DIVISOR CLASS GROUPS AND GRADED CANONICAL MODULES OF MULTISECTION RINGS

KAZUHIKO KURANO

Abstract

We describe the divisor class group and the graded canonical module of the multisection ring $T\left(X ; D_{1}, \ldots, D_{s}\right)$ for a normal projective variety X and Weil divisors D_{1}, \ldots, D_{s} on X under a mild condition. In the proof, we use the theory of Krull domain and the equivariant twisted inverse functor.

§1. Introduction

We will describe the divisor class groups and the graded canonical modules of multisection rings associated with a normal projective variety.

Suppose that $\mathbb{Z}, \mathbb{N}_{0}$, and \mathbb{N} are the set of integers, nonnegative integers, and positive integers, respectively.

Let X be a normal projective variety over a field k with the function field $k(X)$. We always assume that $\operatorname{dim} X>0$. We denote by $C^{1}(X)$ the set of closed subvarieties of X of codimension 1. For $V \in C^{1}(X)$ and $a \in k(X)^{\times}$, we define

$$
\begin{aligned}
& \operatorname{ord}_{V}(a)=\ell_{\mathcal{O}_{X, V}}\left(\mathcal{O}_{X, V} / \alpha \mathcal{O}_{X, V}\right)-\ell_{\mathcal{O}_{X, V}}\left(\mathcal{O}_{X, V} / \beta \mathcal{O}_{X, V}\right), \\
& \operatorname{div}_{X}(a)=\sum_{V \in C^{1}(X)} \operatorname{ord}_{V}(a) \cdot V \in \operatorname{Div}(X)=\bigoplus_{V \in C^{1}(X)} \mathbb{Z} \cdot V
\end{aligned}
$$

where α and β are elements in $\mathcal{O}_{X, V}$ such that $a=\alpha / \beta$, and $\ell_{\mathcal{O}_{X, V}}()$ denotes the length as an $\mathcal{O}_{X, V}$-module.

We call an element in $\operatorname{Div}(X)$ a Weil divisor on X. For a Weil divisor $D=\sum n_{V} V$, we say that D is effective, and we write $D \geq 0$ if $n_{V} \geq 0$ for any $V \in C^{1}(X)$. For a Weil divisor D on X, we put

$$
H^{0}\left(X, \mathcal{O}_{X}(D)\right)=\left\{a \in k(X)^{\times} \mid \operatorname{div}_{X}(a)+D \geq 0\right\} \cup\{0\}
$$

Received December 31, 2010. Revised April 14, 2012. Accepted August 29, 2012.
First published online September 5, 2013.
2010 Mathematics Subject Classification. Primary 14C20; Secondary 13C20.
The author's work was partially supported by Japan Society for the Promotion of Science KAKENHI grant 21540050.

Here we note that $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is a k-vector subspace of $k(X)$.
Let D_{1}, \ldots, D_{s} be Weil divisors on X. We define the multisection rings $T\left(X ; D_{1}, \ldots, D_{s}\right)$ and $R\left(X ; D_{1}, \ldots, D_{s}\right)$ associated with D_{1}, \ldots, D_{s} as follows:

$$
\begin{align*}
T(X ; & \left.D_{1}, \ldots, D_{s}\right) \\
& =\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{N}_{0}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \\
& \subset k(X)\left[t_{1}, \ldots, t_{s}\right] R\left(X ; D_{1}, \ldots, D_{s}\right) \tag{1.1}\\
& =\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}_{s}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \\
& \subset k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right] .
\end{align*}
$$

We want to describe the divisor class groups and the graded canonical modules of the above rings.

For a Weil divisor F on X, we set
$M_{F}=\bigoplus_{\left(n_{1}, \ldots, n_{s}\right) \in \mathbb{Z}^{s}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+F\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \subset k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right] ;$
that is, M_{F} is a \mathbb{Z}^{s}-graded reflexive $R\left(X ; D_{1}, \ldots, D_{s}\right)$-module with

$$
\left[M_{F}\right]_{\left(n_{1}, \ldots, n_{s}\right)}=H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+F\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}
$$

We denote by $\overline{M_{F}}$ the isomorphism class of the reflexive module M_{F} in $\operatorname{Cl}\left(R\left(X ; D_{1}, \ldots, D_{s}\right)\right)$.

For a normal variety X, we denote by $\mathrm{Cl}(X)$ the class group of X, and for a Weil divisor F on X, we denote by \bar{F} the residue class represented by the Weil divisor F in $\mathrm{Cl}(X)$.

In the case where $\mathrm{Cl}(X)$ is freely generated by $\overline{D_{1}}, \ldots, \overline{D_{s}}$, the ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is usually called the Cox ring of X and is denoted by $\operatorname{Cox}(X)$.

Remark 1.1. Assume that D is an ample divisor on X. In this case, $T(X ; D)$ coincides with $R(X ; D)$, and it is a Noetherian normal domain by a famous result of Zariski (see [6, Lemma 2.8]). It is well known that $\mathrm{Cl}(T(X ; D))$ is isomorphic to $\mathrm{Cl}(X) / \mathbb{Z} \bar{D}$. Mori in [8] constructed a lot of examples of non-Cohen-Macaulay factorial domains using this isomorphism.

It is well known that the canonical module of $T(X ; D)$ is isomorphic to $M_{K_{X}}$ and that the canonical sheaf ω_{X} coincides with $\widetilde{M_{K_{X}}}$. Watanabe proved a more general result in [12, Theorem 2.8].

We want to establish the same type of the above results for multisection rings.

For $R\left(X ; D_{1}, \ldots, D_{s}\right)$, we had already proven the following.
Theorem 1.2 ([2, Theorem 1.1], [5, Theorem 1.2]). Let X be a normal projective variety over a field such that $\operatorname{dim} X>0$. Assume that D_{1}, \ldots, D_{s} are Weil divisors on X such that $\mathbb{Z} D_{1}+\cdots+\mathbb{Z} D_{s}$ contains an ample Cartier divisor. Then, we have the following.
(1) The ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is a Krull domain.
(2) The set $\left\{P_{V} \mid V \in C^{1}(X)\right\}$ coincides with the set of homogeneous prime ideals of $R\left(X ; D_{1}, \ldots, D_{s}\right)$ of height 1 , where $P_{V}=M_{-V}$.
(3) We have an exact sequence

$$
0 \longrightarrow \sum_{i} \mathbb{Z} \overline{D_{i}} \longrightarrow \mathrm{Cl}(X) \xrightarrow{p} \mathrm{Cl}\left(R\left(X ; D_{1}, \ldots, D_{s}\right)\right) \longrightarrow 0
$$

