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DIVIDED RINGS AND GOING-DOWN

Davip E. DoBBs

Going-down rings are characterized in terms of the AV-
domains of Akiba. As a result, the infernal characterization
of going-down rings which has recently been established by
McAdam in the integrally closed case is generalized to the
root-closed case, but is shown to fail in general.

1. Introduction. Let R be a (commutative integral) domain.
As in [5] and [6], R is called a going-down ring (and we write: &
is GD) in case R S satisfies going-down for each domain S con-
taining R; by [6, Theorem 1], the test domains S considered may
be restricted either to be valuation overrings of R or to be simple
overrings of R. The present paper contributes to the search for
an internal characterization of going-down rings; attention may be
focused on the guasi-local case, as being GD is a local property (cf.
[5, Lemma 2.1]).

The domain R is said to be divided in case each P in Spec (R)
satisfies P = PR,; that is, if each element of R\P divides each ele-
ment of P, with quotient in R. (The preceding definition is motivated
by considering valuation domains, perhaps the most significant type
of quasilocal going-down rings. Divided rings are the AV-domains
studied by Akiba [1].) In [14, Corollary 11], McAdam established
that, for quasi-local integrally closed R, being GD is equivalent to
being divided. The equivalence is extended to the case of quasi-
local root-closed R (Corollary 2.8) as a consequence of our main
result (Theorem 2.5): a quasi-local domain R is GD if and only if
R has a divided integral overring T (for which the contraction map
Spee (T') — Spec (R) is necessarily a homeomorphism).

Theorem 2.5 is best-possible, for while divided implies gquasi-local
GD (Proposition 2.1), analysis of a recent example of Boisen and
Sheldon [3] in Example 2.9 shows that the converse is false. Some
sufficient conditions for the validity of the converse are obtained in
Proposition 2.10 in terms of the overrings T guaranteed by Theorem
2.5; these, in turn, give new information about the example in [3].
Remark 2.11 generalizes some work of Papick [15], by illustrating
how Theorem 2.5 may be employed to infer results about going-
down rings from corresponding facts about divided rings. A related
external characterization of going-down rings and alternate methods
are treated in the brief final section.

Throughout, R denotes a domain. Unexplained terminology is
standard, as in [8] and [11].
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2. Divided extensions. Recall from [5, Theorem 2.2] that a
going-down ring must be treed, in the sense that no maximal ideal
contains incomparable prime ideals. As W. J. Lewis has constructed
a treed domain which is not GD [16, Example 6.4], our first result
generalizes [1, Theorem 1] and [12, p. 59].

PROPOSITION 2.1. Any divided domain is quasi-local and GD.

Proof. Let R Dbe divided. Any prime ideal P of R satisfies
P = PR, and, thus, is comparable to any ideal of R (cf. proof of
[1, Theorem 1] and [9, Proposition 1.2 (ii)]; in particular, R is quasi-
local. If the assertion fails, the characterization of going-down in
[11, Exercise 37(iii), p. 44] yields a domain 7T containing R, P in
Spec (R), and @ minimal amongst primes of T containing PT, such
that PTN(R\PXT\Q) + @. Then Xp;t, = rt, with p, in P, ¢, in T, »
in R\P, and ¢t in T\Q. As R is divided, », = p™' is in P so that
t=2%rt, is in PTcQ, the desired contradiction, to complete the
proof.

It is convenient next to record three elementary facts about
divided rings. The analogous statements about going-down rings
are in [5, Lemma 2.1]; [6, Corollary]; and Remarks 2.11 and 3.2(a),
(b), respectively.

LEMMA 2.2, (a) Any localization of o divided domain is
divided.

(b) Let K+ M be a valuation domain with maximal ideal M,
where K 1is a field; let D be a subring of K. Then D+ M is
divided if and only if D is divided.

(¢) (Cf. [1, Theorem 38].) Let R be divided. For any ideal I
of R, each prime ideal of R/I is comparable to each ideal of R/I.
In particular, for P in Spec(R), R/P is divided.

