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Abstract

Enabled by diverse high-throughput technologies, the rapidly evolving field of ‘‘-omics sciences’’ offers the
potential to study health and disease in breadth and depth at the human population level. We have recently
linked genomics and metabolomics to present the first genome-wide association study of metabolic traits in
human urine providing new insights into the functional background of chronic kidney disease. We propose
systems epidemiology as a novel approach to study the complexities of human pathophysiology by integrating
various population-level omic-metrics and to identify new trans-omic biomarkers.

Introduction

Epidemiology involves the study of disease prevalence,
incidence, and its risk factors. But facing the moderate

effect size and the ever growing number of newly uncovered
risk factors, the current risk factor era in epidemiology expe-
riences increasing criticism (Fallin and Kao, 2011). Focusing
mostly on a single risk factor related to a disease, the sim-
plicity of this single-level paradigm has serious limitations.
First, due to considerable interindividual differences in dis-
ease expression, these approaches only broadly predict who
will have increased risk. Second, they do not consider feed-
back or feedforward effects such that changes to one risk
factor change the effect of another risk factor. Third, current
approaches are not well designed to evaluate complex inter-
actions between multiple exposures and their dynamics en-
compassing human disease. Finally, phenotypes are often
coded at different levels of detail and with different aims,
further diluting statistical power and strengths of association.

Systems Epidemiology

Recent advances in high-throughput -omic platforms such
as expression arrays and mass spectrometry, with their ex-
quisite sensitivity, and specificity, have led to the possibility of
accumulating a wealth of genetic, transcriptomic, proteomic,
and metabolomic data to study health and disease in breadth
and depth at the human population level. Based on the in-
creased amount of detail available to describe an individual
phenotype, we propose systems epidemiology as a new research
field that integrates -omics together with physiological, epi-
demiological, and environmental data to create a systems
network that can be used to predictively model multilevel

causes of health and disease (Fig. 1). Further, the combination
of complementary -omic levels could be implemented for the
identification of novel trans-omic prognostic and diagnostic
biomarkers. Therefore, we do think that deep phenotyping
(Tracy, 2008)—the comprehensive and thorough description
of the physical state of an individual—will be the corre-
sponding principle of systems epidemiology on a population
level, to lay the foundation for the analyses of dynamic
feedback and interaction patterns among its multiple levels
(Fig. 1).

Moreover, the here proposed systems epidemiology approach
does not only concern the measurement of the molecular
underpinnings of human disease, but also multiple environ-
mental interaction components including behavioural, socio-
demographic, and group levels that may influence health and
disease. When considering human health in a wider per-
spective, it is clear that most major diseases are subject to
environmental influences. For example, obesity has been re-
cently reported to cluster in communities such that friends
have an even more important effect on an individual’s risk of
obesity than genes do (Christakis and Fowler, 2007). Al-
though epidemiology may be described as an effort in mea-
surement, systems epidemiology could turn out as synthesis
after measurement; an advanced pattern recognition ap-
proach integrating various -omics level (Fig. 1). This is not to
say that epidemiology would relax its historic focus on pop-
ulations, but need to absorb and apply the advancing scien-
tific understanding at molecular and cellular levels to the
study of health and disease in human populations.

If one accepts the case for deep phenotyping, including the
limitation that increased costs will necessarily yield smaller
sample sizes, there are at least three study design strategies
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that might be employed in systems epidemiology. The first in-
volves a longitudinal study design making multiple measure-
ments over time with fairly short time periods between
measurements. Data, for example obtained yearly over 10 years,
would enable the investigator to closely monitor subclinical
disease progression and to detect dynamic changes in the nature
of the phenotype over time. A second operational approach
accounts for the fact that for many biomarkers the within-sub-
ject variability is larger compared to the change in the biomarker
over time. Therefore, a mean biomarker value calculated based

on two or three blood draws spread over the day are likely to
eliminate this within-subject variability. Finally, the case of deep
phenotyping is likely to reduce the inaccuracy and misclassifi-
cation of disease outcomes present in most epidemiological and
clinical studies, by increasing an individual’s phenotypic in-
formation and refining risk classification.

Network analytic methods provide the computational
framework for data integration and biomarker selection in
systems epidemiology (Adourian et al., 2008). For example,
network-based computational approaches and longitudinal