such that $p(\bar{F})=\overline{M_{F}}$.
(4) Assume that $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is Noetherian. Then $\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}$ is isomorphic to $M_{K_{X}}$ as a \mathbb{Z}^{s}-graded module. Therefore, $\omega_{R\left(X ; D_{1}, \ldots, D_{s}\right)}$ is $R\left(X ; D_{1}, \ldots, D_{s}\right)$-free if and only if $\overline{K_{X}} \in \sum_{i} \mathbb{Z} \overline{D_{i}}$ in $\mathrm{Cl}(X)$.
Suppose that $\mathrm{Cl}(X)$ is a finitely generated free \mathbb{Z}-module generated by $\overline{D_{1}}, \ldots, \overline{D_{s}}$. By the above theorem, the Cox ring $\operatorname{Cox}(X)$ is factorial, and

$$
\omega_{\operatorname{Cox}(X)}=M_{K_{X}}=\operatorname{Cox}(X)\left(\overline{K_{X}}\right)
$$

where we regard $\operatorname{Cox}(X)$ as a $\mathrm{Cl}(X)$-graded ring.
The main result of this paper is the following.
Theorem 1.3. Let X be a normal projective variety over a field k such that $d=\operatorname{dim} X>0$. Assume that D_{1}, \ldots, D_{s} are Weil divisors on X such that $\mathbb{N} D_{1}+\cdots+\mathbb{N} D_{s}$ contains an ample Cartier divisor. Put

$$
U=\left\{j \mid \operatorname{tr} \cdot \operatorname{deg}_{k} T\left(X ; D_{1}, \ldots, D_{j-1}, D_{j+1}, \ldots, D_{s}\right)=d+s-1\right\}
$$

Then, we have the following.
(1) The ring $T\left(X ; D_{1}, \ldots, D_{s}\right)$ is a Krull domain.
(2) The set

$$
\left\{Q_{V} \mid V \in C^{1}(X)\right\} \cup\left\{Q_{j} \mid j \in U\right\}
$$

coincides with the set of homogeneous prime ideals of $T\left(X ; D_{1}, \ldots, D_{s}\right)$ of height 1, where

$$
Q_{V}=P_{V} \cap T\left(X ; D_{1}, \ldots, D_{s}\right)
$$

and

$$
Q_{j}=\bigoplus_{\substack{n_{1}, \ldots, n_{s} \in \mathbb{N}_{0} \\ n_{j}>0}} T\left(X ; D_{1}, \ldots, D_{s}\right)_{\left(n_{1}, \ldots, n_{s}\right)}
$$

(3) We have an exact sequence

$$
0 \longrightarrow \sum_{j \notin U} \mathbb{Z} \overline{D_{j}} \longrightarrow \mathrm{Cl}(X) \xrightarrow{q} \mathrm{Cl}\left(T\left(X ; D_{1}, \ldots, D_{s}\right)\right) \longrightarrow 0
$$

such that $q(\bar{F})=\overline{M_{F} \cap k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right]}$.
(4) Assume that $T\left(X ; D_{1}, \ldots, D_{s}\right)$ is Noetherian. Then $\omega_{T\left(X ; D_{1}, \ldots, D_{s}\right)}$ is isomorphic to

$$
M_{K_{X}} \cap t_{1} \cdots t_{s} k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right]
$$

as a \mathbb{Z}^{s}-graded module. Further, we have

$$
q\left(\overline{K_{X}+\sum_{i} D_{i}}\right)=\overline{\omega_{T\left(X ; D_{1}, \ldots, D_{s}\right)}} .
$$

Therefore, $\omega_{T\left(X ; D_{1}, \ldots, D_{s}\right)}$ is $T\left(X ; D_{1}, \ldots, D_{s}\right)$-free if and only if

$$
\overline{K_{X}+\sum_{i} D_{i}} \in \sum_{j \notin U} \mathbb{Z} \overline{D_{j}}
$$

in $\mathrm{Cl}(X)$.
 T over a field k.

Remark 1.4. With notation as in Theorem $1.3, \operatorname{ht}\left(Q_{j}\right)=1$ if and only if $j \in U$. This will be proved in Lemma 3.3. Since $\mathbb{N} D_{1}+\cdots+\mathbb{N} D_{s}$ contains an ample Cartier divisor, $Q_{j} \neq(0)$ for any j. Therefore, $\operatorname{ht}\left(Q_{j}\right) \geq 2$ if and only if $j \notin U$.

§2. Examples

Example 2.1. Let X be a normal projective variety with $\operatorname{dim} X>0$. Assume that all D_{i} are ample Cartier divisors on X. Then, $T\left(X ; D_{1}, \ldots, D_{s}\right)$ is Noetherian by a famous result of Zariski (see [6, Lemma 2.8]).

Assume that $s=1$. By definition, $U=\emptyset$ since $\operatorname{dim} X>0$. By Theorem 1.3(3), $\mathrm{Cl}\left(T\left(X ; D_{1}\right)\right)$ is isomorphic to $\mathrm{Cl}(X) / \mathbb{Z} \overline{D_{1}}$. By Theorem 1.3(4), $\omega_{T\left(X ; D_{1}\right)}$ is a $T\left(X ; D_{1}\right)$-free module if and only if

$$
\overline{K_{X}} \in \mathbb{Z} \overline{D_{1}}
$$

in $\operatorname{Cl}(X)$ (see Remark 1.1).
Next, assume that $s \geq 2$. In this case, $U=\{1,2, \ldots, s\}$. By Theorem $1.3(3), \mathrm{Cl}(X)$ is isomorphic to $\mathrm{Cl}\left(T\left(X ; D_{1}, \ldots, D_{s}\right)\right)$. By Theorem 1.3(4), $\omega_{T\left(X ; D_{1}, \ldots, D_{s}\right)}$ is a $T\left(X ; D_{1}, \ldots, D_{s}\right)$-free module if and only if

$$
\overline{K_{X}}=\overline{-D_{1}-\cdots-D_{s}}
$$

in $\mathrm{Cl}(X)$. When this is the case, $-K_{X}$ is ample; that is, X is a Fano variety.
Example 2.2. Set $X=\mathbb{P}^{m} \times \mathbb{P}^{n}$. Let p_{1} (resp., p_{2}) be the first (resp., second) projection.

