Divisible modules over integral domains

Alberto Facchini

1. Introduction

The aim of this paper is to describe an equivalence between the full subcategory of Mod- R whose objects are all the divisible modules over an integral domain R and a suitable full subcategory of modules over the endomorphism ring E of a fixed divisible module ∂. This equivalence corresponds to the similar equivalences for torsion divisible abelian groups due to Harrison [6] and for torsion h-divisible modules over an integral domain due to Matlis [7], [8] and [9].

Let R denote a commutative integral domain with 1 (not a field) and let ∂_{R} denote the divisible right R-module defined by L. Fuchs in [3] (see § 2 for the exact definition of ∂_{R}). The module ∂_{R} has interesting properties that are shown in [3], in [4, §VI.3] and in $\S \S 2$ and 3 of this paper. For instance, if E is the endomorphism ring of ∂_{R} and ∂ is viewed as a left E-module ${ }_{E} \partial$, then End $\left({ }_{E} \partial\right) \cong R$ and ${ }_{E} \partial \cong E / I$ for a suitable projective principal left ideal I of E. Moreover, ∂ has flat and projective dimensions equal to one both as a right R-module and a left E-module, and this implies that the class \mathscr{F} of all right E-modules M such that $\operatorname{Tor}_{1}^{E}(M, \partial)=0$ is the torsion-free class for a (non-hereditary) torsion theory (\mathscr{T}, \mathscr{F}) in Mod-E. This torsion theory is generated by the cyclic right E-module $\mathrm{Ext}_{R}^{1}\left({ }_{E} \partial_{R}, R\right.$, and a right E-module M_{E} is a torsion-free module in this torsion theory (we say that M_{E} is I-torsion-free) if and only if the canonical homomorphism $M \otimes_{E} I \rightarrow M \otimes_{E} E \cong M$ induced by the embedding $I \rightarrow E$ is a monomorphism. Dually, we say that a module M_{E} is an I-divisible module if the canonical homomorphism $M \otimes_{E} I \rightarrow M$ is an epimorphism, and that a right E-module N_{E} is I-reduced if it is cogenerated by the right E-module $\partial^{*}=\operatorname{Hom}_{R}(\partial, C)$, where C is the minimal injective cogenerator in Mod-R. It is easy to show that a module M_{E} is I-divisible if and only if $\operatorname{Hom}(M, N)=0$ for every I-reduced E-module N_{E}.

Now define a right E-module M to be an 1 -cotorsion module if it is I-reduced and $\operatorname{Ext}_{E}^{1}(N, M)=0$ for every I-divisible I-torsion-free right E-module N. The
main result of this paper is the proof of the following theorem: the functors $\operatorname{Hom}_{R}(\partial,-): \operatorname{Mod}-R \rightarrow \operatorname{Mod}-E$ and $-\otimes_{E} \partial: \operatorname{Mod}-E \rightarrow \operatorname{Mod}-R$ induce an equivalence between the full subcategory of Mod- R whose objects are the divisible R-modules and the full subcategory of $\operatorname{Mod}-E$ whose objects are the I-cotorsion E-modules. This generalizes the corresponding results of Harrison for torsion divisible abelian groups [6] and of Matlis for torsion h-divisible R-modules ([7] and [9]). In our equivalence the injective R-modules correspond to the I-reduced I-pureinjective E-modules. Here I-pure-injective means injective relatively to the I-pure exact sequences, that is, the sequences $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of right E-modules for which the sequence $0 \rightarrow M^{\prime} \otimes_{E} \partial \rightarrow M \otimes_{E} \partial \rightarrow M^{\prime \prime} \otimes_{E} \partial \rightarrow 0$ is exact. (This extends the corresponding result due to Warfield for Matlis' equivalence between torsion h-divisible modules and torsion-free cotorsion modules, see [4, Th. V.1.8].) Our I-purity is a purity in the sense of Warfield [14].

Finally, we prove that I-cotorsion E-modules are exactly the right E-modules of ∂^{*}-dominant dimension $\geqq 2$, that is, the modules M_{E} for which there exists an exact sequence $0 \rightarrow M \rightarrow \partial^{* X} \rightarrow \partial^{* Y}$ with $\partial^{* X}$ and $\partial^{* Y}$ suitable direct products of copies of ∂^{*}.

For technical reasons (proof of Lemma 2.2) the way we define the R-module ∂ is a little different from the way Fuchs defines it in [3] and [4]. The difference is that our generators are the k-tuples $\left(r_{1}, \ldots, r_{k}\right)$ of non-zero elements r_{i} of R, and Fuchs' generators are the k-tuples (r_{1}, \ldots, r_{k}) of non-zero and non-invertible elements r_{i} of R. Fuchs' results in [3] and [4] hold with this small modification as well.

2. The R-module ∂_{R} and its endomorphism ring E

In this paper R will be an integral domain and we will assume that it is not a field. We will denote the field of fractions of R by Q.

Let ∂ be the right R-module generated by the set \mathscr{G} of all k-tuples (r_{1}, \ldots, r_{k}) of non-zero elements r_{i} of R, for $k \geqq 0$, with defining relations

$$
\left(r_{1}, \ldots, r_{k}\right) r_{k}=\left(r_{1}, \ldots, r_{k-1}\right), \quad k \geqq 1
$$

The right R-module ∂ is obviously divisible, that is, $\partial r=\partial$ for every $r \in R$, $r \neq 0$. The length of $\left(r_{1}, \ldots, r_{k}\right)$ is defined to be k, and the unique generator $w=\emptyset$ in \mathscr{G} of length 0 generates a submodule $w R$ of ∂ isomorphic to R [4, § VI.3]. Note that for every $x \in \partial$ there exists $r \in R, r \neq 0$, such that $x r \in w R$ (possibly $x r=0$).

The fundamental property of ∂ is the following one:
Proposition 2.1 [4, Lemma VI.3.2]. Let D be a divisible right R-module and $a \in D$. Then there exists a homomorphism $f: \partial \rightarrow D$ with $f(w)=a$.

Let ∂_{n} be the submodule of ∂ generated by the elements of \mathscr{G} of length $\leqq n$, so that in particular $\partial_{0}=w R$.

Lemma 2.2. Fix a nonnegative integer n and an element a of $R, a \neq 0$ and $a \neq 1$. Then the correspondence $\mathscr{G} \rightarrow \partial$ defined by
$\left(r_{1}, \ldots, r_{k}\right) \in \mathscr{G} \mapsto \begin{cases}0 & \text { if } k \leqq n \\ \left(r_{1}, \ldots, r_{n}, 1, r_{n+1}, \ldots, r_{k}\right)-\left(r_{1}, \ldots, r_{n}, a, r_{n+1}, \ldots, r_{k}\right) a & \text { if } k>n\end{cases}$
extends to an endomorphism of ∂ whose kernel is ∂_{n} and whose image is a direct summand of ∂.

Proof. It is easy to show that the defining relations of ∂ are preserved by the correspondence; for instance, when $k=n+1$, the relation $\left(r_{1}, \ldots, r_{k}\right) r_{k}=\left(r_{1}, \ldots, r_{k-1}\right)$ is preserved because $\left[\left(r_{1}, \ldots, r_{n}, 1, r_{n+1}\right)-\left(r_{1}, \ldots, r_{n}, a, r_{n+1}\right) a\right] r_{k}=\left(r_{1}, \ldots, r_{n}, 1\right)-$ $\left(r_{1}, \ldots, r_{n}, a\right) a=\left(r_{1}, \ldots, r_{n}\right)-\left(r_{1}, \ldots, r_{n}\right)=0$. Therefore the correspondence extends to an endomorphism φ of ∂. Note that $\partial_{n} \subset \operatorname{ker} \varphi$ because $\varphi\left(r_{1}, \ldots, r_{n}\right)=0$ for every $\left(r_{1}, \ldots, r_{n}\right)$. In particular $\varphi=\varphi^{\prime} \circ \pi$ where $\pi: \partial \rightarrow \partial / \partial_{n}$ is the canonical projection and $\varphi^{\prime}: \partial / \partial_{n} \rightarrow \partial$ is a homomorphism.

Now consider the correspondence $\mathscr{G} \rightarrow \partial / \partial_{n}$ defined by

$$
\left(r_{3}, \ldots, r_{k}\right) \in \mathscr{G} \mapsto \begin{cases}\partial_{n} & \text { if } k \leqq n+1 \\ \partial_{n} & \text { if } k>n+1 \quad \text { and } r_{n+1} \neq 1 \\ \left(r_{1}, \ldots, r_{n}, \widehat{r_{n+1}}, r_{n+2}, \ldots, r_{k}\right)+\partial_{n} & \text { if } k>n+1 \quad \text { and } r_{n+1}=1\end{cases}
$$

where $\left(r_{1}, \ldots, r_{n}, \widehat{r_{n+1}}, r_{n+2}, \ldots, r_{k}\right)$ denotes the $(k-1)$-tuple in which r_{n+1} has been deleted. The defining relations of ∂ are preserved by this correspondence as well; for instance, when $k=n+2$ and $r_{n+1}=1$, the relation $\left(r_{1}, \ldots, r_{k}\right) r_{k}=\left(r_{1}, \ldots, r_{k-1}\right)$ is preserved because $\left[\left(r_{1}, \ldots, r_{n}, \widehat{r_{n+1}}, r_{k}\right)+\partial_{n}\right] r_{k}=\left(r_{1}, \ldots, r_{n}\right)+\partial_{n}=\partial_{n}$. Therefore this correspondence also extends to a homomorphism $\psi: \partial \rightarrow \partial / \partial_{n}$.

The composed homomorphism $\psi \varphi: \partial \rightarrow \partial / \partial_{n}$ is defined by $\psi \varphi\left(r_{1}, \ldots, r_{k}\right)=\partial_{n}$ if $k \leqq n$ and $\psi \varphi\left(r_{1}, \ldots, r_{k}\right)=\psi\left[\left(r_{1}, \ldots, r_{n}, 1, r_{n+1}, \ldots, r_{k}\right)-\left(r_{1}, \ldots, r_{n}, a, r_{n+1}, \ldots, r_{k}\right) a\right]=$ $\left(r_{1}, \ldots, r_{n}, r_{n+1}, \ldots, r_{k}\right)+\partial_{n}$ if $k>n$, i.e., $\psi \varphi: \partial \rightarrow \partial / \partial_{n}$ is the canonical projection π. Therefore $\pi=\psi \varphi=\psi \varphi^{\prime} \pi$, hence $\psi \varphi^{\prime}$ is the identity of ∂ / ∂_{n}, so that φ^{\prime} is injective and $\partial=\varphi^{\prime}\left(\partial / \partial_{n}\right) \oplus \operatorname{ker} \psi$. Since φ^{\prime} is injective, $\operatorname{ker} \varphi=\operatorname{ker}\left(\varphi^{\prime} \pi\right)=\operatorname{ker} \pi=\partial_{n}$. Moreover $\varphi(\partial)=\varphi^{\prime}\left(\partial / \partial_{n}\right)$ is a direct summand of ∂.

