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DIVISOR CLASS GROUPS AND GRADED CANONICAL
MODULES OF MULTISECTION RINGS

KAZUHIKO KURANO

Abstract. We describe the divisor class group and the graded canonical mod-
ule of the multisection ring T (X;D1, . . . ,Ds) for a normal projective variety

X and Weil divisors D1, . . . ,Ds on X under a mild condition. In the proof, we
use the theory of Krull domain and the equivariant twisted inverse functor.

§1. Introduction

We will describe the divisor class groups and the graded canonical mod-

ules of multisection rings associated with a normal projective variety.

Suppose that Z, N0, and N are the set of integers, nonnegative integers,

and positive integers, respectively.

Let X be a normal projective variety over a field k with the function field

k(X). We always assume that dimX > 0. We denote by C1(X) the set of

closed subvarieties of X of codimension 1. For V ∈ C1(X) and a ∈ k(X)×,
we define

ordV (a) = �OX,V
(OX,V /αOX,V )− �OX,V

(OX,V /βOX,V ),

divX(a) =
∑

V ∈C1(X)

ordV (a) · V ∈Div(X) =
⊕

V ∈C1(X)

Z · V,

where α and β are elements in OX,V such that a= α/β, and �OX,V
( ) denotes

the length as an OX,V -module.

We call an element in Div(X) aWeil divisor on X . For a Weil divisor

D =
∑

nV V , we say that D is effective, and we write D ≥ 0 if nV ≥ 0 for

any V ∈C1(X). For a Weil divisor D on X , we put

H0
(
X,OX(D)

)
=
{
a ∈ k(X)×

∣∣ divX(a) +D ≥ 0
}
∪ {0}.
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Here we note that H0(X,OX(D)) is a k-vector subspace of k(X).

Let D1, . . . ,Ds be Weil divisors on X . We define the multisection rings

T (X;D1, . . . ,Ds) and R(X;D1, . . . ,Ds) associated with D1, . . . ,Ds as fol-

lows:

T (X;D1, . . . ,Ds)

=
⊕

(n1,...,ns)∈Ns
0

H0
(
X,OX

(∑
i

niDi

))
tn1
1 · · · tns

s

⊂ k(X)[t1, . . . , ts]R(X;D1, . . . ,Ds)(1.1)

=
⊕

(n1,...,ns)∈Zs

H0
(
X,OX

(∑
i

niDi

))
tn1
1 · · · tns

s

⊂ k(X)[t±1
1 , . . . , t±1

s ].

We want to describe the divisor class groups and the graded canonical mod-

ules of the above rings.

For a Weil divisor F on X , we set

MF =
⊕

(n1,...,ns)∈Zs

H0
(
X,OX

(∑
i

niDi+F
))

tn1
1 · · · tns

s ⊂ k(X)[t±1
1 , . . . , t±1

s ];

that is, MF is a Zs-graded reflexive R(X;D1, . . . ,Ds)-module with

[MF ](n1,...,ns) =H0
(
X,OX

(∑
i

niDi + F
))

tn1
1 · · · tns

s .

We denote by MF the isomorphism class of the reflexive module MF in

Cl(R(X;D1, . . . ,Ds)).

For a normal variety X , we denote by Cl(X) the class group of X , and

for a Weil divisor F on X , we denote by F the residue class represented by

the Weil divisor F in Cl(X).

In the case where Cl(X) is freely generated by D1, . . . ,Ds, the ring

R(X;D1, . . . ,Ds) is usually called the Cox ring of X and is denoted by

Cox(X).

Remark 1.1. Assume that D is an ample divisor on X . In this case,

T (X;D) coincides with R(X;D), and it is a Noetherian normal domain

by a famous result of Zariski (see [6, Lemma 2.8]). It is well known that

Cl(T (X;D)) is isomorphic to Cl(X)/ZD. Mori in [8] constructed a lot of

examples of non-Cohen–Macaulay factorial domains using this isomorphism.
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It is well known that the canonical module of T (X;D) is isomorphic

to MKX
and that the canonical sheaf ωX coincides with M̃KX

. Watanabe

proved a more general result in [12, Theorem 2.8].

We want to establish the same type of the above results for multisection

rings.

For R(X;D1, . . . ,Ds), we had already proven the following.

Theorem 1.2 ([2, Theorem 1.1], [5, Theorem 1.2]). Let X be a normal

projective variety over a field such that dimX > 0. Assume that D1, . . . ,Ds

are Weil divisors on X such that ZD1+ · · ·+ZDs contains an ample Cartier

divisor. Then, we have the following.

(1) The ring R(X;D1, . . . ,Ds) is a Krull domain.

(2) The set {PV | V ∈C1(X)} coincides with the set of homogeneous prime

ideals of R(X;D1, . . . ,Ds) of height 1, where PV =M−V .

