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Abstract A 0-totalised field is a field in which division is a total operation with
0−1 = 0. Equational reasoning in such fields is greatly simplified but in deriving a
term one still wishes to know whether or not the calculation has invoked 0−1. If
it has not then we call the derivation division safe. We propose three methods of
guaranteeing division safe calculations in 0-totalised fields.

Keywords Rational number · Meadow · Zero totalised field · Elementary algebraic
specification

1 Introduction

The primary algebraic properties of the rational, real and complex numbers are cap-
tured by the operations and axioms of fields. The field axioms consist of the equations
that define commutative rings and, in particular, two axioms, which are not equations,
that define the inverse operator and the distinctness of the two constants. Tradition-
ally, fields are partial algebras because the inverse operations are undefined at 0. The
class of fields does not possess an equational axiomatisation.

However fields, especially the field of rational numbers and finite fields, are among
the most important data types for computation. Rationals define measurements in the
physical world and computer real arithmetic is based on a finite subset of the rational
numbers. Computer integer arithmetic is based on finite rings and fields. All these
fields are computable fields.
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In [1, 7, 8], we have begun to investigate the field of rationals, and fields in gen-
eral, using the elementary methods of abstract data type theory, especially equations,
initial algebras and term rewriting. Calculations in fields are commonplace and the
aim is to simplify algebraic reasoning and term rewriting for fields by removing the
complications of partial functions and non-equational axioms.

A 0-totalised field is a field which has its inverse operator made total by imposing
the equation

0−1 = 0.

If F is a field we denote the 0-totalised field by F0; so for the fields Q, R, C of
rational, real and complex numbers the 0-totalised fields are denoted Q0, R0 and C0,
respectively.

Interestingly, the study of 0-totalised fields leads to new axioms and structures. For
example, an new equational theory called “elementary number algebra” (ENA) has
been identified in [8] (there built from three sets of equations and denoted CR∪SIP∪
Ril) as a single sorted finite equational specification for the operations +,−, ·,−1

which has all 0-totalised fields among its models and, in addition, a large class of
commutative rings with inverses and 0-divisors. A model of ENA has been baptized
a meadow in [8] and a theory of meadows is emerging.

Equational specification, term rewriting and reasoning for totalised fields is much
simpler than for fields with partial division. But in calculations one still wishes to
know whether or not one has invoked 0−1. Consider the derivation of a term:

1 + 1

1 + (−1)
+ 1 = 1 + 1

0
+ 1 = (1 + 1) · 0−1 + 1 = (1 + 1) · 0 + 1 = 1

in any 0-totalised field. The algebraic manipulation is simple but allows 0 in denom-
inators and, moreover, makes use of the equation 0−1 = 0. It is important to note that
the outcome of the calculation is the valid term 1 and it is impossible to see from
the outcome of the calculation alone that the derivation of the term involved these
steps. We may wish to consider the derivation unsafe or exceptional in some way.
Conversely, we will call a calculation division safe if it does not involve 0−1.

The question to be discussed in this paper is this:
How do we formalise division safety for totalised fields? How do we detect and

avoid unsafe divisions in calculations in 0-totalised fields?
We propose three methods of guaranteeing division safe calculations in 0-totalised

fields, as follows:

1. Proof system: Once a proof of t = r has been found, prove additional information
that implies that t = r was derived in a division safe way.

2. Axioms: Change the axioms of ENA to a weaker set that do not permit any division
unsafe derivations.

3. Algebra: Modify a field to create a new algebra that satisfies all equations with
division safe proofs but fails to satisfy other equations.

Each of these methods has merit and works for fields in general. The key idea is
this: over the signature of fields, for each term t we can construct a new check term
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Ct such that

Ct = 1 ⇐⇒ “t can be evaluated in a division safe way”.

The origin of our work is found in two sources: a contemplation of recent work
by Larry Moss and the objective to proceed with previous works on the algebraic
specification of computable and semi-computable data types (in particular Bergstra
and Tucker [2–5]) in the context of data types relevant for the theory of computation
over the real numbers.

Recently Moss found in [16] that there exists an equational specification of the ring
of rationals (i.e., without division or inverse) with just one unary hidden function. He
used a remarkable enumeration theorem for the rationals in Calkin and Wilf [9]. He
also gave specifications of other rational arithmetics and asked if hidden functions
were necessary.