Fix the following notations:
$-E$ is the endomorphism ring End $\left(\partial_{R}\right)$ of the R-module ∂_{R};

- φ is a fixed R-endomorphism of ∂ (i.e., $\varphi \in E$) with $\operatorname{ker} \varphi=w R$ and $\varphi(\partial)$ a direct summand of ∂ (it exists by Lemma 2.2);
- ε is a fixed idempotent R-endomorphism of ∂ (i.e., $\varepsilon \in E$ and $\varepsilon^{2}=\varepsilon$) with $\varepsilon(\partial)=\varphi(\partial) ;$
$-I$ is the left ideal $\{f \in E \mid f(w)=0\}$ of E;
- J is the two sided ideal $\{f \in E \mid f(\partial) \subset t(\partial)\}$ of E, where $t(\partial)$ denotes the torsion submodule of ∂.

Since R is a commutative ring and ∂_{R} is a faithful module, the ring R is a subring of the center $Z(E)$ of E. In the next theorem we prove that R is equal to $Z(E)$.

Theorem 2.3. The integral domain R is the center of $E=E n d\left(\partial_{R}\right)$.
Proof. It is sufficient to show that if f belongs to the center of E then there exists $r \in R$ such that $f(x)=x r$ for every $x \in \partial$. If f is in the center of E and φ denotes the endomorphism defined before the statement of this theorem, then $\varphi f(w)=$ $f \varphi(w)=f(0)=0$, so that $f(w) \in \operatorname{ker} \varphi=w R$; hence there exists $r \in R$ with $f(w)=w r$. If $x \in \partial$, then there is a homomorphism $g: \partial \rightarrow \partial$ with $g(w)=x$ by Proposition 2.1, and $f(x)=f(g(w))=g(f(w))=g(w r)=g(w) r=x r$. This concludes the proof of the theorem.

If $\alpha: \partial \rightarrow Q$ is the R-module homomorphism defined by $\alpha\left(r_{1}, \ldots, r_{k}\right)=\left(r_{1} \ldots r_{k}\right)^{-1}$ for $k \geqq 1$ and $\alpha(w)=1$, then $\operatorname{ker} \alpha$ is the torsion submodule $t(\partial)$ of ∂. This is easily seen, because $t(\partial) \subset \operatorname{ker} \alpha$ since Q is torsion-free, and if $x \in \operatorname{ker} \alpha$ and $r \in R$, $r \neq 0$, is such that $x r \in w R, x r=w s$ say, then $0=\alpha(x r)=\alpha(w s)=\alpha(w) s=s$; therefore $x r=0$ and $x \in t(\partial)$. In particular $\partial / t(\partial) \cong Q$.

If we apply the functor $\operatorname{Hom}_{R}(\partial,-)$ to the exact sequence $0 \rightarrow t(\partial) \rightarrow \partial \xrightarrow{\alpha} Q \rightarrow 0$, we obtain the exact sequence $0 \rightarrow J \rightarrow E \rightarrow \operatorname{Hom}_{R}(\partial, Q) \rightarrow \operatorname{Ext}_{R}^{1}(\partial, t(\partial))$. But $\operatorname{Hom}_{R}(\partial, Q) \cong \operatorname{Hom}_{R}(\partial / t(\partial), Q) \cong \operatorname{Hom}_{R}(Q, Q) \cong Q$ and $\operatorname{Ext}_{R}^{1}(\partial, t(\partial))=0$ because $t(\partial)$ is a divisible R-module [4, Prop. VI.3.4]. Hence $E / J \cong Q$ and J is an ideal of E maximal among the two sided ideals of E.

Note that the left annihilator of $\varphi, l(\varphi)=\{g \in E \mid g \varphi=0\}$, is $E(1-\varepsilon)$. In fact, $(1-\varepsilon) \varphi=0$ because $\varepsilon(\partial)=\varphi(\partial)$, so that $E(1-\varepsilon) \subset l(\varphi)$. And if $g \in l(\varphi)$, then $g \varphi=0$, i.e., $\operatorname{ker} g \supset \varphi(\partial)=\varepsilon(\partial)$; it follows that $g \varepsilon=0$ and $g=g-g \varepsilon=g(1-\varepsilon) \in E(1-\varepsilon)$. The right annihilator of $\varphi, r(\varphi)=\{g \in E \mid \varphi g=0\}$, is 0 , because if $\varphi g=0$, then $g(\partial) \subset \operatorname{ker} \varphi=w R$. Since $g(\partial)$ is a divisible module, it must be the zero submodule of $w R$, i.e., $g=0$.

Theorem 2.4. If B_{R} is any right R-module and $f: \partial \rightarrow B$ is a homomorphism such that $f(w)=0$, then there exists $g: \partial \rightarrow B$ such that $f=g \varphi$. In particular, $I=\{f \in E \mid f(w)=0\}$ is the left principal ideal $E \varphi$ generated by φ and is a projective ideal of E isomorphic to Es.

Proof. Since $\operatorname{ker} \varphi=w R$ and $\varphi(\partial)$ is a direct summand of ∂, there exists $\psi: \partial \rightarrow \partial / w R$ such that $\psi \varphi$ is the canonical projection $\pi: \partial \rightarrow \partial / w R$ (this had been
also shown in the proof of Lemma 2.2). Since $f: \partial \rightarrow B$ annihilates w, f can be written as $f=f^{\prime} \pi$ for a suitable $f^{\prime}: \partial / w R \rightarrow B$ induced by f. If $g=f^{\prime} \psi: \partial \rightarrow B$, then $f=f^{\prime} \pi=$ $f^{\prime} \psi \varphi=g \varphi$. This proves the first assertion.

In particular, $I=\{f \in E \mid f(w)=0\} \subset\left\{g \varphi \mid g \in \operatorname{Hom}_{R}(\partial, \partial)\right\}=E \varphi$, so that $I=E \varphi$, the other inclusion being trivial.

Finally, since $l(\varphi)=E(1-\varepsilon)=l(\varepsilon)$, the ideal $I=E \varphi \cong E \varepsilon$ is projective.

3. The E-modules ${ }_{E} \partial$ and ∂_{E}°

Since $E=$ End $\left(\partial_{R}\right)$, the module ∂ can be viewed as a left E-module, and $R=$ End $\left({ }_{E} \partial\right)$ by Theorem 2.3. In this section we shall study the E-module ${ }_{E} \partial$.

Lemma 3.1. The left E-module ${ }_{E} \partial$ is isomorphic to E / I.
Proof. Consider the mapping $E \rightarrow \partial$ defined by $f \mapsto f(w)$ for every $f \in E$. Obviously it is a left E-module homomorphism. It is surjective by proposition 2.1 and its kernel is I.

Fuchs [4, Lemma VI.3.1] has proved that the projective dimension of ∂_{R}, proj. $\operatorname{dim} \partial_{R}$, is equal to one (this can also be shown by proving that the relations $\left(r_{1}, \ldots, r_{k}\right) r_{k}-\left(r_{1}, \ldots, r_{k-1}\right)$ generate a free submodule H of the module F freely generated by \mathscr{G}); since ∂_{R} is not flat (every flat R-module is torsion-free, and ∂_{R} is not torsion-free) and proj. $\operatorname{dim} \partial_{R} \geqq$ flat. $\operatorname{dim} \partial_{R}$, where flat. $\operatorname{dim} \partial_{R}$ is the flat dimension of ∂_{R}, it follows that flat. $\operatorname{dim} \partial_{R}=\operatorname{proj} . \operatorname{dim} \partial_{R}=1$. This holds for the module ${ }_{E} \partial$ too.

Corollary 3.2. flat. $\operatorname{dim}_{E} \partial=$ proj. $. \operatorname{dim}_{E} \partial=1$.
Proof. By Lemma 3.1 and Theorem 2.4 proj. $\operatorname{dim}_{E} \partial \leqq 1$. If proj. $\operatorname{dim}_{E} \partial<1$, then ${ }_{E} \partial$ is projective, so that $I=E \varphi$ is a direct summand of E, i.e., $E \varphi=E \beta$ for an idempotent $\beta \in E$. Then $w R=\cap\{\operatorname{ker} f \mid f \in E \varphi\}=\cap\{\operatorname{ker} f \mid f \in E \beta\}=\operatorname{ker} \beta$ is a direct summand of the divisible module ∂_{R}, contradiction, because $w R$ is not divisible. This proves that proj. $\operatorname{dim}_{E} \partial=1$. Moreover flat. $\operatorname{dim}_{E} \partial \leqq$ proj. $\operatorname{dim}_{E} \partial=1$, and ${ }_{E} \partial$ is not flat, because ${ }_{E} \partial$ is finitely presented by Lemma 3.1 and Theorem 2.4 and every finitely presented flat module is projective [13, Cor. I.11.5]. Therefore flat. $\operatorname{dim}_{E} \partial=1$.

By Corollary 3.2 $\operatorname{Tor}_{n}^{E}\left(-,{ }_{E} \partial\right)=\operatorname{Ext}_{E}^{n}\left({ }_{E} \partial,-\right)=0$ for $n \geqq 2$. In the sequel we need the exact formulas for the functors $\operatorname{Tor}_{1}^{E}\left(-,{ }_{E} \partial\right)$ and $\operatorname{Ext}_{E}^{1}\left({ }_{E} \partial,-\right)$ that are calculated in the next corollary.

Corollary 3.3. If M_{E} is any right E-module, then $\operatorname{Tor}_{1}^{E}(M, \partial) \cong\left(0:_{M} \varphi\right) \varepsilon$, where $\left(0:_{M} \varphi\right)=\{x \in M \mid x \varphi=0\}$.

