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DIVISION ALGEBRAS OF DEGREE 4 AND 8 WITH INVOLUTION 
BY S. A. AMITSUR, L. H. ROWEN*, AND J. P. TIGNOL2 

ABSTRACT. Examples are given of division algebras with involution (*) of the 

first kind, one of degree 8 which is not a tensor product of quaternion subalgebras, 

the other of degree 4 which is not a tensor product of (*)-invariant quaternion sub

algebras. 

Suppose D is a division algebra with center F, and [D: F] < <». Then [D: F] 
= n2 for suitable n\ n is the degree of D, and D is a quaternion F-algebra when 
deg(D) = 2. We further assume D has characteristic ^ 2, and has an involution (*) 
of the first kind, i.e. (*) is an anti-automorphism of degree 2 which fixes F. This 
situation is treated in depth in [1, Chapter 10], and it arises if and only if D has 
exponent 2 in the Brauer group, i.e. D ®Dop ^M 2(^0> the algebra of n2 x n2 

matrices over F. Thus, in this case, the degree of D is a power of 2. Until now, the 
only known such algebras were tensor products of quaternion F-subalgebras. 

QUESTION 1. Is D necessarily a tensor product of quaternion F-subalgebras? 
QUESTION 2. Is D necessarily a tensor product of (*)-invariant quaternion 

F-subalgebras? 
Question 1 dates back about 60 years; Albert [1] showed it is true when 

deg(D) < 4. The main object of this paper is to give a counterexample for 
degree 8. Also, we shall give a counterexample to Question 2 for degree 4, which 
is clearly sharp. (Incidentally, for symplectic involutions, question 2 has no 
counterexample of degree 4, cf. [3, Theorem B].) Our counterexample makes 
the following result of Tignol [4] sharp: If deg(D) = 8 then M2(D) is a tensor 
product of quaternion subalgebras. A more detailed description of our methods 
will appear in the Israel Journal of Mathematics. 

The main idea is to use the generic abelian crossed products of [2], modi
fied slightly to account for the presence of an involution. Suppose R is an 
abelian crossed product, i.e. D has a maximal subfield K Galois over F, having 
Galois group G — (ox) © • • • © <a >, a direct sum of cyclic groups, and for our 
purposes we assume that ot has order 2. Then, choosing zi such that ot(x) = 
ZjXzf1 for all x in K, we define utj - ztz.zjlzjl and bi = zf9 elements ot K. 
[2, Lemma 1.2] gives the following conditions for all / (where Nt(x) = xot(x) 
by definition). 
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(1) uu = 1 and utj
 l = «.,. for ail /; 

(2) °i(ujk)aj(uki)°k(uij) = unujkuki f o r a11 i h k"> 
(3) NWfajj) = 1 for ail i, y, 

(4) aj(bi)bf1=Nfiiii)ioiàat,f. 
Conversely, these conditions for given elements of a Galois field extension 

K of F with abelian Galois group G, define a simple F-algebra R of dimension 
G 2 and center F. 

THEOREM 1. Notation as above, R has an involution iff, modifying the 

Uy and bi suitably, we can satisfy ( l)-(4) above, as well as the following extra 

conditions, where r E G is arbitrarily chosen: 

(5) Tfu^OjOjiUy) = 1 for all i, j , 

(6) T@,) = i , for all I 

Proof. (=>) Using the proof of [3, Propositions 5.4 and 5.5], one sees 
easily that R has an involution iff R has some involution (*) whose restriction to 
K is r. For all elements k in K, z(k = ot(k)zv taking (*) on both sides, and 
substituting, shows zf G ztK, so we can replace zi by zt ± zf, (5) and (6) follow 
easily. 

(«=) Define (*) by ( S ^ 1 • • • zj*)* = SzJ* • • • z"1^), ka in K, using 
(5) and (6) to prove (*) is an involution. Q.E.D. 

Write U for {utj\ Ki,f<q} and B for {bt\ 1 < i < 3} . We restrict our-
seves to the case q = 3, i.e. A is a given Galois extension of F with Galois group 
Z2 © Z2 0 Z2 . Thus, we can write K = F(%X,%29 £3) with £? G F, a ^ ) = 
— iff, and (̂ .(Ç.) = £;. for ƒ =£ i. Also take r = o1o2o3. 