Let H_{1} be a hyperplane of \mathbb{P}^{m}, and let H_{2} be a hyperplane of \mathbb{P}^{n}. Put $A_{i}=p_{i}^{-1}\left(H_{i}\right)$ for $i=1,2$. In this case, $\mathrm{Cl}(X)=\mathbb{Z} \overline{A_{1}}+\mathbb{Z} \overline{A_{2}} \simeq \mathbb{Z}^{2}$, and $K_{X}=$ $-(m+1) A_{1}-(n+1) A_{2}$.

We have

$$
\operatorname{Cox}(X)=R\left(X ; A_{1}, A_{2}\right)=k\left[x_{0}, x_{1}, \ldots, x_{m}, y_{0}, y_{1}, \ldots, y_{n}\right]
$$

$\operatorname{Cox}(X)$ is a \mathbb{Z}^{2}-graded ring such that x_{i} (resp., y_{j}) are of degree (1,0) (resp., $(0,1))$.

Let a, b, c, d be positive integers such that $a d-b c \neq 0$. Put $D_{1}=a A_{1}+$ $b A_{2}$, and put $D_{2}=c A_{1}+d A_{2}$. Then, both D_{1} and D_{2} are ample divisors. Consider the multisection rings

$$
\begin{aligned}
& R\left(X ; D_{1}, D_{2}\right)=\bigoplus_{p, q \in \mathbb{Z}} \operatorname{Cox}(X)_{p(a, b)+q(c, d)} \\
& T\left(X ; D_{1}, D_{2}\right)=\bigoplus_{p, q \geq 0} \operatorname{Cox}(X)_{p(a, b)+q(c, d)}
\end{aligned}
$$

Here, both $R\left(X ; D_{1}, D_{2}\right)$ and $T\left(X ; D_{1}, D_{2}\right)$ are Cohen-Macaulay rings.

By Theorem 1.2(4), we know that
$R\left(X ; D_{1}, D_{2}\right)$ is a Gorenstein ring $\Longleftrightarrow \overline{K_{X}} \in \mathbb{Z} \overline{D_{1}}+\mathbb{Z} \overline{D_{2}}$ in $\mathrm{Cl}(X)$

$$
\Longleftrightarrow(m+1, n+1) \in \mathbb{Z}(a, b)+\mathbb{Z}(c, d)
$$

In this case, we have $U=\{1,2\}$ since all of a, b, c, and d are positive. By Theorem 1.3(4), we have

$$
\begin{aligned}
T\left(X ; D_{1}, D_{2}\right) \text { is a Gorenstein ring } & \Longleftrightarrow \overline{K_{X}+D_{1}+D_{2}}=0 \text { in } \mathrm{Cl}(X) \\
& \Longleftrightarrow m+1=a+c \text { and } n+1=b+d
\end{aligned}
$$

Example 2.3. Let a, b, c be pairwise coprime positive integers. Let \mathfrak{p} be the kernel of the k-algebra map $S=k[x, y, z] \rightarrow k[T]$ given by $x \mapsto T^{a}$, $y \mapsto T^{b}, z \mapsto T^{c}$.

Let $\pi: X \rightarrow \mathbb{P}=\operatorname{Proj}(k[x, y, z])$ be the blowup at $V_{+}(\mathfrak{p})$, where $a=\operatorname{deg}(x)$, $b=\operatorname{deg}(y), c=\operatorname{deg}(z)$. Put $E=\pi^{-1}\left(V_{+}(\mathfrak{p})\right)$. Let A be a Weil divisor on X satisfying $\pi^{*} \mathcal{O}_{\mathbb{P}}(1)=\mathcal{O}_{X}(A)$. In this case, we have $\mathrm{Cl}(X)=\mathbb{Z} \bar{E}+\mathbb{Z} \bar{A} \simeq \mathbb{Z}^{2}$, and $K_{X}=E-(a+b+c) A$.

Then, we have

$$
\operatorname{Cox}(X)=R(X ;-E, A)=R_{s}^{\prime}(\mathfrak{p}):=S\left[t^{-1}, \mathfrak{p} t, \mathfrak{p}^{(2)} t^{2}, \mathfrak{p}^{(3)} t^{3}, \ldots\right] \subset S\left[t^{ \pm 1}\right]
$$

$$
T(X ;-E, A)=R_{s}(\mathfrak{p}):=S\left[\mathfrak{p} t, \mathfrak{p}^{(2)} t^{2}, \mathfrak{p}^{(3)} t^{3}, \ldots\right] \subset S[t]
$$

By Theorem 1.2(4), we have

$$
\omega_{R_{s}^{\prime}(\mathfrak{p})}=M_{K_{X}}=R_{s}^{\prime}(\mathfrak{p})\left(\overline{K_{X}}\right)=R_{s}^{\prime}(\mathfrak{p})(-1,-a-b-c)
$$

In this case, $U=\{1\}$. By Theorem 1.3(4), we have

$$
\begin{aligned}
\omega_{R_{s}(\mathfrak{p})} & =M_{K_{X}} \cap t_{1} t_{2} k(X)\left[t_{1}, t_{2}^{ \pm 1}\right] \\
& =\omega_{R_{s}^{\prime}(\mathfrak{p})} \cap t_{1} t_{2} k(X)\left[t_{1}, t_{2}^{ \pm 1}\right] \\
& =R_{s}^{\prime}(\mathfrak{p})(-1,-a-b-c) \cap t_{1} t_{2} k(X)\left[t_{1}, t_{2}^{ \pm 1}\right] \\
& =R_{s}(\mathfrak{p})(-1,-a-b-c)
\end{aligned}
$$

Therefore, both of $R_{s}^{\prime}(\mathfrak{p})$ and $R_{s}(\mathfrak{p})$ are quasi-Gorenstein rings that were first proved by Simis and Trung [11, Corollary 3.4]. The Cohen-Macaulayness of such rings are deeply studied by Goto, Nishida, and Shimoda [3].

Divisor class groups of ordinary and symbolic Rees rings were studied by, for example, Shimoda [10] and Simis and Trung [11].

§3. Proof of Theorem 1.3

Throughout this section, we assume that X is a normal projective variety over a field k such that $d=\operatorname{dim} X>0$, and we assume that D_{1}, \ldots, D_{s} are Weil divisors on X such that $\mathbb{N} D_{1}+\cdots+\mathbb{N} D_{s}$ contains an ample Cartier divisor.

We need the following lemmas. They are well known, but the author could not find a reference.

Lemma 3.1. Let G be an integral domain containing a field k. Let P be a prime ideal of G. Assume that both $\operatorname{tr} \cdot \operatorname{deg}_{k} G$ and $\operatorname{tr} \cdot \operatorname{deg}_{k} G / P$ are finite.