If ${ }_{E} N$ is any left E-module, then $\operatorname{Ext}_{E}^{1}(\partial, N) \cong \varepsilon N / \varphi N$.
Proof. Consider the exact sequence $0 \rightarrow I \rightarrow E \rightarrow \partial \rightarrow 0$. By applying the functor $M \otimes_{E}-$, we obtain that the sequence $0 \rightarrow \operatorname{Tor}_{1}^{E}(M, \partial) \rightarrow M \otimes I \rightarrow M \otimes E$ is exact. Since $I=E \varphi \cong E \varepsilon$ and $M \otimes_{E} E \cong M$, it follows that $\operatorname{Tor}_{1}^{E}(M, \partial)$ is isomorphic to the kernel of the abelian group homomorphism $M \varepsilon \rightarrow M$ defined by $x \varepsilon \rightarrow x \varphi$ for every $x \in M$. It follows that $\operatorname{Tor}_{1}^{E}(M, \partial) \cong\left(0:_{M} \varphi\right) \varepsilon$. Similarly for $\operatorname{Ext}_{E}^{1}(\partial, N)$.

Note that since proj. $\operatorname{dim} \partial_{R}=1$, the torsion submodule $t\left(\partial_{R}\right)$ of ∂_{R} is isomorphic to a submodule of $K^{(X)}$, where $K=Q / R$ and $K^{(X)}$ is a direct sum of copies of K. Namely, if M_{R} is any module with proj. $\operatorname{dim} M_{R}=1$, fix a free resolution $0 \rightarrow R^{(X)} \rightarrow R^{(Y)} \rightarrow M \rightarrow 0$ of M (this is possible by [10, page 90, Ex. 3]) and apply the functor $-\otimes_{R} K$ to this sequence. Then the sequence $\operatorname{Tor}_{R}^{1}\left(R^{(Y)}, K\right) \rightarrow \operatorname{Tor}_{R}^{1}(M, K) \rightarrow$ $R^{(X)} \otimes K \rightarrow R^{(Y)} \otimes K$ can be rewritten as $0 \rightarrow t(M) \rightarrow K^{(X)} \rightarrow K^{(Y)}$ by [8, page 10].

Since proj. $\operatorname{dim} \partial_{R}=1$, it follows that $\operatorname{Ext}_{R}^{n}(\partial,-)=0$ for $n \geqq 2$. Consider $\operatorname{Ext}_{R}^{1}(\partial, R)$. Since $\operatorname{Ext}_{R}^{1}(-, R)$ is a contravariant functor, every R-homomorphism $f: \partial \rightarrow \partial$ induces an R-homomorphism $\operatorname{Ext}_{R}^{1}(f, R): \operatorname{Ext}_{R}^{1}(\partial, R) \rightarrow \operatorname{Ext}_{R}^{1}(\partial, R)$, so that $\operatorname{Ext}_{R}^{1}(\partial, R)$ is a right E-module.

Theorem 3.4. The right E-module $\operatorname{Ext}_{R}^{1}(\partial, R)$ is isomorphic to $\varepsilon E / \varphi E$.
Proof. Let C be the image of the endomorphism $1-\varepsilon$ of ∂, so that $\ddot{\delta}=\varepsilon(\partial) \oplus$ $(1-\varepsilon)(\partial)=\varphi(\partial) \oplus C$. Consider the exact sequence of R-modules

$$
S: 0 \rightarrow R \xrightarrow{\alpha} \partial \oplus C \xrightarrow{\beta} \partial \rightarrow 0,
$$

where $\alpha(r)=(w r, 0)$ for every $r \in R$ and $\beta(x, y)=\varphi(x)+y$ for every $(x, y) \in \partial \oplus C$. Let \bar{S} be the image of the extension S into $\operatorname{Ext}_{R}^{1}(\partial, R)$. In order to prove the theorem it is sufficient to show that $\boldsymbol{\Phi}: \varepsilon E \rightarrow \operatorname{Ext}_{R}^{1}(\partial, R)$ defined by $\boldsymbol{\Phi}(\varepsilon f)=\bar{S} f$ for every $f \in E$ is a well defined surjective E-homomorphism with kernel φE.

If $f \in E$ and $\varepsilon f=0$, then $f(\partial) \subset \operatorname{ker} \varepsilon=C$, so that it is possible to define a homomorphism $g: R \oplus \partial \rightarrow \partial \oplus C$ by setting $g(r, x)=(w r, f(x))$ for every $(r, x) \in R \oplus \partial$. If Z denotes the trivial extension, the diagram

$$
\begin{aligned}
& Z: 0 \rightarrow R \rightarrow R \oplus \partial \rightarrow \partial \rightarrow 0 \\
& \|+g \downarrow f \\
& S: 0 \rightarrow R \xrightarrow{\alpha} \partial \oplus C H \xrightarrow{\beta} \partial \rightarrow 0
\end{aligned}
$$

commutes. This shows that $\bar{S} f$ is zero in $\operatorname{Ext}_{\boldsymbol{R}}^{1}(\partial, R)$ and proves that $\boldsymbol{\Phi}$ is a well defined homomorphism of right E-modules.

Now we shall show that $\boldsymbol{\Phi}$ is surjective. Let

$$
T: 0 \rightarrow R \xrightarrow{y} A \xrightarrow{\delta} \partial \rightarrow 0
$$

be any extension and \bar{T} its image into $\operatorname{Ext}_{R}^{1}(\partial, R)$. Since $\operatorname{Ext}_{R}^{1}(\partial, \partial)=0$ [4, Prop. VI.3.4], the R-homomorphism $\gamma^{*}: \operatorname{Hom}_{R}(A, \partial) \rightarrow \operatorname{Hom}_{R}(R, \partial)$ is surjective. Hence
there exists $\chi \in \operatorname{Hom}_{R}(A, \partial)$ such that $\left(\gamma^{*}(\chi)\right)(1)=w$, that is, $\chi(\gamma(1))=w$. Define $h: A \rightarrow \partial \oplus C$ by $h(a)=(\chi(a), 0)$ for every $a \in A$. Then $h(\gamma(1))=(\chi(\gamma(1)), 0)=$ $(w, 0)=\alpha(1)$, so that $h \gamma=\alpha$ and the left-hand square in the diagram
commutes; it follows that there exists an $f \in E$ making the right-hand square commute. Then $\bar{S} f=\bar{T}$, and Φ is surjective.

In order to prove that $\operatorname{ker} \boldsymbol{\Phi}=\varphi E$, fix an $f \in E$, so that $\varepsilon f \in \varepsilon E$. Then $\varepsilon f \in \operatorname{ker} \boldsymbol{\Phi}$ if and only if $\bar{S} f=\bar{Z}$, i.e., if and only if there exists a homomorphism $g: R \oplus \partial \rightarrow$ $\partial \oplus C$ making the diagram

commute. This means that $g(r, 0)=(w r, 0)$ and $\beta g(r, x)=f(x)$ for every $r \in R$ and $x \in \partial$. Since the homomorphisms $g: R \oplus \partial \rightarrow \partial \oplus C$ such that $g(r, 0)=(w r, 0)$ for every $r \in R$ are exactly of the form $g(r, x)=(w r+h(x), l(x))$ for suitable $h: \partial \rightarrow \partial$ and $l: \partial \rightarrow C$, it follows that $\varepsilon f \in \operatorname{ker} \Phi$ if and only if there exists $h: \partial \rightarrow \partial$ and $l: \partial \rightarrow C$ such that $f(x)=\beta g(r, x)=\beta(w r+h(x), l(x))=\varphi(w r+h(x))+l(x)=(\varphi h+l)(x)$, i.e., $f-\varphi h=l$. But $C=(1-\varepsilon)(\partial)=\operatorname{ker} \varepsilon$, so that $\varepsilon f \in \operatorname{ker} \boldsymbol{\Phi}$ if and only if $\varepsilon(f-\varphi h)=0$ for some $h: \partial \rightarrow \partial$, i.e., $\varepsilon f=\varepsilon \varphi h=\varphi h \in \varphi E$. This proves that $\operatorname{ker} \boldsymbol{\Phi}=\varphi E$.

We shall often need the right E-module $\operatorname{Ext}_{R}^{1}(\partial, R)$ in the sequel, and we shall denote it by ∂°. Hence $\partial^{\circ}=\operatorname{Ext}_{R}^{1}(\partial, R) \cong \varepsilon E / \varphi E$ as a right E-module. There are other "presentations" of the module ∂°. For instance the right E-modules ∂° and $\operatorname{Ext}_{E}^{1}(\partial, E)$ are isomorphic right E-modules by Corollary 3.3. Moreover the functor $\operatorname{Hom}_{R}\left(\partial_{R},-\right)$ applied to the exact sequence of R-modules $0 \rightarrow w R \rightarrow \partial \rightarrow \partial / w R \rightarrow 0$ gives the exact sequence of right E-modules $0 \rightarrow E \rightarrow \operatorname{Hom}_{R}(\partial, \partial / w R) \rightarrow \operatorname{Ext}_{R}^{1}(\partial, w R) \rightarrow$ $\operatorname{Ext}_{R}^{1}(\partial, \partial)$. The last module is zero by [4, Prop. VI.3.4], so that the right E-modules $\partial^{\circ} \cong \operatorname{Ext}_{R}^{1}(\partial, w R)$ and $\operatorname{Hom}_{R}(\partial, \partial / w R) / E$ are isomorphic.

Furthermore, the functor $\operatorname{Hom}_{R}\left({ }_{E} \partial_{R},-\right)$ applied to the exact sequence of R-modules $0 \rightarrow R \rightarrow Q \rightarrow K \rightarrow 0$ gives the exact sequence of right E-modules $0 \rightarrow$ $\operatorname{Hom}_{R}(\partial, Q) \rightarrow \operatorname{Hom}_{R}(\partial, K) \rightarrow \operatorname{Ext}_{R}^{1}(\partial, R) \rightarrow \operatorname{Ext}_{R}^{1}(\partial, Q)$. The last module is zero by [4, Prop. VI.3.4], and the first module is $\operatorname{Hom}_{R}(\partial, Q) \cong \operatorname{Hom}_{R}(\partial / t(\partial), Q) \cong Q$ by the remarks after proposition 2.3. Therefore $\partial^{\circ} \cong \operatorname{Hom}_{R}(\partial, K) / Q$ as E-modules.

