Divisible modules over integral domains

Alberto Facchini

1. Introduction

The aim of this paper is to describe an equivalence between the full subcategory of Mod-R whose objects are all the divisible modules over an integral domain R and a suitable full subcategory of modules over the endomorphism ring E of a fixed divisible module ∂ . This equivalence corresponds to the similar equivalences for torsion divisible abelian groups due to Harrison [6] and for torsion h-divisible modules over an integral domain due to Matlis [7], [8] and [9].

Let R denote a commutative integral domain with 1 (not a field) and let ∂_R denote the divisible right R-module defined by L. Fuchs in [3] (see § 2 for the exact definition of ∂_R). The module ∂_R has interesting properties that are shown in [3], in [4, \S VI.3] and in $\S\S$ 2 and 3 of this paper. For instance, if E is the endomorphism ring of ∂_R and ∂ is viewed as a left E-module $E \partial$, then End $E \partial \cong R$ and $E \partial \cong E/I$ for a suitable projective principal left ideal I of E. Moreover, ∂ has flat and projective dimensions equal to one both as a right R-module and a left E-module, and this implies that the class \mathscr{F} of all right E-modules M such that $\operatorname{Tor}_{1}^{E}(M,\partial)=0$ is the torsion-free class for a (non-hereditary) torsion theory $(\mathcal{F}, \mathcal{F})$ in Mod-E. This torsion theory is generated by the cyclic right E-module $\operatorname{Ext}_R^1(E\partial_R, R)$, and a right E-module M_E is a torsion-free module in this torsion theory (we say that M_E is *I-torsion-free*) if and only if the canonical homomorphism $M \otimes_E I \to M \otimes_E E \cong M$ induced by the embedding $I \rightarrow E$ is a monomorphism. Dually, we say that a module M_E is an *I-divisible* module if the canonical homomorphism $M \otimes_E I \rightarrow M$ is an epimorphism, and that a right E-module N_E is I-reduced if it is cogenerated by the right E-module $\partial^* = \operatorname{Hom}_R(\partial, C)$, where C is the minimal injective cogenerator in Mod-R. It is easy to show that a module M_E is I-divisible if and only if Hom (M, N) = 0 for every *I*-reduced *E*-module N_E .

Now define a right E-module M to be an I-cotorsion module if it is I-reduced and $\operatorname{Ext}_E^1(N, M) = 0$ for every I-divisible I-torsion-free right E-module N. The

main result of this paper is the proof of the following theorem: the functors $\operatorname{Hom}_R(\partial, -)\colon\operatorname{Mod-}R\to\operatorname{Mod-}E$ and $-\otimes_E\partial\colon\operatorname{Mod-}E\to\operatorname{Mod-}R$ induce an equivalence between the full subcategory of $\operatorname{Mod-}R$ whose objects are the divisible R-modules and the full subcategory of $\operatorname{Mod-}E$ whose objects are the I-cotorsion E-modules. This generalizes the corresponding results of Harrison for torsion divisible abelian groups [6] and of Matlis for torsion h-divisible R-modules ([7] and [9]). In our equivalence the injective R-modules correspond to the I-reduced I-pure-injective E-modules. Here I-pure-injective means injective relatively to the I-pure exact sequences, that is, the sequences $0 \to M' \to M \to M'' \to 0$ of right E-modules for which the sequence $0 \to M' \otimes_E \partial \to M \otimes_E \partial \to M'' \otimes_E \partial \to 0$ is exact. (This extends the corresponding result due to Warfield for Matlis' equivalence between torsion h-divisible modules and torsion-free cotorsion modules, see [4, Th. V.1.8].) Our I-purity is a purity in the sense of Warfield [14].

Finally, we prove that *I*-cotorsion *E*-modules are exactly the right *E*-modules of ∂^* -dominant dimension ≥ 2 , that is, the modules M_E for which there exists an exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$ with ∂^{*X} and ∂^{*Y} suitable direct products of copies of ∂^* .

For technical reasons (proof of Lemma 2.2) the way we define the R-module ∂ is a little different from the way Fuchs defines it in [3] and [4]. The difference is that our generators are the k-tuples $(r_1, ..., r_k)$ of non-zero elements r_i of R, and Fuchs' generators are the k-tuples $(r_1, ..., r_k)$ of non-zero and non-invertible elements r_i of R. Fuchs' results in [3] and [4] hold with this small modification as well.

2. The R-module ∂_R and its endomorphism ring E

In this paper R will be an integral domain and we will assume that it is not a field. We will denote the field of fractions of R by O.

Let ∂ be the right R-module generated by the set \mathcal{G} of all k-tuples $(r_1, ..., r_k)$ of non-zero elements r_i of R, for $k \ge 0$, with defining relations

$$(r_1, ..., r_k)r_k = (r_1, ..., r_{k-1}), k \ge 1.$$

The right R-module ∂ is obviously divisible, that is, $\partial r = \partial$ for every $r \in R$, $r \neq 0$. The length of $(r_1, ..., r_k)$ is defined to be k, and the unique generator $w = \emptyset$ in $\mathscr G$ of length 0 generates a submodule wR of ∂ isomorphic to R [4, § VI.3]. Note that for every $x \in \partial$ there exists $r \in R$, $r \neq 0$, such that $xr \in wR$ (possibly xr = 0).

The fundamental property of ∂ is the following one:

Proposition 2.1 [4, Lemma VI.3.2]. Let D be a divisible right R-module and $a \in D$. Then there exists a homomorphism $f: \partial \to D$ with f(w) = a.

Let ∂_n be the submodule of ∂ generated by the elements of \mathscr{G} of length $\leq n$, so that in particular $\partial_0 = wR$.

Lemma 2.2. Fix a nonnegative integer n and an element a of R, $a \neq 0$ and $a \neq 1$. Then the correspondence $\mathcal{G} \rightarrow \partial$ defined by

$$(r_1, ..., r_k) \in \mathcal{G} \mapsto \begin{cases} 0 & \text{if } k \leq n \\ (r_1, ..., r_n, 1, r_{n+1}, ..., r_k) - (r_1, ..., r_n, a, r_{n+1}, ..., r_k)a & \text{if } k > n \end{cases}$$

extends to an endomorphism of ∂ whose kernel is ∂_n and whose image is a direct summand of ∂ .

Proof. It is easy to show that the defining relations of ∂ are preserved by the correspondence; for instance, when k=n+1, the relation $(r_1, ..., r_k)r_k = (r_1, ..., r_{k-1})$ is preserved because $[(r_1, ..., r_n, 1, r_{n+1}) - (r_1, ..., r_n, a, r_{n+1})a]r_k = (r_1, ..., r_n, 1) - (r_1, ..., r_n, a)a = (r_1, ..., r_n) - (r_1, ..., r_n) = 0$. Therefore the correspondence extends to an endomorphism φ of ∂ . Note that $\partial_n \subset \ker \varphi$ because $\varphi(r_1, ..., r_n) = 0$ for every $(r_1, ..., r_n)$. In particular $\varphi = \varphi' \circ \pi$ where $\pi : \partial \to \partial/\partial_n$ is the canonical projection and $\varphi' : \partial/\partial_n \to \partial$ is a homomorphism.

Now consider the correspondence $\mathcal{G} \rightarrow \partial/\partial_n$ defined by

$$(r_{1}, ..., r_{k}) \in \mathcal{G} \mapsto \begin{cases} \partial_{n} & \text{if } k \leq n+1 \\ \partial_{n} & \text{if } k > n+1 \text{ and } r_{n+1} \neq 1 \\ (r_{1}, ..., r_{n}, \widehat{r_{n+1}}, r_{n+2}, ..., r_{k}) + \partial_{n} & \text{if } k > n+1 \text{ and } r_{n+1} = 1, \end{cases}$$

where $(r_1, ..., r_n, r_{n+1}, r_{n+2}, ..., r_k)$ denotes the (k-1)-tuple in which r_{n+1} has been deleted. The defining relations of ∂ are preserved by this correspondence as well; for instance, when k=n+2 and $r_{n+1}=1$, the relation $(r_1, ..., r_k)r_k=(r_1, ..., r_{k-1})$ is preserved because $[(r_1, ..., r_n, \widehat{r_{n+1}}, r_k) + \partial_n]r_k=(r_1, ..., r_n) + \partial_n = \partial_n$. Therefore this correspondence also extends to a homomorphism $\psi: \partial \to \partial/\partial_n$.

The composed homomorphism $\psi\varphi\colon\partial\to\partial/\partial_n$ is defined by $\psi\varphi(r_1,\ldots,r_k)=\partial_n$ if $k\leq n$ and $\psi\varphi(r_1,\ldots,r_k)=\psi[(r_1,\ldots,r_n,1,r_{n+1},\ldots,r_k)-(r_1,\ldots,r_n,a,r_{n+1},\ldots,r_k)a]=(r_1,\ldots,r_n,r_{n+1},\ldots,r_k)+\partial_n$ if k>n, i.e., $\psi\varphi\colon\partial\to\partial/\partial_n$ is the canonical projection π . Therefore $\pi=\psi\varphi=\psi\varphi'\pi$, hence $\psi\varphi'$ is the identity of ∂/∂_n , so that φ' is injective and $\partial=\varphi'(\partial/\partial_n)\oplus\ker\psi$. Since φ' is injective, $\ker\varphi=\ker(\varphi'\pi)=\ker\pi=\partial_n$. Moreover $\varphi(\partial)=\varphi'(\partial/\partial_n)$ is a direct summand of ∂ .

