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Skill complementarity enhances 
heterophily in collaboration 
networks
Wen-Jie Xie1,2,3, Ming-Xia Li2,3, Zhi-Qiang Jiang1,4, Qun-Zhao Tan5, Boris Podobnik6,7,8,9,10, 

Wei-Xing Zhou1,3,4 & H. Eugene Stanley6

Much empirical evidence shows that individuals usually exhibit significant homophily in social 
networks. We demonstrate, however, skill complementarity enhances heterophily in the formation 

of collaboration networks, where people prefer to forge social ties with people who have professions 

different from their own. We construct a model to quantify the heterophily by assuming that individuals 
choose collaborators to maximize utility. Using a huge database of online societies, we find evidence 
of heterophily in collaboration networks. The results of model calibration confirm the presence of 
heterophily. Both empirical analysis and model calibration show that the heterophilous feature is 

persistent along the evolution of online societies. Furthermore, the degree of skill complementarity is 

positively correlated with their production output. Our work sheds new light on the scientific research 
utility of virtual worlds for studying human behaviors in complex socioeconomic systems.

Complexity emerges in the evolving and self-organizing processes of many natural, social, technological, and bio-
logical systems. �e constituents of a complex system interact with each other and form complex evolving networks, 
where the constituents are nodes and their interaction relationships are links1–6. For many real networks, the link 
formation process follows either the global principle of popularity in which a node tends to link with high-degree 
nodes7,8, or the local principle of similarity in which a node tends to link with nodes having traits similar to its 
own9, or a tradeo� between them9.

In the sociological literature the local principle of similarity, i.e., the phenomenon that “birds of a feather 
�ock together,” is known as homophily10. �ere is much empirical evidence indicating that individuals prefer to 
forge social ties with people whose traits such as education, race, age, and sex are the same as their own11–14. Such 
homophilous behaviors are ubiquitous in social networks and have been well documented10–12,14–18. In addition, 
the similarity shared by individuals in a group is o�en a signi�cant predictor of a group’s altruism level and its 
ability to cooperate19. Sociological literature argues that human societies tend to display two social systems: (i) 
homophilous, in which people seek out people who are similar, and (ii) heterophilous, in which people seek out 
people who are di�erent20. �e evidence indicating the actual existence of heterophilous societies is rare, however. 
One example is to study team formation processes in o�ine gangs and online games depending on the heteroge-
neity of agents’ attributes21.

In general, it has long been accepted that one of the most signi�cant factors in increasing productivity in mod-
ern human societies has been the division of labor22. �us we might assume that people in modern societies now 
prefer to forge links or collaborate with those who have complementary productive skills and that socioeconomic 
networks are becoming increasingly heterophilous, but no direct evidence of this has been documented. �e 
availability of big data recorded from massively multiplayer online role-playing games (MMORPGs) enables us 
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to test social and economic hypotheses and theories—such as this one—in large-scale virtual populations23 and 
gain a deeper understanding of our social and economic behaviors24–32.

In this work, we study the collaboration formation process of individuals with di�erent professional skills. A 
mathematical model is proposed by assuming that individuals in socioeconomic systems choose collaborators that 
are of maximum utility. Based on the evolving collaboration networks of 124 virtual worlds in which the agents 
(virtual people) belong to three di�erent professions possessing di�erent skills, empirical analysis and model 
calibration unveil that the agents prefer to collaborate with others of di�erent professions. We further construct 
two measures to quantify the degree of complementarity of virtual societies. We �nd that social complementarity 
positively correlates with economic output.

Results
A model of collaboration formation. Consider a society or a community s on day t, whose size Ns is the 
number of s-agents. �e number of (s, i)-agents is denoted by Ns,i, where i =  1, 2, and 3 stand for the three profes-
sions. Hence = ∑ = ,N Ns i s i1

3 . �e ratio of i-agents in society s is

= / . ( ), ,w N N 1s i s i s

�e average number of j-collaborators of an (s, i)-agent is fs,ij. Hence, the average number of collaborators that 
an (s, i)-agent has is = ∑, = ,
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Note that qs,ii is the homophily index15,33. If i-agents have zero preference for collaborating with j-agents, we have 
qs,ij =  ws,j. If i-agents prefer to collaborate with j-agents, we have qs,ij >  ws,j. In this case the i-agents are homophilous 
when j =  i and the i-agents are heterophilous when j ≠ i.