If we are only interested in the structure of ∂° as an R-module, there is one more "presentation" of ∂° : the functor $\operatorname{Hom}_{R}(-, R)$ applied to the exact sequence $0 \rightarrow H \rightarrow F \rightarrow \partial \rightarrow 0$ (where F is the R-module freely generated by \mathscr{G} and H is the free submodule of F generated by the relations) gives $0 \rightarrow \operatorname{Hom}_{R}(F, R) \rightarrow \operatorname{Hom}_{R}(H, R) \rightarrow$
$\operatorname{Ext}_{R}^{1}(\partial, R) \rightarrow 0$, which is a presentation of ∂° as a quotient of two R-modules isomorphic to direct products of copies of R.

Corollary 3.5. flat. $\operatorname{dim} \partial_{E}^{\circ}=$ proj. $\operatorname{dim} \partial_{E}^{\circ}=1$.
Proof. Since $r(\varphi)=0$, it follows that $\varphi E \cong E$ is projective, so that $\partial^{\circ} \cong \varepsilon E / \varphi E$ has projective dimension $\leqq 1$. Hence $1 \geqq$ proj. dim $\partial^{\circ} \geqq$ flat. $\operatorname{dim} \partial^{\circ}$. It remains to prove that $\varepsilon E / \varphi E$ is not flat. But $\varepsilon+\varphi E \in \varepsilon E / \varphi E$ is annihilated by φ (because $\varepsilon \varphi=\varphi$) so that it belongs to $(0: \varphi) \varepsilon \cong \operatorname{Tor}_{1}^{E}\left(\partial^{\circ}, \partial\right)\left(\right.$ Corollary 3.3). Thus $\operatorname{Tor}_{1}^{E}\left(\partial^{\circ}, \partial\right) \neq 0$ and ∂° is not flat.

Theorem 3.6. End $\left(\partial_{E}^{\circ}\right) \cong R$.
Proof. First of all observe that ∂° is a torsion-free R-module, because if $r \in R$ and $r \neq 0$, the functor $\operatorname{Hom}_{R}(\partial,-)$ applied to the exact sequence $0 \rightarrow R \xrightarrow{r} R \rightarrow$ $R / r R \rightarrow 0$ gives the exact sequence $\operatorname{Hom}_{R}(\partial, R / r R) \rightarrow \partial^{0} \xrightarrow{r} \partial^{0}$. The first module is zero because ∂ is divisible and $R / r R$ is torsion of bounded order. Hence the multiplication by r is an injective endomorphism of ∂°, and ∂° is a torsion-free R-module.

Since $\partial^{\circ} \cong \varepsilon E / \varphi E \cong E /(\varphi E+(1-\varepsilon) E)$ is a cyclic E-module, it follows that $\operatorname{End}_{E}\left(\partial^{\circ}\right) \cong U /(\varphi E+(1-\varepsilon) E)$, where U is the subring $\{f \in E \mid f(\varphi E+(1-\varepsilon) E) \subset$ $\varphi E+(1-\varepsilon) E\}$ of E (for instance see [10, page 24]). Similarly, since $\partial \cong E / E \varphi$, the ring $\operatorname{End}_{E}(\partial)$ is isomorphic to $V / E \varphi$, where $V=\{g \in E \mid E \varphi g \subset E \varphi\}$. But $\operatorname{End}_{E}(\partial)$ is canonically isomorphic to R (Theorem 2.3), and thus $V=R+E \varphi$.

Now we prove that $U=R+\varphi E+(1-\varepsilon) E$. The inclusion $U \supset R+\varphi E+(1-\varepsilon) E$ is trivial. Conversely, if $f \in U$, that is, $f \in E$ and $f(\varphi E+(1-\varepsilon) E) \subset \varphi E+(1-\varepsilon) E$, then $\varepsilon f \varphi \in \varepsilon(\varphi E+(1-\varepsilon) E)=\varphi E$. Therefore $\varepsilon f \varphi=\varphi g$ for some $g \in E$. In particular $E \varphi g=E \varepsilon f \varphi \subset E \varphi$, that is, $g \in V=R+E \varphi$. Hence $g=r+h \varphi$ for some $r \in R$ and $h \in E$, and $\varepsilon f \varphi=\varphi g=\varphi(r+h \varphi)=(r+\varphi h) \varphi$. Then $(\varepsilon f-r-\varphi h) \varphi=0$, and since $l(\varphi)=$ $E(1-\varepsilon)=l(\varepsilon)(\S 2)$, we have $(\varepsilon f-r-\varphi h) \varepsilon=0$, so that $\varepsilon f \varepsilon=r \varepsilon-\varphi h \varepsilon=r-(1-\varepsilon) r-$ $\varphi h \varepsilon \in R+(1-\varepsilon) E+\varphi E$. Moreover $f \in U$ implies $f(1-\varepsilon) \in \varphi E+(1-\varepsilon) E$, so that $f=f(1-\varepsilon)+(1-\varepsilon) f \varepsilon+\varepsilon f \varepsilon \in(\varphi E+(1-\varepsilon) E)+(1-\varepsilon) E+(R+(1-\varepsilon) E+\varphi E)=R+\varphi E+$ $(1-\varepsilon) E$. This proves that $U=R+\varphi E+(1-\varepsilon) E$.

It follows that

$$
\begin{gathered}
\operatorname{End}_{E}\left(\partial^{\circ}\right) \cong U /(\varphi E+(1-\varepsilon) E)=(R+\varphi E+(1-\varepsilon) E) /(\varphi E+(1-\varepsilon) E) \\
\cong R /(R \cap(\varphi E+(1-\varepsilon) E))
\end{gathered}
$$

i.e., every element of $\operatorname{End}_{E}\left(\partial^{\circ}\right)$ is induced by the multiplication by an element of R. But ∂° is a torsion-free R-module, so that $\operatorname{End}_{E}\left(\partial^{\circ}\right) \cong R$.

4. The functors $\operatorname{Hom}_{R}(\partial,-)$ and $-\otimes_{E} \partial$

Consider the two functors $\operatorname{Hom}_{R}\left({ }_{E} \partial_{R},-\right): \operatorname{Mod}-R \rightarrow \operatorname{Mod}-E$ and $-\otimes_{E} \partial_{R}$: Mod- $E \rightarrow$ Mod-R. Then $\operatorname{Hom}_{R}\left({ }_{E} \partial_{R},-\right)$ is the right adjoint of $\otimes_{E} \partial_{R}$, for each $M \in \operatorname{Mod}-E$ there is a canonical E-module homomorphism

$$
\eta_{M}: M \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)
$$

defined by $\eta_{M}(m)(x)=m \otimes x$ for every $m \in M$ and $x \in \partial$ (the unit of the adjunction), and for each $A \in \operatorname{Mod}-R$ there is a canonical R-module homomorphism $\varepsilon_{A}: \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \rightarrow A$ defined by $\varepsilon_{A}(f \otimes x)=f(x)$ for every $f \in \operatorname{Hom}_{R}(\partial, A)$ and $x \in \partial$ (the counit of the adjunction).

Note that if M_{E} is any E-module, the R-module $M \otimes_{E} \partial$ is divisible (because ∂_{R} is divisible and $-\otimes_{E} \partial_{R}$ is right exact). Hence $-\otimes_{E} \partial$ is a functor of Mod- E into the full subcategory \mathscr{D}_{R} of Mod- R whose objects are the divisible R-modules.

Theorem 4.1. Let A_{R} be a right R-module. Then $\varepsilon_{A}: \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \rightarrow A$ is an isomorphism if and only if A is a divisible R-module.

Proof. If ε_{A} is an isomorphism and $F_{E} \rightarrow \operatorname{Hom}_{R}(\partial, A)$ is a surjective E-homomorphism of a free E-module F_{E} onto $\operatorname{Hom}_{R}(\partial, A)$, then $F \otimes_{E} \partial \rightarrow \operatorname{Hom}_{R}(\partial, A) \otimes \partial$ is a surjective R-homomorphism of the R-module $F \otimes_{E} \partial$ onto $\operatorname{Hom}_{R}(\partial, A) \otimes \partial \cong A$. Hence A, homomorphic image of the divisible R-module $F \otimes_{E} \partial$, is divisible.

Conversely, suppose A_{R} divisible and apply the functor $\operatorname{Hom}_{R}(\partial, A) \otimes_{E}-$ to the exact sequence $0 \rightarrow E \varphi \rightarrow E \rightarrow \partial \rightarrow 0$, where the first homomorphism is the inclusion and the second is defined by $1 \mapsto w$ (Theorem 2.4 and Lemma 3.1). The first homomorphism in the obtained sequence

$$
\operatorname{Hom}_{R}(\partial, A) \otimes_{E} E \varphi \rightarrow \operatorname{Hom}_{R}(\partial, A) \rightarrow \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \rightarrow 0
$$

is induced by the multiplication, so that its image is $\left\{g \varphi \mid g \in \operatorname{Hom}_{R}(\partial, A)\right\}$, which is equal to $B=\left\{f \mid f \in \operatorname{Hom}_{R}(\partial, A), f(w)=0\right\}$ by Theorem 2.4.

The homomorphism $\chi: \operatorname{Hom}_{R}(\partial, A) \rightarrow A$ defined by $\chi(f)=f(w)$ for every $f \in \operatorname{Hom}_{R}(\partial, A)$ is surjective by proposition 2.1 because A is divisible, and has B as its kernel. Moreover the diagram

$$
\begin{aligned}
& 0 \rightarrow B \rightarrow \operatorname{Hom}_{R}(\partial, A) \rightarrow \operatorname{Hom}_{R}(\partial, A) \otimes_{E} \partial \rightarrow 0
\end{aligned}
$$

commutes, because $\chi(f)=f(w)=\varepsilon_{A}(f \otimes w)$ for every $f \in \operatorname{Hom}_{R}(\partial, A)$. It follows that ε_{A} is an isomorphism.

If \mathscr{D}_{R} denotes the full subcategory of Mod- R whose objects are the divisible modules, the functor $\operatorname{Hom}_{R}(\partial,-): \mathscr{D}_{R} \rightarrow \operatorname{Mod}-E$ is full and faithful by Theorem 4.1
[11, prop. 5.2], so that \mathscr{D}_{R} is equivalent to the full subcategory \mathscr{I}_{E} of Mod- E whose objects are the E-modules isomorphic to $\operatorname{Hom}_{R}(\partial, A)$ for some $A \in \operatorname{Mod}-R$.