Proof. All parts are straightforward. We give the proof for
(a). (The proof of a special case of it in [1, Proposition 3] contains
a trivial misprint. In fact, “R, = (R,)es,” should read “R, =
(B,)er,).” Let S be a multiplicatively closed subset of a divided
domain R. It suffices to shown that, if @ € Spec(R;) and b€ R\Q,
then @ C Rsb. As Q@ = PRy with P = Q@ N R in Spec (R), it is enough
to show P C Rb; this follows since R is divided and we may assume
that b e R\P, proving (a).

Part (b) is an easy consequence of [8, Theorem A (c), (d), (e),
(), p. 560]. We may safely omit the proof of (c).
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The next result is essentially known, but is recorded here for
lack of a convenient reference. First, recall that an extension AcCB
of commutative rings is called wnibranched in case the contraction
map Spec (B)— Spec (4) is a bijection; in that case, A being under-
stood, we shall often term B “unibranched.”

LeMMA 2.3. Let RCT be an integral unibranched extension
of domains. Then R is GD if and only if T is GD.

Proof. For the “if” half, assume that T is GD, apply [7,
Lemma 2.2] to show that R C T satisfies going-down, and then argue
as in either [13, Theorem 1] or [7, Theorem 2.4] to conclude that
R is GD. Conversely, the “only if” half is a special case of [15,
Proposition 2.12].

Prior to stating our main result, we isolate a technical lemma.
It will be convenient to say that a prime ideal P of R is divided in
R if P = PR,; otherwise, P is said to be nondivided in RE. Note
that R is divided if and only if each prime of R is divided in R.
We leave to the reader the reformulations of Proposition 2.1 and
Lemma 2.2 involving the “divided in” concept. As B. Greenberg
has pointed out to the author, it is possible for a domain R to have
prime ideals @ < P, with P nonmaximal and divided in R and @
nondivided in R. An explicit example of such (quasi-local pseudo-
Bézout) R has been constructed by Greenberg by modifying the
material surrounding [9, Proposition 3.2].

LEMMA 2.4. Let R be quasi-local and GD, let PcSpec(R) and
set T=R+ PR,. Then:

(a) RcC T is integral and unibranched.

(b) If Q is divided in R and Q C P, then Q is the prime of
T which contracts to @ and Q is divided in T.

(¢) PR is divided in T.

Proof. (a): For the integrality assertion, it is emough to prove
that any nonzero v in PR, is integral over R. We proceed via a
proof modelled after that of [5, Theorem 2.2]. Express v as ad™,
with ¢ in P and b in R\P. If P survives in R[v™'], the fact that
R c R[v™'] satisfies going-down, supplies a prime W of R[v™'] which
contracts to P; as b = av™ is then in PR[v™'], it follows that b is
in WnN R = P, contradiction. Thus, 1 is in PR[v™']; that is,

L=p,+pv "+ o + 007"

for elements p, of P. Multiplication by »™(1 — p,)~* produces the
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desired integrality equation for v over R.

For the second assertion in (a), let @ € Spec (R). As R is quasi-
local and treed, either Q & P or PC Q. In the first case, QR, is a
prime of T contracting to @. By the incomparability property for
integral extensions, it is enough to prove that any prime I of T
which contracts to ¢ must contain QR,; this, in turn, follows since
(QR;)(PRy)c I and PR, ¢ I. For the case PC @, note similarly
that any prime of T which contracts to @ must contain (PR;)* and,
hence, coincides with @ + PR;.

(b) and (c): Both admit computational proofs; we include only
the details for (b). Suppose @ is divided in B and @ P. By the
proof of (a), QR, is the prime of T contracting to @; as @ is divided
in R, QR, = Q. A typical element of QT, is # = a(r + py™')™, with
ain @, yin R\P, r in P, and p in P, such that » + py™"¢@. As
(r + py™)y € R\Q, it follows that = ay(ry + p)' is in QR = @, to
complete the proof.

