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Fig. 1. European follower graph for GitHub, a hosted source code repository, highlighting connections to and from Berlin in color.
Highlighted edges fade from blue (source) to red (target) to indicate direction. Divided edge bundling separates antiparallel edges
into emergent “traffic lanes”, enabling inspection of network asymmetries, such as the connections between Berlin and London. (235
nodes, 2101 edges; 18.1 seconds to bundle)

Abstract—The node-link diagram is an intuitive and venerable way to depict a graph. To reduce clutter and improve the readability
of node-link views, Holten & van Wijk’s force-directed edge bundling employs a physical simulation to spatially group graph edges.
While both useful and aesthetic, this technique has shortcomings: it bundles spatially proximal edges regardless of direction, weight,
or graph connectivity. As a result, high-level directional edge patterns are obscured. We present divided edge bundling to tackle these
shortcomings. By modifying the forces in the physical simulation, directional lanes appear as an emergent property of edge direction.
By considering graph topology, we only bundle edges related by graph structure. Finally, we aggregate edge weights in bundles
to enable more accurate visualization of total bundle weights. We compare visualizations created using our technique to standard
force-directed edge bundling, matrix diagrams, and clustered graphs; we find that divided edge bundling leads to visualizations that
are easier to interpret and reveal both familiar and previously obscured patterns.

Index Terms—Graph visualization, aggregation, node-link diagrams, edge bundling, physical simulation.

1 INTRODUCTION

Dense directed and weighted graphs present a common and difficult
challenge in graph visualization. Tasks such as managing computer
network traffic, shipping logistics, and communication records require
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interpretation of both geographic and directional patterns to gain in-
sight. Social networks constitute another arena where connections
among (often geo-located) entities are at the heart of any study.

Straight-edge node-link diagrams are an intuitive way to commu-
nicate graph structure for geo-located data, but they quickly suffer
from occlusion issues with larger datasets. Figure 2(a) presents an
unsuccessful visualization of open source software collaborations on
the west coast of the United States based on data from GitHub [8]. The
directionality of edges is encoded by a color gradient pointing from the
source (blue) to the target (red); edge weight is encoded in the width
of the edge. We could reduce the resulting visual clutter by optimiz-
ing node placement, but then the spatial dimensions would no longer
faithfully communicate geographic patterns.



(a) Unbundled (b) Clustered to metro areas (c) Force-directed edge bundling (d) Divided edge bundling

Fig. 2. Views of a subset of GitHub follower data on the United States west coast. As a reference, from bottom to top, the node clusters in these
maps are: San Diego and Los Angeles, San Francisco, Portland, Seattle and Vancouver. Edges fade from blue to red along their length to indicate
direction. Divided edge bundling reveals connections to the San Francisco area as having an asymmetry: more blue bundles leave the area than
red bundles leave. (Unclustered 238 nodes, 1495 edges; 11.6 seconds to bundle)

Fig. 3. Matrix diagram of clustered GitHub data. Darker cells indicate
more connections from row to column clusters. The asymmetry in con-
nections to and from San Francisco found in Figure 2(d) can be seen
since San Francisco’s row is darker than its column.

Another approach to clutter reduction is clustering. Many graph
simplification techniques exist [14], but each makes assumptions about
the data that may be inappropriate for a specific data set. Simplifica-
tion can also obscure fine-grained or exceptional patterns that may
be present. Figure 2(b) shows the GitHub data clustered to major
metropolitan areas; although the graph is much simpler, higher-level
directional trends and asymmetries still are not visible.

Matrix diagrams present an uncluttered edge-centric visualization
of the data [6] at the cost of abstracting away familiar spatial correla-
tions, such as geographic patterns. To make a large and sparse matrix
diagram of geographically distinct nodes more digestable, one could

apply graph simplification or aggregation methods before generating
the diagram. Figure 3 presents a simplified version of the GitHub
data using a matrix diagram. Although the patterns of connectivity
are visible, one requires intimate knowledge of the data being repre-
sented (in this case the proximity of the major cities on the west coast
of the U.S.) to draw geographic conclusions from this visualization.
Moreover, comparisons must be made across the diagonal to assess
asymmetries, requiring a potentially error-prone visual search when
viewing large matrices.

As a result, we return to the node-link diagram. To reduce clut-
ter without resorting to graph simplification, we can spatially bundle
edges that traverse similar paths. For example, Holten & van Wijk’s
force-directed edge bundling [12] uses a physical simulation to clus-
ter edges together. Figure 2(c) applies force-directed edge bundling
to this GitHub network, revealing higher-level connectivity patterns
not visible in the preceding graphs. However, current edge bundling
approaches suffer from some shortcomings. Figure 2(c) provides lit-
tle insight into directional patterns and does not effectively show the
magnitude of weights in the bundled edges. In addition, spatially prox-
imate edges are bundled regardless of graph topology; edges from dis-
joint subgraphs would be grouped. While researchers have proposed a
variety of edge bundling methods [1, 5, 10, 12, 15], each ignores edge
direction, graph connectivity, and edge weights when calculating edge
layouts. To address these issues, we leverage the observation that spa-
tially pairing edges can improve our ability to compare their attributes,
and set out to design an algorithm that performs this pairing.