In the next sections we shall study and characterize the right E-modules isomorphic to $\operatorname{Hom}_{R}(\partial, A)$ for some $A \in \operatorname{Mod}-R$. In order to do this we shall often need the following result.

Proposition 4.2. For every R-module $A_{R}, \operatorname{Tor}_{1}^{E}\left(\operatorname{Hom}_{R}(\partial, A),{ }_{E} \partial\right)=0$.
Proof. By Corollary 3.3 we must show that $(0: \varphi) \varepsilon=0$, where $(0: \varphi)=$ $\left\{f \in \operatorname{Hom}_{R}\left(\partial_{R}, A\right) \mid f \varphi=0\right\}$. Now $f \varphi=0$ if and only if $\varphi(\partial) \subset$ ker f. But $\varphi(\partial)=\varepsilon(\partial)$. Hence if $f \in(0: \varphi)$, then $\varepsilon(\partial) \subset \operatorname{ker} f$, so that $f \varepsilon=0$. This concludes the proof of the proposition.

Theorem 4.3. Let \mathscr{I} be the class of all right E-modules isomorphic to $\operatorname{Hom}_{R}(\partial, A)$ for some right R-module A. Let $0 \rightarrow L_{E} \rightarrow M_{E} \rightarrow N_{E} \rightarrow 0$ be a short exact sequence of right E-modules.
(i) If $L, N \in \mathscr{I}$, then $M \in \mathscr{I}$.
(ii) If $M, N \in \mathscr{I}$, then $L \in \mathscr{I}$.
(iii) If $L, M \in \mathscr{I}$ and $\operatorname{Tor}_{1}^{E}(N, \partial)=0$, then $N \in \mathscr{I}$.

Proof. In all of the three cases $\operatorname{Tor}_{1}^{E}(N, \partial)=0$ by proposition 4.2. Hence the functor $-\otimes_{E} \partial$ applied to the sequence of the statement of the theorem gives the exact sequence $0 \rightarrow L \otimes \partial \rightarrow M \otimes \partial \rightarrow N \otimes \partial \rightarrow 0$. The functor $\operatorname{Hom}_{E}(\partial,-)$ applied to this sequence and the naturality of the transformation η give the commutative diagram

The second row in this diagram is exact because $\operatorname{Ext}_{R}^{1}\left(\partial, L \otimes_{E} \partial\right)=0$ by [4, Prop. VI.3.4]. Hence if two of the mappings $\eta_{L}, \eta_{M}, \eta_{N}$ are isomorphisms, so is the third. It remains to prove that for a module P_{E} the mapping $\eta_{P}: P \rightarrow \operatorname{Hom}_{R}(\partial, P \otimes \partial)$ is an isomorphism if and only if $P \in \mathscr{I}$. But if $P \in \mathscr{I}$, then the functors $-\otimes_{E} \partial$ and $\operatorname{Hom}_{R}(\partial,-)$ give an equivalence $\mathscr{D} \rightarrow \mathscr{I}$, so that η_{P} is an isomorphism. And if $P \cong \operatorname{Hom}_{R}(\partial, P \otimes \partial)$, then $P \cong \operatorname{Hom}_{R}(\partial, A) \in \mathscr{I}$ with $A=P \otimes \partial$.

The hypothesis $\operatorname{Tor}_{1}^{E}(N, \partial)=0$ in part (iii) of Theorem 4.3 cannot be eliminated as the following example shows: set $L=M=E$ and let r be any non-zero and non-invertible element of R. Since $E=\operatorname{Hom}_{R}(\partial, \partial)$ is a torsion-free R-module (because ∂ is divisible), the multiplication by r gives an exact sequence $0 \rightarrow E \rightarrow E \rightarrow$ $E / E r \rightarrow 0$ of E-modules. In this sequence the first two modules are in \mathscr{I} and the third E-module $E / E r$ is torsion of bounded order as an R-module. But $E \neq E r$,
otherwise r would be invertible in E, that is, $1=f r$ for some $f \in E$, contradiction, because the multiplication by r is not an injective mapping $\partial \rightarrow \partial$. Hence $E / E r \neq 0$ is not a torsion-free R-module, and in particular $E / E r \notin \mathscr{I}$ (every module in \mathscr{I} is torsion-free as an R-module).

5. The torsion theory (\mathscr{T}, \mathscr{F}) and its cotorsion theory

In this section S is an arbitrary associative ring with identity and $I=S \varphi$ is a projective principal left ideal of S.

If M_{S} is any right S-module, the inclusion $I \rightarrow S$ induces a homomorphism $M \otimes_{S} I \rightarrow M$, and we say that M is I-torsion-free if this mapping $M \otimes_{S} I \rightarrow M$ is injective, and say that M is I-divisible if it is surjective. Note that the definition of I-divisible module is obtained by dualizing the definition of I-torsion-free module. Moreover $M I$-divisible simply means $M \varphi=M$.

Denote the class of all I-torsion-free right S-modules by \mathscr{F}.
Lemma 5.1. If S is an algebra over a commutative ring R, C is an injective cogenerator in $\operatorname{Mod}-R,(S / I)^{*}$ is the right S-module $\operatorname{Hom}_{R}(S / I, C)$, and M is a right S-module, then
(i) M is I-torsion-free if and only if $\operatorname{Tor}_{1}^{S}(M, S / I)=0$, if and only if

$$
\operatorname{Ext}_{S}^{1}\left(M,(S / I)^{*}\right)=0 ;
$$

(ii) M is I-divisible if and only if $M \otimes_{S}(S / I)=0$.

Proof. From the exact sequence $0 \rightarrow I \rightarrow S \rightarrow S / I \rightarrow 0$ we obtain the exact sequence $0 \rightarrow \operatorname{Tor}_{1}^{S}(M, S / I) \rightarrow M \otimes_{s} I \rightarrow M \rightarrow M \otimes_{s}(S / I) \rightarrow 0$. Hence M is I-torsion-free if and only if $\operatorname{Tor}_{1}^{S}(M, S / I)=0$, and M is I-divisible if and only if $M \otimes_{s}(S / I)=0$. Moreover $\operatorname{Hom}_{R}\left(\operatorname{Tor}_{1}^{S}(M, S / I), C\right) \cong \operatorname{Ext}_{S}^{1}\left(M,(S / I)^{*}\right)$, so that $\operatorname{Tor}_{1}^{S}(M, S / I)=0$ if and only if $\operatorname{Ext}_{S}^{1}\left(M,(S / I)^{*}\right)=0$.

Proposition 5.2. The class \mathscr{F} is the torsion-free class for a torsion theory (\mathscr{T}, \mathscr{F}).
Proof. We must show that \mathscr{F} is closed under submodules, products and extensions [13, Prop. VI.2.2]. Since l is projective, the flat dimension of S / I is $\leqq 1$, so that $\operatorname{Tor}_{2}^{S}(-, S / I)=0$. In particular the functor $\operatorname{Tor}_{1}^{S}(-, S / I)$ is left exact. Hence if $\operatorname{Tor}_{1}^{S}(M, S / I)=0$, then $\operatorname{Tor}_{1}^{S}(N, S / I)=0$ for every submodule N of M. Therefore \mathscr{F} is closed under submodules. Moreover if $N \leqq M, \operatorname{Tor}_{1}^{S}(N, S / I)=0$ and $\operatorname{Tor}_{1}^{S}(M / N, S / I)=0$, then $\operatorname{Tor}_{1}^{S}(M, S / I)=0$, that is, \mathscr{F} is closed under extensions. Finally, since I is a projective principal ideal, I is a finitely presented module, so that if $\left\{M_{\lambda} \mid \lambda \in \Lambda\right\} \subset \mathscr{F}$ is a family of S-modules, $\Pi_{\lambda}\left(M_{\lambda} \otimes I\right)$ and $\left(\Pi_{\lambda} M_{\lambda}\right) \otimes I$ are canonically isomorphic [13, Lemma I.13.2]. Then the mapping ($\left.\Pi_{\lambda} M_{\lambda}\right) \otimes I \cong$ $\Pi_{\lambda}\left(M_{\lambda} \otimes I\right) \rightarrow \Pi_{\lambda} M_{\lambda}$ is injective, and \mathscr{F} is closed under products.

In the statement of Proposition 5.2 the torsion class \mathscr{T} consists of all right S-modules T with $\operatorname{Hom}_{S}(T, M)=0$ for all $M \in \mathscr{F}$. Note that S_{S} is an I-torsionfree module. Moreover the torsion theory $(\mathscr{T}, \mathscr{F})$ is not hereditary in general. Our torsion theory $(\mathscr{T}, \mathscr{F})$ generalizes the p-torsion theory of abelian groups, where p is a prime. In fact, it is easy to see that for $S=\mathbf{Z}$ and $I=p \mathbf{Z}$ the I-torsionfree, I-divisible and I-torsion modules are exactly the p-torsion-free, p-divisible and p-torsion abelian groups respectively.

Proposition 5.3. Let φ be a generator of the projective principal left ideal I of S, so that the left annihilator $l(\varphi)$ of φ is equal to $S(1-\varepsilon)$ for an idempotent $\varepsilon \in S$. Then the torsion theory $(\mathscr{T}, \mathscr{F})$ is generated by the right S-module $\varepsilon S / \varphi S$.

Proof. In order to prove that the torsion theory (\mathscr{T}, \mathscr{F}) is generated by $\varepsilon S / \varphi S$, we must prove that a right S-module F belongs to \mathscr{F} if and only if $H^{\prime} \mathrm{m}_{S}(\varepsilon S / \varphi S, F)=0$.