Then, the height of P is less than or equal to

$$
\operatorname{tr} \cdot \operatorname{deg}_{k} G-\operatorname{tr} \cdot \operatorname{deg}_{k} G / P
$$

Proof. Assume the contrary. Then there exists a ring G^{\prime} which satisfies the following five conditions:

- $k \subset G^{\prime} \subset G$;
- G^{\prime} is finitely generated (as a ring) over k;
- $\operatorname{tr} . \operatorname{deg}_{k} G=\operatorname{tr} \cdot \operatorname{deg}_{k} G^{\prime}$;
- $\operatorname{tr} . \operatorname{deg}_{k} G / P=\operatorname{tr} . \operatorname{deg}_{k} G^{\prime} /\left(G^{\prime} \cap P\right)$; and
- $\operatorname{tr} . \operatorname{deg}_{k} G-\operatorname{tr} . \operatorname{deg}_{k} G / P<\operatorname{ht}\left(G^{\prime} \cap P\right)$.

However, using the dimension formula (e.g., [7, p. 119]), we have

$$
\operatorname{ht}\left(G^{\prime} \cap P\right)=\operatorname{tr} \cdot \operatorname{deg}_{k} G^{\prime}-\operatorname{tr} \cdot \operatorname{deg}_{k} G^{\prime} /\left(G^{\prime} \cap P\right)=\operatorname{tr} \cdot \operatorname{deg}_{k} G-\operatorname{tr} \cdot \operatorname{deg}_{k} G / P
$$

This is a contradiction.
Lemma 3.2. Let r be a positive integer. Let F_{1}, \ldots, F_{r} be Weil divisors on X. Let S be the set of all nonzero homogeneous elements of $T\left(X ; F_{1}, \ldots\right.$, $\left.F_{r}\right)$. Then the following conditions are equivalent.
(1) There exist nonnegative integers q_{1}, \ldots, q_{r} such that $\sum_{i=1}^{r} q_{i} F_{i}$ is linearly equivalent to a sum of an ample Cartier divisor and an effective Weil divisor.
(2) There exist positive integers q_{1}, \ldots, q_{r} such that $\sum_{i=1}^{r} q_{i} F_{i}$ is linearly equivalent to a sum of an ample Cartier divisor and an effective Weil divisor.
(3) We have $S^{-1}\left(T\left(X ; F_{1}, \ldots, F_{r}\right)\right)=k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$.
(4) We have $Q\left(T\left(X ; F_{1}, \ldots, F_{r}\right)\right)=k(X)\left(t_{1}, \ldots, t_{r}\right)$, where $Q()$ denotes the field of fractions.
(5) We have $\operatorname{tr} \cdot \operatorname{deg}_{k} T\left(X ; F_{1}, \ldots, F_{r}\right)=\operatorname{dim} X+r$.

Using [1, Theorem 1.5.5], it is easy to see that $T\left(X ; F_{1}, \ldots, F_{r}\right)$ is Noetherian if and only if $T\left(X ; F_{1}, \ldots, F_{r}\right)$ is finitely generated (as a ring) over the field $H^{0}\left(X, \mathcal{O}_{X}\right)$. Therefore, if $T\left(X ; F_{1}, \ldots, F_{r}\right)$ is Noetherian, then condition (5) is equivalent to stating that the Krull dimension of $T\left(X ; F_{1}, \ldots, F_{r}\right)$ is $\operatorname{dim} X+r$.

Proof. Here $(2) \Rightarrow(1)$, and $(3) \Rightarrow(4) \Rightarrow(5)$ are trivial.
First we will prove that $(1) \Rightarrow(3)$. Suppose that

$$
\sum_{i=1}^{r} q_{i} F_{i} \sim D+F
$$

where q_{i} are nonnegative integers, D is a very ample Cartier divisor, and F is an effective divisor. We put

$$
\begin{align*}
C & =\bigoplus_{m \in \mathbb{Z}} \bigoplus_{\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} F_{i}+m D\right)\right) t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} t_{r+1}^{m} \\
& \subset k(X)\left[t_{1}, \ldots, t_{r}, t_{r+1}^{ \pm 1}\right] . \tag{3.1}
\end{align*}
$$

We regard C as a \mathbb{Z}^{r+1}-graded ring with

$$
C_{\left(n_{1}, \ldots, n_{r}, m\right)}=H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} F_{i}+m D\right)\right) t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} t_{r+1}^{m}
$$

Then, we have

$$
T\left(X ; F_{1}, \ldots, F_{r}\right)=\bigoplus_{\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}} C_{\left(n_{1}, \ldots, n_{r}, 0\right)}
$$

so $T\left(X ; F_{1}, \ldots, F_{r}\right)$ is a subring of C. Thus, $S^{-1} C$ is a \mathbb{Z}^{r+1}-graded ring such that

$$
S^{-1} T\left(X ; F_{1}, \ldots, F_{r}\right)=\bigoplus_{\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}}\left(S^{-1} C\right)_{\left(n_{1}, \ldots, n_{r}, 0\right)}
$$

Since $\sum_{i=1}^{r} q_{i} F_{i}-D$ is linearly equivalent to an effective divisor F, there exists a nonzero element a in

$$
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} q_{i} F_{i}-D\right)\right)
$$

For any $0 \neq b \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$,

$$
\left(a t_{1}^{q_{1}} \cdots t_{r}^{q_{r}} t_{r+1}^{-1}\right)\left(b t_{r+1}\right)
$$

is contained in S. Therefore, $S^{-1} C$ contains $\left(b t_{r+1}\right)^{-1}$. Hence, $k(X)$ is contained in $S^{-1} C$. Since $k(X)=\left(S^{-1} C\right)_{(0, \ldots, 0)}, k(X)$ is contained in $S^{-1} T(X$; $\left.F_{1}, \ldots, F_{r}\right)$.

By assumption (1), there exists a positive integer ℓ such that

$$
\left(S^{-1} C\right)_{\left(\ell q_{1}, \ldots, \ell q_{r}, 0\right)} \neq 0
$$

and

$$
\left(S^{-1} C\right)_{\left(\ell q_{1}+1, \ell q_{2}, \ldots, \ell q_{r}, 0\right)} \neq 0
$$

Then, it is easy to see that $t_{1} \in S^{-1} C$. Therefore, $S^{-1} C$ contains $k(X)\left[t_{1}^{ \pm 1}\right.$, $\left.\ldots, t_{r}^{ \pm 1}\right]$. Hence, $S^{-1} T\left(X ; F_{1}, \ldots, F_{r}\right)$ coincides with $k(X)\left[t_{1}^{ \pm}, \ldots, t_{r}^{ \pm}\right]$.