Fix the following notations:

- E is the endomorphism ring End (∂_R) of the R-module ∂_R ;
- φ is a fixed R-endomorphism of ∂ (i.e., $\varphi \in E$) with $\ker \varphi = wR$ and $\varphi(\partial)$ a direct summand of ∂ (it exists by Lemma 2.2);

- ε is a fixed idempotent R-endomorphism of ∂ (i.e., $\varepsilon \in E$ and $\varepsilon^2 = \varepsilon$) with $\varepsilon(\partial) = \varphi(\partial)$;
 - I is the left ideal $\{f \in E | f(w) = 0\}$ of E;
- J is the two sided ideal $\{f \in E | f(\partial) \subset t(\partial)\}\$ of E, where $t(\partial)$ denotes the torsion submodule of ∂ .

Since R is a commutative ring and ∂_R is a faithful module, the ring R is a subring of the center Z(E) of E. In the next theorem we prove that R is equal to Z(E).

Theorem 2.3. The integral domain R is the center of $E = \text{End } (\partial_R)$.

Proof. It is sufficient to show that if f belongs to the center of E then there exists $r \in R$ such that f(x) = xr for every $x \in \partial$. If f is in the center of E and φ denotes the endomorphism defined before the statement of this theorem, then $\varphi f(w) = f\varphi(w) = f(0) = 0$, so that $f(w) \in \ker \varphi = wR$; hence there exists $r \in R$ with f(w) = wr. If $x \in \partial$, then there is a homomorphism $g: \partial \to \partial$ with g(w) = x by Proposition 2.1, and f(x) = f(g(w)) = g(f(w)) = g(wr) = g(w)r = xr. This concludes the proof of the theorem.

If $\alpha: \partial + Q$ is the R-module homomorphism defined by $\alpha(r_1, ..., r_k) = (r_1 ... r_k)^{-1}$ for $k \ge 1$ and $\alpha(w) = 1$, then ker α is the torsion submodule $t(\partial)$ of ∂ . This is easily seen, because $t(\partial) \subset \ker \alpha$ since Q is torsion-free, and if $x \in \ker \alpha$ and $r \in R$, $r \ne 0$, is such that $xr \in wR$, xr = ws say, then $0 = \alpha(xr) = \alpha(ws) = \alpha(w)s = s$; therefore xr = 0 and $x \in t(\partial)$. In particular $\partial/t(\partial) \cong Q$.

If we apply the functor $\operatorname{Hom}_R(\partial, -)$ to the exact sequence $0 \to t(\partial) \to \partial \xrightarrow{\alpha} Q \to 0$, we obtain the exact sequence $0 \to J \to E \to \operatorname{Hom}_R(\partial, Q) \to \operatorname{Ext}_R^1(\partial, t(\partial))$. But $\operatorname{Hom}_R(\partial, Q) \cong \operatorname{Hom}_R(\partial/t(\partial), Q) \cong \operatorname{Hom}_R(Q, Q) \cong Q$ and $\operatorname{Ext}_R^1(\partial, t(\partial)) = 0$ because $t(\partial)$ is a divisible R-module [4, Prop. VI.3.4]. Hence $E/J \cong Q$ and J is an ideal of E maximal among the two sided ideals of E.

Note that the left annihilator of φ , $l(\varphi) = \{g \in E | g \varphi = 0\}$, is $E(1-\varepsilon)$. In fact, $(1-\varepsilon)\varphi = 0$ because $\varepsilon(\partial) = \varphi(\partial)$, so that $E(1-\varepsilon) \subset l(\varphi)$. And if $g \in l(\varphi)$, then $g\varphi = 0$, i.e., $\ker g \supset \varphi(\partial) = \varepsilon(\partial)$; it follows that $g\varepsilon = 0$ and $g = g - g\varepsilon = g(1-\varepsilon) \in E(1-\varepsilon)$. The right annihilator of φ , $r(\varphi) = \{g \in E | \varphi g = 0\}$, is 0, because if $\varphi g = 0$, then $g(\partial) \subset \ker \varphi = wR$. Since $g(\partial)$ is a divisible module, it must be the zero submodule of wR, i.e., g = 0.

Theorem 2.4. If B_R is any right R-module and $f: \partial \to B$ is a homomorphism such that f(w)=0, then there exists $g: \partial \to B$ such that $f=g\varphi$. In particular, $I=\{f\in E\mid f(w)=0\}$ is the left principal ideal $E\varphi$ generated by φ and is a projective ideal of E isomorphic to $E\varepsilon$.

Proof. Since $\ker \varphi = wR$ and $\varphi(\partial)$ is a direct summand of ∂ , there exists $\psi \colon \partial \to \partial/wR$ such that $\psi \varphi$ is the canonical projection $\pi \colon \partial \to \partial/wR$ (this had been

also shown in the proof of Lemma 2.2). Since $f: \partial \to B$ annihilates w, f can be written as $f=f'\pi$ for a suitable $f': \partial/wR \to B$ induced by f. If $g=f'\psi: \partial \to B$, then $f=f'\pi=f'\psi\varphi=g\varphi$. This proves the first assertion.

In particular, $I = \{f \in E \mid f(w) = 0\} \subset \{g\varphi \mid g \in \operatorname{Hom}_R(\partial, \partial)\} = E\varphi$, so that $I = E\varphi$, the other inclusion being trivial.

Finally, since $l(\varphi) = E(1-\varepsilon) = l(\varepsilon)$, the ideal $I = E\varphi \cong E\varepsilon$ is projective.

3. The *E*-modules $_{E}\partial$ and ∂_{E}°

Since $E=\operatorname{End}(\partial_R)$, the module ∂ can be viewed as a left E-module, and $R=\operatorname{End}(E\partial)$ by Theorem 2.3. In this section we shall study the E-module E.

Lemma 3.1. The left E-module $E \partial$ is isomorphic to E/I.

Proof. Consider the mapping $E \rightarrow \partial$ defined by $f \mapsto f(w)$ for every $f \in E$. Obviously it is a left E-module homomorphism. It is surjective by proposition 2.1 and its kernel is I.

Fuchs [4, Lemma VI.3.1] has proved that the projective dimension of ∂_R , proj.dim ∂_R , is equal to one (this can also be shown by proving that the relations $(r_1, ..., r_k)r_k - (r_1, ..., r_{k-1})$ generate a free submodule H of the module F freely generated by \mathcal{G}); since ∂_R is not flat (every flat R-module is torsion-free, and ∂_R is not torsion-free) and proj.dim $\partial_R \ge$ flat.dim ∂_R , where flat.dim ∂_R is the flat dimension of ∂_R , it follows that flat.dim $\partial_R = \text{proj.dim } \partial_R = 1$. This holds for the module E0 too.

Corollary 3.2. flat. dim $_{E}\partial = \text{proj.dim }_{E}\partial = 1$.

Proof. By Lemma 3.1 and Theorem 2.4 proj. dim $_E\partial \leq 1$. If proj. dim $_E\partial < 1$, then $_E\partial$ is projective, so that $I=E\varphi$ is a direct summand of E, i.e., $E\varphi=E\beta$ for an idempotent $\beta \in E$. Then $wR=\cap \{\ker f | f\in E\varphi\}=\cap \{\ker f | f\in E\beta\} \}=\ker \beta$ is a direct summand of the divisible module ∂_R , contradiction, because wR is not divisible. This proves that proj. dim $_E\partial=1$. Moreover flat. dim $_E\partial \leq \operatorname{proj.dim}_E\partial=1$, and $_E\partial$ is not flat, because $_E\partial$ is finitely presented by Lemma 3.1 and Theorem 2.4 and every finitely presented flat module is projective [13, Cor. I.11.5]. Therefore flat. dim $_E\partial=1$.

By Corollary 3.2 $\operatorname{Tor}_n^E(-, E\partial) = \operatorname{Ext}_E^n(E\partial, -) = 0$ for $n \ge 2$. In the sequel we need the exact formulas for the functors $\operatorname{Tor}_1^E(-, E\partial)$ and $\operatorname{Ext}_E^1(E\partial, -)$ that are calculated in the next corollary.

Corollary 3.3. If M_E is any right E-module, then $\operatorname{Tor}_1^E(M, \partial) \cong (0:_M \varphi) \varepsilon$, where $(0:_M \varphi) = \{x \in M | x \varphi = 0\}$.

If EN is any left E-module, then $Ext_E^1(\partial, N) \cong \varepsilon N/\varphi N$.

Proof. Consider the exact sequence $0 oup I oup E oup \partial oup 0$. By applying the functor $M \otimes_E oup$, we obtain that the sequence $0 oup \operatorname{Tor}_1^E(M, \partial) oup M \otimes I oup M \otimes E$ is exact. Since $I = E\varphi \cong E_E$ and $M \otimes_E E \cong M$, it follows that $\operatorname{Tor}_1^E(M, \partial)$ is isomorphic to the kernel of the abelian group homomorphism $M \varepsilon oup M$ defined by $x \varepsilon \mapsto x \varphi$ for every $x \in M$. It follows that $\operatorname{Tor}_1^E(M, \partial) \cong (0:_M \varphi) \varepsilon$. Similarly for $\operatorname{Ext}_E^1(\partial, N)$.