An agent seeks collaborators when she/he �nds it di�cult to complete a task alone. If there is no collaboration 
preference, the proportion of (s, j)-collaborators that an (s, i)-agent has is identical to the proportion of j-agents in 
the group, that is qs,ij =  ws,j. Hence the number of (s, j)-collaborators of an (s, i)-agent is =

, , ,
f f w
s ij s i s j
rnd . However, 

in a society with a division of labor, the choice of collaborators has a signi�cant in�uence on the completion of the 
task and it is better to have collaborators with complementary skills. �erefore, the number and skill con�guration 
(or distribution) of an agent’s collaborators are the main determinants of her utility. We assume that, for an 
(s, i)-agent, there is an optimal con�guration of collaborators with di�erent skills, γ=

, , ,
f f w
s ij ij s i s j
opt , where the 

preference coe�cients γij are independent of society s. If the skill con�guration in the collaborator list of an agent 
is optimal, her utility reaches its maximum. If the skill con�guration deviates from that optimal value, her utility 
is reduced. In other words, the utility of an (s, i)-agent increases when her/his real number fs,ij of (s, j)-collaborators 
approaches the optimal value 

,

f
s ij
opt and reaches its maximum =

β
, ,

U bfs i s i
max  when her/his collaborator con�guration 

is optimal such that =
, ,

f f
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opt. According to the law of diminishing marginal utility, we have β <  1. �erefore, 

the utility function of an (s, i)-agent is
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in which γij is the preference of (s, i)-agents for (s, j)-agents and α >  0 since the second term in Eq. (3) quanti�es 
the amount of utility decrease that is proportional to the deviation of the real con�guration to the optimal con-
�guration. If i-agents do not have any preference on j-agents such that qs,ij =  ws,j for all societies, we have γij =  1. 
If i-agents prefer j-agents, we have γij >  1. If i-agents prefer not to collaborate with j-agents, we have γij <  1. For 
{i, j, k} =  {1, 2, 3}, if γij >  γik, then i-agents prefer j-agents over k-agents. To maintain a collaboration network of size 
fs,i, the (s, i)-agent su�ers a cost proportional to fs,i 

12,

= . ( )
β

, ,
M c f 5s i s s i

According to the above model, the overall utility in the decision-making process is

( ) = − = ( − ) − . ( )
β α β α

, , , , , , ,
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By maximizing Ds,i(fs,i), we can estimate the parameters γij (see Materials and Methods).

Empirical analysis. Figure 1A shows the collaboration networks on day t =  15 of a group of 27 agents ran-
domly chosen from a virtual society �ltered by three intimacy thresholds Ic =  0, 100, and 2000. �ere are 12 war-
riors, 5 priests, and 10 mages. If i-agents are homophilous (neutral, heterophilous) in their collaboration-forging 
process, the proportion of links between i-agents is greater than (equal to, less than) the square of the propor-
tion of i-agents (0.1975 for warriors, 0.0343 for priests, and 0.1372 for mages). For Ic =  0, there are 77 links 
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including 15 intra-warrior links, 4 intra-priest links, and 4 intra-mage links. �e proportions of intra-profession 
links are 0.1948 for warriors, 0.0519 for priests, and 0.0519 for mages. For Ic =  100, there are 48 links including 
8 intra-warrior links, 1 intra-priest link, and 1 intra-mage link. �e proportions of intra-profession links are 
0.1667 for warriors, 0.0208 for priests, and 0.0208 for mages. For Ic =  2000, there are 15 links including only one 
intra-warrior link and no intra-priest and intra-mage links. �e proportions of intra-profession links are 0.0667 
for warriors and 0 for priests and mages. Hence, the agents in Fig. 1A are heterophious except for priests when 
Ic =  0. We will show below that heterophily is not a speci�c characteristic for these 27 agents but a universal fea-
ture presents in all the virtual societies.

Figure 1B shows that when t =  15 and Ic =  100 most virtual societies have qs,ij >  ws,j when i ≠ j, but qs,ij <  ws,j 
when i =  j. Such heterophilous patterns are observed for other values of t and Ic as well (see Fig. S1).

