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Abstract

This work proposes an answer to a challenge posed by Bell on the lack of clarity in
regards to the line between the quantum and classical regimes in a measurement problem. To
this end, a generalized logarithmic nonlinear Schrödinger equation is proposed to describe the
time evolution of a quantum dissipative system under continuous measurement. Within the
Bohmian mechanics framework, a solution to this equation reveals a novel result: it displays
a time constant which should represent the dividing line between the quantum and classical
trajectories. It is shown that continuous measurements and damping not only disturb the
particle but compel the system to converge in time to a Newtonian regime. While the
width of the wave packet may reach a stationary regime, its quantum trajectories converge
exponentially in time to classical trajectories. In particular, it is shown that damping tends
to suppress further quantum effects on a time scale shorter than the relaxation time of
the system. If the initial wave packet width is taken to be equal to 2.8 × 10−15m (the
approximate size of an electron), the Bohmian time constant is found to have an upper
limit, i. e., τBmax = 10−26s.
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As pointed out by Bell,[1] the lack of clarity in regards to where the transition between
the classical and quantum regimes is located is one aspect of the measurement problem. This
problem represents one of the most important conceptual difficulties in quantum mechanics.
Consequently, this topic of research has gained considerable interest in the last decades.[2,
3, 4] The presence of a classical apparatus considerably affects the behavior of the observed
quantum system through continuous measurement [5, 6, 7, 8] which typically fail to have
outcomes of the sort the theory was created to explain. These frequent measurements are
also at the origin of the so-called Zeno effect.

Another conceptual difficulty is that in a system under observation there are many
degrees of freedom such that information can be lost in the couplings which may account
for dissipation. One possible approach that has often been used to answer this question is
to introduce all degrees of freedom for the bath and solve a number of coupled equations
in various limits of some approximation. In fact, by using the influence-functional method,
it has been shown[9] that dissipation tends to destroy quantum interference in a time scale
shorter than the relaxation time of the system. This result has given justification for the
use of logarithmic nonlinear wave equations[10]-[15] to describe quantum dissipation. These
equations have been validated as an appropriate, practical bath functional in time-dependent
density functional theory for open quantum systems.[15]

This work addresses both conceptual difficulties mentioned above. In particular, an
answer to a challenge posed by Bell [1] on the dividing line between the quantum and classi-
cal regimes in a measurement problem is given here. To this end, a generalized logarithmic
nonlinear Schrödinger equation is proposed to describe the time evolution of a quantum dis-
sipative system under continuous measurement. Thus, these two basic existing decoherence
mechanisms are put on equal footing. Nowadays, there are several routes to deal with this
classical-quantum divide. The main three routes were originally opened up by Bohm [16]
with his Bohmian mechanics in 1952, many-worlds interpretation by Everett in 1957 [17], and
wave function collapse models established on firm grounds by Ghirardi, Rimini and Weber
in 1986 [18]. These last authors proposed a unified dynamics (which has to be stochastic)
for microscopic and macroscopic systems, including the mesoscopic scale. Our approach is
much more restricted by now and follows the first route. Our concerns are about the time
dividing line between classical and quantum trajectories for quantum processes in presence
of different decoherence mechanisms. The concept of trajectory used in our context is much
more standard. It is limited to a dissipative (zero temperature) dynamics in presence of
continuous measurements. Furthermore, for the dissipative case, the effective Hamiltonian
we are implicitly considering is of the type of Caldirola-Kanai Hamiltonian or similar [19].
It is worth noting that we do not propose here a universal behavior. Physical processes we
have in mind are, for example, electronic transport in materials, diffusion of adsorbates on
surfaces or particles in bulk, motion of particles in quantum viscid media, friction in qubits,
spectral lines under high pressure where the collisions among gas phase particles can be
replaced by a collisional friction and so on. If, in all cases and any circumstance, an electron
would converge to the classical regime in at most 10−26 s, and this time scale would depend
on the mass as 1/

√
m (for negligible friction), one could never, contrary to a host evidence,

observe interference phenomena, with electrons, neutrons, C60, and so on. Such interference
patterns are not considered in our framework of applications. In such experiments, the mea-
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surement is carried out only at the Fraunhofer or far field region through a screen. Along
the way to the screen, particles are not perturbed by any measurement at any time.