(3) We have an exact sequence

0−→
∑
i

ZDi −→Cl(X)
p−→Cl

(
R(X;D1, . . . ,Ds)

)
−→ 0

such that p(F ) =MF .

(4) Assume that R(X;D1, . . . ,Ds) is Noetherian. Then ωR(X;D1,...,Ds) is iso-

morphic to MKX
as a Zs-graded module. Therefore, ωR(X;D1,...,Ds) is

R(X;D1, . . . ,Ds)-free if and only if KX ∈
∑

iZDi in Cl(X).

Suppose that Cl(X) is a finitely generated free Z-module generated by

D1, . . . ,Ds. By the above theorem, the Cox ring Cox(X) is factorial, and

ωCox(X) =MKX
=Cox(X)(KX),

where we regard Cox(X) as a Cl(X)-graded ring.

The main result of this paper is the following.

Theorem 1.3. Let X be a normal projective variety over a field k such

that d = dimX > 0. Assume that D1, . . . ,Ds are Weil divisors on X such

that ND1 + · · ·+NDs contains an ample Cartier divisor. Put

U =
{
j
∣∣ tr.degk T (X;D1, . . . ,Dj−1,Dj+1, . . . ,Ds) = d+ s− 1

}
.

Then, we have the following.

(1) The ring T (X;D1, . . . ,Ds) is a Krull domain.
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(2) The set {
QV

∣∣ V ∈C1(X)
}
∪ {Qj | j ∈ U}

coincides with the set of homogeneous prime ideals of T (X;D1, . . . ,Ds)

of height 1, where

QV = PV ∩ T (X;D1, . . . ,Ds)

and

Qj =
⊕

n1,...,ns∈N0

nj>0

T (X;D1, . . . ,Ds)(n1,...,ns).

(3) We have an exact sequence

0−→
∑
j /∈U

ZDj −→Cl(X)
q−→Cl

(
T (X;D1, . . . ,Ds)

)
−→ 0

such that q(F ) =MF ∩ k(X)[t1, . . . , ts,{t−1
j | j /∈ U}].

(4) Assume that T (X;D1, . . . ,Ds) is Noetherian. Then ωT (X;D1,...,Ds) is iso-

morphic to

MKX
∩ t1 · · · tsk(X)

[
t1, . . . , ts,{t−1

j | j /∈ U}
]

as a Zs-graded module. Further, we have

q
(
KX +

∑
i

Di

)
= ωT (X;D1,...,Ds).

Therefore, ωT (X;D1,...,Ds) is T (X;D1, . . . ,Ds)-free if and only if

KX +
∑
i

Di ∈
∑
j /∈U

ZDj

in Cl(X).

Here, tr.degk T denotes the transcendence degree of the fractional field of

T over a field k.

Remark 1.4. With notation as in Theorem 1.3, ht(Qj) = 1 if and only if

j ∈ U . This will be proved in Lemma 3.3. Since ND1 + · · ·+NDs contains

an ample Cartier divisor, Qj �= (0) for any j. Therefore, ht(Qj)≥ 2 if and

only if j /∈ U .
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§2. Examples

Example 2.1. Let X be a normal projective variety with dimX > 0.

Assume that all Di are ample Cartier divisors on X . Then, T (X;D1, . . . ,Ds)

is Noetherian by a famous result of Zariski (see [6, Lemma 2.8]).

Assume that s = 1. By definition, U = ∅ since dimX > 0. By Theo-

rem 1.3(3), Cl(T (X;D1)) is isomorphic to Cl(X)/ZD1. By Theorem 1.3(4),

ωT (X;D1) is a T (X;D1)-free module if and only if

KX ∈ ZD1

in Cl(X) (see Remark 1.1).

Next, assume that s ≥ 2. In this case, U = {1,2, . . . , s}. By Theorem

1.3(3), Cl(X) is isomorphic to Cl(T (X;D1, . . . ,Ds)). By Theorem 1.3(4),

ωT (X;D1,...,Ds) is a T (X;D1, . . . ,Ds)-free module if and only if

KX =−D1 − · · · −Ds

in Cl(X). When this is the case, −KX is ample; that is, X is a Fano variety.

Example 2.2. Set X = Pm × Pn. Let p1 (resp., p2) be the first (resp.,

second) projection.

Let H1 be a hyperplane of Pm, and let H2 be a hyperplane of Pn. Put

Ai = p−1
i (Hi) for i= 1,2. In this case, Cl(X) = ZA1+ZA2 
 Z2, and KX =

−(m+ 1)A1 − (n+ 1)A2.

We have

Cox(X) =R(X;A1,A2) = k[x0, x1, . . . , xm, y0, y1, . . . , yn].

Cox(X) is a Z2-graded ring such that xi (resp., yj) are of degree (1,0) (resp.,

(0,1)).