In [8] we proved that there exists a finite equational specification under initial
algebra semantics, without further hidden functions, but making use of an inverse op-
eration, of the field of rational numbers. The existence of an equational specification
using hidden functions follows from a result in [2], plus the observation that the ra-
tional number field is a computable algebra. The issue is to limit the use of hidden
functions to useful and familiar operations. The fact that only a single hidden func-
tion is used depends upon special properties of the field of rational numbers. In [7]
the specification found for the rational numbers was extended to the complex ratio-
nals with conjugation, and in [1] a specification was given of the algebra of rational
functions with field and degree operations that are all total.

2 Elementary Algebraic Specifications

2.1 Elementary Algebraic Specifications and Totality

The theory of computable data types demonstrates that any computable system can be
modelled using a finite set of equations or conditional equations under initial algebra
semantics, possibly with the help of auxiliary or hidden functions.

In [7] we have discussed a very limited specification technique which we have
termed elementary algebraic specification (EAS). In fact EAS limits the expres-
sive power of specifications to the original minimum of features that were used
when algebraic specification of abstract data types was developed as a topic in the
1970s. In EAS, each algebraic specification (�′,E′) of a total � algebra uses a
set E′ of equations, or conditional equations, and initial algebra semantics such that
I (�′,E′)|� ∼= A. In particular, the elementary specifications require total functions,
allow hidden functions and sorts, and may or may not be complete term rewriting
systems. Clearly, there are plenty of restrictions in force in EAS as there are many
properties ruled out—see [7] for a long list with arguments for their omission. The
EAS specification problem is this: Given a � algebra A, can one find an elementary
algebraic specification (�′,E′) such that I (�′,E′)|� ∼= A.

An EAS is ‘better’ if it is finite rather than infinite, contains equations rather than
conditional equations, or features nice term rewriting properties such as confluence
and termination.



Theory Comput Syst (2008) 43: 410–424 413

To use these EAS methods, we need to make algebras total that are usually con-
sidered to contain partial operators. Unavoidably, totalisation introduces an element
of arbitrariness or artificiality because values are added which are not based on the
primary intuitions at hand.

Totalisation is not without problems when specifying a stack, as we have seen in
our [6]. Totalisation is a matter of costs and benefits and in some cases the theory
of a totalised data type, even when specified by means of a convincing EAS, may
be harder to swallow than some of its non-elementary expositions, even including
the required meta-theory for those non-elementary features. Stacks are a candidate of
such a data type.

However, in the case of fields we have found totalisation and EAS methods con-
vincing. For that we have four arguments:

(1) The EAS specification theory of totalised fields is rich and attractive.
(2) Totalisation of fields leads to a specification ENA which itself has a larger class

of models, consisting of the so-called meadows and having remarkably natural
properties.

(3) EAS provides a decoupling of syntax and semantics that is fundamental. All
simple answers to the question why 0−1 fails to exist depend on the observation
that this piece of syntax should not have been written down in the first place
because it carries no intended meaning. Exactly this interplay between syntax
and semantics is completely removed in the setting of EAS and totalised fields.

(4) The costs of totalisation, due to the introduction of a “fake” value for 0−1 and its
impact on the theory of numbers are already compensated by the gains mentioned
in (1) and (3) above.

2.2 Technical Preliminaries on Algebraic Specifications

We assume the reader is familiar with using equations and conditional equations and
initial algebra semantics to specify data types. Some accounts of this are: ADJ [10],
Kamin [13], Meseguer and Goguen [15], or Wirsing [21].

The theory of algebraic specifications is based on theories of universal algebras
(e.g., Wechler [20], Meinke and Tucker [14]), computable algebras (Stoltenberg-
Hansen and Tucker [17]), and term rewriting (Terese [19]). The theory of computable
fields is surveyed in Stoltenberg-Hansen and Tucker [18].

We use standard notations: typically, we let � be a many sorted signature and A a
total � algebra. The class of all total � algebras is Alg(�) and the class of all total
�-algebras satisfying all the axioms in a theory T is Alg(�,T ). The word ‘algebra’
will mean total algebra.

3 Axioms for Number Algebras

The primary signature � is simply that of the field:

signature �

sorts field
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operations
0:→ field;
1:→ field;
+: field × field → field;
−: field → field;
·: field × field → field;
−1: field → field
end

3.1 Commutative Rings and Fields

The signature �CR consists of � minus the inverse operator −1. The first set of ax-
ioms is that of a commutative ring with 1, which establishes the standard properties
of +, −, and ·.

equations CR

(x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

x + (−x) = 0

(x · y) · z = x · (y · z)
x · y = y · x
x · 1 = x

x · (y + z) = x · y + x · z

end

These axioms generate a wealth of properties of +,−, · with which we will assume
the reader is familiar.