Within the Bohmian mechanics framework, a solution to this equation reveals a novel
result: it displays a time constant which establishes the dividing line between the quantum
and classical trajectories. As in RC circuits, the time constant is the key measure of how
quickly the capacitor becomes charged or discharged; in electronic pacemakers, the pulsing
rate of the heart’s contractions is controlled by a RC circuit in which the time constant
represents the most important dividing line between normal and abnormal heartbeats.[20]
It is shown below that continuous measurements and damping not only disturb the particle
but compel the system to converge in time to a Newtonian regime without any assumption
of collapse. While the width of the wave packet may reach a stationary regime, its quantum
trajectories converge exponentially in time to classical trajectories. In particular, it is shown
that damping tends to suppress further quantum effects on a time scale shorter than the
relaxation time of the system. For example, experiments to measure the size of the electron
consist on colliding two beams of electrons against each other and counting how many are
scattered and altered their trajectories. By counting the collisions, and knowing how many
particles we have thrown, we can estimate the average size of each particle in the beam [21]. If
the initial wave packet width is taken to be equal to 2.8×10−15m (the approximate size of an
electron), the Bohmian time constant is found to have an upper limit, i. e., τBmax = 10−26s.

Bohmian mechanics has recently attracted increasing attention from researchers.[22]-
[24] Despite the uncertainty principle, the predictions of nonrelativistic quantum mechanics
permit particles to have precise positions at all times. The simplest theory demonstrating
that this is so is indeed Bohmian mechanics. One of the fundamental aspects of this me-
chanics is its ability to tackle more clearly the quantum measurement problem. The wave
function plays a dual role in this framework; it determines the probability of the actual lo-
cation of the particle and monitors its motion. As pointed out by Bell,[1] in physics the only
observations we must consider are position observations - a definite outcome in an individual
measurement is determined by the relevant position variable associated with the apparatus.
It is a great merit of the Bohmian picture to force us to consider this fact.

For simplicity, let us consider a one-dimensional problem. The time evolution of
the wave function of a quantum dissipative system ψ(x, t) under continuous measurement
can be described in terms of a nonlinear Schrödinger equation. This equation combines two
types of logarithmic nonlinearities: (1) For the description of a system under continuous
measurement, Nassar[4] has recently proposed a Schrödinger-type equation with the nonlin-
ear logarithmic term −ih̄κ ln |ψ|2, along the lines of the pioneering work of Mensky[2] and
Bialynicki-Birula and Mycielski [3], and where the coefficient κ characterizes the resolution of
the continuous measurement. However, it is fundamentally different from such an equation
due to the imaginary coefficient in front the logarithmic term. A remarkable feature of this
equation is the existence of exact soliton–like solutions of Gaussian shape. Hefter [25] has
given physical grounds for the use of this logarithmic nonlinear equation by applying it to
nuclear physics and obtaining qualitative and quantitative positive results. He argues that
this type of equation can be applied to extended objects such as nucleons and alpha par-
ticles. Furthermore, the origin of the non-linearity can also be understood coming from an
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energy dissipation operator in an effective Hamiltonian due to the continuous measurement
or by quantizing the corresponding Hamilton-Jacobi equation for a linear damped system
using the so–called Schrödinger method of quantization [19, 24]. (2) For the description
of quantum dissipative systems, Kostin [10] constructed a Schrödinger-type equation with
the nonlinear logarithmic term (iνh̄/2) ln(ψ/ψ∗) with ν being the friction coefficient. This
equation has the very interesting property that, at the level of observables, it satisfies the
dissipative Langevin equation at T = 0. This equation has subsequently been derived by
Skagerstam[12] and Yasue[13] and has found extensive use in many applications.[14] The
Kostin nonlinear logarithmic term has recently been suggested by Yuen-Zhou et al. [15] as
an appropriate, practical bath functional in time-dependent density functional theory for
open quantum systems with unitary propagation. So, by combining both nonlinearities, the
generalized logarithmic nonlinear Schrödinger equation reads

ih̄
∂ψ(x, t)

∂t
= [H(x, t) + ih̄ (Wc(x, t) +Wf (x, t))]ψ(x, t), (1)

with

Wc(x, t) = −κ
[

ln |ψ(x, t)|2 −
〈

ln |ψ(x, t)|2
〉]

(2)

and

Wf (x, t) =
ν

2

[

ln
ψ(x, t)

ψ ∗ (x, t) −
〈

ln
ψ(x, t)

ψ ∗ (x, t)

〉]

, (3)

The terms in <> arise from the requirement that the integration of Equation (1) with respect
to the variable x must be equal to the expectation values of the kinetic and potential energies
through the Hamiltonian H [10]. The expectation value of the energy < E(t) > is defined
as in its standard from

< E(t) >≡
+∞
∫

−∞

ψ∗(x, t)E(t)ψ(x, t)dx. (4)

For the system studied here, no external potential is assumed (i.e., V = 0).