Note that since proj.dim $\partial_R = 1$, the torsion submodule $t(\partial_R)$ of ∂_R is isomorphic to a submodule of $K^{(X)}$, where K = Q/R and $K^{(X)}$ is a direct sum of copies of K. Namely, if M_R is any module with proj.dim $M_R = 1$, fix a free resolution $0 \to R^{(X)} \to R^{(Y)} \to M \to 0$ of M (this is possible by [10, page 90, Ex. 3]) and apply the functor $- \otimes_R K$ to this sequence. Then the sequence $\operatorname{Tor}_R^1(R^{(Y)}, K) \to \operatorname{Tor}_R^1(M, K) \to R^{(X)} \otimes K \to R^{(Y)} \otimes K$ can be rewritten as $0 \to t(M) \to K^{(X)} \to K^{(Y)}$ by [8, page 10].

Since proj. dim $\partial_R = 1$, it follows that $\operatorname{Ext}_R^n(\partial, -) = 0$ for $n \ge 2$. Consider $\operatorname{Ext}_R^1(\partial, R)$. Since $\operatorname{Ext}_R^1(-, R)$ is a contravariant functor, every R-homomorphism $f: \partial \to \partial$ induces an R-homomorphism $\operatorname{Ext}_R^1(f, R)$: $\operatorname{Ext}_R^1(\partial, R) \to \operatorname{Ext}_R^1(\partial, R)$, so that $\operatorname{Ext}_R^1(\partial, R)$ is a right E-module.

Theorem 3.4. The right E-module $\operatorname{Ext}_R^1(\partial, R)$ is isomorphic to $\varepsilon E/\varphi E$.

Proof. Let C be the image of the endomorphism $1-\varepsilon$ of ∂ , so that $\partial = \varepsilon(\partial) \oplus (1-\varepsilon)(\partial) = \varphi(\partial) \oplus C$. Consider the exact sequence of R-modules

$$S: 0 \to R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \to 0$$

where $\alpha(r) = (wr, 0)$ for every $r \in R$ and $\beta(x, y) = \varphi(x) + y$ for every $(x, y) \in \partial \oplus C$. Let \overline{S} be the image of the extension S into $\operatorname{Ext}^1_R(\partial, R)$. In order to prove the theorem it is sufficient to show that $\Phi \colon \varepsilon E \to \operatorname{Ext}^1_R(\partial, R)$ defined by $\Phi(\varepsilon f) = \overline{S}f$ for every $f \in E$ is a well defined surjective E-homomorphism with kernel φE .

If $f \in E$ and $\varepsilon f = 0$, then $f(\partial) \subset \ker \varepsilon = C$, so that it is possible to define a homomorphism $g: R \oplus \partial \to \partial \oplus C$ by setting g(r, x) = (wr, f(x)) for every $(r, x) \in R \oplus \partial$. If Z denotes the trivial extension, the diagram

$$Z: 0 \to R \to R \oplus \partial \to \partial \to 0$$

$$\parallel \qquad \qquad \downarrow g \qquad \downarrow f$$

$$S: 0 \to R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \to 0$$

commutes. This shows that $\bar{S}f$ is zero in $\operatorname{Ext}^1_R(\partial, R)$ and proves that Φ is a well defined homomorphism of right E-modules.

Now we shall show that Φ is surjective. Let

$$T: 0 \to R \xrightarrow{\gamma} A \xrightarrow{\delta} \partial \to 0$$

be any extension and \overline{T} its image into $\operatorname{Ext}^1_R(\partial, R)$. Since $\operatorname{Ext}^1_R(\partial, \partial) = 0$ [4, Prop. VI.3.4], the R-homomorphism γ^* : $\operatorname{Hom}_R(A, \partial) \to \operatorname{Hom}_R(R, \partial)$ is surjective. Hence

there exists $\chi \in \text{Hom}_R(A, \partial)$ such that $(\gamma^*(\chi))(1) = w$, that is, $\chi(\gamma(1)) = w$. Define $h: A \to \partial \oplus C$ by $h(a) = (\chi(a), 0)$ for every $a \in A$. Then $h(\gamma(1)) = (\chi(\gamma(1)), 0) = (w, 0) = \alpha(1)$, so that $h\gamma = \alpha$ and the left-hand square in the diagram

$$T: 0 \to R \xrightarrow{y} A \xrightarrow{\delta} \partial \to 0$$

$$\parallel \qquad \downarrow h \qquad \downarrow f$$

$$S: 0 \to R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \to 0$$

commutes; it follows that there exists an $f \in E$ making the right-hand square commute. Then $\overline{S}f = \overline{T}$, and Φ is surjective.

In order to prove that $\ker \Phi = \varphi E$, fix an $f \in E$, so that $\varepsilon f \in \varepsilon E$. Then $\varepsilon f \in \ker \Phi$ if and only if $\overline{S}f = \overline{Z}$, i.e., if and only if there exists a homomorphism $g: R \oplus \partial \to \partial \oplus C$ making the diagram

$$Z: 0 \to R \to R \oplus \partial \to \partial \to 0$$

$$\parallel \qquad \qquad \downarrow g \qquad \downarrow f$$

$$S: 0 \to R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \to 0$$

commute. This means that g(r, 0) = (wr, 0) and $\beta g(r, x) = f(x)$ for every $r \in R$ and $x \in \partial$. Since the homomorphisms $g: R \oplus \partial \to \partial \oplus C$ such that g(r, 0) = (wr, 0) for every $r \in R$ are exactly of the form g(r, x) = (wr + h(x), l(x)) for suitable $h: \partial \to \partial$ and $l: \partial \to C$, it follows that $\varepsilon f \in \ker \Phi$ if and only if there exists $h: \partial \to \partial$ and $l: \partial \to C$ such that $f(x) = \beta g(r, x) = \beta (wr + h(x), l(x)) = \varphi (wr + h(x)) + l(x) = (\varphi h + l)(x)$, i.e., $f - \varphi h = l$. But $C = (1 - \varepsilon)(\partial) = \ker \varepsilon$, so that $\varepsilon f \in \ker \Phi$ if and only if $\varepsilon (f - \varphi h) = 0$ for some $h: \partial \to \partial$, i.e., $\varepsilon f = \varepsilon \varphi h = \varphi h \in \varphi E$. This proves that $\ker \Phi = \varphi E$.

We shall often need the right E-module $\operatorname{Ext}^1_R(\partial,R)$ in the sequel, and we shall denote it by ∂° . Hence $\partial^\circ = \operatorname{Ext}^1_R(\partial,R) \cong \varepsilon E/\varphi E$ as a right E-module. There are other "presentations" of the module ∂° . For instance the right E-modules ∂° and $\operatorname{Ext}^1_E(\partial,E)$ are isomorphic right E-modules by Corollary 3.3. Moreover the functor $\operatorname{Hom}_R({}_E\partial_R,-)$ applied to the exact sequence of R-modules $0\to wR\to \partial \to \partial/wR\to 0$ gives the exact sequence of right E-modules $0\to E\to \operatorname{Hom}_R(\partial,\partial/wR)\to \operatorname{Ext}^1_R(\partial,wR)\to \operatorname{Ext}^1_R(\partial,\partial)$. The last module is zero by [4, Prop. VI.3.4], so that the right E-modules $\partial^\circ \cong \operatorname{Ext}^1_R(\partial,wR)$ and $\operatorname{Hom}_R(\partial,\partial/wR)/E$ are isomorphic.

Furthermore, the functor $\operatorname{Hom}_R({}_E\partial_R, -)$ applied to the exact sequence of R-modules $0 \to R \to Q \to K \to 0$ gives the exact sequence of right E-modules $0 \to \operatorname{Hom}_R(\partial, Q) \to \operatorname{Hom}_R(\partial, K) \to \operatorname{Ext}_R^1(\partial, R) \to \operatorname{Ext}_R^1(\partial, Q)$. The last module is zero by [4, Prop. VI.3.4], and the first module is $\operatorname{Hom}_R(\partial, Q) \cong \operatorname{Hom}_R(\partial/t(\partial), Q) \cong Q$ by the remarks after proposition 2.3. Therefore $\partial^\circ \cong \operatorname{Hom}_R(\partial, K)/Q$ as E-modules.

If we are only interested in the structure of ∂° as an R-module, there is one more "presentation" of ∂° : the functor $\operatorname{Hom}_{R}(-,R)$ applied to the exact sequence $0 \to H \to F \to \partial \to 0$ (where F is the R-module freely generated by $\mathscr G$ and H is the free submodule of F generated by the relations) gives $0 \to \operatorname{Hom}_{R}(F,R) \to \operatorname{Hom}_{R}(H,R) \to \operatorname{Hom}_{R}(F,R) \to \operatorname{Hom}_{R}(F,R)$

 $\operatorname{Ext}_R^1(\partial, R) \to 0$, which is a presentation of ∂° as a quotient of two R-modules isomorphic to direct products of copies of R.