At this point there are different ways to proceed with the introduction of division.
The orthodoxy is to add the following two axioms for fields: let Gil (general inverse
law) denote the axiom

x �= 0 	⇒ x · x−1 = 1

and let Sep (the axiom of separation) denote

0 �= 1.

Let (�,Tfield) be the axiomatic specification of fields, where

Tfield = CR ∪ Gil ∪ Sep.
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3.2 Totalised Fields

In field theory the value of 0−1 is left undefined. However, in working with elemen-
tary specifications, operations are total. Thus, the class Alg(�,Tfield) is the class of
all possible total algebras satisfying the axioms in Tfield; we refer to these algebras as
totalised fields.

Now, for all totalised fields A ∈ Alg(�,Tfield) and all x ∈ A, the inverse x−1 is
defined. If 0A is the zero element in A then, in particular, 0−1

A is defined. The actual
value 0−1

A can be anything but it is convenient to set 0−1
A = 0A (see [8], and compare,

e.g., Hodges [12], p. 695). A field A with 0−1
A = 0A is called 0-totalised. This choice

gives us a nice equational specification to use, the zero inverse law Zil:

0−1 = 0.

With ZTF we specify zero totalised fields:

ZTF = CR ∪ Gil ∪ Sep ∪ Zil.

Let Alg(�,ZTF) be the class of all 0-totalised fields. One of the main �-algebras we
are interested in is

Q0 = (Q|0,1,+,−, ·,−1 ) ∈ Alg(�,ZTF),

where the inverse is total x−1 = 1/x if x �= 0 and 0 if x = 0.
Following [8] one may replace the axioms Gil and Sep by other axioms for divi-

sion, especially, the three equations in an unit called SIP for strong inverse properties.
They are considered “strong” because they are equations involving −1 without any
guards, such as x �= 0:

equations SIP

(−x)−1 = −(x−1)

(x · y)−1 = x−1 · y−1

(x−1)−1 = x

end

In [8] we find that the following equations are provable:

Lemma 3.1 CR ∪ SIP � 0−1 = 0 and CR ∪ SIP � 0 · x = 0. Thus, CR ∪ SIP � 0 · 0−1

= 0.

In dealing with division it is helpful to have functions such as

Z(x) = 1 − x · x−1 and N(x) = x · x−1.

Clearly, Z(x) = 1 − N(x) and Z(x) = 0 ⇔ x · x−1 = 1.
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In [8] (Theorem 3.5) an axiom L, based on Lagrange’s Theorem, is used to give an
equational specification of the rationals. Lagrange’s Theorem states that every natural
number can be represented as the sum of four squares. We define a special equation
L (for Lagrange):

Z(1 + x2 + y2 + z2 + u2) = 0.

L expresses that for a large collection of numbers, in particular those q which can be
written as 1 plus the sum of four squares, q · q−1 equals 1.

Theorem 3.2 There exists a finite elementary equational specification (�,CR ∪
SIP ∪ L), without hidden functions, of Q0 under initial algebra semantics.

3.3 ENA and Meadows

In [8] we also add to CR ∪ SIP the restricted inverse law (Ril):

x · (x · x−1) = x

which, using commutativity and associativity, expresses that x · x−1 is 1 in the pres-
ence of x.

Definition 3.3 We define the specification elementary number algebra ENA = CR ∪
SIP ∪ Ril.

Following [8] a model of ENA is called a meadow. A meadow satisfying Sep is
called non-trivial. We note the following immediate consequences of Ril:

Lemma 3.4 Ril � x · x−1 = 0 ⇐⇒ x = 0 and Ril � x · x = 0 ⇐⇒ x = 0.

All total fields are clearly non-trivial meadows but not conversely. In particular,
the prime fields Zp of prime characteristic are meadows. That the initial algebra of
CR ∪ SIP ∪ Ril is not a field follows from the fact that (1 + 1) · (1 + 1)−1 = 1 cannot
be derivable because it fails to hold in the prime field Z2 of characteristic 2 which is
a model of these equations as well.

Yoram Hirschfeld [11] has noticed that equations SIP1 and SIP2 are derivable
from SIP3 using CR ∪ Ril.