Similar to the inbreeding homophily index15,33, we de�ne the collaboration preference index to be
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Note that Ps,ii is the inbreeding homophily value15,33. If i-agents have no preference to collaborate with j-agents, 
we have Ps,ij =  0. If i-agents prefer to collaborate with j-agents, we have Ps,ij >  0. In the latter case, the i-agents 
are homophilous when j =  i and heterophilous when j ≠ i. Empirical results show that for most virtual societies 
Ps,ij >  0 when i ≠ j, but Ps,ij <  0 when i =  j (Fig. 1C and Fig. S2). �us in socioeconomic networks the agents are 
heterophilous.

Figure 1D shows the evolution of preference values Pij averaged over all societies on the same day for Ic =  100. 
Although these curves exhibit mild trends, it is evident that the heterophilous feature is persistent as the virtual 
societies develop (see also Fig. S3).

Quantifying collaboration preference. To calibrate the model, we follow and further develop the econo-
metric method presented in ref. 12 (see Materials and Methods). We obtain the values of γij for each intimacy 
threshold Ic on each day t. Figure 2A shows the evolution of preference coe�cients γij for socioeconomic networks 
using the intimacy threshold Ic =  100, and Fig. 2B shows the average preference coe�cients over all days. More 

Figure 1. Empirical evidence of heterophily in the socioeconomic networks of virtual societies on a typical 
day t = 15. Warriors, priests and mages are marked respectively in cyan, red and blue. (A) Networks of 27 
agents randomly chosen from a virtual society �ltered by three intimacy thresholds Ic =  0, 100 and 2000 (top 
to bottom). (B) Dependence of qs,ij on relative size ws,j for all virtual societies for Ic =  100. In each plot, there are 
three well isolated clusters. For most societies, qs,ij >  ws,j when i ≠ j and qs,ij <  ws,j when i =  j. (C) Dependence 
of preference measure Ps,ij on relative size ws,j for all societies for Ic =  100. �ere are also three well separated 
clusters in each plot. For most societies, Ps,ij >  0 when i ≠ j and Ps,ij <  0 when i =  j. (D) Evolution of the averaged 
preference measure Ps,ij over all virtual societies for Ic =  100. �e preference measures are roughly persistent.
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results are given in Fig. S4 and Fig. S5 for Ic =  0, 1, 10, 500, 1000, and 2000. �e F-tests presented in Materials and 
Methods show that all the results are signi�cant at the 0.1% level (see SI Tables).

All the estimated values of the γii coe�cients are less than 1, while all the γij values for i ≠ j are greater than 1. 
�is indicates that the agents are not seeking same-profession agents but di�erent-profession agents and are thus 
heterophilous. In most cases, especially when the intimacy threshold Ic is not large, the γij(Ic, t) values do not have 
a trend along the evolution of virtual worlds. When Ic is large, however, we observe an increasing trend in γ13(Ic, t) 
for Ic =  1000 and 2000, in γ23(Ic, t) for Ic =  1000 and 2000, and in γ32(Ic, t) for Ic =  500, 1000 and 2000 (Fig. S4). We 
�nd that the preference coe�cients might change with the increase of Ic (Fig. S4 and Fig. S5). For warriors, γ11 and 
γ13 decreases, while γ12 increases. For priests, γ21 increases, γ22 does not exhibit evident trend, while γ23 decreases. 
For warriors, γ31 increases, γ32 decreases, while γ12 increases for large Ic values.

�ere are also intriguing patterns of relative collaboration preference as quanti�ed by γij −  γik where i, j and 
k correspond to the three professions (Fig. 2B and Fig. S5). On average, warriors prefer priests over mages and 
this relative preference enhances when Ic becomes greater but reduces slightly when t increases for large Ic values. 
Priests prefer mages over warriors when Ic values are small and prefer warriors over mages when Ic values are large. 
For large Ic, priests’ relative preference on warriors over mages decreases along time t. Mages prefer priests over 
warriors when Ic is small and prefers warriors over priests when Ic is large. For large Ic, mages’ relative preference 
on warriors over priests also decreases along time t.