Suppose $F \in \mathscr{F}$ and fix an $f \in \operatorname{Hom}_{S}(\varepsilon S / \varphi S, F)$. Set $x=f(\varepsilon+\varphi S) \in F$. Then $x \varepsilon=f(\varepsilon+\varphi S) \varepsilon=f(\varepsilon+\varphi S)=x \quad$ and $\quad x \varphi=f(\varepsilon+\varphi S) \varphi=f(\varepsilon \varphi+\varphi S)=f(\varphi+\varphi S)=0$. Consider the element $x \otimes \varphi \in F \otimes I$. Since $x \varphi=0$ and the mapping $F \otimes I \rightarrow F$ is injective because $F \in \mathscr{F}$, it follows that $x \otimes \varphi=0$. Apply the functor $F \otimes-$ to the exact sequence $0 \rightarrow S(1-\varepsilon) \rightarrow S \rightarrow I \rightarrow 0$, where the first homomorphism is the inclusion and the second homomorphism is defined by $1 \mapsto \varphi$. Then the sequence $0 \rightarrow F \otimes_{S} S(1-\varepsilon) \rightarrow F \otimes_{S} S \rightarrow F \otimes_{S} I \rightarrow 0$ is exact because I is projective, hence flat. The last sequence can be rewritten as $0 \rightarrow F(1-\varepsilon) \rightarrow F \rightarrow F \otimes_{S} I \rightarrow 0$ where the first homomorphism is the inclusion and the second homomorphism maps x into $x \otimes \varphi$. Since $x \otimes \varphi=0$, it follows that $x \in F(1-\varepsilon)$, so that $x \varepsilon=0$. In particular $f(\varepsilon+\varphi S)=$ $x=x \varepsilon=0$ and $f: \varepsilon S / \varphi S \rightarrow F$ is the zero homomorphism. This proves that $\operatorname{Hom}_{S}(\varepsilon S / \varphi S, F)=0$.

Conversely, suppose that $\operatorname{Hom}_{S}(\varepsilon S / \varphi S, F)=0$. We must prove that $F \otimes I \rightarrow F$ is injective. Since $I=S \varphi$, every element in $F \otimes I$ can be written as $x \otimes \varphi, x \in F$. Suppose $x \otimes \varphi$ is in the kernel of $F \otimes I \rightarrow F$, i.e., $x \varphi=0$. The mapping $f: \varepsilon S / \varphi S \rightarrow F$ defined by $f(\varepsilon s+\varphi S)=x \varepsilon s$ is a well defined homomorphism, because if $\varepsilon s \in \varphi S$, then $x \varepsilon s \in x \varphi S=\{0\}$. It follows that f must be zero, hence $x \varepsilon=0$. Then $x \otimes \varphi=$ $x \otimes \varepsilon \varphi=x \varepsilon \otimes \varphi=0$. This proves that $F \in \mathscr{F}$.

Our concept of I-divisibility differs from the concept of divisibility in [13, § VI.9], because our I-torsion-free modules and I-divisible modules are both right S-modules.

Define a right S-module M to be I-reduced if it is cogenerated by $(S / I)^{*}$, that is, if it is isomorphic to a submodule of a direct product of copies of $(S / I)^{*}$. Here $(S / I)^{*}=\operatorname{Hom}_{R}(S / I, C)$, where R is a commutative ring such that S is an R-algebra and C is an injective cogenerator of Mod- R. Therefore M_{S} is I-reduced if and only
if for every $x \in M, x \neq 0$, there exists $\vartheta_{x}: M \rightarrow(S / I)^{*}$ such that $\vartheta_{x}(x) \neq 0$. Since $\operatorname{Hom}_{S}\left(M,(S / I)^{*}\right) \cong \operatorname{Hom}_{R}\left(M \otimes_{S}(S / I), C\right) \cong \operatorname{Hom}_{R}(M / M I ; C)$, this happens if and only if for every $x \in M, x \neq 0, x S$ is not contained in $M I$. Therefore a right S-module M is I-reduced if and only if $M I$ does not contain nonzero right S-submodules of M.

Note that a module N_{S} is 1 -divisible if and only if $\operatorname{Hom}_{S}(N, M)=0$ for every I-reduced S-module M_{S}. In fact, $\operatorname{Hom}_{S}(N, M)=0$ for every I-reduced S-module M_{S} if and only if $\operatorname{Hom}_{S}\left(N,(S / I)^{*}\right)=0$. This happens if and only if $N \otimes(S / I)=0$, that is, if and only if N is I-divisible (Lemma 5.1 (ii)).

We conclude this section with a last definition. We say that a right S-module M is an I-cotorsion module if it is I-reduced and $\operatorname{Ext}_{s}^{1}(N, M)=0$ for every I-divisible I-torsion-free right S-module N. I-cotorsion modules will be studied in $\S 7$.

6. Purity

In this section S is an arbitrary (associative) ring with identity and $I=S \varphi$ is a fixed projective principal left ideal of S. We say that a short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of right S-modules is I-pure if one of the equivalent conditions of next lemma holds.

Lemma 6.1. The following properties of a short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow$ $M^{\prime \prime} \rightarrow 0$ of right S-modules are equivalent:
(a) The short exact sequence $0 \rightarrow \operatorname{Hom}_{S}\left(S / \varphi S, M^{\prime}\right) \rightarrow \operatorname{Hom}_{S}(S / \varphi S, M) \rightarrow$ $\operatorname{Hom}_{S}\left(S / \varphi S, M^{\prime \prime}\right) \rightarrow 0$ is exact.
(b) The short exact sequence $0 \rightarrow M^{\prime} \otimes S / S \varphi \rightarrow M \otimes S / S \varphi \rightarrow M^{\prime \prime} \otimes S / S \varphi \rightarrow 0 \quad$ is exact.
(c) $M^{\prime} \varphi=M^{\prime} \cap M \varphi$.

Under these equivalent conditions we shall also say that M^{\prime} is an I-pure submodule of M. The proof of this lemma is analogous to the proof of [14, Prop. 2 and 3]. Our purity is a particular case of Warfield's \mathscr{S}-purity [14] with $\mathscr{S}=\{S / \varphi S, S\}$. (See also [12].) It would also be possible to apply Gruson's and Jensen's idea developed in [5] to the study of I-purity: if $\mathcal{O}=\{S, S / S \varphi\}$ is viewed as a full subcategory of S-Mod and $D(S)$ is the category of additive functors of \mathcal{O} into the category of abelian groups $\mathscr{A} b$, then the functor $M \mapsto M \otimes_{s}$ of Mod-S into $D(S)$ is the left adjoint to the functor $F \mapsto F(S)$ of $D(S)$ into Mod-S and is an equivalence of Mod-S onto a full subcategory of $D(S)$; in this equivalence short exact sequences of $D(S)$ correspond to I-pure short exact sequences of Mod-S, and the injective
objects in $D(S)$ correspond to the I-pure-injective S-modules. See also [2]. We shall not need this remark in the sequel.

Note that if M is an I-torsion-free S-module, that is, $M \in \mathscr{F}$, then a submodule M^{\prime} of M is I-pure in M if and only if M / M^{\prime} is I-torsion-free. This can be seen from the exact sequence $\operatorname{Tor}_{1}^{S}(M, S / S \varphi) \rightarrow \operatorname{Tor}_{1}^{S}\left(M / M^{\prime}, S / S \varphi\right) \rightarrow M^{\prime} \otimes S / S \varphi \rightarrow M \otimes$ $S / S \varphi$, where $\operatorname{Tor}_{1}^{S}(M, S / S \varphi)=0$ because $M \in \mathscr{F}$ (Lemma 5.1), so that $M^{\prime} \otimes$ $S / S \varphi \rightarrow M \otimes S / S \varphi$ is injective if and only if $\operatorname{Tor}_{1}^{S}\left(M / M^{\prime}, S / S \varphi\right)=0$.

The theory developed in [12] applies to our notion of I-purity. If \mathscr{E} is the class of I-pure short exact sequences of S-modules, then \mathscr{E} is a flatly generated, proper class [12, § 3], closed under direct limits and projectively closed [12, Prop. 3.1 and 2.2]. For every right S-module $M^{\prime \prime}$ there is an I-pure exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ with $M I$-pure-projective (i.e., $M \mathscr{E}$-projective). Moreover a module M is I-pureprojective if and only if it is isomorphic to a direct summand of a direct sum of copies of S_{S} and $S / \varphi S$. These statements follow immediately from [12, Prop. 2.3]. I-pure-injective modules (that is, \mathscr{E}-injectives) are characterized as the direct summands of direct products of copies of $\operatorname{Hom}_{R}(S, C)$ and $\operatorname{Hom}_{R}(S / S \varphi, C)$; here R is any commutative ring such that S is an R-algebra, and C is an injective cogenerator in Mod-R [12, Prop. 3.3]. Finally, every module has a suitably defined I-pureinjective envelope [12, Prop. 4.5], and l-pure-injective modules are directs summands of every module which contains them as I-pure submodules.

7. The equivalences

Now we apply the theory developed in $\S 55$ and 6 to the study of the functors $\operatorname{Hom}_{R}\left({ }_{E} \partial_{R},-\right):$ Mod- $R \rightarrow \operatorname{Mod}-E$ and $-\otimes_{E} \partial_{R}: \operatorname{Mod}-E \rightarrow \operatorname{Mod}-R$ introduced in $\S 4$.

As in the first four sections R is an integral domain, ∂_{R} is the R-module of $\S 2$, E is its endomorphism ring End $\left(\partial_{R}\right), \varphi$ is an endomorphism of ∂_{R} whose kernel is $w R$ and image is a direct summand of ∂_{R}. The left ideal $I=E \varphi$ of E is a projective principal ideal by Theorem 2.4, so that the theory developed in $\S 5$ can be applied. Let C be the minimal injective cogenerator in $\operatorname{Mod}-R$ and $\partial^{*}=\operatorname{Hom}_{R}(\partial, C)$. There is a torsion theory $(\mathscr{T}, \mathscr{F})$ for Mod- E where the I-torsion-free class \mathscr{F} consists of the right E-modules M with $\operatorname{Tor}_{1}^{E}(M, \partial)=0$, or, equivalently, with $\operatorname{Ext}_{E}^{1}\left(M, \partial^{*}\right)=0$ (Lemmas 3.1 and 5.1). The class of I-divisible E-modules consists of the right E-modules M with $M \otimes_{E} \partial=0$. The torsion theory $(\mathscr{T}, \mathscr{F})$ is generated by the right E-module $\partial^{\circ}=\operatorname{Ext}_{R}^{1}(\partial, R)$ (Proposition 5.3 and Theorem 3.4) and E_{E} is a torsionfree E-module in the torsion theory $(\mathscr{F}, \mathscr{F})$.

The I-reduced E-modules are the right E-modules cogenerated by ∂^{*}; and a module M_{E} is I-reduced if and only if $M I$ does not contain nonzero right E-submodules of M.