Corollary 3.5. flat.dim $\partial_E^{\circ} = \text{proj.dim } \partial_E^{\circ} = 1$.

Proof. Since $r(\varphi)=0$, it follows that $\varphi E\cong E$ is projective, so that $\partial^{\circ}\cong \varepsilon E/\varphi E$ has projective dimension $\cong 1$. Hence $1\cong \operatorname{proj}$ dim $\partial^{\circ}\cong \operatorname{flat}$. dim ∂° . It remains to prove that $\varepsilon E/\varphi E$ is not flat. But $\varepsilon + \varphi E \in \varepsilon E/\varphi E$ is annihilated by φ (because $\varepsilon \varphi = \varphi$) so that it belongs to $(0:\varphi)\varepsilon \cong \operatorname{Tor}_{\mathbf{1}}^{E}(\partial^{\circ}, \partial)$ (Corollary 3.3). Thus $\operatorname{Tor}_{\mathbf{1}}^{E}(\partial^{\circ}, \partial) \neq 0$ and ∂° is not flat.

Theorem 3.6. End $(\partial_E^{\circ}) \cong R$.

Proof. First of all observe that ∂° is a torsion-free R-module, because if $r \in R$ and $r \neq 0$, the functor $\operatorname{Hom}_{R}(\partial, -)$ applied to the exact sequence $0 \to R \xrightarrow{r} R \to R/rR \to 0$ gives the exact sequence $\operatorname{Hom}_{R}(\partial, R/rR) \to \partial^{\circ} \xrightarrow{r} \partial^{\circ}$. The first module is zero because ∂ is divisible and R/rR is torsion of bounded order. Hence the multiplication by r is an injective endomorphism of ∂° , and ∂° is a torsion-free R-module.

Since $\partial^{\circ} \cong \varepsilon E/\varphi E \cong E/(\varphi E + (1-\varepsilon)E)$ is a cyclic E-module, it follows that $\operatorname{End}_{E}(\partial^{\circ}) \cong U/(\varphi E + (1-\varepsilon)E)$, where U is the subring $\{f \in E \mid f(\varphi E + (1-\varepsilon)E) \subset \varphi E + (1-\varepsilon)E\}$ of E (for instance see [10, page 24]). Similarly, since $\partial \cong E/E\varphi$, the ring $\operatorname{End}_{E}(\partial)$ is isomorphic to $V/E\varphi$, where $V = \{g \in E \mid E\varphi g \subset E\varphi\}$. But $\operatorname{End}_{E}(\partial)$ is canonically isomorphic to R (Theorem 2.3), and thus $V = R + E\varphi$.

Now we prove that $U=R+\varphi E+(1-\varepsilon)E$. The inclusion $U\supset R+\varphi E+(1-\varepsilon)E$ is trivial. Conversely, if $f\in U$, that is, $f\in E$ and $f(\varphi E+(1-\varepsilon)E)\subset \varphi E+(1-\varepsilon)E$, then $\varepsilon f\varphi\in \varepsilon (\varphi E+(1-\varepsilon)E)=\varphi E$. Therefore $\varepsilon f\varphi=\varphi g$ for some $g\in E$. In particular $E\varphi g=E\varepsilon f\varphi\subset E\varphi$, that is, $g\in V=R+E\varphi$. Hence $g=r+h\varphi$ for some $r\in R$ and $h\in E$, and $\varepsilon f\varphi=\varphi g=\varphi (r+h\varphi)=(r+\varphi h)\varphi$. Then $(\varepsilon f-r-\varphi h)\varphi=0$, and since $l(\varphi)=E(1-\varepsilon)=l(\varepsilon)$ (§ 2), we have $(\varepsilon f-r-\varphi h)\varepsilon=0$, so that $\varepsilon f\varepsilon=r\varepsilon-\varphi h\varepsilon=r-(1-\varepsilon)r-\varphi h\varepsilon\in R+(1-\varepsilon)E+\varphi E$. Moreover $f\in U$ implies $f(1-\varepsilon)\in \varphi E+(1-\varepsilon)E$, so that $f=f(1-\varepsilon)+(1-\varepsilon)f\varepsilon+\varepsilon f\varepsilon\in (\varphi E+(1-\varepsilon)E)+(1-\varepsilon)E+(R+(1-\varepsilon)E+\varphi E)=R+\varphi E+(1-\varepsilon)E$. This proves that $U=R+\varphi E+(1-\varepsilon)E$.

It follows that

$$\operatorname{End}_{E}(\partial^{\circ}) \cong U/(\varphi E + (1-\varepsilon)E) = (R + \varphi E + (1-\varepsilon)E)/(\varphi E + (1-\varepsilon)E)$$
$$\cong R/(R \cap (\varphi E + (1-\varepsilon)E)),$$

i.e., every element of $\operatorname{End}_E(\partial^\circ)$ is induced by the multiplication by an element of R. But ∂° is a torsion-free R-module, so that $\operatorname{End}_E(\partial^\circ) \cong R$.

4. The functors $\operatorname{Hom}_R(\partial, -)$ and $-\otimes_E \partial$

Consider the two functors $\operatorname{Hom}_R({}_E\partial_R, -)$: $\operatorname{Mod-}R \to \operatorname{Mod-}E$ and $-\otimes_E\partial_R$: $\operatorname{Mod-}E \to \operatorname{Mod-}R$. Then $\operatorname{Hom}_R({}_E\partial_R, -)$ is the right adjoint of $\otimes_E\partial_R$, for each $M \in \operatorname{Mod-}E$ there is a canonical E-module homomorphism

$$\eta_M : M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$$

defined by $\eta_M(m)(x)=m\otimes x$ for every $m\in M$ and $x\in \partial$ (the unit of the adjunction), and for each $A\in \mathrm{Mod}\text{-}R$ there is a canonical R-module homomorphism $\varepsilon_A\colon \mathrm{Hom}_R(\partial,A)\otimes_E\partial\to A$ defined by $\varepsilon_A(f\otimes x)=f(x)$ for every $f\in \mathrm{Hom}_R(\partial,A)$ and $x\in \partial$ (the counit of the adjunction).

Note that if M_E is any E-module, the R-module $M \otimes_E \partial$ is divisible (because ∂_R is divisible and $- \otimes_E \partial_R$ is right exact). Hence $- \otimes_E \partial$ is a functor of Mod-E into the full subcategory \mathcal{D}_R of Mod-R whose objects are the divisible R-modules.

Theorem 4.1. Let A_R be a right R-module. Then ε_A : $\operatorname{Hom}_R(\partial, A) \otimes_E \partial \to A$ is an isomorphism if and only if A is a divisible R-module.

Proof. If ε_A is an isomorphism and $F_E \to \operatorname{Hom}_R(\partial, A)$ is a surjective E-homomorphism of a free E-module F_E onto $\operatorname{Hom}_R(\partial, A)$, then $F \otimes_E \partial \to \operatorname{Hom}_R(\partial, A) \otimes \partial$ is a surjective R-homomorphism of the R-module $F \otimes_E \partial$ onto $\operatorname{Hom}_R(\partial, A) \otimes \partial \cong A$. Hence A, homomorphic image of the divisible R-module $F \otimes_E \partial$, is divisible.

Conversely, suppose A_R divisible and apply the functor $\operatorname{Hom}_R(\partial, A) \otimes_E -$ to the exact sequence $0 \to E\varphi \to E \to \partial \to 0$, where the first homomorphism is the inclusion and the second is defined by $1 \mapsto w$ (Theorem 2.4 and Lemma 3.1). The first homomorphism in the obtained sequence

$$\operatorname{Hom}_{R}(\partial, A) \otimes_{E} E \varphi \to \operatorname{Hom}_{R}(\partial, A) \to \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \to 0$$

is induced by the multiplication, so that its image is $\{g\phi|g\in \operatorname{Hom}_{\mathbb{R}}(\partial, A)\}$, which is equal to $B=\{f|f\in \operatorname{Hom}_{\mathbb{R}}(\partial, A), f(w)=0\}$ by Theorem 2.4.

The homomorphism χ : $\operatorname{Hom}_R(\partial, A) \to A$ defined by $\chi(f) = f(w)$ for every $f \in \operatorname{Hom}_R(\partial, A)$ is surjective by proposition 2.1 because A is divisible, and has B as its kernel. Moreover the diagram

$$0 \to B \to \operatorname{Hom}_{R}(\partial, A) \to \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \to 0$$

$$\parallel \qquad \qquad \downarrow \varepsilon_{A}$$

$$0 \to B \to \operatorname{Hom}_{R}(\partial, A) \xrightarrow{\chi} A \longrightarrow 0$$

commutes, because $\chi(f)=f(w)=\varepsilon_A(f\otimes w)$ for every $f\in \operatorname{Hom}_R(\partial,A)$. It follows that ε_A is an isomorphism.

If \mathscr{D}_R denotes the full subcategory of Mod-R whose objects are the divisible modules, the functor $\operatorname{Hom}_R(\partial, -)$: $\mathscr{D}_R \to \operatorname{Mod-}E$ is full and faithful by Theorem 4.1

[11, prop. 5.2], so that \mathcal{D}_R is equivalent to the full subcategory \mathcal{I}_E of Mod-E whose objects are the E-modules isomorphic to $\operatorname{Hom}_R(\partial, A)$ for some $A \in \operatorname{Mod-}R$.