4 Equational Proof Systems for Safe Division

First, we will introduce the technical idea of the check term and how it can be used to
define division safety. Then we will give a simple proof system for verifying division
safety.
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4.1 Check Terms and Division Safety

Let � be the signature of fields and T (�,X) be the algebra of all �-terms with
variables from X.

Definition 4.1
To each closed term t over � we assign a check term Ct as follows:
C0 = 1
C1 = 1
Ct1+t2 = Ct1 · Ct2

C−t = Ct

Ct1·t2 = Ct1 · Ct2

Ct−1 = Ct · t · t−1

If we extend the idea from closed terms to open terms t (x1, . . . , xn) then we would
like the check term Ct(x1, . . . , xn) to have the same variables as t . One way to do this
is to add variable x to the base case in Definition 4.1 and define Cx = 1 + 0 · x.

The idea of the construction of our check terms is that for a closed term t :

Ct = 1 in F0 ⇐⇒ “inside-out evaluation of t in F can be done in a

division safe way”.

Consider some examples of check terms. In a non-safe derivation we can expect
to see the term 0−1 and this is certified by the check terms as C0−1 = C0 · 0 · 0−1 =
1 · 0 · 0−1 = 0.

The value of the closed check term C0−1 is 0 in all 0-totalised fields. Here is a
calculation of a check term with variables: C(x+y)/(z+1) = Cx+y · C1/(z+1) = Cx ·
Cy · Cz+1 · (z + 1)/(z + 1) = (1 + 0 · x) · (1 + 0 · y) · Cz · C1 · (z + 1)/(z + 1) =
1 ·1 ·Cz ·C1 ·(z+1)/(z+1) = (1+0 ·z)·1 ·(z+1)/(z+1) = (1+0)·(z+1)/(z+1) =
(z + 1)/(z + 1).

The value depends upon the value of z; in particular if z = −1 this value will
be 0. In a field division is partial and for that reason many terms are undefined. The
suitability of the check terms is confirmed by the following theorem:

Theorem 4.2 Let F be a field and F0 be its 0-totalised form of signature �. Then,
for any closed term t ∈ T (�), t is defined in F ⇐⇒ Ct = 1 in F0.

Proof By induction on the structure of closed terms. �

The purpose of the check term is to define forms of division safety, the first of
which is this:

Definition 4.3 Let F0 be a 0-totalised field. A closed equation t = r is said to be
division safe in F0 if

(i) the equation is valid in F0, i.e., F0 |= t = r ;
(ii) the check terms are safe in F0, i.e., F0 |= Ct = 1 and F0 |= Cr = 1.
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We write F0 |=ds t = r if the equation is division safe. Thus:

F0 |=ds t = r ⇐⇒ F0 |= t = r and F0 |= Ct = 1 ∧ Cr = 1.

As with the check terms, division safety depends on the field. For example, the
closed equation

1

1 + 1
= 1

1 + 1

is division safe in the field Q rational numbers but not division safe in the finite field
Z2.

Definition 4.4 Let F0 be a 0-totalised field. An open equation t = r is said to be
division safe in F0 if every closed instance of the equation is division safe in F0

according to Definition 5.2.

The open equation x = x is not division safe as one substitution instance is 0−1 =
0−1, which is not division safe as C0−1 = 0. Shortly, in Sect. 5, we will give a second,
weaker form of division safety that is more plausible in this respect.

4.2 Equational Proof Systems

The proof system method to ensure division safety in a 0-totalised field F0 is this:
seek a set T of axioms and proof rules with relation � for F0, i.e., F0 ∈ Alg(�,T ),
such that each proof T � t = r can be complemented by proofs that T � Ct = 1 and
T � Cr = 1. Such a proof system for division safety will have the form:

Definition 4.5 Let t and r be closed terms over �. We write (�,T ) �ds t = r if

(�,T ) � t = r and (�,T ) � Ct = 1 ∧ Cr = 1.

Interestingly, we do not have far to look for one example: consider initial algebra
specifications.

Theorem 4.6 Let F0 be any totalised field and (�,E) any equational specification
such that I (�,E) ∼= F0. Then for any closed terms t, r we have

(�,E) �ds t = r ⇐⇒ F0 |=ds t = r.

Proof By initiality, equational reasoning is complete for closed identities relative to
initial algebra specifications. By hypotheses, I (�,E) ∼= F0. In particular, for any
closed terms t, r , F0 |= Ct = 1 and F0 |= Cr = 1 if, and only if, (�,E) � Ct = 1 and
(�,E) � Cr = 1. �

Proving (�,E) �ds t = r is a general approach to ensuring division safety; its
practicality is dependent on the specification. Notice, in Theorem 5.4, that we have
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no requirement on the equations in E to be division safe. Indeed we work with spec-
ifications containing equations that may be division unsafe; for example, the additive
identity equation x + 0 = x is not division safe. Now we will consider an approach
that considers the safety of the specifications.