Thus, we introduce divided edge bundling, an extension of the
force-directed edge bundling method [12]. By modifying the forces in
the physical simulation, directional lanes appear as an emergent prop-
erty of edge direction. By considering graph topology, we only bundle
edges related by graph structure. Finally, we aggregate edge weights in
bundles to enable more accurate visualization of total bundle weights.
Bringing forward directional lanes and edge weights enables analysts
to more easily spot asymmetries, while incorporating graph connectiv-
ity helps prevent spurious inferences. As a result, patterns previously
visible only in a matrix view can now be seen in a node-link diagram
with the added benefit of spatial or geographic context.

Figure 2(d) demonstrates the application of divided edge bundling
to the same GitHub data. We now see asymmetries in the flow into
and out of San Francisco, as indicated by the thicker outgoing (blue)



bundles connected to the area. The magnitude of flows between cities,
asymmetries in these flows, and the directions of edges may now be
inspected at a high level.

The rest of the paper is organized as follows. After surveying re-
lated work on graph visualization, we present the details of divided
edge bundling. We describe both our physical model and visual encod-
ing choices, and we discuss salient implementation and performance
details. We then present case studies applying divided edge bundling
to a collection of real-world data sets.

2 RELATED WORK

The visualization community has devised a variety of methods to
improve the effectiveness of graph visualizations. Techniques for
node-link diagrams include clutter reduction [3], node clustering [14],
interactive focus+context techniques [18, 19], and edge bundling
[1, 5, 10, 12, 15]. However, these methods often fail to accurately
convey directional information, particularly for dense graphs with
attribute-driven (e.g., geographic) node placement.

Matrix diagrams [6] solve some of these shortcomings, but can ob-
scure nodes’ spatial or geographic patterns. Matrix diagrams often
encode edge weight using color or hue. Perceptual experiments [17]
of standard data graphics (e.g., bar charts) have shown that length en-
coding is strongly preferable to color encoding of quantitative values;
this suggests that edge width comparisons may be more accurate than
color or hue comparisons of matrix adjacency cells. Attribute-based
aggregation, as applied in Honeycomb [16], can improve scalability
but retains these shortcomings. Hybrid approaches such as NodeTrix
[9] reduce clutter by converting selected portions of the dataset to ma-
trix diagrams; however, one must determine a clustering scheme and
fine-grained geographic data cannot be depicted within the clusters.

Force-Directed Edge Bundling. The prior work most closely re-
lated to our own research is the growing literature on edge bundling
methods. Researchers have proposed a variety of techniques, includ-
ing hierarchical edge bundling [10], force-directed edge bundling [12],
geometry-based edge clustering [1], multi-level agglomerative edge
bundling [5], and grid-based methods [15]. While these methods have
their advantages, they uniformly ignore edge direction, connectivity,
and weight and therefore fall short in communicating patterns involv-
ing those characteristics.

We developed divided edge bundling as a set of extensions to Holten
& van Wijk’s force-directed edge bundling [12]. As our contributions
build upon this prior work, we now describe their technique in detail.
Force-directed edge bundling is a discrete time physical simulation
that models each edge as a set of control points. Each control point
interacts with adjacent ones via ideal Hooke’s law springs and inter-
acts with control points on other edges via a Coulombic interaction, as
depicted in Figure 4.

The spring force between two adjacent control points pi and p j on
edge P comes from Hooke’s law using a spring constant equal to a
global spring constant ks times the number of control points C. The
force acts along the vector between the points.

Fs(pi, p j) = ksC|pi − p j| (1)

Proportionally scaling the effective spring constant by C gives each
edge a constant stiffness independent of C.

The Coulombic force between edge control points pi and q j on dis-
tinct edges P and Q is an inverse radius force using a global Coulombic
constant kC. The force acts along the vector between the points.

FC(pi,q j) =
kC

|pi −q j|2
(2)

Holten & van Wijk reduce the computational complexity from
O(E2C2) to O(E2C) (where E is the number of edges and C is the
number of control points) by having each control point attract only
control points of the same index on other edges. They assert that this
trick does not change the qualitative result of the edge bundling algo-
rithm [12]; this has been our experience as well.