Figure 2. Preference coe�cients γij for socioeconomic networks with the intimacy threshold being Ic = 100. 
(A) Daily evolution of the nine preference coe�cients γij with , ∈ , ,i j {1 2 3}. �e color of a point (t, γij) is 
determined by j: cyan, red and blue for j =  1, 2 and 3, respectively. �e nine points for a given t were determined 
simultaneously in one calibration. (B) Box plots of γij shown in (A).
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Group complementarity and economic output. To measure the economic implications of heterophil-
ous preference in socioeconomic networks, we investigate the relationship between complementarity of profes-
sions and economic performance. Consider the socioeconomic network  ( , )I ts c  of a virtual society with 
intimacy threshold Ic on day t. Economic production utilizes virtual money and goods that are converted to a 
standardized currency (see Materials and Methods). For each member agent a in  ( , )I ts c , we calculate her pro-
duction output in the week from t −  6 to t, denoted as Ys,a(t). �e economic performance of the agents in  ( , )I ts c  
is de�ned as the output per capita,

 
∑( , ) =

# ( , )
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One measure of profession complementarity can be de�ned as the sum of preference measures between the 
three types of agents,
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Alternatively, we can measure complementarity by determining how much the real collaborator con�guration 
qs,ij deviates from the optimal collaborator con�guration γijws,j (see Materials and Methods). �e lower the deviation, 
the higher the degree of complementarity. �us, we have
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To make these results comparable for di�erent virtual worlds, we investigate the relative quantities between 
two societies in the same world, lg(P2k−1/P2k), lg(C2k−1/C2k) and lg(Y2k−1/Y2k), rather than focusing on each soci-
ety separately. Both measures of complementarity correlate strongly with the relative economic output when t 
and I are not large (Fig. 3A–F, Fig. S7, and Fig. S8). For the �rst few days (small t), most agents strive to achieve 
higher levels by implementing speci�c tasks with small economic outputs. Other agents attempt to obtain high 
intimacy levels by killing monsters in locations unrelated to economic outputs. In both cases the agents intend to 
form complementary collaboration networks, but their activities are not focused on economic outputs. With the 

Figure 3. Relation between complementarity of collaboration network and economic output. (A) Examples 
of correlations between lg(P2k−1/P2k) and lg(Y2k−1/Y2k). (B) Examples of correlations between lg(C2k−1/C2k) and 
lg(Y2k−1/Y2k). (C) �e p-value of the correlation between lg(P2k−1/P2k) and lg(Y2k−1/Y2k) for di�erent values 
of Ic and t (in units of days). A give grid (t, Ic) is colored as red or yellow if the correlation is signi�cant at the 
0.001 level or the 0.01 level. Otherwise, the grid is colored as green. (D) �e p-value of the correlation between 
lg(C2k−1/C2k) and lg(Y2k−1/Y2k). (E) Correlation coe�cient ρ between lg(P2k−1/P2k) and lg(Y2k−1/Y2k) for di�erent 
values of Ic and t. �e correlation coe�cient is set to be zero is the correlation is insigni�cant at the 0.01 level. 
(F) Correlation coe�cient ρ between lg(C2k−1/C2k) and lg(Y2k−1/Y2k). (G) Evolution of the number of active 
agents in di�erent virtual worlds. (H) Histogram of tmax which is the date that a virtual world has historically the 
maximum active agents.
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development of a virtual world, the number of active agents increases and reaches a maximum at time tmax and 
then decays (Fig. 3G). When the activity level of a virtual world decreases, the intent of the agents moves away from 
production and the collaboration structure is increasingly unrelated to economic activities. �is is consistent with 
the fact that the spectrum of tmax has a distribution similar to the signi�cant correlations between complementarity 
and economic output (Fig. 3H).

Discussion
Overwhelming empirical evidence has shown that most social networks are homophilous. �e probability that two 
nodes will connect is higher if they share similar traits. Our analysis of virtual worlds in which division of labor is 
operative demonstrates the important role of complementarity. In those socioeconomic networks individuals have 
the motivation to cooperate, and in the formation of the network individuals exhibit a heterophilous preference for 
those with complementary productive skills. Although mapping human behavior in virtual worlds to real-world 
human behavior is a subtle process34, we believe that they share an intrinsic commonality because agents in virtual 
worlds are, in fact, controlled by real-world people. In particular, agents consciously form teams to accomplish tasks 
more successfully and e�ectively. More generally, growing evidence shows signi�cant similarities in the behaviors 
of online agents and real-world humans23,35–43.

In reality, human’s preference is multidimensional in their traits13. �e situation in virtual societies is a little 
di�erent. Indeed, the way people interact with each other has signi�cantly changed from the old days, particularly 
due to the impact of the Internet. In the modern time, people can meet through the Internet in the virtual world 
instead of physically getting together to dine, drink, and talk to forge ties. Personal traits become less important 
in virtual societies while agents’ profession skill is identi�ed as a dominating trait in virtual societies. Like most 
MMORPGs, the system is set up in a way that a party requires di�erent roles to function optimally. In this sense, 
the main result of the paper would primarily re�ect the design decisions of the game developers. On the other 
hand, however, such a setup is trying to mimic the real human society, in which people have di�erent and diverse 
skills and hence there appears the division of labor22. Hence, the results documented in this work have a general 
signi�cance.