Next, we will prove $(5) \Rightarrow(2)$. Let D be a very ample divisor. Consider the ring

$$
R\left(X ; F_{1}, \ldots, F_{r}, D\right)
$$

First, assume that

$$
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} u_{i} F_{i}-v D\right)\right) \neq 0
$$

for some integers u_{1}, \ldots, u_{r}, v such that $v>0$. By assumption (5), there exist positive integers $u_{1}^{\prime}, \ldots, u_{r}^{\prime}$ such that

$$
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} u_{i}^{\prime} F_{i}\right)\right) \neq 0
$$

Therefore, we may assume that there exist positive integers u_{1}, \ldots, u_{r} and v such that

$$
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} u_{i} F_{i}-v D\right)\right) \neq 0
$$

Here, we have

$$
\sum_{i} u_{i} F_{i}=v D+\left(\sum_{i} u_{i} F_{i}-v D\right)
$$

Therefore, $\sum_{i} u_{i} F_{i}$ is the sum of an ample divisor $v D$ and the divisor $\sum_{i} u_{i} F_{i}-v D$, which is linearly equivalent to an effective divisor.

Next, assume that for any integers u_{1}, \ldots, u_{r} and v,

$$
\begin{equation*}
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} u_{i} F_{i}-v D\right)\right)=0 \tag{3.2}
\end{equation*}
$$

if $v>0$. We put

$$
P=\bigoplus_{\substack{\left(n_{1}, \ldots, n_{r}, m\right) \in \mathbb{Z}^{r+1} \\ m>0}} R\left(X ; F_{1}, \ldots, F_{r}, D\right)_{\left(n_{1}, \ldots, n_{r}, m\right)}
$$

By assumption (5), P is a prime ideal of $R\left(X ; F_{1}, \ldots, F_{r}, D\right)$ of height 1 by Lemma 3.1. (Here, since D is an ample divisor, ${\operatorname{tr} . \operatorname{deg}_{k} R\left(X ; F_{1}, \ldots, F_{r}, D\right)=}$. $\operatorname{dim} X+r+1$. Note that P is an ideal of $R\left(X ; F_{1}, \ldots, F_{r}, D\right)$ by (3.2) above. By (5), $\operatorname{tr} . \operatorname{deg}_{k} R\left(X ; F_{1}, \ldots, F_{r}, D\right) / P=\operatorname{dim} X+r$.) However, $R\left(X ; F_{1}, \ldots\right.$, $\left.F_{r}, D\right)$ has no homogeneous prime ideal of height 1 that contains

$$
H^{0}\left(X, \mathcal{O}_{X}(D)\right) t_{r+1}
$$

by Theorem 1.2(2). This is a contradiction.
Put $A=k(X)\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]$, and put $B=k(X)\left[t_{1}, \ldots, t_{s}\right]$. Recall that D_{1}, \ldots, D_{s} are Weil divisors on a normal projective variety X such that $\mathbb{N} D_{1}+$ $\cdots+\mathbb{N} D_{s}$ contains an ample Cartier divisor. We denote $T\left(X ; D_{1}, \ldots, D_{s}\right)$ and $R\left(X ; D_{1}, \ldots, D_{s}\right)$ simply by T and R, respectively.

Since

$$
T=R \cap B
$$

T is a Krull domain. We have proved Theorem 1.3(1).
By Theorem 1.2(2), we have

$$
\begin{aligned}
& R=\left(\bigcap_{V \in C^{1}(X)} R_{P_{V}}\right) \cap A, \\
& A=\bigcap_{P \in \operatorname{NHP}^{1}(R)} R_{P},
\end{aligned}
$$

where $\operatorname{NHP}^{1}(R)$ is the set of nonhomogeneous prime ideals of R of height 1 .
It is easy to see that $R_{P}=T_{P \cap T}$ for $P \in \operatorname{NHP}^{1}(R)$. Therefore, we have

$$
A=\bigcap_{P \in \operatorname{NHP}^{1}(R)} T_{P \cap T}
$$

Since $T_{P \cap T}$ is a discrete valuation ring, $P \cap T$ is a nonhomogeneous prime ideal of T of height 1.

For $V \in C^{1}(X)$, put $Q_{V}=P_{V} \cap T$. Then, $R_{P_{V}}=T_{Q_{V}}$, since $\sum_{i} \mathbb{N} D_{i}$ contains an ample divisor. Therefore, Q_{V} is a homogeneous prime ideal of T of height 1.

On the other hand, we have $Q_{i}=T \cap t_{i} B_{\left(t_{i}\right)}$ and $T_{Q_{i}} \subset B_{\left(t_{i}\right)}$. Note that

$$
B=A \cap\left(\bigcap_{j=1}^{s} B_{\left(t_{j}\right)}\right)
$$

Then, we have

$$
\begin{align*}
T & =R \cap B \\
& =\left(\bigcap_{V \in C^{1}(X)} R_{P_{V}}\right) \cap A \cap B \tag{3.3}\\
& =\left(\bigcap_{V \in C^{1}(X)} T_{Q_{V}}\right) \cap\left(\bigcap_{P \in \operatorname{NHP}^{1}(R)} T_{P \cap T}\right) \cap\left(\bigcap_{j=1}^{s} B_{\left(t_{j}\right)}\right) .
\end{align*}
$$

Put

$$
T_{j}=\bigoplus_{\left(n_{1}, \ldots, n_{j-1}, n_{j+1}, \ldots, n_{s}\right) \in \mathbb{N}_{0}^{s-1}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i \neq j} n_{i} D_{i}\right)\right) t_{1}^{n_{1}} \cdots t_{j-1}^{n_{j-1}} t_{j+1}^{n_{j+1}} \cdots t_{s}^{n_{s}} .
$$

We need the following lemma.
Lemma 3.3. With notation as above, the following conditions are equivalent:
(1) $T_{Q_{j}}=B_{\left(t_{j}\right)}$;
(2) the height of Q_{j} is 1 ;
(3) the height of Q_{j} is less than 2; and
(4) $j \in U$, that is, $\operatorname{tr} \cdot \operatorname{deg}_{k} T_{j}=d+s-1$.