Equation (1) has several interesting and unique properties. First of all, it guarantees
the separability of noninteracting subsystems. Other nonlinear modifications can introduce
interactions between two subsystems even when there are no real forces acting between
them. Second, the stationary states can always be normalized. For other nonlinearities,
stationary solutions have their norms fully determined and after multiplication by a con-
stant they cease to satisfy the equation. And third, the logarithmic nonlinear Schrödinger
equation (1) possesses simple analytic solutions in a number of dimensions – especially non-
spreading wave-packet solutions. It is fundamentally different from the equations proposed
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by Bialynicki-Birula and Mycielski [3] due to (i) the imaginary coefficient in front of the

logarithmic terms and (ii) the last term
〈

ln |ψ(x, t)|2
〉

. Equation (1) also generalizes the

equation proposed by Kostin in order to account for continuous observation.

Equation (1) can now be solved via the Bohmian formalism.[16, 22] To this end, the
wave function is first expressed in polar form:

ψ(x, t) = φ(x, t) exp(iS(x, t)/h̄). (5)

Now, after substitution of Equation (5) into Equation (1), we obtain

ih̄

[

∂φ

∂t
+
i

h̄

∂S

∂t
φ

]

=

= − h̄2

2m











∂2φ

∂x2
− φ

h̄2

(

∂S

∂x

)2


+
i

h̄

[

2
∂S

∂x

∂φ

∂x
+
∂2S

∂x2

]







−ih̄κ
[

lnφ2− < lnφ2 >
]

φ+ ν [S − 〈S〉]φ. (6)

Equation (6) can be separated into real and imaginary parts. By defining the quan-
tum hydrodynamical density ρ, velocity v and quantum potential Vqu respectively as

ρ(x, t) = φ2(x, t), (7)

v =
1

m

∂S

∂x
, (8)

Vqu = − h̄2

2mφ

∂2φ

∂x2
, (9)

we reach

∂v

∂t
+ v

∂v

∂x
+ νv = − 1

m

∂Vqu
∂x

(10)

and

∂ρ

∂t
+

∂

∂x
(ρv) + κ [ln ρ− 〈ln ρ〉] ρ = 0. (11)
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Equation (10) is an Euler-type equation describing trajectories of a fluid particle,
with momentum p = mv, whereas Equation (11) describes the evolution of the quantum fluid
density ρ. This density is interpreted as the probability density of a particle being actually
present within a specific region. Such a particle follows a definite space-time trajectory that
is determined by its wave function through an equation of motion in accordance with the
initial position, formulated in a way that is consistent with the Schrödinger time evolution.
An essential and unique feature of the quantum potential is that the force arising from it
is unlike a mechanical force of a wave pushing on a particle with a pressure proportional
to the wave intensity. By assuming that the wave packet is initially centered at x = 0 and

ρ(x, 0) = [2πδ2(0)]
−1/2

exp [−x2/2δ2(0)] and ρ vanishes for |x| → ∞ at any time we may
rewrite

ρ(x, t) = |ψ(x, t)|2 =
[

2πδ2(t)
]

−1/2
exp

(

− [x− x̄(t)]2

2δ2(t)

)

, (12)

where δ(t) is the total width of the Gaussian wave packet and x̄(t) a classical trajectory.
Equation (12) can be readily used to demonstrate that

+∞
∫

−∞

(

[x− x̄(t)]2
)

ρ(x, t)dx = δ2(t). (13)

Substitution of Equation (12) into Equation (11) yields

∂ρ

∂t
=

[

− δ̇
δ
+

(x− x̄)

δ2
˙̄x+

1

δ3
(x− x̄)2δ̇

]

ρ, (14)

and

∂(ρv)

∂x
=

(

δ̇

δ
− κ

)

ρ+

[(

δ̇

δ
− κ

)

(x− x̄) + ˙̄x

](

−(x− x̄)

δ2

)

ρ, (15)

which implies that

v(x, t) =

(

δ̇

δ
− κ

)

(x− x̄) +
·

x̄ . (16)

Analogously, substitution of Equation (16) into Equation (10) yields

(

δ̈(t) + (ν − 2κ)δ̇(t) + (κ2 − κν)δ(t)− h̄2

4m2δ3(t)

)

(x− x̄)1 + (¨̄x+ ν
·

x̄)(x− x̄)0 = 0,(17)

which implies that

δ̈(t) + (ν − 2κ)δ̇(t) + (κ2 − κν)δ(t) =
h̄2

4m2δ3(t)
(18)
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and

¨̄x+ ν
·

x̄ = 0. (19)

Equations (18) and (19) show that continuous measurement of a quantum dissipative
wave packet gives specific features to its evolution: the appearance of distinct classical and
quantum elements, respectively. This measurement consists of monitoring the position of
the quantum dissipative system and the result is the measured classical trajectory x̄(t) for t
within a quantum uncertainty δ(t).