�e economic model proposed in this work is di�erent from the one in ref. 12. �e essential di�erence is in the 
assumption of the utility function. �e choice of the utility function may have signi�cant impact on the outcome 
of the model. We calibrated the original model in ref. 12 and the estimates of parameters suggested a homophil-
ous behavior, which is inconsistent with the empirical results presented in Fig. 1. Also, we have used a modi�ed 
method of model calibration. Moreover, our model allows us to determine not only if i-agents are homophilous or 
heterophilous but also the preference of one type of agents to any other type of agents. Hence, our model is more 
general and can be applied to other systems.

�e relationship between social networks and economic output has been studied previously. It has been found, 
for example, that the diversity of individual relationships within a community strongly correlates with the eco-
nomic development of the community44 and is directly associated with higher productivity for both individuals 
and the community45,46. Because, to date, detailed real data at the population level of societies have been unavail-
able, this correspondence between professional skill and economic performance has not been quanti�ed. Here 
we have begun to �ll this data gap and also to highlight the usefulness of virtual worlds in carrying out research 
in economics and sociology23. One potential implication of our �ndings is that if a team leader or a �rm manager 
recruits new members according the complementarity of their skills, the team’s productivity will increase and the 
�rm’s economic well-being grow.

Materials and Methods
Data description. We use a huge database recorded from K =  124 servers of a popular MMORPG in China 
to uncover the patterns characterizing virtual socioeconomic networks. In a virtual world residing in a server 
there are two opposing camps or societies. Two agents can choose collaborators, and a measure of closeness called 
intimacy is assigned to the collaboration link. When two collaborators in the same society collaborate to accom-
plish a task, their intimacy level increases. Two agents from di�erent societies can also collaborate, but their 
intimacy level remains zero. Hence the social networks of the two camps are essentially separate. We can regard 
the two camps as two societies, thus giving us S =  248 virtual societies. For convenience, s =  2k −  1 and s =  2k 
stand respectively for the two societies in the same virtual world k. Two agents are de�ned as collaborators if they 
both are on the collaborator list and their intimacy exceeds Ic. We consider many temporal collaboration net-
works. On day t in a virtual society s, a network  ( , )I ts c  is a network in which the intimacies of all edges are no 
less than a threshold Ic, which can be disconnected (Fig. 1A).

�ere are a lot of di�erent types of tasks in the virtual societies, which are embedded for agents of all levels. 
In some levels, the system will ask the agents to kill given amounts of di�erent types of monsters. In other levels, 
the agents are asked to deliver something to a speci�c NPC (not-a-person character). And so on so forth. �ese 
tasks are usually not easy for the associated agents. However, they can ask their collaborators for help to form a 
team and ful�ll the tasks together. Agents can also form teams to kill monsters and make productions. All these 
collaborations will increase the intimacy of the collaborating agents in the same team.

In each society there are three professions (warrior, priest, and mage). We use subscripts 1, 2, and 3 to stand 
respectively for the three professions: warrior, priest and mage. For simplicity, we de�ne several notations as follows. 
An s-agent is an agent belonging to society s. An i-agent is an agent having profession i. Similarly, an i-collaborator 
is a collaborator having profession i. An (s, i)-agent or (s, i)-collaborator is an i-agent or i-collaborator in society s.

Model calibration. An (s, i)-agent solves the following decision-making problem of how many collaborators 
to have
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Note that the γij values are a�ected only by the professions and remain the same for di�erent societies. �is 
enables us to estimate the parameters.

�e solution (12) denotes the average behavior (decision) of all agents having the same profession in a given 
society. If we consider an arbitrary agent a, we must add a noise term12,
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which means that the “realized” number of collaborators agent a has is the sum of a universal (or systemic) term and 
an idiosyncratic error term. �e error term is assumed to have mean 0 and variance σ2. Note that this assumption 
states that the variance of any agent of any profession is the same.