Let a, b, c, d be positive integers such that ad− bc �= 0. Put D1 = aA1 +

bA2, and put D2 = cA1 + dA2. Then, both D1 and D2 are ample divisors.

Consider the multisection rings

R(X;D1,D2) =
⊕
p,q∈Z

Cox(X)p(a,b)+q(c,d),

T (X;D1,D2) =
⊕
p,q≥0

Cox(X)p(a,b)+q(c,d).

Here, both R(X;D1,D2) and T (X;D1,D2) are Cohen–Macaulay rings.
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By Theorem 1.2(4), we know that

R(X;D1,D2) is a Gorenstein ring⇐⇒KX ∈ ZD1 +ZD2 in Cl(X)

⇐⇒ (m+ 1, n+ 1) ∈ Z(a, b) +Z(c, d).

In this case, we have U = {1,2} since all of a, b, c, and d are positive. By

Theorem 1.3(4), we have

T (X;D1,D2) is a Gorenstein ring⇐⇒KX +D1 +D2 = 0 in Cl(X)

⇐⇒m+ 1= a+ c and n+ 1= b+ d.

Example 2.3. Let a, b, c be pairwise coprime positive integers. Let p

be the kernel of the k-algebra map S = k[x, y, z]→ k[T ] given by x → T a,

y → T b, z → T c.

Let π :X → P=Proj(k[x, y, z]) be the blowup at V+(p), where a= deg(x),

b= deg(y), c= deg(z). Put E = π−1(V+(p)). Let A be a Weil divisor on X

satisfying π∗OP(1) =OX(A). In this case, we have Cl(X) = ZE +ZA
 Z2,

and KX =E − (a+ b+ c)A.

Then, we have

Cox(X) =R(X;−E,A) =R′
s(p) := S[t−1,pt,p(2)t2,p(3)t3, . . .]⊂ S[t±1],

T (X;−E,A) =Rs(p) := S[pt,p(2)t2,p(3)t3, . . .]⊂ S[t].

By Theorem 1.2(4), we have

ωR′
s(p)

=MKX
=R′

s(p)(KX) =R′
s(p)(−1,−a− b− c).

In this case, U = {1}. By Theorem 1.3(4), we have

ωRs(p) =MKX
∩ t1t2k(X)[t1, t

±1
2 ]

= ωR′
s(p)

∩ t1t2k(X)[t1, t
±1
2 ]

=R′
s(p)(−1,−a− b− c)∩ t1t2k(X)[t1, t

±1
2 ]

=Rs(p)(−1,−a− b− c).

Therefore, both of R′
s(p) and Rs(p) are quasi-Gorenstein rings that were first

proved by Simis and Trung [11, Corollary 3.4]. The Cohen–Macaulayness of

such rings are deeply studied by Goto, Nishida, and Shimoda [3].

Divisor class groups of ordinary and symbolic Rees rings were studied by,

for example, Shimoda [10] and Simis and Trung [11].
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§3. Proof of Theorem 1.3

Throughout this section, we assume that X is a normal projective variety

over a field k such that d= dimX > 0, and we assume that D1, . . . ,Ds are

Weil divisors on X such that ND1 + · · ·+ NDs contains an ample Cartier

divisor.

We need the following lemmas. They are well known, but the author could

not find a reference.

Lemma 3.1. Let G be an integral domain containing a field k. Let P be

a prime ideal of G. Assume that both tr.degkG and tr.degkG/P are finite.

Then, the height of P is less than or equal to

tr.degkG− tr.degkG/P.

Proof. Assume the contrary. Then there exists a ring G′ which satisfies

the following five conditions:

• k ⊂G′ ⊂G;

• G′ is finitely generated (as a ring) over k;

• tr.degkG= tr.degkG
′;

• tr.degkG/P = tr.degkG
′/(G′ ∩ P ); and

• tr.degkG− tr.degkG/P < ht(G′ ∩ P ).

However, using the dimension formula (e.g., [7, p. 119]), we have

ht(G′ ∩ P ) = tr.degkG
′ − tr.degkG

′/(G′ ∩ P ) = tr.degkG− tr.degkG/P.

This is a contradiction.

Lemma 3.2. Let r be a positive integer. Let F1, . . . , Fr be Weil divisors

on X. Let S be the set of all nonzero homogeneous elements of T (X;F1, . . . ,

Fr). Then the following conditions are equivalent.

(1) There exist nonnegative integers q1, . . . , qr such that
∑r

i=1 qiFi is lin-

early equivalent to a sum of an ample Cartier divisor and an effective

Weil divisor.

(2) There exist positive integers q1, . . . , qr such that
∑r

i=1 qiFi is linearly

equivalent to a sum of an ample Cartier divisor and an effective Weil

divisor.