Observe, as a consequence of [1, Theorem 1] and [16, Proposi-
tion 3.38], that if RcC T is an integral extension of quasi-local
domains and T is divided, then R < T is unibranced; indeed, Spec
(T)— Spec (R) is a homeomorphism of Zariski topologies in this case.
We may now present the main result.

THEOREM 2.5. For quasi-local R, the following are equivalent:
(a) R is GD;

(b) R has a divided integral (necessarily unibranched) overring;
(¢) R has a divided integral (necessarily unibranched) extension.

Proof. The implication (b)=(e¢) is trivial, while (¢)=(a) follows
from Proposition 2.1 and Lemma 2.3. Finally, to show (a)=(Db),
let R be GD. If R has finite Krull dimension, it suffices to work
with nondivided primes of minimal height, while iterating the con-
struction in Lemma 2.4. For the general case, let F' be the set of
integral unibranched overrings of R; partially order F by inclusion.
(Note Re F.) The union of any chain in F is, of course, integral
over R and, by the proof of [1, Proposition 4], unibranched as well.
Zorn’s Lemma thus produces a maximal element, T, of F. If @ is
nondivided in 7T, then Lemma 2.4 shows that T + Q7T, is integral
and unibranched over T, and hence over R, contradicting maximality
in #. Therefore, T is divided, as desired.

The next corollary paves the way for Corollary 2.8, another
generalization of McAdam’s result. As usual, radg(J) will denote
the radical of an ideal J in S.
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COROLLARY 2.6. Let R be quasi-local and GD, and let P be
nondivided in R. Then, for each ve PR\P, there exists n = 2
such that v*R[vlC P. Moreover, there exists we PR,\P such that
w*e P for all n = 2.

Proof. Let ve PR,\P. By Lemma 2.4 or Theorem 2.5, R has
an integral unibranched overring T such that PR, is contained in
the prime of 7 which contracts to P. Then, S = R[v] is also
integral and unibranched over R, hence quasi-local and GD (by
Lemma 2.3). Moreover, v€Q, the prime of S contracting to P.
Let J be the conductor (R:S) = {reR: rScR}. As S is quasi-local
and treed, I = radg(J) is a prime which compares with Q. Since
v = ab™ with ¢ ¢ P and b€ R\P, some power of b is in J; that is,
bel, and so IZ Q. Hence QC I, giving n = 2 such that v*¢J, as
required. Finally, note that if m = 2 is minimal such that v™ e J,
then w = v ¢ PR,\P satisfies w" ¢ P for all n = 2.

REMARK 2.7. (a) Lemma 2.4 easily implies the following useful
extension of McAdam’s result. Let R be quasi-local and GD. If
the maximal ideal M of R satisfies MR — R, where R’ denotes the
integral closure of R, then R is divided. An example of such R
which is not integrally closed may be obtained from a nontrivial
algebraic field extension k< K by constructing a valuation domain
K 4+ M and setting R =k + M.

(b) Call R locally divided if R, is divided for each maximal
ideal M of R. In that case, R, is divided for each P ¢ Spec(R):
the verification follows readily from the observation that (R,)es, =Rq
for primes @ C P of R [4, Propositions 7(i)-8, pp. 85-86]. One may
use Lemma 2.2(a) to verify that any localization of a locally divided
domain is itself locally divided; in like manner, parts (b) and (c)
of Lemma 2.2 each admit “locally divided” analogues. As GD is
a local property, Proposition 2.1 implies that any locally divided
domain is GD.

(e) As in [17, p. 231], the root-closure of R im an extension T
is {teT:t"e R for some n = 1}; R is called root-closed if the root-
closure of R (in the quotient field of R) is R itself. R is root-closed
if and only if R, is root-closed for each maximal ideal M of R. If
E is the root-closure of a domain D in a field Kand V=K + M
is a valuation domain with maximal ideal M, then E + M is the
root-closure of D + M. While any integrally closed domain is root-
closed, an example, R, illustrating failure of the converse may be
obtained from a finite Galois field extension 4 K of characteristic
zero with simple nonabelian Galois group and a valuation ring K-+ M,
by setting R = k + M; that k is the root-closure of % in K, follows
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from the standard Galois theory of solvability by radicals.