Fig. 4. Force-Directed Edge Bundling. Each control point of an edge is
forced towards adjacent points with a spring force Fs and toward a point
on every other edge with a Coulombic force FC. (Adapted from [12])

Holten & van Wijk also give a method for smoothing edges where
the position of all control points in an edge are convolved with a Gaus-
sian kernel. Over-bundled edges are spread apart by this convolution,
allowing the viewer to roughly see the number of edges in each bundle.

Compatibility Measures. In order to prevent over-bundling — and
thus avoid a visually inscrutable image — prior work introduced a set
of compatibility measures that reduce inter-edge attraction [12]. As
two edges P and Q diverge in length, position, angle, or projection
overlap (called “visibility”), the force between their control points is
multiplied by the product of these measures, Ce(P,Q)∈ [0,1] to reduce
it. These measures are defined with respect to the fixed positions of the
graph nodes, not to the positions of the movable control points.

3 DIVIDED EDGE BUNDLING

Building directly upon Holten & van Wijk’s approach, we developed
divided edge bundling to enable the perception of connectivity fea-
tures previously discernible only in matrix views, while retaining the
intuitive encoding and spatial placement of a node-link diagram. In its
original form, force-directed edge bundling does not incorporate edge
directions, connectivity patterns, or edge weights; our technique ad-
dresses these three omissions. First we describe our modifications to
the Holten & van Wijk’s physical simulation for edge bundling layout;
then we describe our visual encoding decisions.

3.1 Directional Lanes

We employ a partial spatial (position) encoding for edge direction:
edges that travel in antiparallel directions are not bundled directly on
top of each other, but are separated to form two directional lanes like
a divided highway. Although the efficacy of this spatial encoding has
not been studied, it has some precedent in successful similar designs,
such as Fekete et al.’s [4] approach of using edge curvature to indicate
direction, and it corresponds with the common experience of highway
systems. Given a cultural convention, viewers who encounter a di-
vided highway can quickly discern the directions of a lane of travel
by virtue of which side of the road it is on, even without other clues.
These directional lanes arise as an emergent behavior of the physical
simulation by modifying the potential function of the Coulombic force
to depend on edge direction.

This modification to the potential requires a definition for relative
edge direction. Consider each edge to be a vector from a source node
position to a target node position; two edges P and Q go in the same
direction if their dot product is positive and go in the opposite direction
if their dot product is negative. For a point pi in P attracted to a point
q j in Q, we refer to the location of the potential minimum as m j. When
P and Q are going the same direction, m j is located at q j; this behavior



Fig. 5. Directional lanes emerge by attracting control points to different
locations (red circles) depending on the relative direction of edges. (a)
If edges P and Q travel in the same direction (P ·Q > 0), control points
on P are attracted to the position of control points on Q. (b) If edges
P and Q travel in opposite directions (P ·Q < 0), control points on P are
attracted to a point a lane width l to the “right” of Q.

is identical to standard force-directed edge bundling. However, when
P and Q are going opposite directions, m j moves to a point a distance
l to the “right” of q j, where l is a defined lane width, as is depicted in
Figure 5. In other words, when edges are antiparallel, we translate the
potential function by l.

“Right” is defined as the 90◦ rotation of the vector Tj between q j−1

and q j+1, which is N j (the unit normal at q j), times l plus q j.

Tj = q j+1 −q j−1 (3)

N j =

(

0 −1
1 0

)

Tj

|Tj|
(4)

Since “right” is defined relative to the local edge direction, edges that
are antiparallel constructively force themselves into separate lanes.

We chose an inverted Lorentzian (see Figure 6) with a minimum
at r = 0, where r is the distance between two interacting points, as
our specific potential function U(r). We chose this potential because
it does not have any discontinuities or singularities and is amenable to
producing stable conformations in a discrete physical simulation. That
said, any smooth potential function that has a minimum at r = 0 could
be used and cause lanes to emerge.

r

U

Fig. 6. The potential function we use is an inverted Lorentzian, although
any smoothly varying function with a minimum at r = 0 can be used.

The force F(r) is the negative gradient of the potential. Parameter s
determines the slope into the potential well and the well depth is deter-
mined by an effective Coulombic constant equal to a global Coulom-
bic constant kC divided by the number of control points C. The value
r is the distance between the current control point pi and the potential
minimum m j for its corresponding control point q j .

UC(pi,q j) =
−skC

πC(s2 + |pi −m j|2)
(5)

FC(pi,q j) =−∇UC(pi,q j) =
−skC|pi −m j|

πC(s2 + |pi −m j|2)2
(6)

The potential minimum m j is defined in the same way as above:

m j =

{

q j if P ·Q > 0

q j + lN j if P ·Q < 0
(7)

Inversely scaling the effective Coulombic constant by the C points
gives each edge a constant Coulombic charge, causing the character
of the bundling to be independent of C.