Theorem 7.1. Let R be an integral domain and A a right R-module. Then $\operatorname{Hom}_{R}(\partial, A)$ is an I-cotorsion E-module.

Proof. Since C is an injective cogenerator in Mod- $R, A \leqq C^{X}$ for some set X, so that $\operatorname{Hom}_{R}(\partial, A) \leqq \operatorname{Hom}_{R}\left(\partial, C^{X}\right) \cong\left(\partial^{*}\right)^{X}$; hence $\operatorname{Hom}_{R}(\partial, A)$ is cogenerated by ∂^{*}, that is, it is I-reduced.

Now let N_{E} be an I-divisible I-torsion-free E-module and let D be an injective R-module containing A. Then the functor $\operatorname{Hom}_{R}(\partial,-)$ applied to the exact sequence $0 \rightarrow A \rightarrow D \rightarrow D / A \rightarrow 0$ gives an exact sequence $0 \rightarrow \operatorname{Hom}_{R}(\partial, A) \rightarrow \operatorname{Hom}_{R}(\partial, D) \rightarrow P \rightarrow 0$ for a suitable E-submodule P of $\operatorname{Hom}_{R}(\partial, D / A)$. Apply the functor $\operatorname{Hom}_{E}(N,-)$ to this sequence and obtain the exact sequence $\operatorname{Hom}_{E}(N, P) \rightarrow \operatorname{Ext}_{E}^{1}\left(N, \operatorname{Hom}_{R}(\partial, A)\right) \rightarrow$ $\operatorname{Ext}_{E}^{1}\left(N, \operatorname{Hom}_{R}(\partial, D)\right)$. But

$$
\operatorname{Hom}_{E}(N, P) \leqq \operatorname{Hom}_{E}\left(N, \operatorname{Hom}_{R}(\partial, D / A)\right) \cong \operatorname{Hom}_{R}\left(N \otimes_{E} \partial, D / A\right)=0
$$

because $N \otimes_{E} \partial=0$ since N is I-divisible. Moreover $\operatorname{Tor}_{1}^{E}(N, \partial)=0$ (because N is I-torsion-free) and D is injective, and thus

$$
\operatorname{Ext}_{E}^{1}\left(N, \operatorname{Hom}_{R}(\partial, D)\right) \cong \operatorname{Hom}_{R}\left(\operatorname{Tor}_{1}^{E}(N, \partial), D\right)=0
$$

Therefore $\operatorname{Ext}_{E}^{1}\left(N, \operatorname{Hom}_{R}(\partial, A)\right)=0$ and $\operatorname{Hom}_{R}(\partial, A)$ is I-cotorsion.
Note that $E / \varphi E \cong((1-\varepsilon) E \oplus \varepsilon E) / \varphi E \cong(1-\varepsilon) E \oplus(\varepsilon E / \varphi E) \cong(1-\varepsilon) E \oplus \partial^{\circ}$ (Theorem 3.4), so that $E / \varphi E$ is projective relatively to an exact sequence of right E-modules if and only if ∂° is projective relatively to that exact sequence. It follows that an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of right E-modules is I-pure, that is, $M^{\prime} I=M^{\prime} \cap M I$, if and only if $0 \rightarrow M^{\prime} \otimes_{E} \partial \rightarrow M \otimes_{E} \partial \rightarrow M^{\prime \prime} \otimes_{E} \partial \rightarrow 0$ is exact, if and only if $0 \rightarrow \operatorname{Hom}_{E}\left(\partial^{\circ}, M^{\prime}\right) \rightarrow \operatorname{Hom}_{E}\left(\partial^{\circ}, M\right) \rightarrow \operatorname{Hom}_{E}\left(\partial^{\circ}, M^{\prime \prime}\right) \rightarrow 0$ is exact. Moreover, if C is the minimal injective cogenerator in Mod R and ∂^{*} is the right E-module $\operatorname{Hom}_{R}(\partial, C)$ then $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is I-pure if and only if $0 \rightarrow \operatorname{Hom}_{E}\left(M^{\prime \prime}, \partial^{*}\right) \rightarrow$ $\operatorname{Hom}_{E}\left(M, \partial^{*}\right) \rightarrow \operatorname{Hom}_{E}\left(M^{\prime}, \partial^{*}\right) \rightarrow 0$ is exact.

By the general theory developed in $\S 6$, the I-pure-projective E-modules are exactly the direct summands of direct sums of copies of E_{E} and ∂°, and the 1 -pureinjective E-modules are exactly the direct summands of direct products of copies of $\operatorname{Hom}_{R}(E, C)$ and $\operatorname{Hom}_{R}(\partial, C)=\partial^{*}$.

Theorem 7.2. Let M be a right E-module and let $\eta_{M}: M \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$ be the canonical homomorphism. Then:
(a) ker η_{M} is the largest E-submodule of M contained in $M I$.
(b) The image of η_{M} is an I-pure submodule of $\operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$.
(c) coker η_{M} is an 1-torsion-free I-divisible E-module.

Proof. (a) Since $\partial \cong E / I$, the R-module $M \otimes_{E} \partial$ is isomorphic to $M / M I$, so that $x \in M$ is in the kernel of η_{M} if and only if $x e \in M I$ for every $e \in E$, that is, if and only if $x E \subset M I$. In particular ker η_{M} is an E-submodule of M contained in $M I$. And if N is any E-submodule of M contained in $M I$, then $x E \subset M I$ for every $x \in N$, that is, $x \in \operatorname{ker} \eta_{M}$ for every $x \in N$. This proves that $N \subset \operatorname{ker} \eta_{M}$.
(b) By Theorem $2.4 \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) I=\left\{f \in \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) \mid f(w)=0\right\}$. Therefore $\eta_{M}(M) \cap \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) I=\left\{\eta_{M}(x) \mid x \in M, \eta_{M}(x)(w)=0\right\}=\left\{\eta_{M}(x) \mid x \in M, x \otimes w\right.$ is the zero element of $M \otimes \partial\}$. Since the homomorphism $\partial \rightarrow E / I, w \mapsto 1+I$ is an isomorphism of E-modules (Lemma 3.1), it follows that $M \otimes \partial \cong M \otimes E / I \cong M / M I$, and $x \otimes w=0$ if and only if $x \in M I$. Hence $\eta_{M}(M) \cap \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) I=\left\{\eta_{M}(x) \mid x \in M I\right\}=$ $\eta_{M}(M I)=\eta_{M}(M) I$.
(c) Suppose that η_{M} is injective (by Part (a) this happens if and only if M is I-reduced). Under this hypothesis consider the exact sequence

$$
0 \rightarrow M \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) \rightarrow \text { coker } \eta_{M} \rightarrow 0
$$

This sequence is I-pure by Part (b) and $\operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$ is I-torsion-free by Proposition 4.2. Therefore coker η_{M} is I-torsion-free.

Now apply the functor $-\otimes_{E} \partial$ to the above 1 -pure exact sequence and obtain the exact sequence $0 \rightarrow M \otimes \partial \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) \otimes_{E} \partial \rightarrow$ coker $\eta_{M} \otimes_{E} \partial \rightarrow 0$. The homomorphism $\eta_{M} \otimes \partial: M \otimes \partial \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) \otimes_{E} \partial$ is equal to $\varepsilon_{M \otimes \partial}^{-1}$ (where ε is the counit of the adjunction and $\varepsilon_{M \otimes \partial}$ is an isomorphism by Theorem 4.1) because if $x \in M$ and $y \in \partial$ then $\eta_{M} \otimes \partial(x \otimes y)=f_{x} \otimes y$, where $f_{x} \in \operatorname{Hom}_{R}\left(\partial, M \otimes \otimes_{E} \partial\right)$ and $f_{x}(z)=$ $x \otimes z$ for every $z \in \partial$. Therefore $\varepsilon_{M \otimes \partial}\left(\eta_{M} \otimes \partial(x \otimes y)\right)=\varepsilon_{M \otimes \partial}\left(f_{x} \otimes y\right)=f_{x}(y)=x \otimes y$, i.e., $\eta_{M} \otimes \partial(x \otimes y)=\varepsilon_{M \otimes \partial}^{-1}(x \otimes y)$ and $\eta_{M} \otimes \partial=\varepsilon_{M \otimes \partial}^{-1}$. Hence $\eta_{M} \otimes \partial$ is an isomorphism, and the exactness of the above sequence gives (coker η_{M}) $\otimes_{E} \partial=0$, i.e., coker η_{M} is I-divisible.

This proves Part (c) under the additional hypothesis that η_{M} is injective. In the general case the naturality of η applied to the canonical projection $\pi: M \rightarrow M /$ ker η_{M} gives the equality $\eta_{M / \mathrm{ker} \eta} \cdot \pi=\operatorname{Hom}(\partial, \pi \otimes \partial) \cdot \eta_{M}$. But $\pi \otimes \partial: M \otimes \partial \rightarrow\left(M /\right.$ ker $\left.\eta_{M}\right) \otimes \partial$ is an isomorphism because

$$
\begin{gathered}
\left(M / \operatorname{ker} \eta_{M}\right) \otimes \partial \cong\left(M / \operatorname{ker} \eta_{M}\right) \otimes(E / I) \cong\left(M / \operatorname{ker} \eta_{M}\right) /\left(M / \operatorname{ker} \eta_{M}\right) I \\
\cong M /\left(\operatorname{ker} \eta_{M}+M I\right) \cong M / M I \cong M \otimes(E / I) \cong M \otimes \partial
\end{gathered}
$$

Therefore $\operatorname{Hom}(\partial, \pi \otimes \partial)$ is an isomorphism and

$$
\text { coker } \eta_{M} \cong \operatorname{coker}\left(\operatorname{Hom}(\partial, \pi \otimes \partial) \cdot \eta_{M}\right)=\operatorname{coker}\left(\eta_{M / \mathrm{ker} \eta} \cdot \pi\right)=\operatorname{coker} \eta_{M / \mathrm{ker} \eta}
$$

Now $M /$ ker η is I-reduced by Part (a), so that coker $\eta_{M} \cong$ coker $\eta_{M / \mathrm{ker} \eta}$ is I-torsionfree and I-divisible by the previous case.

