55.17 55.76 55.17 55.79

L+A+V 80.19 80.34 82.37 82.42

Table 4: Unimodal, Bimodal and Trimodal Results of

HFFN. Here, L, A and V denotes language, acoustic

and visual modalities, respectively.

core with slight margin. HFFN still achieves state-

of-the-art performance on these two datasets.

4.3.2 Discussion on Modality Importance

To explore the underlying information of each

modality, we carry out an experiment to compare

the performance among unimodal, bimodal and t-

rimodal models. For unimodal models, we can

infer from Table 4 that language modality is the

most predictive for emotion prediction, outper-

forming acoustic and visual modalities with sig-

nificant margin. When coupled with acoustic and

visual modalities, the trimodal HFFN perform-

s best, whose result is 1% ∼ 2% better than the

language-HFFN, indicting that acoustic and visu-

al modalities actually play auxiliary roles while

language is dominant. However, in our model,

when conducting outer product, all three modal-

ities are treated equally, which is probably not the

optimal choice. In the future, we aim to devel-

op a fusion technique paying more attention to the

language modality, while the other two modalities

only serve as accessory sources of information.

Interestingly, the bimodal HFFNs do not nec-

essarily outperform the language-HFFN. Contrar-

ily, sometimes it even lowers the performance

when language is combining with acoustic or vi-

sual modality. Nevertheless, when three modali-

ties are available, the performance is undoubtedly

the best. It indicates that a great deal of informa-

tion hidden in a single modality can be interpreted

Methods FLOPs Number of Parameters

BC-LSTM 1,322,024 1,383,902
TFN 8,491,845 4,245,986

HFFN 16,665 8,301

Table 5: Comparison of Efficiency.

only by combining all the three modalities.

4.3.3 Comparative Analysis on Efficiency

Contrast experiments are conducted to analyze the

efficiency of TFN (Zadeh et al., 2017), BC-LSTM

(Poria et al., 2017b) 3 and HFFN. We compare the

number of parameters and FLOPs after fusion (the

FLOPs index is used to measure time complexi-

ty), and the inputs for all methods are the same

to make a fair comparison. The trainable layers

in TFN include two FC layers of 32 ReLU acti-

vation units and a decision layer: R
32→R

2. We

adopt this setting to match the code released by the

authors 4. BC-LSTM’s trainable layers contain a

bidirectional LSTM with input and output dimen-

sion being 3 · 50 and 600 respectively, and two FC

layers of 500 and 2 units respectively.

Table 5 shows that in terms of the number of pa-

rameters, TFN is around 511 times larger than our

HFFN, even under the situation where we adopt a

more complex module after tensor fusion, demon-

strating the high efficiency of HFFN. Note that if

TFN adopts the original setting as stated in (Zadeh

et al., 2017) where the FC layers have 128 units,

it would even have more parameters than our ver-

sion of TFN. Compared to BC-LSTM, HFFN has

about 166 times fewer parameters and the FLOPs

of HFFN is over 79 times fewer than that of BC-

LSTM. Moreover, BC-LSTM is over 6 times faster

than TFN in time complexity measured by FLOPs

and the number of parameters is over 3 times s-

maller. These results demonstrate that outer prod-

uct applied in TFN results in heavy computation-

al complexity and a substantial number of param-

3https://github.com/soujanyaporia/multimodal-
sentiment-analysis

4https://github.com/Justin1904/TensorFusionNetworks
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Acc F1 score

Bidirectional LSTM 79.65 79.77
LSTM 78.86 78.97

ABS-LSTM(no attention) 79.12 79.22
ABS-LSTM(RIA) 79.39 79.54
ABS-LSTM(GIA) 79.39 79.47

ABS-LSTM(RIA+GIA) 80.19 80.34

Table 6: Discussion on LSTM Variants.

eters compared with other methods such as BC-

LSTM, while HFFN can avoid these two problems

and is even more efficient than other approaches

adopting low-complexity fusion methods.

4.3.4 Discussion on Global Fusion

To demonstrate the superiority of ABS-LSTM on

learning global interactions and the impact of the

proposed attention mechanism, we conduct an ex-

periment to compare the performance of mod-

el under different settings of global fusion. We

can infer from Table 6 that ABS-LSTM reaches

best results among all tested LSTM variants. Be-

sides, vanilla LSTM achieves lowest performance,

showing the necessity of delivering information

bidirectionally. Bidirectional LSTM slightly out-

performs no-attention variant of ABS-LSTM, pos-

sibly due to the use of two sets of independen-

t learnable parameters for forward and backward

passes, respectively, which allows more flexibili-

ty. However, as ABS-LSTM with attention out-

performs bidirectional LSTM, it demonstrates the

efficacy of ABS-LSTM.

In terms of the effectiveness of attention mech-

anisms, interestingly, both RIA and GIA, when

used alone, only bring about slight improvement

(0.2%∼0.3%) compared to the no-attention ver-

sion of ABS-LSTM. However, it further boost-

s the performance when RIA and GIA are con-

currently used, achieving more improvement than

that caused by RIA and GIA alone added together.

This shows some potential positive link between

the two levels of attention mechanism. Specifi-

cally, RIA can provide more refined information

during transmission between local interactions, so

that the output states to be processed by GIA are

more focused on useful information and freer of

noise, maximizing the effect of GIA.

4.3.5 Discussion on Sliding Window

To investigate the influence of the size d and the

stride s of sliding window on learning local in-

teractions, we conduct experiments on IEMOCAP

where s changes incrementally from 1 to 10 and d

takes on four values, namely 1, 2, 5 and 10. The

Figure 3: Influence of window size d and stride s.

results are shown in Fig. 3. It can be observed that

for all values of d, the accuracy fluctuates within a

limited range as the stride s changes incremental-

ly, showing robustness with respect to the stride.

Overall, the model fares best when d is set to 2,

demonstrating that a moderate size of sliding win-

dow is important for ensuring high performance.

We conjecture that the reason behind the decline

in performance when d is assigned an overly large

value (greater than 2), is that the effect of local

fusion is lessened, leading to less specialized ex-

ploration of feature portions. This in turn veri-

fies the central importance of local fusion in our

strategy. In addition, an unreasonably small d may

lead to disintegration of the feature correlation that

could be capitalized on and scatter complete in-

formation, thus hurting overall performance. Fur-

thermore, it is surprising that when the stride s is

greater than d (some dimensions of feature vectors

are left out in local fusion), the accuracy does not

significantly suffer. This shows that there may be

a deal of redundant information in the feature vec-

tors, implying that more advanced extraction tech-

niques are needed for more refined representation-

s, which we will explore as part of future work.

5 Conclusion

We propose an efficient and effective framework

HFFN that adopts a novel fusion strategy called

‘divide, conquer and combine’. HFFN learns local

interactions at each local chunk and explores glob-

al interactions by conveying information across lo-

cal interactions using ABS-LSTM that integrates

two levels of attention mechanism. Our fusion s-

trategy is generic for other concrete fusion meth-

ods. In future work, we intend to explore multiple

local fusion methods within our framework.
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