We implemented a modified version of the complexity reduction
trick described previously, where each control point pi only interacts
with a single control point on the other edge. Since all edges have the
same number of control points, pi interacts with qi on the other edge
if the edges are going the same direction, or pi interacts with qC−i on
the other edge if the edges are going opposite directions. This index
inversion based on edge direction is performed so that each control
point interacts with the most spatially appropriate control point on the
other edge. This complexity reduction trick was found to have little
effect on the final visualization, as in prior work [12].

As a simple demonstration of this extension, Figure 7(a) and Fig-
ure 7(b) compare the results of bundling a synthetic graph with and
without directional lanes. Emergent lanes physically separate edges
of different directions and reveal the simple pattern that standard
bundling obscures. Although the unbundled version of this simple
graph will also show the directional pattern, edge occlusion often ob-
scures such patterns as networks become more dense.

3.2 Connectivity Compatibility

Graph topology is an interesting omission from existing compatibility
measures in force-directed edge bundling. Edges that happen to be
close in space are bundled, irrespective of their proximity in the graph
structure. As edges in one subgraph do not necessarily provide context
for edges in the other, disjoint subgraphs should not be bundled.

The goal of incorporating connectivity into the edge bundling algo-
rithm is to ensure that the observed high-level patterns are reflective of
the underlying structure of the graph. We now introduce the connec-
tivity compatibility Cc ∈ [0,1] which quantifies how closely edges are
related by graph distance. Between edges P and Q, Cc is defined as

Cc(P,Q) =
1

1+Dmin(P,Q)
(8)

where Dmin(P,Q) is the number of edges in the minimum length path
connecting either of the nodes of P to either of the nodes of Q, disre-
garding edge direction and weight. If there is no possible route Dmin

is assigned to +∞. Thus, if the two edges share a node Cc = 1, if they
are in disjoint subgraphs Cc = 0. This Cc is multiplied by the other
compatibility coefficients described in the original technique, and the
product is used to scale the Coulombic forces between P and Q. Dmin

values for all edges can be calculated once in a preprocessing phase
using the Floyd-Warshall algorithm.

Figure 7 compares two graphs bundled with and without connectiv-
ity compatibility. Prior to incorporating connectivity, the existence of
two disjoint subgraphs is completely obscured, nor is it immediately
obvious in the unbundled graph (c.f., Figure 9(a)).

The connectivity coefficient described here will severely limit
bundling in data sets with many disjoint subgraphs; the user may need
to decide if this extension is appropriate to use with their data.

3.3 Edge Weights

To meet our goal of faithfully incorporating weighted edges, a third
extension is needed. We assume edge weight corresponds to the im-
portance of an edge in the graph, and that more important edges should
exert more influence on the final structure of the graph.

As the simulation proceeds, the potential function moves control
points, and those that are in compatible edges begin to overlap. We call
a group of edges with overlapping control points a bundle. Bundles
produce what we perceive to be a single merged edge; these edges and
control points are still distinct in the physical simulation, but they just
happen to be overlapping.
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Fig. 7. Examples of edge bundling simulation extensions. Directed lanes form when antiparallel edges attract each other to a given lane width
apart. Taking into account graph topology via a compatibility coefficient reveals disjoint subgraphs that were previously obscured.

Fig. 8. Divided edge bundling including weight extensions. Edge widths
are scaled to encode bundle weight. Asymmetry of flow becomes ap-
parent: more edges point from right to left.

Individual edges that have a weight equal to the sum of the weights
in a bundle should behave similarly to that bundle as a whole in the
physical simulation. As a bundle gathers edges, it becomes more in-
fluential in the simulation: it contains more edges with control points
that influence other edges. By scaling the force an edge exerts on other
edges by its weight, we can ensure that bundles and single edges with
the same total weight act equivalently.

First, individual edge weights are normalized to ∈ [0,1]. Then our
physical simulation scales an edge’s internal spring force of the orig-
inal technique and its modified external Coulombic force by this nor-
malized weight. Heavier edges thus exert more influence over the
bundled graph structure. The intra-edge spring forces are relatively
stronger, resulting in heavier edges being less flexible, and the inter-
edge Coulombic forces are relatively stronger, resulting in heavier
edges attracting other edges more. In the case of unweighted graphs,
all the edge weights are equal and the technique reduces gracefully.

3.4 Visual Encodings

Our goal of highlighting overall patterns in graph structure must be
met by our choice of visual encoding. A number of visual encodings
are available to convey individual edge weights and directions, and in
this section we describe our choices and the rationale behind them.

3.4.1 Edge Direction Encoding

Visualizations of directed graphs often appear more cluttered than
their undirected counterparts due to extra symbols (e.g., arrow heads)
or other decorations indicating edge direction. Within divided edge
bundling, the relative spatial position of lanes takes on some of the
burden of encoding edge direction. In addition, prior empirical work
has shown that color gradients are an effective way to communicate
direction to viewers [13]. Accordingly, we use a blue (source) to red
(target) gradient to signify direction. As a result, a viewer inspecting
any edge in isolation can determine its absolute direction. It is also
relatively easy to see if a region of the graph is predominantly source
or target nodes by comparing the average color.