As a corollary to Theorem 7.2 it must be noted that every I-reduced E-module is I-torsion-free. This holds because if M_{E} is I-reduced, then η_{M} is injective (Theorem 7.2(a)) and $\operatorname{Hom}_{R}(\partial, M \otimes \partial)$ is I-torsion-free (Proposition 4.2), so that M is I-torsion-free too. Nevertheless this fact does not hold for an arbitrary ring S (take $S=\mathbf{Z}, I=2 \mathbf{Z}$ and M any abelian group with $2 M=0$, so that M is I-reduced and is not I-torsion-free).

Theorem 7.3. Let M be a right E-module. Then $\eta_{M}: M \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$ is an isomorphism if and only if M is I-cotorsion.

Proof. If $M \cong \operatorname{Hom}_{R}(\partial, M \otimes \partial), M$ is I-cotorsion by Theorem 7.1. Conversely, if M is I-cotorsion, the homomorphism η_{M} is injective by Theorem 7.2(a) and the exact sequence $0 \rightarrow M \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) \rightarrow$ coker $\eta_{M} \rightarrow 0$ splits because

$$
\operatorname{Ext}_{E}^{1}\left(\operatorname{coker} \eta_{M}, M\right)=0
$$

(coker η_{M} is I-torsion-free and I-divisible by Theorem 7.2(c)). Hence coker η_{M} is isomorphic to a submodule of $\operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$. But coker η_{M} is I-divisible, and $\operatorname{Hom}_{\mathrm{R}}\left(\partial, M \otimes_{\mathrm{E}} \partial\right)$ is I-reduced. Therefore coker $\eta_{M}=0$ and η_{M} is an isomorphism.

Theorem 7.3 has the following corollary: if M is any right E-module, every E-homomorphism from M into an I-cotorsion module N_{E} can be uniquely factored over $\eta_{M}: M \rightarrow \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$. Hence $\operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$ is a sort of " I-cotorsion completion" of M. The factorization of $f: M \rightarrow N$ is $f=\left(\eta_{N}^{-1} \cdot \operatorname{Hom}_{R}(\partial, f \otimes \partial)\right) \cdot \eta_{M}$ (this equality is given by the naturality of the transformation η). The uniqueness of the factorization is proved as follows: if $f=f_{1} \cdot \eta_{M}=f_{2} \cdot \eta_{M}$, then $\left(f_{1}-f_{2}\right) \cdot \eta_{M}=0$, so that $f_{1}-f_{2}: \operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right) \rightarrow N$ induces a mapping coker $\eta_{M} \rightarrow N$. But coker η_{M} is I-divisible (Theorem 7.2(c)) and N is I-reduced, so that this mapping is zero. Hence $f_{1}-f_{2}=0$. This proves the corollary.

It must be remarked that our " I-cotorsion completion" $\operatorname{Hom}_{R}\left(\partial,-\otimes_{E} \partial\right)$ is substantially different from the cotorsion hull in a hereditary torsion theory developed in [1], since our torsion theory (\mathscr{T}, \mathscr{F}) is not hereditary.

Theorem 7.4. If R is an integral domain and $E=$ End $\left(\partial_{R}\right)$, the functors $\operatorname{Hom}_{R}(\partial,-): \mathscr{D}_{R} \rightarrow \mathscr{C}_{E}$ and $-\otimes_{E} \partial: \mathscr{C}_{E} \rightarrow \mathscr{D}_{R}$ give an equivalence between the full subcategory \mathscr{D}_{R} of divisible R-modules and the full subcategory \mathscr{C}_{E} of Mod-E whose objects are the I-cotorsion E-modules. In this equivalence injective R-modules correspond to 1 -reduced 1 -pure-injective E-modules.

Proof. By Theorems 4.1 and $7.3 \operatorname{Hom}_{R}(\partial,-)$ and $-\otimes_{E} \partial$ give an equivalence between the categories \mathscr{D}_{R} and \mathscr{C}_{E}. Let us prove that if B_{R} is an injective right R-module then $\operatorname{Hom}_{R}(\partial, B)$ is an I-pure-injective E-module. If B_{R} is injective, then B is isomorphic to a direct summand of C^{X}, where C is a minimal injective cogenerator in $\operatorname{Mod}-R$. Then $\operatorname{Hom}_{R}(\partial, B)$ is isomorphic to a direct summand in $\operatorname{Hom}_{R}\left(\partial, C^{X}\right) \cong$
$\operatorname{Hom}_{R}(\partial, C)^{X}=\partial^{* X}$. By the remark immediately above Theorem 7.2, $\operatorname{Hom}_{R}(\partial, B)$ is an I-pure-injective E-module.

Conversely, if M_{E} is an I-reduced, I-pure-injective E-module, then $\eta_{M}: M \rightarrow$ $\operatorname{Hom}_{R}\left(\partial, M \otimes_{E} \partial\right)$ is an l-pure monomorphism (Theorem 7.2). Let D be an injective R-module containing $M \otimes \partial$, so that $\operatorname{Hom}_{R}(\partial, M \otimes \partial) \leqq \operatorname{Hom}_{R}(\partial, D)$. The submodule $\operatorname{Hom}_{R}(\partial, M \otimes \partial)$ is I-pure in $\operatorname{Hom}_{R}(\partial, D)$, because $\operatorname{Hom}_{R}(\partial, D) I=$ $\left\{f \in \operatorname{Hom}_{R}(\partial, D) \mid f(w)=0\right\}$ by Theorem 2.4, so that $\operatorname{Hom}_{R}(\partial, D) I \cap \operatorname{Hom}_{R}(\partial, M \otimes \partial)=$ $\left\{f \in \operatorname{Hom}_{R}(\partial, M \otimes \partial) \mid f(w)=0\right\}=\operatorname{Hom}_{R}(\partial, M \otimes \partial) I$ by Theorem 2.4 again. Therefore M is isomorphic to an I-pure submodule of $\operatorname{Hom}_{R}(\partial, D)$. Since M is I-pure-injective, M is isomorphic to a direct summand of $\operatorname{Hom}_{R}(\partial, D)$. Then $M \otimes \partial$ is isomorphic to a direct summand of $\operatorname{Hom}_{R}(\partial, D) \otimes \partial \cong D$. This proves that $M \otimes \partial$ is an injective R-module.

Thus we have seen that the class we had denoted by \mathscr{I} in Theorem 4.3, i.e., the image of the functor $\operatorname{Hom}_{R}(\partial,-): \operatorname{Mod}-R \rightarrow \operatorname{Mod}-E$, is exactly the class \mathscr{C}_{E} of I-cotorsion E-modules. There is a further characterization of these modules: they are exactly the right E-modules of ∂^{*}-dominant dimension $\geqq 2$, that is, the right E-modules M for which there exists an exact sequence $0 \rightarrow M \rightarrow \partial^{* X} \rightarrow \partial^{* Y}$ for suitable direct powers $\partial^{* X}$ and $\partial^{* Y}$ of the E-module ∂^{*}. In order to see this, note that if M is an I-cotorsion E-module, then there is an exact sequence of R-modules $0 \rightarrow M \otimes_{E} \partial \rightarrow$ $C^{X} \rightarrow C^{Y}$ because C is an injective cogenerator in Mod- R, so that by applying the left exact functor $\operatorname{Hom}_{R}(\partial,-)$ to this sequence one obtains an exact sequence $0 \rightarrow M \cong \operatorname{Hom}_{R}(\partial, M \otimes \partial) \rightarrow \partial^{* X} \rightarrow \partial^{* Y}$. Conversely, if M has ∂^{*}-dominant dimension $\geqq 2$, from the exact sequence $0 \rightarrow M \rightarrow \partial^{* X} \rightarrow \partial^{* Y}$ we obtain that M is cogenerated by ∂^{*} (i.e., it is I-reduced) and that there is an exact sequence $0 \rightarrow M \rightarrow \partial^{* X} \rightarrow N \rightarrow 0$ with $N \leqq \partial^{* Y}$. If F is any I-divisible I-torsion-free E-module then the sequence $\operatorname{Hom}_{E}(F, N) \rightarrow \operatorname{Ext}_{E}^{1}(F, M) \rightarrow \operatorname{Ext}_{E}^{1}\left(F, \partial^{* X}\right)$ is exact, $\operatorname{Hom}_{E}(F, N)=0$ (because F is I-divisible and N is I-reduced), and $\operatorname{Ext}_{E}^{1}\left(F, \partial^{* X}\right)=0$ (because $\partial^{* X} \cong \operatorname{Hom}_{R}\left(\partial, C^{X}\right)$ is in \mathscr{I}, i.e., it is I-cotorsion). Therefore $\operatorname{Ext}_{E}^{1}(F, M)=0$ and M is I-cotorsion.

References

1. Bueso, J. L. and Torreclllas, B., On the cotorsion hull in torsion theory, Comm. Algebra 13 (1985), 1627-1642.
2. Facchin, A., Relative injectivity and pure-injective modules over Prüfer rings, J. Algebra 110 (1987), 380-406.
3. Fuchs, L., On divisible modules over domains, in: Abelian groups and modules, Proc. of the Udine Conference, CISM Courses and Lectures 287, Springer-Verlag, Wien-New York, 1984. 341-356.
4. Fuchs, L. and Salce, L., Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics 96, Marcel Dekker, New York-Basel, 1985.
5. Gruson, L. and Jensen, C. U., Dimensions cohomologiques reliées aux foncteurs lim $^{(i)}$, Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin, Lecture Notes in Mathematics 867, Springer-Verlag, Berlin-Heidelberg--New York, 1981, 234-294.
6. Harrison, D., Infinite abelian groups and homological methods, Ann. of Math. 69 (1959), 366-391.
7. Matlis, E., Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964).
8. Matlis, E., Torsion-free modules, Chicago Lectures in Mathematics, Univ. of Chicago Press, Chicago-London, 1972.
9. Matlis, E., 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics 327, Sprin-ger-Verlag, Berlin-Heidelberg-New York, 1973.
10. Pierce, R. S., Associative algebras, Graduate Texts in Mathematics 88, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
11. Popescu, N., Abelian categories with applications to rings and modules, Academic Press, Lon-don-New York, 1973.
12. Stenström, B., Pure submodules, Ark. Mat. 7 (1967), 159-171.
13. Stenström, B., Rings of quotients, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
14. Warfield, R. B., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
A. Facchini Universita' di Udine Istituto di Matematica Informatica e Sistemistica 33100 Udine Italy