In the next sections we shall study and characterize the right E-modules isomorphic to $\operatorname{Hom}_R(\partial, A)$ for some $A \in \operatorname{Mod-}R$. In order to do this we shall often need the following result.

Proposition 4.2. For every R-module
$$A_R$$
, $\operatorname{Tor}_1^E(\operatorname{Hom}_R(\partial, A), {}_E\partial)=0$.

Proof. By Corollary 3.3 we must show that $(0: \varphi) \varepsilon = 0$, where $(0: \varphi) = \{f \in \text{Hom}_R(\partial_R, A) | f \varphi = 0\}$. Now $f \varphi = 0$ if and only if $\varphi(\partial) \subset \ker f$. But $\varphi(\partial) = \varepsilon(\partial)$. Hence if $f \in (0: \varphi)$, then $\varepsilon(\partial) \subset \ker f$, so that $f \varepsilon = 0$. This concludes the proof of the proposition.

Theorem 4.3. Let \mathscr{I} be the class of all right E-modules isomorphic to $\operatorname{Hom}_R(\partial, A)$ for some right R-module A. Let $0 \to L_E \to M_E \to N_E \to 0$ be a short exact sequence of right E-modules.

- (i) If $L, N \in \mathcal{I}$, then $M \in \mathcal{I}$.
- (ii) If $M, N \in \mathcal{I}$, then $L \in \mathcal{I}$.
- (iii) If $L, M \in \mathcal{I}$ and $\operatorname{Tor}_{1}^{E}(N, \partial) = 0$, then $N \in \mathcal{I}$.

Proof. In all of the three cases $\operatorname{Tor}_1^E(N,\partial)=0$ by proposition 4.2. Hence the functor $-\otimes_E\partial$ applied to the sequence of the statement of the theorem gives the exact sequence $0\to L\otimes\partial\to M\otimes\partial\to N\otimes\partial\to 0$. The functor $\operatorname{Hom}_E(\partial,-)$ applied to this sequence and the naturality of the transformation η give the commutative diagram

The second row in this diagram is exact because $\operatorname{Ext}_R^1(\partial, L \otimes_E \partial) = 0$ by [4, Prop. VI.3.4]. Hence if two of the mappings η_L , η_M , η_N are isomorphisms, so is the third. It remains to prove that for a module P_E the mapping $\eta_P \colon P \to \operatorname{Hom}_R(\partial, P \otimes \partial)$ is an isomorphism if and only if $P \in \mathcal{I}$. But if $P \in \mathcal{I}$, then the functors $- \otimes_E \partial$ and $\operatorname{Hom}_R(\partial, -)$ give an equivalence $\mathcal{D} \to \mathcal{I}$, so that η_P is an isomorphism. And if $P \cong \operatorname{Hom}_R(\partial, P \otimes \partial)$, then $P \cong \operatorname{Hom}_R(\partial, A) \in \mathcal{I}$ with $A = P \otimes \partial$.

The hypothesis $\operatorname{Tor}_{1}^{E}(N,\partial)=0$ in part (iii) of Theorem 4.3 cannot be eliminated as the following example shows: set L=M=E and let r be any non-zero and non-invertible element of R. Since $E=\operatorname{Hom}_{R}(\partial,\partial)$ is a torsion-free R-module (because ∂ is divisible), the multiplication by r gives an exact sequence $0\to E\to E\to E/Er\to 0$ of E-modules. In this sequence the first two modules are in $\mathscr I$ and the third E-module E/Er is torsion of bounded order as an R-module. But $E\neq Er$,

otherwise r would be invertible in E, that is, 1=fr for some $f \in E$, contradiction, because the multiplication by r is not an injective mapping $\partial \to \partial$. Hence $E/Er \neq 0$ is not a torsion-free R-module, and in particular $E/Er \notin \mathcal{I}$ (every module in \mathcal{I} is torsion-free as an R-module).

5. The torsion theory $(\mathcal{T}, \mathcal{F})$ and its cotorsion theory

In this section S is an arbitrary associative ring with identity and $I=S\varphi$ is a projective principal *left* ideal of S.

If M_S is any right S-module, the inclusion $I \rightarrow S$ induces a homomorphism $M \otimes_S I \rightarrow M$, and we say that M is I-torsion-free if this mapping $M \otimes_S I \rightarrow M$ is injective, and say that M is I-divisible if it is surjective. Note that the definition of I-divisible module is obtained by dualizing the definition of I-torsion-free module. Moreover M I-divisible simply means $M\varphi = M$.

Denote the class of all I-torsion-free right S-modules by F.

Lemma 5.1. If S is an algebra over a commutative ring R, C is an injective cogenerator in Mod-R, $(S/I)^*$ is the right S-module $\operatorname{Hom}_R(S/I,C)$, and M is a right S-module, then

(i) M is I-torsion-free if and only if $Tor_1^S(M, S/I) = 0$, if and only if

$$\operatorname{Ext}_{S}^{1}(M, (S/I)^{*}) = 0;$$

(ii) M is I-divisible if and only if $M \otimes_S (S/I) = 0$.

Proof. From the exact sequence $0 \to I \to S \to S/I \to 0$ we obtain the exact sequence $0 \to \operatorname{Tor}_1^S(M, S/I) \to M \otimes_S I \to M \to M \otimes_S (S/I) \to 0$. Hence M is I-torsion-free if and only if $\operatorname{Tor}_1^S(M, S/I) = 0$, and M is I-divisible if and only if $M \otimes_S (S/I) = 0$. Moreover $\operatorname{Hom}_R(\operatorname{Tor}_1^S(M, S/I), C) \cong \operatorname{Ext}_S^1(M, (S/I)^*)$, so that $\operatorname{Tor}_1^S(M, S/I) = 0$ if and only if $\operatorname{Ext}_S^1(M, (S/I)^*) = 0$.

Proposition 5.2. The class \mathcal{F} is the torsion-free class for a torsion theory $(\mathcal{F}, \mathcal{F})$.

Proof. We must show that \mathscr{F} is closed under submodules, products and extensions [13, Prop. VI.2.2]. Since I is projective, the flat dimension of S/I is ≤ 1 , so that $\operatorname{Tor}_2^S(-,S/I)=0$. In particular the functor $\operatorname{Tor}_1^S(-,S/I)$ is left exact. Hence if $\operatorname{Tor}_1^S(M,S/I)=0$, then $\operatorname{Tor}_1^S(N,S/I)=0$ for every submodule N of M. Therefore \mathscr{F} is closed under submodules. Moreover if $N\leq M$, $\operatorname{Tor}_1^S(N,S/I)=0$ and $\operatorname{Tor}_1^S(M/N,S/I)=0$, then $\operatorname{Tor}_1^S(M,S/I)=0$, that is, \mathscr{F} is closed under extensions. Finally, since I is a projective principal ideal, I is a finitely presented module, so that if $\{M_{\lambda}|\lambda\in\Lambda\}\subset\mathscr{F}$ is a family of S-modules, $\prod_{\lambda}(M_{\lambda}\otimes I)$ and $(\prod_{\lambda}M_{\lambda})\otimes I$ are canonically isomorphic [13, Lemma I.13.2]. Then the mapping $(\prod_{\lambda}M_{\lambda})\otimes I\cong\prod_{\lambda}(M_{\lambda}\otimes I)\to\prod_{\lambda}M_{\lambda}$ is injective, and \mathscr{F} is closed under products.

In the statement of Proposition 5.2 the torsion class \mathcal{F} consists of all right S-modules T with $\operatorname{Hom}_S(T,M)=0$ for all $M\in\mathcal{F}$. Note that S_S is an I-torsion-free module. Moreover the torsion theory $(\mathcal{F},\mathcal{F})$ is not hereditary in general. Our torsion theory $(\mathcal{F},\mathcal{F})$ generalizes the p-torsion theory of abelian groups, where p is a prime. In fact, it is easy to see that for $S=\mathbb{Z}$ and $I=p\mathbb{Z}$ the I-torsion-free, I-divisible and I-torsion modules are exactly the I-torsion-free, I-divisible and I-torsion abelian groups respectively.

Proposition 5.3. Let φ be a generator of the projective principal left ideal I of S, so that the left annihilator $l(\varphi)$ of φ is equal to $S(1-\varepsilon)$ for an idempotent $\varepsilon \in S$. Then the torsion theory $(\mathcal{T}, \mathcal{F})$ is generated by the right S-module $\varepsilon S/\varphi S$.

Proof. In order to prove that the torsion theory $(\mathcal{T}, \mathcal{F})$ is generated by $\varepsilon S/\varphi S$, we must prove that a right S-module F belongs to \mathcal{F} if and only if $\operatorname{Hom}_S(\varepsilon S/\varphi S, F)=0$.