The blue to red gradient encoding does have a shortcoming. The
midpoint of an edge will be purple regardless of direction, so compar-
ing the direction of two edges at their midpoints will require scanning
along the length of an edge until a color change is detected. This dif-
ficulty is highlighted in the center of Figure 7(c).

Prior work [11] has explored the efficacy of other directional en-
codings for straight line node-link diagrams, with tapered edges per-
forming best in a user study. A tapered edge encoding may be less
desirable when used in combination with edge bundling, as overlap-
ping edges of varied width may not produce intuitive and perceptually
effective views. As presented, bundling poses a general problem for
visual encodings that vary along the length of an edge, as information
can be obscured when edges at different stages of traversal are placed
on top of each other.

3.4.2 Edge Weight Encoding

Since the edge bundling process spatially condenses edges, we need
to augment bundling to support the perception of total bundle weight.
Holten & van Wijk employ Gaussian smoothing of control point posi-
tions to tease apart bundles into component edges, resulting in bundles
with more edges appearing larger. Since this approach undoes some
of the bundling, it may increase the amount of clutter. Moreover, the
effect of the smoothing is quite limited at the middle of an edge, and so
does not provide a uniform visual indicator of bundle weight. In addi-
tion to smoothing, Holten & van Wijk explored encoding the number



(a) 0 cycles – 0 control points (b) 1 cycle – 1 control point (c) 2 cycles – 3 control points (d) 3 cycles – 7 control points

Fig. 9. Automated, iterative edge bundling. Each cycle (left to right) increases the number of control points and halves the simulation time step.

of edges as a colored heatmap; however, edge color can no longer en-
code direction. Another possibility is to render semi-transparent edges
so that thicker bundles appear more vivid than single edges.

To further improve perception of bundle weights, we have modified
the edge bundling routine to recognize when multiple edges overlap
and to draw those edges as if they carry the combined weight of all the
edges in this bundle. The weight g of a bundle at a given control point
pi in an edge P is the sum of all the weights of the edges Q going the
same direction as P (P ·Q> 0) and exceeding a threshold compatibility
criteria (we use C ≥ 0.05) with control points q j in any edge Q within
a certain cutoff distance d of pi, where d is the visible edge thickness
of P calculated using only the edges own weight.

We globally normalize these g ∈ (0,1] before computing the visual
thickness of an edge at that control point. This weight normalization
step makes a single set of visual parameters more applicable to a wider
array of input graphs. We define the visible edge thickness D to be

D = wgp (9)

where the edge width constant w and edge width exponent p are con-
figurable visual parameters. As g ≤ 1, the edge width power p param-
eter controls how quickly the visual thickness of edges falls off with
weights less than the maximum. This allows more subtle asymmetries
in edge and bundle weight to be seen.

Note that calculating bundle weights has no effect on the physical
simulation. Even when the control points of two edges have collapsed
upon each other, our implementation renders both edges; since bundle
weight is only calculated at mesh control points, as edges join or leave
a bundle, the resulting jumps in bundle weight can cause visual arti-
facts that look like feathers. In order to ease visual interpretation of
edge overlap, we render each edge with an alpha value of 0.25.

Figure 8 demonstrates our encoding of bundle weight, which makes
apparent the difficult-to-discern edge count asymmetry in Figure 7(d).

4 IMPLEMENTATION AND PERFORMANCE

We implemented1 these techniques using a GPU-accelerated physi-
cal simulation with a leapfrog integrator [7] written for MacOS X in
Objective-C and OpenCL. Our prototype system also enables interac-
tive parameterization and exploration of bundled graphs. All figures
in this paper were produced using our prototype application. All times
were measured on a 2010 Apple MacBook Pro with a 2.66 GHz Intel
Core i7 CPU and a NVIDIA GeForce GT 330M GPU.

4.1 Computational Complexity

The complexity of the described physical simulation is the same as
force-directed edge bundling, O(E2C) per frame, since force computa-
tion uses the complexity reduction trick described in §3.1. The bundle
weight calculation described above can be performed while calculat-
ing the force on a control point, and adds no complexity.

Running the physical simulation requires preprocessing the input
graph to generate compatibility coefficients. Generating these val-
ues requires an all-pairs shortest path computation, a one time cost
of O(N3) in our implementation, though for sparse graphs like our ex-
amples, Johnson’s Algorithm with Fibonacci heaps drops this cost to
O(N2log(N)+NE). Finding the resulting compatibility coefficients

for every edge pair incurs a one-time cost of O(E2).