Proof. By Lemma 3.2, we have $Q(T)=Q(B)$. It is easy to see that $B_{\left(t_{j}\right)}$ is a discrete valuation ring. Since Q_{j} is a nonzero prime ideal of a Krull domain T, the equivalence of (1), (2), and (3) is easy to see.

Here, we will prove $(1) \Rightarrow(4)$. Note that $T / Q_{j}=T_{j}$. Then, we have

$$
Q\left(T_{j}\right)=T_{Q_{j}} / Q_{j} T_{Q_{j}}=B_{\left(t_{i}\right)} /\left(t_{i}\right) B_{\left(t_{i}\right)}=k(X)\left(t_{1}, \ldots, t_{j-1}, t_{j+1}, \ldots, t_{s}\right)
$$

The implication that $(4) \Rightarrow(3)$ immediately follows from

$$
\operatorname{ht}\left(Q_{j}\right) \leq \operatorname{tr} \cdot \operatorname{deg}_{k} T-\operatorname{tr} \cdot \operatorname{deg}_{k}\left(T_{j}\right)=1
$$

This inequality follows from Lemma 3.1 and from the fact that $T_{j}=T / Q_{j}$.

By (3.3), Lemma 3.3, and [7, Theorem 12.3], we know that

$$
\left\{Q_{V} \mid V \in C^{1}(X)\right\} \cup\left\{Q_{j} \mid j \in U\right\}
$$

is the set of homogeneous prime ideals of T of height 1 , and that

$$
\left\{P \cap T \mid P \in \operatorname{NHP}^{1}(R)\right\}
$$

is the set of nonhomogeneous prime ideals of T of height 1 . Further, we obtain

$$
T=\left(\bigcap_{V \in C^{1}(X)} T_{Q_{V}}\right) \cap\left(\bigcap_{P \in \mathrm{NHP}^{1}(R)} T_{P \cap T}\right) \cap\left(\bigcap_{j \in U} T_{Q_{j}}\right) .
$$

The proof of Theorem 1.3(2) is completed.
Let

$$
\operatorname{Div}(X)=\bigoplus_{V \in C^{1}(X)} \mathbb{Z} \cdot V
$$

be the set of Weil divisors on X. Let

$$
\operatorname{HDiv}(T)=\left(\bigoplus_{V \in C^{1}(X)} \mathbb{Z} \cdot \operatorname{Spec}\left(T / Q_{V}\right)\right) \oplus\left(\bigoplus_{j \in U} \mathbb{Z} \cdot \operatorname{Spec}\left(T / Q_{j}\right)\right)
$$

be the set of homogeneous Weil divisors of $\operatorname{Spec}(T)$.
Here, we define

$$
\phi: \operatorname{Div}(X) \longrightarrow \operatorname{HDiv}(T)
$$

by $\phi(V)=\operatorname{Spec}\left(T / Q_{V}\right)$ for each $V \in C^{1}(X)$. Then, it satisfies the following.

- For each $a \in k(X)^{\times}$, we have

$$
\phi\left(\operatorname{div}_{X}(a)\right)=\operatorname{div}_{T}(a) \in \bigoplus_{V \in C^{1}(X)} \mathbb{Z} \cdot \operatorname{Spec}\left(T / Q_{V}\right) \subset \operatorname{HDiv}(T)
$$

- If $j \in U$, then

$$
\operatorname{div}_{T}\left(t_{j}\right)=\operatorname{Spec}\left(T / Q_{j}\right)+\phi\left(D_{j}\right)
$$

- If $j \notin U$, then

$$
\operatorname{div}_{T}\left(t_{j}\right)=\phi\left(D_{j}\right)
$$

They are proven essentially in the same way as in [2, pp. 631-632]. Then, we have an exact sequence

$$
0 \longrightarrow \sum_{j \notin U} \mathbb{Z} \overline{D_{j}} \longrightarrow \mathrm{Cl}(X) \xrightarrow{q} \mathrm{Cl}(T) \longrightarrow 0
$$

such that $q(\bar{F})=\overline{\phi(F)}$ in $\mathrm{Cl}(T)$. Here, remember that $\mathrm{Cl}(T)$ coincides with $\operatorname{HDiv}(T)$ divided by the group of homogeneous principal divisors (see, e.g., [9, Proposition 7.1]).

It is easy to see that the class of the Weil divisor $q(\bar{F})$ corresponds to the isomorphism class of the reflexive module

$$
\begin{aligned}
M_{F} \cap\left(\bigcap_{j \in U} T_{Q_{j}}\right) & =M_{F} \cap A \cap\left(\bigcap_{j \in U} T_{Q_{j}}\right) \\
& =M_{F} \cap k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right] .
\end{aligned}
$$

The proof of Theorem 1.3(3) is completed.
Remark 3.4. It is easy to see that

$$
t_{1}^{d_{1}} \cdots t_{s}^{d_{s}} M_{F+\sum_{i} d_{i} D_{i}}=M_{F}
$$

for any integers d_{1}, \ldots, d_{s}. Therefore, we have

$$
\begin{aligned}
& M_{F} \cap t_{1}^{d_{1}} \cdots t_{s}^{d_{s}} k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right] \\
& \quad=t_{1}^{d_{1}} \cdots t_{s}^{d_{s}}\left(M_{F+\sum_{i} d_{i} D_{i}} \cap k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right]\right)
\end{aligned}
$$

Hence,

$$
M_{F} \cap t_{1}^{d_{1}} \cdots t_{s}^{d_{s}} k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right]
$$

is isomorphic to

$$
\begin{equation*}
M_{F+\sum_{i} d_{i} D_{i}} \cap k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right] \tag{3.4}
\end{equation*}
$$

as a T-module. Note that this is not an isomorphism as a \mathbb{Z}^{s}-graded module. The isomorphism class to which module (3.4) belongs coincides with $q\left(\overline{F+\sum_{i} d_{i} D_{i}}\right)$.

In the rest, we assume that T is Noetherian. We will prove that ω_{T} is isomorphic to

$$
M_{K_{X}} \cap t_{1} \cdots t_{s} k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right]
$$

as a \mathbb{Z}^{s}-graded module. (Suppose that it is true. If we forget the grading, it is isomorphic to

$$
M_{K_{X}+\sum_{i} D_{i}} \cap k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right]
$$

by Remark 3.4, that is, corresponding to $q\left(\overline{K_{X}+\sum_{i} D_{i}}\right)$ in $\mathrm{Cl}(T)$. Therefore, we know that ω_{T} is T-free if and only if

$$
\overline{K_{X}+\sum_{i} D_{i}} \in \sum_{j \notin U} \mathbb{Z} \overline{D_{j}}
$$

in $\operatorname{Cl}(X)$.)
Put $X^{\prime}=X \backslash \operatorname{Sing}(X)$. We choose positive integers a_{1}, \ldots, a_{s} and sections $f_{1}, \ldots, f_{t} \in H^{0}\left(X, \sum_{i} a_{i} D_{i}\right)$ such that

- $\sum_{i} a_{i} D_{i}$ is an ample Cartier divisor,
- $X^{\prime}=\bigcup_{k} D_{+}\left(f_{k}\right)$, and
- all of the D_{i} are principal Cartier divisors on $D_{+}\left(f_{k}\right)$ for $k=1, \ldots, t$.