Conversely, suppose that $\operatorname{Hom}_S(\varepsilon S/\varphi S, F) = 0$. We must prove that $F \otimes I \to F$ is injective. Since $I = S\varphi$, every element in $F \otimes I$ can be written as $x \otimes \varphi$, $x \in F$. Suppose $x \otimes \varphi$ is in the kernel of $F \otimes I \to F$, i.e., $x\varphi = 0$. The mapping $f \colon \varepsilon S/\varphi S \to F$ defined by $f(\varepsilon S + \varphi S) = x\varepsilon S$ is a well defined homomorphism, because if $\varepsilon S \in \varphi S$, then $x\varepsilon S \in \varphi S = \{0\}$. It follows that f must be zero, hence $x\varepsilon S = 0$. Then $x \otimes \varphi S = x \otimes \varphi S = x \otimes \varphi S = 0$. This proves that $F \in \mathscr{F}$.

Our concept of *I*-divisibility differs from the concept of divisibility in [13, § VI.9], because our *I*-torsion-free modules and *I*-divisible modules are both right *S*-modules.

Define a right S-module M to be I-reduced if it is cogenerated by $(S/I)^*$, that is, if it is isomorphic to a submodule of a direct product of copies of $(S/I)^*$. Here $(S/I)^* = \operatorname{Hom}_R(S/I, C)$, where R is a commutative ring such that S is an R-algebra and C is an injective cogenerator of Mod-R. Therefore M_S is I-reduced if and only

if for every $x \in M$, $x \neq 0$, there exists θ_x : $M \rightarrow (S/I)^*$ such that $\theta_x(x) \neq 0$. Since $\operatorname{Hom}_S(M, (S/I)^*) \cong \operatorname{Hom}_R(M \otimes_S(S/I), C) \cong \operatorname{Hom}_R(M/MI, C)$, this happens if and only if for every $x \in M$, $x \neq 0$, xS is not contained in MI. Therefore a right S-module M is I-reduced if and only if MI does not contain nonzero right S-submodules of M.

Note that a module N_s is *I*-divisible if and only if $\operatorname{Hom}_S(N, M) = 0$ for every *I*-reduced *S*-module M_s . In fact, $\operatorname{Hom}_S(N, M) = 0$ for every *I*-reduced *S*-module M_s if and only if $\operatorname{Hom}_S(N, (S/I)^*) = 0$. This happens if and only if $N \otimes (S/I) = 0$, that is, if and only if N is *I*-divisible (Lemma 5.1(ii)).

We conclude this section with a last definition. We say that a right S-module M is an *I-cotorsion* module if it is *I*-reduced and $\operatorname{Ext}_S^1(N, M) = 0$ for every *I*-divisible *I*-torsion-free right S-module N. *I*-cotorsion modules will be studied in § 7.

6. Purity

In this section S is an arbitrary (associative) ring with identity and $I = S\varphi$ is a fixed projective principal left ideal of S. We say that a short exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of right S-modules is I-pure if one of the equivalent conditions of next lemma holds.

Lemma 6.1. The following properties of a short exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ of right S-modules are equivalent:

- (a) The short exact sequence $0 \rightarrow \operatorname{Hom}_S(S/\varphi S, M') \rightarrow \operatorname{Hom}_S(S/\varphi S, M') \rightarrow \operatorname{Hom}_S(S/\varphi S, M'') \rightarrow 0$ is exact.
- (b) The short exact sequence $0 \rightarrow M' \otimes S/S\varphi \rightarrow M \otimes S/S\varphi \rightarrow M'' \otimes S/S\varphi \rightarrow 0$ is exact.
 - (c) $M'\varphi = M' \cap M\varphi$.

Under these equivalent conditions we shall also say that M' is an *I-pure sub-module* of M. The proof of this lemma is analogous to the proof of [14, Prop. 2 and 3]. Our purity is a particular case of Warfield's \mathcal{S} -purity [14] with $\mathcal{S} = \{S/\varphi S, S\}$. (See also [12].) It would also be possible to apply Gruson's and Jensen's idea developed in [5] to the study of *I*-purity: if $\mathcal{O} = \{S, S/S\varphi\}$ is viewed as a full subcategory of S-Mod and D(S) is the category of additive functors of \mathcal{O} into the category of abelian groups $\mathcal{A}\overline{\mathcal{O}}$, then the functor $M \mapsto M \otimes_S -$ of Mod-S into D(S) is the left adjoint to the functor $F \mapsto F(S)$ of D(S) into Mod-S and is an equivalence of Mod-S onto a full subcategory of D(S); in this equivalence short exact sequences of D(S) correspond to *I*-pure short exact sequences of Mod-S, and the injective

objects in D(S) correspond to the *I*-pure-injective S-modules. See also [2]. We shall not need this remark in the sequel.

Note that if M is an I-torsion-free S-module, that is, $M \in \mathcal{F}$, then a submodule M' of M is I-pure in M if and only if M/M' is I-torsion-free. This can be seen from the exact sequence $\operatorname{Tor}_1^S(M, S/S\varphi) \to \operatorname{Tor}_1^S(M/M', S/S\varphi) \to M' \otimes S/S\varphi \to M \otimes S/S\varphi$, where $\operatorname{Tor}_1^S(M, S/S\varphi) = 0$ because $M \in \mathcal{F}$ (Lemma 5.1), so that $M' \otimes S/S\varphi \to M \otimes S/S\varphi$ is injective if and only if $\operatorname{Tor}_1^S(M/M', S/S\varphi) = 0$.

The theory developed in [12] applies to our notion of *I*-purity. If $\mathscr E$ is the class of *I*-pure short exact sequences of *S*-modules, then $\mathscr E$ is a flatly generated, proper class [12, § 3], closed under direct limits and projectively closed [12, Prop. 3.1 and 2.2]. For every right *S*-module M'' there is an *I*-pure exact sequence $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ with M *I*-pure-projective (i.e., M $\mathscr E$ -projective). Moreover a module M is *I*-pure-projective if and only if it is isomorphic to a direct summand of a direct sum of copies of S_S and $S/\varphi S$. These statements follow immediately from [12, Prop. 2.3]. *I*-pure-injective modules (that is, $\mathscr E$ -injectives) are characterized as the direct summands of direct products of copies of $Hom_R(S,C)$ and $Hom_R(S/S\varphi,C)$; here R is any commutative ring such that S is an R-algebra, and C is an injective cogenerator in Mod-R [12, Prop. 3.3]. Finally, every module has a suitably defined I-pure-injective envelope [12, Prop. 4.5], and I-pure-injective modules are directs summands of every module which contains them as I-pure submodules.

7. The equivalences

Now we apply the theory developed in §§ 5 and 6 to the study of the functors $\operatorname{Hom}_R(E\partial_R, -)$: $\operatorname{Mod-}R \to \operatorname{Mod-}E$ and $-\otimes_E\partial_R$: $\operatorname{Mod-}E \to \operatorname{Mod-}R$ introduced in § 4.

As in the first four sections R is an integral domain, ∂_R is the R-module of § 2, E is its endomorphism ring $\operatorname{End}(\partial_R)$, φ is an endomorphism of ∂_R whose kernel is wR and image is a direct summand of ∂_R . The left ideal $I = E\varphi$ of E is a projective principal ideal by Theorem 2.4, so that the theory developed in § 5 can be applied. Let C be the minimal injective cogenerator in Mod-R and $\partial^* = \operatorname{Hom}_R(\partial, C)$. There is a torsion theory $(\mathcal{F}, \mathcal{F})$ for Mod-E where the I-torsion-free class \mathcal{F} consists of the right E-modules M with $\operatorname{Tor}_1^E(M, \partial) = 0$, or, equivalently, with $\operatorname{Ext}_E^1(M, \partial^*) = 0$ (Lemmas 3.1 and 5.1). The class of I-divisible E-modules consists of the right E-modules M with $M \otimes_E \partial = 0$. The torsion theory $(\mathcal{F}, \mathcal{F})$ is generated by the right E-module $\partial^\circ = \operatorname{Ext}_R^1(\partial, R)$ (Proposition 5.3 and Theorem 3.4) and E_E is a torsion-free E-module in the torsion theory $(\mathcal{F}, \mathcal{F})$.

The *I*-reduced *E*-modules are the right *E*-modules cogenerated by ∂^* ; and a module M_E is *I*-reduced if and only if MI does not contain nonzero right *E*-submodules of M.

Theorem 7.1. Let R be an integral domain and A a right R-module. Then $\operatorname{Hom}_R(\partial,A)$ is an I-cotorsion E-module.

Proof. Since C is an injective cogenerator in Mod-R, $A \subseteq C^X$ for some set X, so that $\operatorname{Hom}_R(\partial, A) \subseteq \operatorname{Hom}_R(\partial, C^X) \cong (\partial^*)^X$; hence $\operatorname{Hom}_R(\partial, A)$ is cogenerated by ∂^* , that is, it is I-reduced.