5 Equational Axioms for Weak Safe Division

5.1 Weak Safe Division in 0-Totalised Fields

We now consider a weaker notion of safety that has some interesting properties.

Definition 5.1 Let F0 be a 0-totalised field. A closed equation t = r is said to be
weakly division safe in F0 if

(i) the equation is valid in F0, i.e., F0 |= t = r ;
(ii) the check terms are equal in F0, i.e., F0 |= Ct = Cr .

We write F0 |=wds t = r if the equation is weakly division safe. Thus:

F0 |=wds t = r ⇐⇒ F0 |= t = r and F0 |= Ct = Cr.

Definition 5.2 Let F0 be a 0-totalised field. An open equation t = r is said to be
weakly division safe in F0 if every closed instance of the equation is weakly division
safe in F0 according to Definition 5.1.

Clearly, the idea of a weakly division safe equation is that either both sides of
the equation are safe or unsafe. Compare the notion with division safety (in Defini-
tion 5.2). There are closed and open equations, such as 0−1 = 0−1 and x = x, that are
weakly division safe but not necessarily division safe. Using equational specifications
again:

Definition 5.3 We write (�,T ) �wds t = r if

(�,T ) � t = r and (�,T ) � Ct = Cr.

Again, by the completeness of initial algebra semantics for closed equations, we
have:

Theorem 5.4 Let F0 be any totalised field and (�,E) any equational specification
such that I (�,E) ∼= F0. Then for any closed terms t, r we have

(�,E) �wds t = r ⇐⇒ F0 |=wds t = r.

For many equations t = r where r is the simplified or “calculated” result or normal
form of t it will be obvious by inspection that F0 |= Cr = 1. In this case we have:

Lemma 5.5 Suppose that F0 |= Cr = 1. Then �wds t = r implies �ds t = r .
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Finally, we have this preservation property:

Theorem 5.6 Let F0 be a 0-totalised field and (�,E) be any specification true of
F0, i.e., F0 |= E. Suppose every equation in E is weakly division safe for F0. For
every equation t = r such that (�,E) � t = r then t = r is weakly division safe.

Proof By induction on the length of proofs made from closed instances of the equa-
tions. �

5.2 Meadows and the Rationals

In the case of meadows and the rationals, we are able to weaken the axioms ENA and
L we have used in such a way that

(i) all closed division safe identities are provable; and
(ii) only weakly division safe open identities are provable.

In the light of Theorem 5.6, we start by checking the equations of our usual specifi-
cation ENA. The following are the equations that are not weakly division safe.

(a) Additive Inverse: x + (−x) = 0 because it has 0−1 + (−0−1) = 0 as a substitution
instance.

(b) (x−1)−1 = x because it has (0−1)−1 = 0 as a substitution instance.
(c) Ril : x · x · x−1 = x because it has 0 · 0 · 0−1 = 0 as a substitution instance.

It is possible to replace each of these equations in ENA by weakly division safe alter-
nates as follows:

In the set CR of commutative rings axioms we replace additive inverse by these
three equations

x + (−x) = 0 · x,

0 · 0 = 0,

0 · 1 = 0.

In the set SIP of inverse axioms the axiom (x−1)−1 = x is replaced by:

(x−1)−1 = x · x · x−1.

The axiom Ril is replaced by

x−1 · x−1 · x = x−1.

Let ENA′ be the new set of axioms. Then we have:

Lemma 5.7 For any 0-totalised field F0 we have F0 |= ENA′ and since ENA′ are
weakly division safe all the equational consequences of ENA′ are division safe.
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Furthermore, in the special case of Q0 more can be shown. First, the Lagrange
equation

L :Z(1 + x2 + y2 + z2 + u2) = 0

is not weakly division-safe as may be seen on substituting 0−1 for the variables
x, y, z,u. But, the Lagrange axiom L can replaced by

Z(1 + x2 + y2 + z2 + u2) = 0 · (x + y + z + u)

which is weakly division safe.

Lemma 5.8 For any closed terms t, r

Q0 |=ds t = r implies ENA′ ∪ L′ � t = r.