(d) A most interesting class of going-down rings is that of ¢-
domains [7, Corollary 2.5]. While characterizations abound [15,
Corollary 2.11, Proposition 2.34], the important facts to recall for
our purposes are that being an ¢-domain is a local property [16,
Corollary 2.6]; and that a quasi-local domain is an ¢-domain if and
only if its integral closure is a valuation domain [15, Corollary 2.15].
Note that the rings R constructed in (a) and (c) above are both
dividided i-domains. To obtain an example of a quasi-local root-
closed domain, A, which is neither integrally closed nor an i-domain,
let ¥ < K be as in (c), let F' be a nontrivial purely transcendental
field extension of K, construct a valuation domain F + N with
maximal ideal N, and set A =k + N. By Lemma 2.2(b), A is divi-
ded; Corollary 2.8 shows this to be the normal state of affairs for
quasi-local, root-closed going-down rings. However, the rings R of
(a) and (c) are atypical of going-down i-domains, by virtue of the
nondivided ring in Example 2.9.

COROLLARY 2.8. Let R be root-closed. Then R is GD if and
only if R is locally divided.

Proof. The “if” half is contained in Remark 2.7(b). For the
“only if” half, combine Corollary 2.6 with Remark 2.7(c).

ExXAMPLE 2.9. We next produce, for each number n =2, a
quasilocal going-down domain D of Krull dimension %, which is
not divided. In view of [6, Corollary], Lemma 2.2(b) and [8,
Theorem A(f), p. 561], the “D + M construction” reduces the
problem to the case n = 2, For this, we make use of a ring intro-
duced by Boisen and Sheldon [3, Example 1.6] for other purposes.
Explicitly, let X and Y be algebraically independent indeterminates
over a field F, and note that the subset T, = {X":n = 0} U{Y*X™
Ez1,meZ} of F(X, Y) is linearly independent over F. The ring
D, is taken as the F-span of T,; the elements with vanishing con-
stant term (the term involving the generator X°) form a maximal
ideal, M,, of D,. It is shown in [3, Lemma 1.7] that V = (D)), is
a valuation domain of rank 2. If D, is taken as the F-span of

T, = {Xmn=0Uu{Y*X™ k=1 m= — i},

the required ring D is the localization of D, at its maximal ideal
M,= M, N D; by [3, Lemma 1.8] V is integral over D.

First, observe that D is an 4-domain. (In fact, its integral
closure is V, since V = (D))p, v, is inside the quotient field of D, the
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relevant calculation being Y*X™ = (Y*X ¥} X ™*)".) Thus, by
[7, Corollary 2.3 or Theorem 2.4 or Corollary 2.5], D is (quasi-local
and) GD.

Next, to show that D is not divided, recall that the nonzero
primes of D are, as noted in [3, Proposition 1.9], P=({Y"X " n=1})
and (X) + P. We claim that P is nondivided in D, as YX 2 PD,\P.
Indeed, it is clear that YX 2 = (YX )X *e PD,. Moreover, if YX
were expressible as a fraction of elements of D, with denominator
having nonzero constant term, the F-linear independence of T, would
lead to (Y*X™)X*=Y with (k=1 and) m = — k* and, thence, to
the absurdity —2 = — 1. This establishes the claim. (Note that,
as Corollary 2.6 predicts, there exists we PD,\P with w"¢c P for
all » = 2: YX™? is such an element.)

We make three further comments about the above construction.
First, recall that a domain R is called Archimedean [17, p. 234] in
case N{Rr*nm =1} =0 for each nonunit € R. By Corollary 2.8
and the reasoning in [2, Proposition 8.5], a quasi-local root-closed
domain has Krull dimension at most 1 if and only if it is both
Archimedean and GD. The “root-closed” hypothesis cannot be
deleted, as D is Archimedean [3, Proposition 1.10].