Now let N_E be an *I*-divisible *I*-torsion-free *E*-module and let *D* be an injective *R*-module containing *A*. Then the functor $\operatorname{Hom}_R(\partial, -)$ applied to the exact sequence $0 \to A \to D \to D/A \to 0$ gives an exact sequence $0 \to \operatorname{Hom}_R(\partial, A) \to \operatorname{Hom}_R(\partial, D) \to P \to 0$ for a suitable *E*-submodule *P* of $\operatorname{Hom}_R(\partial, D/A)$. Apply the functor $\operatorname{Hom}_E(N, -)$ to this sequence and obtain the exact sequence $\operatorname{Hom}_E(N, P) \to \operatorname{Ext}_E^1(N, \operatorname{Hom}_R(\partial, A)) \to \operatorname{Ext}_E^1(N, \operatorname{Hom}_R(\partial, D))$. But

 $\operatorname{Hom}_{E}(N, P) \leq \operatorname{Hom}_{E}(N, \operatorname{Hom}_{R}(\partial, D/A)) \simeq \operatorname{Hom}_{R}(N \otimes_{E} \partial, D/A) = 0$ because $N \otimes_{E} \partial = 0$ since N is I-divisible. Moreover $\operatorname{Tor}_{\mathbf{I}}^{E}(N, \partial) = 0$ (because N is I-torsion-free) and D is injective, and thus

$$\operatorname{Ext}_{E}^{1}(N, \operatorname{Hom}_{R}(\partial, D)) \cong \operatorname{Hom}_{R}(\operatorname{Tor}_{1}^{E}(N, \partial), D) = 0.$$

Therefore $\operatorname{Ext}_{E}^{1}(N, \operatorname{Hom}_{R}(\partial, A))=0$ and $\operatorname{Hom}_{R}(\partial, A)$ is *I*-cotorsion.

Note that $E/\varphi E \cong ((1-\varepsilon)E \oplus \varepsilon E)/\varphi E \cong (1-\varepsilon)E \oplus (\varepsilon E/\varphi E) \cong (1-\varepsilon)E \oplus \partial^{\circ}$ (Theorem 3.4), so that $E/\varphi E$ is projective relatively to an exact sequence of right E-modules if and only if ∂° is projective relatively to that exact sequence. It follows that an exact sequence $0 \to M' \to M \to M'' \to 0$ of right E-modules is I-pure, that is, $M'I = M' \cap MI$, if and only if $0 \to M' \otimes_E \partial \to M \otimes_E \partial \to M'' \otimes_E \partial \to 0$ is exact, if and only if $0 \to \operatorname{Hom}_E(\partial^{\circ}, M') \to \operatorname{Hom}_E(\partial^{\circ}, M) \to \operatorname{Hom}_E(\partial^{\circ}, M'') \to 0$ is exact. Moreover, if C is the minimal injective cogenerator in $\operatorname{Mod-R}$ and ∂^* is the right E-module $\operatorname{Hom}_R(\partial, C)$ then $0 \to M' \to M \to M'' \to 0$ is I-pure if and only if $0 \to \operatorname{Hom}_E(M'', \partial^*) \to \operatorname{Hom}_E(M, \partial^*) \to \operatorname{Hom}_E(M', \partial^*) \to 0$ is exact.

By the general theory developed in § 6, the *I*-pure-projective *E*-modules are exactly the direct summands of direct sums of copies of E_E and ∂° , and the *I*-pure-injective *E*-modules are exactly the direct summands of direct products of copies of $\operatorname{Hom}_R(E,C)$ and $\operatorname{Hom}_R(\partial,C)=\partial^*$.

Theorem 7.2. Let M be a right E-module and let $\eta_M \colon M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ be the canonical homomorphism. Then:

- (a) ker η_M is the largest E-submodule of M contained in MI.
- (b) The image of η_M is an I-pure submodule of $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$.
- (c) coker η_M is an 1-torsion-free I-divisible E-module.

- *Proof.* (a) Since $\partial \cong E/I$, the R-module $M \otimes_E \partial$ is isomorphic to M/MI, so that $x \in M$ is in the kernel of η_M if and only if $x \in MI$ for every $e \in E$, that is, if and only if $x \in MI$. In particular ker η_M is an E-submodule of M contained in MI. And if N is any E-submodule of M contained in MI, then $x \in MI$ for every $x \in N$, that is, $x \in \ker \eta_M$ for every $x \in N$. This proves that $N \subset \ker \eta_M$.
- (b) By Theorem 2.4 Hom_R $(\partial, M \otimes_E \partial)I = \{f \in \text{Hom}_R (\partial, M \otimes_E \partial)| f(w) = 0\}$. Therefore $\eta_M(M) \cap \text{Hom}_R (\partial, M \otimes_E \partial)I = \{\eta_M(x)|x \in M, \eta_M(x)(w) = 0\} = \{\eta_M(x)|x \in M, x \otimes w \text{ is the zero element of } M \otimes \partial \}$. Since the homomorphism $\partial \to E/I$, $w \mapsto 1 + I$ is an isomorphism of E-modules (Lemma 3.1), it follows that $M \otimes \partial \cong M \otimes E/I \cong M/MI$, and $x \otimes w = 0$ if and only if $x \in MI$. Hence $\eta_M(M) \cap \text{Hom}_R (\partial, M \otimes_E \partial)I = \{\eta_M(x)|x \in MI\} = \eta_M(M)I = \eta_M(M)I$.
- (c) Suppose that η_M is injective (by Part (a) this happens if and only if M is *I*-reduced). Under this hypothesis consider the exact sequence

$$0 \to M \to \operatorname{Hom}_{\mathbb{R}}(\partial, M \otimes_{\mathbb{R}} \partial) \to \operatorname{coker} \eta_M \to 0.$$

This sequence is *I*-pure by Part (b) and $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is *I*-torsion-free by Proposition 4.2. Therefore coker η_M is *I*-torsion-free.

Now apply the functor $-\otimes_E \partial$ to the above *I*-pure exact sequence and obtain the exact sequence $0 \to M \otimes \partial \to \operatorname{Hom}_R(\partial, M \otimes_E \partial) \otimes_E \partial \to \operatorname{coker} \eta_M \otimes_E \partial \to 0$. The homomorphism $\eta_M \otimes \partial \colon M \otimes \partial \to \operatorname{Hom}_R(\partial, M \otimes_E \partial) \otimes_E \partial$ is equal to $\varepsilon_{M \otimes \partial}^{-1}$ (where ε is the counit of the adjunction and $\varepsilon_{M \otimes \partial}$ is an isomorphism by Theorem 4.1) because if $x \in M$ and $y \in \partial$ then $\eta_M \otimes \partial(x \otimes y) = f_x \otimes y$, where $f_x \in \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ and $f_x(z) = x \otimes z$ for every $z \in \partial$. Therefore $\varepsilon_{M \otimes \partial} (\eta_M \otimes \partial(x \otimes y)) = \varepsilon_{M \otimes \partial} (f_x \otimes y) = f_x(y) = x \otimes y$, i.e., $\eta_M \otimes \partial(x \otimes y) = \varepsilon_{M \otimes \partial}^{-1}(x \otimes y)$ and $\eta_M \otimes \partial = \varepsilon_{M \otimes \partial}^{-1}$. Hence $\eta_M \otimes \partial$ is an isomorphism, and the exactness of the above sequence gives $(\operatorname{coker} \eta_M) \otimes_E \partial = 0$, i.e., $\operatorname{coker} \eta_M$ is *I*-divisible.

This proves Part (c) under the additional hypothesis that η_M is injective. In the general case the naturality of η applied to the canonical projection $\pi: M \to M/\ker \eta_M$ gives the equality $\eta_{M/\ker \eta} \cdot \pi = \operatorname{Hom}(\partial, \pi \otimes \partial) \cdot \eta_M$. But $\pi \otimes \partial : M \otimes \partial \to (M/\ker \eta_M) \otimes \partial$ is an isomorphism because

$$(M/\ker \eta_M) \otimes \partial \cong (M/\ker \eta_M) \otimes (E/I) \cong (M/\ker \eta_M)/(M/\ker \eta_M)I$$

$$\cong M/(\ker \eta_M + MI) \cong M/MI \cong M \otimes (E/I) \cong M \otimes \partial.$$

Therefore Hom $(\partial, \pi \otimes \partial)$ is an isomorphism and

$$\operatorname{coker} \eta_{M} \cong \operatorname{coker} (\operatorname{Hom} (\partial, \pi \otimes \partial) \cdot \eta_{M}) = \operatorname{coker} (\eta_{M/\ker \eta} \cdot \pi) = \operatorname{coker} \eta_{M/\ker \eta} \cdot \pi$$

Now $M/\ker \eta$ is I-reduced by Part (a), so that coker $\eta_M \cong \operatorname{coker} \eta_{M/\ker \eta}$ is I-torsion-free and I-divisible by the previous case.

As a corollary to Theorem 7.2 it must be noted that every *I*-reduced *E*-module is *I*-torsion-free. This holds because if M_E is *I*-reduced, then η_M is injective (Theorem 7.2(a)) and $\operatorname{Hom}_R(\partial, M \otimes \partial)$ is *I*-torsion-free (Proposition 4.2), so that M is *I*-torsion-free too. Nevertheless this fact does not hold for an arbitrary ring S (take $S = \mathbb{Z}$, $I = 2\mathbb{Z}$ and M any abelian group with 2M = 0, so that M is *I*-reduced and is not *I*-torsion-free).

Theorem 7.3. Let M be a right E-module. Then $\eta_M: M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is an isomorphism if and only if M is I-cotorsion.