Proof The proof is derived from the proof that Q0 ∼= I (�,ENA ∪ L) from Bergstra
and Tucker [8]. The proof of weak division safe identities between closed terms does
not depend on non-division safe identities. �

Thus, the axioms of ENA′ ∪ L′ is a reasonable specification of Q0 since it is a
complete proof system for division safe ground identities, and proves only weakly
division safe identities as well, though not all weakly division safe identities.

6 Algebras for Safe Division

The third approach seeks a form of error algebra for fields, which are no longer 0-
totalised fields. These specific error algebras are called twin fields in spite of the
fact that they are strictly speaking not fields. (Similarly non-commutative skew fields
cannot be fields either.) Then the idea is that ENA′ and ENA′ ∪ L′ might be part of
specifications for such algebras.

Given a field F of signature � we define a new � algebra Ftwin such that for
closed t and r :

Ftwin |= t = r ⇐⇒ F0 �wds t = r.

For each element a ∈ F we make a copy â ∈ Ftwin which represents the same
value but in a division unsafe form. We may write â = a + 0−1. In a 0-totalised field
we have â = a, of course.

Twin fields are defined as follows. Let F be a field. Let F0 be the 0-totalised form
of F . Let B = {t, f } be the Booleans.

Definition 6.1 The twin field extension of F is defined to be a � algebra with carrier
B × F ; the constants 0,1 are

(t,0F ) and (t,1F ).

The operations are
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(b, x) +Ftwin (c, y) = (b ∧ c, x +F y),
(b, x) ·Ftwin (c, y) = (b ∨ c, x ·F y),
(b,0)−1 = (f,0),
(b, x)−1 = (b, y) where x �=F 0 and x · y =F 1.

Thus, Ftwin contains an isomorphic copy of F , namely {t} × F and an isomorphic
copy of F0, namely {f } × F . The inverse on the copy of F is made by: (t,0)−1 =
(f,0). Once an element lands in the error part of the twin field the operations keep it
there. Notice that a twin field is not a field because

0 · 0−1 �= 0 and so 0 · x = 0 fails in Ftwin.

Lemma 6.2 Let F be a field, F0 be its 0-totalised form and Ftwin its twin field. For
any terms t, r , if Ftwin |= t = r then F |= t = r and the equation is weakly division
safe in F0.

Given this definition of Ftwin we give a set of equations that can play a role similar
to ENA:

ENAtwin = ENA′ ∪ {0−1 · x = 0−1, (0−1 + x)−1 = 0−1 + x−1,0 · x + 0−1 = 0−1}.
Using a proof similar to that of Theorem 3.2 in Bergstra and Tucker [8] we have:

Theorem 6.3 Qtwin ∼= I (�,ENAtwin ∪ L′).

7 Concluding Remarks

Our work on the rationals and other fields can be viewed as a case study in abstract
data types. “Number algebra” specifications are to be compared with “process alge-
bra” specifications: they are elementary algebraic specifications designed to capture
mechanisms found in the theory of computers and computation.

In this number algebra one takes the liberty to depart from the algebraist’s ortho-
doxy (fields with their partial operations) and adapt the design of algebras of numbers
to meet the requirements of the computational modeling technique used, namely el-
ementary algebraic specifications (EAS). Thus, one can view this topic as a theory
of arithmetics, including fields, shaped according to one of many general modelling
techniques that have been developed in computer science: algebraic specifications
where equational reasoning is extremely important. Given its origins, the focus is on
questions that one might pose from the computer science perspective: questions on
specification, verification, prototyping, decidability and expressiveness.

However, the topic is also an attempt to answer the mathematical question: What
can one accomplish with the rationals and other fields using simple equational rea-
soning only? The theory of meadows is not without interest in pure algebra.

Assuming that one wants to view fields as total algebras, two strategies are feasi-
ble. First, use 0-totalised fields which possess nice equational specifications but alone
which provide no protection against weak division unsafe conclusions. In this case,
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the use of additional proof obligations can protect against division unsafe results. An
alternate is to use weaker equations.

Secondly, use dedicated error algebras customised to the setting of fields, such as
twin fields. Each twin field contains a 0-totalised field as a substructure. Twin fields
admit a specification theory similar to that of 0-totalised fields though require more
complex equations. Twin fields guarantee that only weakly division safe conclusions
are derived.

A check term is a term that tests a property by means of its value. The idea is
independent of this division problem. The technique of designing check terms for a
property and using the equational proof system for closed terms (based on the com-
pleteness of equational specifications and their initial algebra semantics) is general
and may have other applications.
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