Second, in order to motivate Proposition 2.10, observe that D,
is integrally closed. Indeed, it is enough to show (D), C Dp.
For this, we need only note that D, c D,, the relevant calculation
being Y*X™ = (Y*X ™)X ™) for m < — k%

Third, Proposition 2.10 yields the following additional informa-
tion. FEach nonunit of V has a power lying in D (see [3, p. 336,
l.-4] for the corresponding assertion for certain monomials); and
neither V nor its maximal ideal is a finitely generated D-module.

In spite of Example 2.9, we next turn to ways of using Theorem
2.5 to produce conditions guaranteeing that certain quasi-local going-
down rings are divided. As usual, ht and dim will denote height
and Krull dimension, respectively.

PROPOSITION 2.10. Let PeSpec(R) with Ry integrally closed,
and let T be a divided integral (unibranched) overring of R. Then:

(a) The prime of T contracting to P is PR,.

(b) If T is finitely generated as an R-module, then P is divi-
ded in R.

(¢) Assume dim (R) = 2 and ht(P) = 1. Then, for each finite
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subset {v,, +++, v,) of the maximal ideal N of T, there exists n = 2
such that I = YRv, satisfies I"R[v, -+, v, C R. If, in addition,
N is finitely gemerated as an R-module, then R is divided.

Proof. (a): If Q denotes the (divided) prime of T contracting
to P, then [8, Theorem 9.11] gives Trr = To. As Ty, is integral
over R,, which is integrally closed, R, = Ty,. Equating maximal
ideals yields PR, = QT, = Q.

(b): As Tc R,, the finite generation of 7 implies that the con-
ductor (R: T) is not contained in P; consequently, there exists = in
(R: T\PR,. Since PR, is divided in T, it follows that PR, =
r(PR;)C»T C R; then PR, = P, as required.

(¢): Let S = R|[v,, --+, v,). As in the proof of (b), the conductor
J=(R:S) is not contained in P. Since S # R without loss of
generality, reasoning as in the proof of Corollary 2.6 shows that
rads (J) is a prime ideal of S which properly contains PR, N S.
Thus, rads(J) = NN S which contains each v;; as each v, has a
power in .J, the assertion about I follows from the multinomial
theorem. Finally, if N = IRv,, it follows that S = R + N is divided
(since its only primes 0 c PR, C N are divided in 7T'), integral, (uni-
branched,) and module-finite over R. Apply (b) to complete the
proof.

REMARK 2.11. It is interesting to note that Theorem 2.5 may
be used in conjunction with Lemma 2.2 in order to obtain the
“going-down” analogues of the “divided” assertions in Lemma 2.2.
The method being similar in all cases, we provide details only for
the analogue of (c); wiz., if R is GD and PeSpee (R), then R/P is
GD. A proof for the quasi-local case proceeds by taking a divided
integral (unibranched) extension T of R, and considering the prime
Q@ of T which contracts to P. The extension R/P cC T/Q is evidently
integral (and unibranched); by Lemma 2.2(c), T/@ is also divided,
and so an application of Theorem 2.5 establishes the quasi-local case.
(The usefulness of condition (¢) in Theorem 2.5 is apparent from the
preceding argument, since T/Q need not be an overring of R/P even
if T is an overring of R.) As being GD is a local property, the
general case follows immediately from the observation that (B/Q),,=
R:/QR, for primes @ — P of R [4, Proposition 11, p. 90].

The result proved above, i.e., that any factor domain of a going-
down ring R is itself a going-down ring, was established by Papick
{15, Proposition 2.1] under the extra assumption that each overring
of R is treed, a nontrivial restriction in view of the proof of [5s,
Theorem 4.2(ii)]. Our general result now extends [15, Corollary
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3.19] to the assertion that any factor domain of an open ring is
itself open; similarly, one may now strengthen the characterization
of propen not open domains in [15, Theorem 5.18].