FIG 1. Systems epidemiology versus the classic single-level paradigm to study health and disease at the human population
level. Integrating various population-level omic-metrics including the Phenome (physical traits such as body height, weight,
or specific personality characteristics), Metabolome (complete set of small-molecule metabolites to be found within a bio-
logical sample), Proteome (entire set of proteins expressed by a genome, cell, tissue, or organism), Transcriptome (infor-
mation about the expression of individual genes at the messenger ribonucleic acid level), Genome (complete set of genes in
the human organism), and environmental factors (behavioral, sociodemographic, and group levels), as well as the com-
plexities of its interactions will be critical for developing the most effective diagnostic techniques in systems epidemiology.
The understanding of each system-level component is also crucial in understanding the pathophysiology of human disease
(gray squares), here shown as a function of subnetworks of a complex multiomics network (each coloured node in the
subnetwork represents an -omic level, whereas node sizes are proportional to the strength of disease association and links
between nodes indicate trans-omic relationships). The systems epidemiology approach is contrasted by the simplicity of the
single-level paradigm in classical epidemiology focusing mostly on a single risk factor or omic-level related to a disease,
respectively.
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data from the Framingham Heart Study revealed a number of
surprising insights into the dynamics of smoking (Christakis
and Fowler, 2008), development of obesity (Christakis and
Fowler, 2007), and metabolic determinants of diabetes risk
(Wang et al., 2011). Similarly, network-based analyses of
known disease-gene associations revealed a number of sur-
prising connections between diseases, forcing us to rethink
apparently distinct pathophenotypes and their nomenclature
(Goh et al., 2007). Taken together, the proposed integration of
population-level omic-metrics promises to advance our un-
derstanding of human disease (Barabasi, 2007; Barabasi, et al.,
2011; Loscalzo et al., 2007) and to enable the identification of
new trans-omic biomarkers (Rantalainen et al., 2006).

We recently provided a proof of concept for the integration
of population-level omic-metrics employed in systems epide-
miology using genomic and metabolomic data for the first
genome-wide association study of metabolic traits in human
urine (Suhre et al., 2011). Through the identification of genetic
variants related to metabolism, specific ‘‘genetically deter-
mined metabotypes’’ have the potential to uncover additional
risk factors for common diseases and may provide new in-
sights into the pathophysiology of these diseases. Using nu-
clear magnetic resonance spectroscopy to quantify 59
metabolites in urine from 862 male participants of the
population-based epidemiological Study of Health in Po-
merania (SHIP), we identified genetic variants that have been
previously linked to important clinical outcomes including
chronic kidney disease and coronary artery disease. The re-
vealed plausible relationships between the associating meta-
bolic traits and the genetic variants’ encoded protein functions
provided new insights into the metabolic basis and functional
background of related pathophysiological processes. Thus,
the study of genotype-dependent metabolic phenotypes may
provide new functional insights for many disease-related as-
sociations and may constitute potential trans-omic biomark-
ers for diagnosis and monitoring (Suhre et al., 2011).

Challenges

Although disease manifestations have been shown to be
derived via different pathways in different individuals, epide-
miological research using multiple phenotypic levels to study
human disease is scarce. Especially results from genome-wide
association studies, perhaps the most vibrant research field of
the last 5 years, have thus far proven to be surprisingly disap-
pointing, partly because of the unexpected complexity of the
human genome and the difficulties in accurately and un-
equivocally describing human phenotypes (Maher, 2008). Fur-
thermore, biological systems exhibit robustness and dynamic
stability where phenotypic changes are fairly resistant to scat-
tered omic-level fluctuations (Hillenmeyer et al., 2008). Thus,
competing risks are buffered by regulatory networks that use
alternative mechanisms to ensure phenotypic stability (No-
brega et al., 2004). For example, competing risk patterns
emerging from the nearly 600 genome-wide association studies
reported nearly 800 significant single nucleotide polymor-
phisms (SNP)-trait associations with few variants having large
effects, but most having small effects (Manolio, 2010).

Another important challenge may be the lack of biomarker
standardization and harmonization. As advanced computa-
tional modeling techniques are used, well-integrated plat-
forms and data sets are required to conquer the intersection of

highly dynamic parameters and to assess the relationships
between omic-level metrics and their phenotypic manifesta-
tions (Connor et al., 2010). Furthermore, the proposed study
design enables a dynamic exposure assessment requiring a
close iteration between experimental data input and theoreti-
cal modelling (Kohl et al., 2010). For instance, it is increasingly
recognized that the understanding of complex metabolic and
cardiovascular diseases or cancer requires an integrated ana-
lyses of its molecular and cellular components, as well as their
relationships, pathways, and interconnectivity. To address the
risk of increased data noise and false positive findings in this
extremely data-rich research environment resulting from high-
throughput multiomics technology, the suggested application
of high-performance computing technologies may facilitate
high-volume data analysis and close the scientific gap between
increasing amount of data, correlation identification, and
plausible causal pathways (An, 2010).

Conclusions

The network-based integration of deep phenotypes in sys-
tems epidemiology may provide a novel approach to study the
complexities of human pathophysiology, and to account for
the paradox of ever-increasing measurement capabilities fol-
lowed by decreasing abilities to translate basic mechanistic
knowledge into clinically effective therapeutics (An, 2010;
Lenfant, 2003). Thus, systems epidemiology aims to account for
the large variability of interindividual disease onset, mani-
festation, and progression and may thereby support an
individualized medicine grounded on a multiscale and non-
reductionist analytical approach.
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