1Our implementation can be downloaded at http://selassid.

github.com/DividedEdgeBundling.

Figure Nodes Edges Preprocessing Simulation

1 69 1537 1.9 sec 18.1 sec
2(d) 238 1495 1.5 sec 11.6 sec
10(b) 235 2101 2.5 sec 23.7 sec

12 44 142 0.1 sec 1.0 sec

Table 1. Size and generation times of images presented in this paper.
All times were measured on a 2010 Apple MacBook Pro with a 2.66
GHz Intel Core i7 CPU and a NVIDIA GeForce GT 330M GPU.

It is important to reiterate that the extensions described here en-
hance the visible patterns but do not increase the computational com-
plexity of the physical simulation; only the complexity of the one-time
preprocessing step is increased.

4.2 Automated Image Generation

Holten & van Wijk outline an iterative technique to quickly converge
on an approximation of the most stable bundled graph; we apply a
similar approach. We first set up a simulation with a large initial time
step (dt = 40) and subdivide each edge into two control segments. Af-
ter a specified number of simulation steps (30), the time step is halved
and the number of control segments in each edge is doubled, complet-
ing one cycle. We perform a total of five cycles, over which the edge
bundling approaches a stable conformation. The initial cycles with
fewer control points but larger time steps allow the coarse structure of
the bundled graph to quickly form; later cycles refine these structures.
This iterative process is illustrated in Figure 9.

For the graphs presented here generated using the automated itera-
tive technique, most of the computational time is spent in the physical
simulation, and not in the preprocessing step, as revealed in Table 1.

4.3 Edge Bundling Parameters

The visualizations produced by our edge bundling technique depend
on a number of parameters. Thus far we have introduced seven param-
eters: the spring constant ks, the Coulombic constant kC, the number
of control points C, the lane width l, the edge width w, the edge width
exponent p, and the Lorentz function width s. There are also two addi-
tional parameters: the simulation time step dt and a velocity damping
friction coefficient f .

Table 2 provides a brief physical explanation of the parameters and
the default values used to generate images in this paper (ranges in-
dicate extent during automated image generation). Table 3 depicts
the effects of varying the selected parameters. There is interplay be-
tween these parameters: since the spring force straightens edges and
the Coulombic force bends edges, only the ratio of the two has an
effect on the final layout of control points. A lower spring force to
Coulombic force ratio results in more flexible edges that readily form
bundles, while a higher ratio results in stiffer edges.

Like all discrete physical simulations, dt needs to be set low enough
and f high enough to produce stable graphs without simulation arti-
facts. Decreasing dt comes at the expense of increasing the number
of iterations required to create a final bundled graph, and therefore the
computation time to produce an image.

4.4 Scalability

Ideally, our technique should reliably scale with the size of the input
graph in every dimension: number of edges, number of nodes, node

http://selassid.github.com/DividedEdgeBundling
http://selassid.github.com/DividedEdgeBundling


Parameter Physical Analogy Default

ks Edge Stretchiness 0.5×10−3

kC Edge Attraction 2.0×104

C Edge Resolution < 35
l Directional Lane Width 25
w Visual Edge Width 7.0
p Edge Width Fall-Off 1.25
s Attractive Force Range 30.0
dt Simulation Time Step 40−1.25
f Friction 0.2

Table 2. Physical simulation parameters for divided edge bundling and
their default values. Ranges indicate values spanned during the iterative
automatic image generation procedure described in §4.2.

Param. Low Value High Value

ks

kC

l

w

p

alpha

Table 3. Effects of simulation and visual parameters. Some parameters
are complementary, so their ratio determines the final layout.

placement, edge weight, and number of control points. Both the spring
and Coulombic forces, as previously described, scale with the number
of control points C. Multiplying the effective spring constant by C and
dividing the effective Coulombic constant by C keeps the same physi-
cal characteristics for an edge while allowing for variable resolution.

The input node positions are proportionally scaled to fit in a box of
constant dimension (we use a square with a side of 1000.0 units) and
the edge weights are normalized before the simulation begins. This
normalization allows the bundling technique to be more flexible since
it depends only on the relative weights and positions of edges.

As the density of edges in a graph grows, the total Coulombic
force on any control point also increases. To counter this, the global
Coulombic constant is divided by the square root of the number of
edges, which physically corresponds to keeping the simulation’s aver-
age charge density approximately constant. If this step is omitted, the
force acting on a control point can exceed the threshold for simulation
stability as you add more edges to the graph.