3. An external characterization. This section introduces a
characterization of going-down rings which supplies alternate approa-
ches to Proposition 2.1 and some of the results in Remark 2.11.

PrOPOSITION 3.1. The domain R is not a going-down ring if
and only if there exist Pec Spec(R) and a valuation overring V of
R such that: (1) for all nonzero veV, v™'¢ P, and (2) for some
weV, w'ePR,.

Proof. If R is not GD, then [6, Theorem 1] supplies a valua-
tion overring W of R such that R c W does not satisfy going-down.
By the criterion for going-down [11, Exercise 87(iii), p. 44] which
was used in the proof of Proposition 2.1, we obtain P ¢ Spec (R), &
minimal amongst primes of W containing P, and an element b of
PW N (R\PYW\Q). Write b = Ip,v,, with p;, in P and », in W. As
the ideals Wp, are linearly ordered by inclusion, b = pv, with p in
P and v in W; also, by choice of b, pv = rz for some r in R\P and
z in W\Q. Taking V = W, and w = vz~' then guarantees (1) and
2).

Conversely, let P and V satisfy (1) and (2). By the above
argument about linearly ordered ideals, (1) implies that 1 ¢ PV, so
that there is a prime @ of V which is minimal over PV. Then (2),
in conjunction with [11, Exercise 37(iii), p. 44], implies that RcC V
fails to satisfy going-down, whence R is not GD.

REMARK 3.2(a). Evidently, Proposition 3.1 provides a new proof
that any divided domain is GD. It also seems worthwhile to indi-
cate how Proposition 3.1 leads to a proof of the principal result of
Remark 2.11, wviz., that factor domains inherit the GD property.
(Yet another proof will be sketched in (b) below, as an application
of base-change.) Indeed, if the domain R/P is not GD, there exist
a prime @ of R containing P and a subring 7T of R, containing
R+ PR, such that the prime @/P and the valuation overring 7/PR, of
R/P satisfy conditions given by Proposition 3.1. Since (Q/P)R/P)q¢,»
may be identified with QR,/PR,, we may use the analogue of con-
dition (2) while working inside R, to obtain: ¢ in T\PR,, r in Q and
z in R\Q such that % = t(r27') — 1€ PR,. As in the proof of Prop-
osition 3.1, the analogue of condition (1) implies that (@ + PR,)/PR,
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survives in T/PR,, and hence yields J, minimal amongst primes
of T containing @. Now, wed (noting (PR} = P(PR;)cQT),
whence 1 + we T\J. Since 7t = 2(1 + u), we again invoke [11, Ex-
ercise 37(iii), p. 44], to conclude that R T fails to satisfy going-
down, thus establishing (the contrapositive of) the required assertion.

(b) Instead of using [11, Exercise 37(iii), p. 44] in (a) to show
that the overring extension R/P < T/PR, inherits going-down from
Rc T, one may apply [10, Remarques 3.9.2.1(ii), p. 253]. Explicitly,
set X = Spec(T') and Y = Spec (R), and note that the parenthetical
observation of three sentences ago serves to identify the inverse
image of Y, = Spec(R/P) under the contraction map f: X—Y as
X, = Spec (T/PR,).

(¢) With the notation of (a) and (b) above, it is straightforward
to verify that Spec (T/PR,) — Spec (R/P) is an open map (using the
Zariski topologies) whenever Spec (T') — Spec (R) is open. (As in (a)
and (b), the critical observation is that any prime ideal of T which
contains P must contain PR,.) Consequently, as (valuation) over-
rings suffice in testing for open domains [16, Proposition 3.10], we
recover anew a fact obtained in Remark 2.11, »iz., that any factor
domain of an open ring is itself open.

(d) We close by observing that Proposition 3.1 admits several
variants (proved similarly). In one such, condition (1) is replaced
by the requirement PV == V; in another, by the stipulation that
rad, (PV) is the maximal ideal of V.
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