THEOREM 2. Given B, we can find U satisfying ( l )-(6) above iff there are 

elements vt,v2,v3 in K satisfying 

(2)' vxv2v3 = 1, 

(3)' tf,(u,)=l, 
as well as the following conditions for every permutation TÏ of (1 ,2 , 3): 

(4)' a^ib^b-i =(N„2(vn3)fS"; 

(5) ' bnleFQn2^3). 

PROOF. Straightforward computations, defining vx = u23 = u32 , v2 = 

u31 = uj3, v3 = u12 = u2l, and ulx = u22 = u33 = 1. Q.E.D. 

The proof of Theorem 2 also shows ( l )-(5) imply (6). 

THEOREM 3. Given vl,v2> v3 satisfying (2)', (3)', there exists B satisfying 

(4)' and (5)' such that, for every permutation irs 

PROOF. Define ut, as in Theorem 2, so that (1), (2), and (3) are satisfied. 

By [2, equation (14)], which should read akoi(a^1) etc., we obtain the elements 
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ap which we rename bv satisfying (4). We readily get (2) '-(5)\ By Hubert's 
theorem 90, we have y. such that vi = o^y^yf1; bxNx{y^) is fixed under a3, 
so b.N^yJ G F($2) and ^ G F f t ^ O ^ 1 ) . Likewise bxNx(y2

l) G F(*3) 
etc. Q.E.D. 

Suppose now we are given b GK satisfying 

(7) b G F(£2S3) O Fa2)Nx(K) n F^N^K). 

Then, taking 2? = Ö^A/^VV) = Û^TV^W'), put u2 = w _ 1 a 2 (w) , u3 = (w f)~1a3(w') 
and vx = ( t ^ * ^ ) - 1 . Theorems 3 and 2 then apply, giving B and {/; & G Fbv so 
we replace £j by Z>. Form the corresponding abelian crossed product R. The 
generic abelian crossed product R' (cf. [2]) is a division ring with involution, by 
Theorem 1. If R' is a tensor product of quaternion subalgebras, then Rf has some 
set of square-central elements r'v . . . , r'64, independent over Cent(R') with 
r'.r'j — ± rVj for all i, ƒ. An argument based on taking leading monomials (cf. [2, 
Lemma 2.1]) then shows there is such a set of elements of JR, each having the 
form A:I.z1

1z2
2z3

3, with ki G K. In particular, one of these elements must be of 
the form kzx, implying some a. = (kzx)

2 = bNx(k), so b G FNX(K). Thus, to 
answer Question 1 negatively, we need to find F, K = F ( | j , £2, £3), and b E.K, 

such that (7) holds and b éFNx(K). (The counterexample will be R\) 

Take F = Q(X), the field of rational functions in one indeterminate X and 
% such that %\ = - 1 , %l = - (X2 + 1), and | f = X, with Z> = g2$3. Then (7) 
holds. If i <ÉFÀr(£) then X(X2 + 1) G ̂ ( F ^ X A ^ F ^ y / F ) n N(F(£2ï3)/F))t 

where iV( ) denotes the norm of a field extension. (This step is not easy.) This 
is impossible, seen by taking polynomials modulo 2. 

Similarly, Question 2 has a counterexample iff there is a field extension 
K = F(£v %2) of F and some b G FNt(K), with i <£Ffc2 for all * in F(£2). 
Take F = Q(X), %\ = 2, %\ = X, and ft = X - 1 + 2£2 . 

REFERENCES 

1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ. no. 24, Amer. 
Math. Soc , Providence, R.I., 1961. 

2. S. A. Amitsur and D. Saltman, Generic abelian crossed products, J. Algebra 51 
(1978), 7 6 - 8 7 . 

3. L. Rowen, Central simple algebras, Israel J. Math. 29 (1978), 2 8 5 - 3 0 1 . 
4. J. Tignol, Sur les classes de similitude de corps à involution de degré 8, C. R. 

Acad. Sci. Paris, Sér A 286 (1978), 875-876. 
5# 1 Décomposition et descente de produits tensoriels d'algebres de quater

nions, Rap. Sem. Math. Pure UCL 76 (1978). 

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY OF JERUSALEM, 
JERUSALEM, ISRAEL 

DEPARTMENT OF MATHEMATICS, BAR ILAN UNIVERSITY, RAMAT GAN, 
ISRAEL 

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF LOUVAIN, 
LOUVAIN-LA-NEUVE, BELGIUM 