We denote Ns as the size of society s and ws,i as the fraction of i-agents in society s. Hence the number of i-agents 
in society s is Nsws,i, and the expectation of the aggregated number of collaborators that i-agents have in society s 
is Nsws,ifs,i. According to Eq. (13), we have
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According to Eq. (17), we �nd that the mean of Ψ s,i,j is 0 and the variance is φs,ijσ
2, where

φ = ( ) ( ) + ( ) ( )

= ( ) + ( ) ( )

, , , , , , ,

, , , ,

w N w N X w N w N X

N w w X X[ ] 18

s ij s i s s j s s j s j s s i s s i

s s i s j s i s j

2 2 2 2

4 2 2 2 2

�us the normalized variable φΨ /, ,s ij s ij
2  has mean 0 and variance σ2 for any society s. �e sum of squared errors 

( ),Qi j
2  over all societies in the sample is

∑ ∑
φ

=
Ψ

=
( − )

( ) + ( )
,

( )=

,

, =

, , , ,

, ,

Q
f X f X

X X 19
ij

s

S
s ij

s ij s

S
s i s j s j s i

s i s j

2

1

2

1

2

2 2

which is independent of Ns as expected. However, Qij
2 is dependent on ws,i, which is consistent with the setup of 

our model but di�erent from the model in ref. 12. �us the total sum of the squared errors is

= + + . ( )Q Q Q Q 202
12
2

13
2

23
2

One can see that as, bs and cs could be society-speci�c and are not included in the �nal objective function of 
model calibration.

For each pair of Ic and t, a society is excluded in model calibration if the number of agents having at least one 
collaborator is less than 500 to ensure that ϵa has enough realizations. Changing this threshold around 500 results 
in same results. In addition, if the number of societies included in a model is less than 50, we do not calibrate the 
model because the model has 10 parameters.

To �nd the solution to the minimization of Q2, the taboo search algorithm is adopted47. �e solution space is 
restricted to 0 ≤  γij ≤  2 for , ∈ , ,i j {1 2 3} and >

α

β α( − )
0

2
. Because there are 10 free parameters, it is not easy to 

reach the global minimum. We thus perform a taboo search in each cell of a 9-dimensional lattice of size 29 with 
the constraint that 0 ≤  γij ≤  1 or 1 ≤  γij ≤  2. �e parameters in certain cell corresponding to the minimum of Q2 in 
all cells are obtained as the solution. �e normality assumption of �tting errors has been veri�ed by QQ-plots (Fig. S7),  
which rationalizes the setup of the model. We note that the partitioning of the solution space into a 9-dimensional 
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lattice of size 29 is very important. If we perform the taboo search directly, the resulting Q2 value is signi�cantly 
larger and the three preference curves γij(t) for each i are not well separated around γij =  1 (cf. Fig. 2, Fig. S4 and 
Fig. S5).

Significance tests. To test whether the preference coe�cient γij of i-agents to j-agents is signi�cantly di�er-
ent from the no-preference case, we perform F-tests using the null hypothesis

γ = , , ∈ , , . ( )H i j: 1 {1 2 3} 21ij0

Following ref. 12, the F-statistic is

=
−

−
/
−

,
( )

F
SSR SSR

p p

SSR

n p 22

con uncon

uncon con

uncon

uncon

where SSR is the sum of squared residuals of the best-�t calibration, p is the number of model parameters, n is the 
number of observations, while the subscript “con” indicates the constrained model under the null hypothesis and 
the subscript “uncon” the unconstrained model.

Economic output of individuals. �ere are two virtual currencies, Xingbi and Jinbi. Xingbi cannot be pro-
duced by an agent’s activity and can only be bought from the system, which has an approximately stable exchange 
rate in reference to the Chinese currency Renminbi. Xingbi is thus a universal currency across di�erent virtual 
worlds. Jinbi, on the other hand, is produced by the economic activities of the agents. �ere is a built-in exchange 
platform in each virtual world so that agents can exchange Xingbi and Jinbi. In this way, there is a real-time 
exchange rate from Jinbi to Xingbi.

An agent can produce virtual items (e.g., weapons, clothes, and medicines) and a limited amount of the virtual 
currency Jinbi. We convert the produced items and Jinbi to Xingbi to obtain the real economic output of each 
agent on each day. �ere is a marketplace in each virtual world in which agents can sell their items that are priced 
in Xingbi or Jinbi. �e price of an item is determined by the average price of all the trades in the marketplace on a 
given day. Each produced item can thus be measured in Xingbi.
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