The associated Bohmian trajectories [23, 24] of an evolving ith particle of the ensem-
ble with an initial position xoi can be calculated by first substituting

ẋi(t) = vi(x, t) (20)

into Equation (16) to obtain

xi(t) = x̄(t) + xoi
δ(t)

δo
e−κt. (21)

where δo = δ(0) is the initial width. As said above, the position of the center of mass of the
wave packet (the classical trajectory) is represented by x̄(t), while xoi is the initial position
of the ith individual particle in the Gaussian ensemble corresponding to the wave function
given by Equation (5). Now, Equation (18) admits analytic Gaussian-shaped soliton-like
solutions (Gaussons) when

κ =
ν

2
+

√

√

√

√

ν2

4
+

h̄2

4m2δ4o
. (22)

For κ 6= 0, and no friction, a stationary regime can be reached and the width of the wave
packet can be related to the resolution of measurement which means that if an initially
free wave packet is kept under a certain continuous measurement, its width may not spread
in time. Note that the inverse of h̄

2mδ2o
is associated with the relative spreading of a free

Gaussian wave packet [26]; in other words, the corresponding spreading velocity is given
by h̄

2mδo
. Thus, the effective or renormalized friction given by κ takes into account the

two spreading mechanisms present in this dynamics. Equation (22) displays a very similar
structure to that found for the renormalized frequency of a damped harmonic oscillator. It
is worth stressing that when the friction mechanism is added, the resolution of the apparatus
is changed showing the intertwining role played by both mechanisms. Finally, the general
procedure will thus be to add more and more independent decoherence mechanisms in order
to take into account the global effect in the corresponding time evolution of the system,
showing again this entanglement among the different mechanisms.
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The transition from quantum to classical trajectories can then be defined as the
Bohmian time constant to be τB ≡ κ−1 and Equation (21) can be further simplified to

xi(t) = x̄(t) + xoie
−t/τB . (23)

It follows from Equation (23) that if xoi = 0, then the particle follows the Newtonian
trajectory at any time. If, however, xoi is positive, then the particles distributed in the
right half of the initial ensemble are accelerated whereas the particles distributed in the
left half of the initial ensemble are decelerated. Nevertheless, there is only a temporary
asymmetry in the Bohmian velocities between any two symmetric particles since the rate
of the asymmetry diminishes with time. After a short time, the distance in position space
shifted by the particles initially lying at positive and negative xoi

′s converges to a constant
value. So, continuous measurements not only disturb the particle but compel it to eventually
converge to a classical position. It is also noticeable that damping tends to suppress further
quantum effects on a time scale shorter than the relaxation time of the system. For a small
friction coefficient (ν < h̄

mδ2o
), the Bohmian time constant can be expressed as

τB ≃ 2mδ2o
h̄

(

1− νmδ2o
h̄

)

. (24)

Further, from Equations (9) and (21) we have that the quantum force is given by

Fqu = −∂Vqu
∂x

= − ∂

∂x

[

− h̄2

8mδ4o
(x− x̄)2 +

h̄2

4mδ2o

]

=
h̄2

4mδ4o
xoie

−t/τB . (25)

Thus, the convergence of the quantum particle trajectories to classical trajectories is due to
the influence of the measuring apparatus and friction through the quantum force.[27] This
quantum force is directly proportional to the initial position of the ith particle and decays
exponentially in time (it drops 63% of its initial value after a time constant τB). Likewise,
the quantum position xi(t) - the initial position of the ith individual particle in the Gaussian
ensemble - approaches its classical value. So, friction and continuous observation of a wave
packet may lead to a gradual freezing of the quantum features of the particle.

Finally, if the initial wave packet width for an electron is taken to be equal to
2.8×10−15m (the approximate size of an electron [21]) and the coefficient of friction is made
very small (ν << h̄

mδ2o
), the Bohmian time constant is found to have an upper limit:

τBmax = 10−26s. (26)

This result provides an answer to a challenge posed by Bell [1, 28] on the lack of clarity
about the line between the quantum and classical regimes in a measurement problem: The
Bohmian time constant above defined may establish that dividing line.[20]

By adopting the Bohmian framework, which is one of the three main routes men-
tioned at the beginning, the interpretational scheme is different but pointing in the same
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direction as other works on decoherence. Furthermore, we also surmise that that there is no
single universal time scale, but several ones depending on the experimental situation. On
the other hand, the modeling of effective collapse induced by non-linearity at the quantum
level is scarcely in this route. In any case, further investigation is needed in order to better
understand the dynamics of a system interacting with an environment, which is traced out,
by considering stochasticity through additional noise terms.
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