Put $W=\left\{\underline{n} \in \mathbb{Z}^{s} \mid n_{i} \geq 0\right.$ if $\left.i \in U\right\}$. Put $D_{i}^{\prime}=\left.D_{i}\right|_{X^{\prime}}$ for $i=1, \ldots, s$. Consider the morphism

$$
Y=\operatorname{Spec}_{X^{\prime}}\left(\bigoplus_{\underline{n} \in W} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}}\right) \xrightarrow{\pi} X^{\prime}
$$

Further, we have the natural map

$$
\xi: Y \longrightarrow \operatorname{Spec}(T)
$$

The group \mathbb{G}_{m}^{s} naturally acts on $\operatorname{Spec}(T)$ and Y and trivially acts on X^{\prime}. Both π and ξ are equivariant morphisms.

Claim 3.5. There exists an equivariant open subscheme Z of both Y and $\operatorname{Spec}(T)$ such that

- the codimension of $Y \backslash Z$ in Y is greater than or equal to 2 , and
- the codimension of $\operatorname{Spec}(T) \backslash Z$ in $\operatorname{Spec}(T)$ is greater than or equal to 2.

Proof. For $u \in U$, there exist integers $c_{1 u}, \ldots, c_{s u}$ such that

- $H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} c_{i u} D_{i}\right)\right) \neq 0$,
- $c_{u u}=-a_{u}$, and
- $c_{i u}>0$ if $i \neq u$.

In fact, if $u \in U$, there exist positive integers $q_{1}, \ldots, q_{u-1}, q_{u+1}, \ldots, q_{s}$ such that

$$
\sum_{i \neq u} q_{i} D_{i}
$$

is a sum of an ample divisor D and a Weil divisor F, which is linearly equivalent to an effective divisor by Lemma 3.2. Then,

$$
H^{0}\left(X, \mathcal{O}_{X}\left(q\left(\sum_{i \neq u} q_{i} D_{i}\right)-a_{u} D_{u}\right)\right)=H^{0}\left(X, \mathcal{O}_{X}\left(q(D+F)-a_{u} D_{u}\right)\right) \neq 0
$$

for $q \gg 0$.
For each $u \in U$, we set

$$
\left(b_{1 u}, \ldots, b_{s u}\right)=\left(c_{1 u}, \ldots, c_{s u}\right)+\left(a_{1}, \ldots, a_{s}\right)
$$

Here, note that $b_{u u}=0$ and $b_{i u}>0$ if $i \neq u$.
We choose

$$
0 \neq g_{u} \in H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} c_{i u} D_{i}\right)\right)
$$

for each $u \in U$.
Consider the closed set of $\operatorname{Spec}(T)$ defined by the ideal J generated by

$$
\left\{f_{k} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}} \mid k=1, \ldots, t\right\}
$$

and

$$
\left\{g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}} \mid k=1, \ldots, t ; u \in U\right\}
$$

By Theorem 1.3(2), we know that the height of J is greater than or equal to 2 since there is no prime ideal of T of height 1 which contains J.

We choose $d_{k i} \in k(X)^{\times}$satisfying

$$
H^{0}\left(D_{+}\left(f_{k}\right), \mathcal{O}_{X}\left(D_{i}\right)\right)=d_{k i} H^{0}\left(D_{+}\left(f_{k}\right), \mathcal{O}_{X}\right)
$$

for each k and i. Then

$$
\begin{equation*}
Y=\bigcup_{k=1}^{t} \pi^{-1}\left(D_{+}\left(f_{k}\right)\right) \quad \text { and } \quad \pi^{-1}\left(D_{+}\left(f_{k}\right)\right)=\operatorname{Spec}\left(C_{k}\right) \tag{3.5}
\end{equation*}
$$

where

$$
C_{k}=H^{0}\left(D_{+}\left(f_{k}\right), \mathcal{O}_{X}\right)\left[d_{k 1} t_{1}, \ldots, d_{k s} t_{s},\left\{\left(d_{k j} t_{j}\right)^{-1} \mid j \notin U\right\}\right]
$$

We put

$$
Z=\operatorname{Spec}(T) \backslash V(J)
$$

Then we have

$$
\begin{align*}
Z= & \bigcup_{k=1}^{t}\left[\operatorname{Spec}\left(T\left[\left(f_{k} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}}\right)^{-1}\right]\right)\right. \tag{3.6}\\
& \left.\cup\left\{\bigcup_{u \in U} \operatorname{Spec}\left(T\left[\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right]\right)\right\}\right]
\end{align*}
$$

Here, we have

$$
\begin{align*}
T\left[\left(f_{k} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}}\right)^{-1}\right] & =H^{0}\left(D_{+}\left(f_{k}\right), \mathcal{O}_{X}\right)\left[\left(d_{k 1} t_{1}\right)^{ \pm 1}, \ldots,\left(d_{k s} t_{s}\right)^{ \pm 1}\right] \tag{3.7}\\
& =C_{k}\left[\left(\prod_{j \in U}\left(d_{k j} t_{j}\right)\right)^{-1}\right]
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
T & {\left[\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right] } \\
& =\bigoplus_{(\underline{n}) \in \mathbb{Z}^{s}} T\left[\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right]_{\left(n_{1}, \ldots, n_{s}\right)} \\
& =\bigoplus_{\substack{(\underline{n}) \in \mathbb{Z}^{s} \\
n_{u} \geq 0}} R\left[\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right]_{\left(n_{1}, \ldots, n_{s}\right)} \\
& =\bigoplus_{\substack{(\underline{n}) \in \mathbb{Z}^{s} \\
n_{u} \geq 0}} R\left[\left(f_{k} t_{1}^{a_{1}} \cdots t_{s}^{a_{s}}\right)^{-1},\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right]_{\left(n_{1}, \ldots, n_{s}\right)} \\
& =C_{k}\left[\left\{\left(d_{k j} t_{j}\right)^{-1} \mid j \neq u\right\},\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right] .
\end{aligned}
$$