Proof. If $M \cong \operatorname{Hom}_{\mathbb{R}}(\partial, M \otimes \partial)$, M is *I*-cotorsion by Theorem 7.1. Conversely, if M is *I*-cotorsion, the homomorphism η_M is injective by Theorem 7.2(a) and the exact sequence $0 \to M \to \operatorname{Hom}_{\mathbb{R}}(\partial, M \otimes_{\mathbb{R}} \partial) \to \operatorname{coker} \eta_M \to 0$ splits because

$$\operatorname{Ext}^1_E(\operatorname{coker}\eta_M,M)=0$$

(coker η_M is *I*-torsion-free and *I*-divisible by Theorem 7.2(c)). Hence coker η_M is isomorphic to a submodule of $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$. But coker η_M is *I*-divisible, and $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is *I*-reduced. Therefore coker $\eta_M = 0$ and η_M is an isomorphism.

Theorem 7.3 has the following corollary: if M is any right E-module, every E-homomorphism from M into an I-cotorsion module N_E can be uniquely factored over $\eta_M \colon M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$. Hence $\operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is a sort of "I-cotorsion completion" of M. The factorization of $f \colon M \to N$ is $f = (\eta_N^{-1} \cdot \operatorname{Hom}_R(\partial, f \otimes \partial)) \cdot \eta_M$ (this equality is given by the naturality of the transformation η). The uniqueness of the factorization is proved as follows: if $f = f_1 \cdot \eta_M = f_2 \cdot \eta_M$, then $(f_1 - f_2) \cdot \eta_M = 0$, so that $f_1 - f_2 \colon \operatorname{Hom}_R(\partial, M \otimes_E \partial) \to N$ induces a mapping coker $\eta_M \to N$. But coker η_M is I-divisible (Theorem 7.2(c)) and N is I-reduced, so that this mapping is zero. Hence $f_1 - f_2 = 0$. This proves the corollary.

It must be remarked that our "I-cotorsion completion" $\operatorname{Hom}_R(\partial, -\otimes_E \partial)$ is substantially different from the cotorsion hull in a hereditary torsion theory developed in [1], since our torsion theory $(\mathcal{F}, \mathcal{F})$ is not hereditary.

Theorem 7.4. If R is an integral domain and $E=\operatorname{End}(\partial_R)$, the functors $\operatorname{Hom}_R(\partial,-)\colon \mathcal{D}_R \to \mathcal{C}_E$ and $-\otimes_E \partial\colon \mathcal{C}_E \to \mathcal{D}_R$ give an equivalence between the full subcategory \mathcal{D}_R of divisible R-modules and the full subcategory \mathcal{C}_E of $\operatorname{Mod-}E$ whose objects are the I-cotorsion E-modules. In this equivalence injective R-modules correspond to I-reduced I-pure-injective E-modules.

Proof. By Theorems 4.1 and 7.3 $\operatorname{Hom}_R(\partial, -)$ and $-\otimes_E \partial$ give an equivalence between the categories \mathcal{D}_R and \mathcal{C}_E . Let us prove that if B_R is an injective right R-module then $\operatorname{Hom}_R(\partial, B)$ is an I-pure-injective E-module. If B_R is injective, then B is isomorphic to a direct summand of C^X , where C is a minimal injective cogenerator in $\operatorname{Mod-}R$. Then $\operatorname{Hom}_R(\partial, B)$ is isomorphic to a direct summand in $\operatorname{Hom}_R(\partial, C^X) \cong$

 $\operatorname{Hom}_{R}(\partial, C)^{X} = \partial^{*X}$. By the remark immediately above Theorem 7.2, $\operatorname{Hom}_{R}(\partial, B)$ is an *I*-pure-injective *E*-module.

Conversely, if M_E is an *I*-reduced, *I*-pure-injective *E*-module, then $\eta_M \colon M \to \operatorname{Hom}_R(\partial, M \otimes_E \partial)$ is an *I*-pure monomorphism (Theorem 7.2). Let *D* be an injective *R*-module containing $M \otimes \partial$, so that $\operatorname{Hom}_R(\partial, M \otimes \partial) \cong \operatorname{Hom}_R(\partial, D)$. The submodule $\operatorname{Hom}_R(\partial, M \otimes \partial)$ is *I*-pure in $\operatorname{Hom}_R(\partial, D)$, because $\operatorname{Hom}_R(\partial, D)I = \{f \in \operatorname{Hom}_R(\partial, D) | f(w) = 0\}$ by Theorem 2.4, so that $\operatorname{Hom}_R(\partial, D)I \cap \operatorname{Hom}_R(\partial, M \otimes \partial) = \{f \in \operatorname{Hom}_R(\partial, M \otimes \partial) | f(w) = 0\} = \operatorname{Hom}_R(\partial, M \otimes \partial)I$ by Theorem 2.4 again. Therefore *M* is isomorphic to an *I*-pure submodule of $\operatorname{Hom}_R(\partial, D)$. Since *M* is *I*-pure-injective, *M* is isomorphic to a direct summand of $\operatorname{Hom}_R(\partial, D)$. Then $M \otimes \partial$ is an injective *R*-module.

Thus we have seen that the class we had denoted by I in Theorem 4.3, i.e., the image of the functor $\operatorname{Hom}_R(\partial, -)$: $\operatorname{Mod-}R \to \operatorname{Mod-}E$, is exactly the class \mathscr{C}_E of I-cotorsion E-modules. There is a further characterization of these modules: they are exactly the right E-modules of ∂^* -dominant dimension ≥ 2 , that is, the right E-modules M for which there exists an exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$ for suitable direct powers ∂^{*X} and ∂^{*Y} of the E-module ∂^* . In order to see this, note that if M is an I-cotorsion E-module, then there is an exact sequence of R-modules $0 \rightarrow M \otimes_E \partial \rightarrow$ $C^X \rightarrow C^Y$ because C is an injective cogenerator in Mod-R, so that by applying the left exact functor $\operatorname{Hom}_R(\partial, -)$ to this sequence one obtains an exact sequence $0 \to M \cong \operatorname{Hom}_{\mathbb{R}}(\partial, M \otimes \partial) \to \partial^{*X} \to \partial^{*Y}$. Conversely, if M has ∂^* -dominant dimension ≥ 2 , from the exact sequence $0 \rightarrow M \rightarrow \partial^{*X} \rightarrow \partial^{*Y}$ we obtain that M is cogenerated by ∂^* (i.e., it is *I*-reduced) and that there is an exact sequence $0 \to M \to \partial^{*X} \to N \to 0$ with $N \le \partial^{*Y}$. If F is any I-divisible I-torsion-free E-module then the sequence $\operatorname{Hom}_{E}(F, N) \to \operatorname{Ext}_{E}^{1}(F, M) \to \operatorname{Ext}_{E}^{1}(F, \partial^{*X})$ is exact, $\operatorname{Hom}_{E}(F, N) = 0$ (because F is *I*-divisible and N is *I*-reduced), and $\operatorname{Ext}_{E}^{1}(F, \partial^{*X}) = 0$ (because $\partial^{*X} \cong \operatorname{Hom}_{R}(\partial, C^{X})$ is in \mathcal{I} , i.e., it is *I*-cotorsion). Therefore $\operatorname{Ext}^1_F(F, M) = 0$ and M is *I*-cotorsion.

References

- 1. Bueso, J. L. and Torrecillas, B., On the cotorsion hull in torsion theory, Comm. Algebra 13 (1985), 1627—1642.
- FACCHINI, A., Relative injectivity and pure-injective modules over Prüfer rings, J. Algebra 110 (1987), 380—406.
- FUCHS, L., On divisible modules over domains, in: Abelian groups and modules, Proc. of the Udine Conference, CISM Courses and Lectures 287, Springer-Verlag, Wien—New York, 1984. 341—356.
- 4. Fuchs, L. and Salce, L., Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics 96, Marcel Dekker, New York—Basel, 1985.

- GRUSON, L. and JENSEN, C. U., Dimensions cohomologiques reliées aux foncteurs <u>lim</u> (1),
 Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin, Lecture Notes in Mathematics
 867, Springer-Verlag, Berlin—Heidelberg—New York, 1981, 234—294.
- HARRISON, D., Infinite abelian groups and homological methods, Ann. of Math. 69 (1959), 366—391.
- 7. MATLIS, E., Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964).
- 8. MATLIS, E., Torsion-free modules, Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicago—London, 1972.
- 9. MATLIS, E., 1-dimensional Cohen—Macaulay rings, Lecture Notes in Mathematics 327, Springer-Verlag, Berlin—Heidelberg—New York, 1973.
- PIERCE, R. S., Associative algebras, Graduate Texts in Mathematics 88, Springer-Verlag, New York—Heidelberg—Berlin, 1982.
- POPESCU, N., Abelian categories with applications to rings and modules, Academic Press, London—New York, 1973.
- 12. Stenström, B., Pure submodules, Ark. Mat. 7 (1967), 159-171.
- 13. STENSTRÖM, B., Rings of quotients, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- 14. Warfield, R. B., Purity and algebraic compactness for modules, *Pacific J. Math.* 28 (1969), 699—719.

Received August 21, 1986

A. Facchini
Universita' di Udine
Istituto di Matematica
Informatica e Sistemistica
33100 Udine
Italy