(a) Smoothed force-directed edge bundling

(b) Divided edge bundling

Fig. 10. Domestic flights in the United States. Edges fade from blue to
red to indicate direction. The circled node is Minneapolis; the connec-
tivity coefficient prevents the over-bundling of its westbound and east-
bound edges. (235 nodes, 2101 edges; 23.8 seconds to bundle)

5 EVALUATION

The original force-directed edge bundling technique enables viewers
to see patterns that are difficult to see in a standard node-link diagram.
While edge bundling may obscure some patterns, even more patterns
are likely being obscured in an undifferentiated “hairball” graph. As a
first step toward evaluating divided edge bundling, we apply the tech-
nique to some real-world data sets. We first compare to the original
force-directed edge bundling technique using airline flight data; then,
we compare to matrix diagrams using a social graph. These examples
show how divided edge bundling enables a viewer to identify high-
level directional edge direction, weight, and connectivity patterns.

5.1 Airline Flights

Figure 10 shows a network of U.S. domestic airline traffic (235 nodes,
2101 edges), visualized using (a) force-directed edge bundling with
smoothing and (b) divided edge bundling. Directional lanes bring or-
der to the formerly over-bundled right side of the graph; it becomes
easier to follow edges because of the directional lanes.

Divided edge bundling enables a viewer to conclude that almost
all of the links in this graph are symmetrical, i.e., the same number
of edges travel in both directions between any two nodes, as demon-
strated by the equal thickness lanes. Patterns seen with force-directed
edge bundling are still visible: major airports are prominently shown,
with thick edges leading to these nodes.

Without directional lanes, a viewer cannot come to this conclu-
sion. Edges more closely track their original direction and connectivity
compatibility prevents over-bundling. Major airports are still visible as
sources in the graph. As an example of the connectivity coefficient in
action, the circled airport, Minneapolis, is revealed to have large num-
bers of both eastbound and westbound flights in Figure 10(b), while
these edges are more difficult to interpret in 10(a). Including bundle
weights makes flows in the graph more apparent. These features of the
generated visualization support our claim that divided edge bundling
better reveals patterns regarding edge direction and edge weight.



(a) Ordered by edge weight (b) Ordered by latitude (c) Ordered by longitude

Fig. 11. GitHub follower data in the San Francisco Bay area as a matrix diagram. Row nodes follow column nodes; the shade of each square
indicates the relative number of followers. Axes are organized by (a) the number of total edges, (b) latitude, and (c) longitude. The patterns are
similar to those shown in Figure 12, except that spotting geographic trends requires a mental mapping from city name to geographic location. In
this case, one-dimensional spatial node orderings are insufficient to show two-dimensional geographic patterns in the data.
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Fig. 12. GitHub follower data in the San Francisco Bay area with divided edge bundling. Edges fade from blue to red to indicate direction. In spite
of San Francisco being represented as a cluster, edges connecting all of those points are still bundled. An asymmetry in cross-bay connections
can be seen in the thickness of the two major parallel bundles. (44 nodes, 142 edges; 1.0 seconds to bundle)



5.2 GitHub Follower Data

We previously introduced GitHub follower data in Figure 2 as a way
to motivate our work and briefly showed how divided edge bundling
reveals geographic patterns [8]. Given the task of uncovering these
types of patterns, we now attempt to compare the efficacy of a ma-
trix diagram to divided edge bundling on a subset of the GitHub data.
The matrix diagram in Figure 11 shows the ten cities2 with the most
GitHub followers in the San Francisco Bay area. The relative number
of followers in each link is encoded by shades of blue and the nodes in
each respective diagram are sorted by followers, latitude, and then lon-
gitude. Row nodes follow column nodes; the top row of Figure 11(a)
represents links from Mountain View. The square in the Oakland col-
umn of that row is white, signifying that there are few links from
Mountain View to Oakland. Compare this to the diagonally opposite
light blue square representing more weight in the reverse edge, and we
can conclude that more Oakland users are following Mountain View
users than the reverse. We notice that this graph is fairly balanced
across the diagonal, though a few connections have asymmetries. The
two spatial orderings in Figure 11(b) and 11(c) help translate node la-
bels to map positions, but do not reveal larger geographic patterns.

We now turn to Figure 12, which shows divided edge bundles for 57
geographic locations with GitHub users in the San Francisco Bay area.
This diagram needs less explanation; edges fade from blue to red to in-
dicate a following relationship. Many directional and geographic fea-
tures become apparent, and we see patterns due to clusters of nearby
nodes combining into a meaningful group that does not appear in the
matrix diagrams of the top 10 cities. Notice that even though there
are many nodes that represent locations within San Francisco3, it is
still possible for edges from the collection of nodes to group together
and show patterns. Due to this segmentation, rank ordering nodes by
in-flow or out-flow in a list or matrix diagram does not reveal that San
Francisco is influential in this dataset.