Let $\beta_{k u}$ be an element in $H^{0}\left(D_{+}\left(f_{k}\right), \mathcal{O}_{X}\right)$ such that

$$
g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}=\beta_{k u}\left(d_{k 1} t_{1}\right)^{b_{1 u}} \cdots\left(d_{k s} t_{s}\right)^{b_{s u}}
$$

for $k=1, \ldots, t$ and $u \in U$. Then,

$$
\begin{align*}
C_{k} & {\left[\left\{\left(d_{k j} t_{j}\right)^{-1} \mid j \neq u\right\},\left(g_{u} f_{k} t_{1}^{b_{1 u}} \cdots t_{s}^{b_{s u}}\right)^{-1}\right] } \tag{3.8}\\
& =C_{k}\left[\left(\beta_{k u} \prod_{\substack{j \in U \\
j \neq u}}\left(d_{k j} t_{j}\right)\right)^{-1}\right] .
\end{align*}
$$

By (3.5), (3.6), (3.7), and (3.8), we know that Z is an open subscheme of Y. The ideal of C_{k} generated by

$$
\prod_{j \in U}\left(d_{k j} t_{j}\right) \quad \text { and } \quad\left\{\beta_{k u} \prod_{\substack{j \in U \\ j \neq u}}\left(d_{k j} t_{j}\right) \mid u \in U\right\}
$$

is the unit ideal or of height 2 . (If $U=\emptyset$, then $Z=Y$ by the construction. If $U=\{u\}$ and if $\beta_{k u}$ is a unit element, then this ideal is the unit. In other cases, this ideal is of height 2.) Therefore, the codimension of $Y \backslash Z$ in Y is greater than or equal to two.

We can define the graded canonical module as in [5, Definition 3.1] using the theory of the equivariant twisted inverse functor (see [4]).

By Claim 3.5 above and [5, Remark 3.2], we have $\omega_{T}=H^{0}\left(Y, \omega_{Y}\right)$. On the other hand, we have

$$
\begin{aligned}
\omega_{Y} & =\bigwedge^{s} \Omega_{Y / X^{\prime}} \otimes \pi^{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \\
& =\pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}\right)(-1, \ldots,-1) \otimes_{\mathcal{O}_{Y}} \pi^{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime}}\right) \\
& =\pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1)
\end{aligned}
$$

where $(-1, \ldots,-1)$ denotes the shift of degree (see [4, Theorem 28.11]).
Then, we have

$$
H^{0}\left(Y, \omega_{Y}\right)=H^{0}\left(X^{\prime}, \pi_{*} \pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1)\right)
$$

By the projection formula (see [4, Lemma 26.4]),

$$
\begin{aligned}
\pi_{*} & \pi^{*} \mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)(-1, \ldots,-1) \\
& =\left(\mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right) \otimes \pi_{*} \mathcal{O}_{Y}\right)(-1, \ldots,-1) \\
& =\left(\mathcal{O}_{X^{\prime}}\left(\sum_{i} D_{i}^{\prime}+K_{X^{\prime}}\right) \otimes\left[\bigoplus_{\underline{n} \in W} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}\right)\right]\right)(-1, \ldots,-1)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\bigoplus_{\underline{n} \in W} \mathcal{O}_{X^{\prime}}\left(\sum_{i}\left(n_{i}+1\right) D_{i}^{\prime}+K_{X^{\prime}}\right)\right)(-1, \ldots,-1) \\
& =\bigoplus_{\underline{n} \in W+(1, \ldots, 1)} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
H^{0}\left(Y, \omega_{Y}\right) & =H^{0}\left(X^{\prime}, \bigoplus_{\underline{n} \in W+(1, \ldots, 1)} \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)\right) \\
& =\bigoplus_{\underline{n} \in W+(1, \ldots, 1)} H^{0}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\left(\sum_{i} n_{i} D_{i}^{\prime}+K_{X^{\prime}}\right)\right) \\
& =\bigoplus_{\underline{n} \in W+(1, \ldots, 1)} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}+K_{X}\right)\right) \\
& =M_{K_{X}} \cap t_{1} \cdots t_{s} k(X)\left[t_{1}, \ldots, t_{s},\left\{t_{j}^{-1} \mid j \notin U\right\}\right] .
\end{aligned}
$$

We have completed the proof of Theorem 1.3.

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1993. MR 1251956.
[2] E. J. Elizondo, K. Kurano, and K.-i. Watanabe, The total coordinate ring of a normal projective variety, J. Algebra 276 (2004), 625-637. MR 2058459. DOI 10.1016/j. jalgebra.2003.07.007.
[3] S. Goto, K. Nishida, and Y. Shimoda, The Gorensteinness of symbolic Rees algebras for space curves, J. Math. Soc. Japan 43 (1991), 465-481. MR 1111598. DOI 10. 2969/jmsj/04330465.
[4] M. Hashimoto, "Equivariant twisted inverses" in Foundations of Grothendieck Duality for Diagrams of Schemes, Lecture Notes in Math. 1960, Springer, Berlin, 2009, 261-478. MR 2490558. DOI 10.1007/978-3-540-85420-3.
[5] M. Hashimoto and K. Kurano, The canonical module of a Cox ring, Kyoto J. Math. 51 (2011), 855-874. MR 2854155. DOI 10.1215/21562261-1424884.
[6] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331348. MR 1786494. DOI $10.1307 / \mathrm{mmj} / 1030132722$.
[7] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1986. MR 0879273.
[8] S. Mori, On affine cones associated with polarized varieties, Jpn. J. Math. (N.S.) 1 (1975), 301-309. MR 0439859.
[9] P. Samuel, Lectures on unique factorization domains, Tata Inst. Fund. Res. Stud. Math. 30, Tata Institute of Fundamental Research, Bombay, 1964. MR 0214579.
[10] Y. Shimoda, The class group of the Rees algebras over polynomial rings, Tokyo J. Math. 2 (1979), 129-132. MR 0541902. DOI 10.3836/tjm/1270473564.
[11] A. Simis and N. V. Trung, The divisor class group of ordinary and symbolic blow-ups, Math. Z. 198 (1988), 479-491. MR 0950579. DOI 10.1007/BF01162869.
[12] K.-i. Watanabe, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83 (1981), 203-211. MR 0632654.

Department of Mathematics
School of Science and Technology
Meiji University
Kawasaki 214-8571
Japan
kurano@isc.meiji.ac.jp