We notice that the majority of connections are bundled into cross-
bay lanes, and that the largest connections are asymmetric; more pro-
grammers in the South Bay follow those in the North Bay than vice
versa, as seen by the thicker right bundle running up the length of
the bay. This pattern is not obvious in any of the matrix diagrams
presented. Oakland has more edges leaving it, shown by the predomi-
nance of blue around the node, which was previously seen in the asym-
metry between Oakland’s column and row in the matrix diagrams.

Many of the users on GitHub tag their location as “Bay Area,”
which is geolocated to a nonexistent place west of Berkeley in the wa-
ter. Although this quirk can be exposed by any visualization technique
that retains spatial encoding, meaningful trends can still be extracted
from it using divided edge bundling. The “Bay Area” node primarily
connects to points in the south part of the bay, seen by the thicker bun-
dles leaving in that direction, suggesting that the node represents more
South Bay programmers. San Mateo also mostly has connections to
the South Bay, but links are evenly geographically distributed for most
other nodes, showing an unexpected social bias.

There is no absolute winner to the comparison between matrix di-
agrams and divided edge bundling. Matrices show self edges and
clearly separate individual links, but at the cost of extra mental effort to
map labels and groups of labels to geographic locations. Divided edge
bundling diagrams present a more easily-explained, easily-perceived
view of flow in a way that aggregates nearby edges automatically, but
the technique does not depict self edges and inherently hides detail in
aggregation. If the task is to extract fine pairwise comparisons from a
graphic, matrices are still a good choice, but if the task is to uncover
high-level patterns, we find divided edge bundling faster and more in-
tuitive. As always, it is critical to consider users’ goals and constraints.

6 FUTURE DIRECTIONS

Divided edge bundling might be extended in a number of ways:

2 Beyond ten cities the matrix becomes sparse.
3 Coders in San Francisco seem to have neighborhood pride and have en-

tered more specific location data in GitHub than just the name of their city.

Applicability. The techniques described here are not limited to
Holten & van Wijk’s approach; other forms of bundling could be en-
hanced with the ideas here to account for graph topology and direc-
tional information. Further work on the connectivity compatibility is
necessary to make it more applicable for graphs with different topo-
logical motifs and to properly account for edge weight.

Joint Node/Edge Layout. A major question unaddressed in both the
prior and current work is the interplay between node layout and edge
bundling; Holten & van Wijk’s compatibility coefficients are exclu-
sively a function of node position, so layout greatly affects bundling.
Automated graph layout algorithms that tend to orthogonalize edges
cause force-directed edge bundling techniques to coalesce edges inef-
fectively. Layout approaches that jointly optimize node placement and
edge bundling might enable improved pattern perception.

Scale Independence. Normalizing node position brings us only part
of the way toward a scale-independent technique — one that works
well regardless of zoom level. The current implementation of divided
edge bundling effectively supports only one scale, since lane width is
fixed. Patterns that are contained entirely within the lane width of-
ten suffer reduced fidelity, due to these spatially proximal antiparallel
edges bulging apart. Future extensions to divided edge bundling might
allow multi-level analysis to occur on large datasets by dynamically
varying the effective lane width.

Visual Encodings. A systematic exploration of visual encodings of
edge direction in combination with bundling might also lead to im-
proved results. Novel encodings might leverage the reduced amount
of directional information that each edge has to convey, as the relative
spatial position of a divided bundle already conveys some direction
information. New directional encodings might free other visual vari-
ables (e.g., color) to convey additional edge information.

Interaction. Although our prototype does include interaction tech-
niques (e.g., selection and zooming), future research might explore
ways to interact with bundled graphs more effectively. A real-time
physical simulation could react to selection queries and interactively
reveal less prominent patterns in novel ways. For example, the tech-
niques of Wong et al. (EdgeLens [19] and Edge Plucking [18]) might
be adapted directly, as force-directed edge bundling techniques already
make use of flexible edges.

Continuous Updates. Every graph in this paper visualizes a static
data set, but many graphs, such as shipments, network traffic, and so-
cial graphs, are continually changing. Edge bundling pulls together
edges in a way that minimizes potential functions; incremental up-
dates of these edge weight adjustments, as well as the number of edges
changing, might yield a different result than starting from scratch.

Finally, an alternative implementation of edge bundling might em-
ploy constraint based layout algorithms. The work of Dwyer [2] on
constraint based graph layout might be applied to edge control points
to bundle edges effectively.

7 CONCLUSION

In this paper, we presented divided edge bundling, an extension to
force-directed edge bundling that allows adept visualization of di-
rected graphs. Our technique is particularly well-suited to networks
with predefined spatial coordinates. By incorporating directional
lanes, graph topology, and edge weights, divided edge bundling re-
veals patterns of connectivity and symmetry obscured by existing
node-link visualizations. The resulting visualizations offer many of
the same insights as matrix diagrams, but without sacrificing the ben-
efits of a spatially faithful and intuitive layout.
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