(3) We have S−1(T (X;F1, . . . , Fr)) = k(X)[t±1
1 , . . . , t±1

r ].

(4) We have Q(T (X;F1, . . . , Fr)) = k(X)(t1, . . . , tr), where Q( ) denotes the

field of fractions.

(5) We have tr.degk T (X;F1, . . . , Fr) = dimX + r.
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Using [1, Theorem 1.5.5], it is easy to see that T (X;F1, . . . , Fr) is Noether-

ian if and only if T (X;F1, . . . , Fr) is finitely generated (as a ring) over the

field H0(X,OX). Therefore, if T (X;F1, . . . , Fr) is Noetherian, then condi-

tion (5) is equivalent to stating that the Krull dimension of T (X;F1, . . . , Fr)

is dimX + r.

Proof. Here (2)⇒ (1), and (3)⇒ (4)⇒ (5) are trivial.

First we will prove that (1)⇒ (3). Suppose that

r∑
i=1

qiFi ∼D+ F,

where qi are nonnegative integers, D is a very ample Cartier divisor, and F

is an effective divisor. We put

C =
⊕
m∈Z

⊕
(n1,...,nr)∈Nr

0

H0
(
X,OX

(∑
i

niFi +mD
))

tn1
1 · · · tnr

r tmr+1

(3.1)
⊂ k(X)[t1, . . . , tr, t

±1
r+1].

We regard C as a Zr+1-graded ring with

C(n1,...,nr ,m) =H0
(
X,OX

(∑
i

niFi +mD
))

tn1
1 · · · tnr

r tmr+1.

Then, we have

T (X;F1, . . . , Fr) =
⊕

(n1,...,nr)∈Nr
0

C(n1,...,nr,0),

so T (X;F1, . . . , Fr) is a subring of C. Thus, S−1C is a Zr+1-graded ring

such that

S−1T (X;F1, . . . , Fr) =
⊕

(n1,...,nr)∈Nr
0

(S−1C)(n1,...,nr ,0).

Since
∑r

i=1 qiFi −D is linearly equivalent to an effective divisor F , there

exists a nonzero element a in

H0
(
X,OX

(∑
i

qiFi −D
))

.
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For any 0 �= b ∈H0(X,OX(D)),

(atq11 · · · tqrr t−1
r+1)(btr+1)

is contained in S. Therefore, S−1C contains (btr+1)
−1. Hence, k(X) is con-

tained in S−1C. Since k(X) = (S−1C)(0,...,0), k(X) is contained in S−1T (X;

F1, . . . , Fr).

By assumption (1), there exists a positive integer � such that

(S−1C)(�q1,...,�qr,0) �= 0

and

(S−1C)(�q1+1,�q2,...,�qr,0) �= 0.

Then, it is easy to see that t1 ∈ S−1C. Therefore, S−1C contains k(X)[t±1
1 ,

. . . , t±1
r ]. Hence, S−1T (X;F1, . . . , Fr) coincides with k(X)[t±1 , . . . , t

±
r ].

Next, we will prove (5)⇒ (2). Let D be a very ample divisor. Consider

the ring

R(X;F1, . . . , Fr,D).

First, assume that

H0
(
X,OX

(∑
i

uiFi − vD
))

�= 0

for some integers u1, . . . , ur, v such that v > 0. By assumption (5), there

exist positive integers u′1, . . . , u
′
r such that

H0
(
X,OX

(∑
i

u′iFi

))
�= 0.

Therefore, we may assume that there exist positive integers u1, . . . , ur and

v such that

H0
(
X,OX

(∑
i

uiFi − vD
))

�= 0.

Here, we have ∑
i

uiFi = vD+
(∑

i

uiFi − vD
)
.

Therefore,
∑

i uiFi is the sum of an ample divisor vD and the divisor∑
i uiFi − vD, which is linearly equivalent to an effective divisor.
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Next, assume that for any integers u1, . . . , ur and v,

(3.2) H0
(
X,OX

(∑
i

uiFi − vD
))

= 0

if v > 0. We put

P =
⊕

(n1,...,nr,m)∈Zr+1

m>0

R(X;F1, . . . , Fr,D)(n1,...,nr,m).

By assumption (5), P is a prime ideal of R(X;F1, . . . , Fr,D) of height 1 by

Lemma 3.1. (Here, sinceD is an ample divisor, tr.degkR(X;F1, . . . , Fr,D) =

dimX+ r+1. Note that P is an ideal of R(X;F1, . . . , Fr,D) by (3.2) above.

By (5), tr.degkR(X;F1, . . . , Fr,D)/P = dimX + r.) However, R(X;F1, . . . ,

Fr,D) has no homogeneous prime ideal of height 1 that contains

H0
(
X,OX(D)

)
tr+1

by Theorem 1.2(2). This is a contradiction.

Put A= k(X)[t±1
1 , . . . , t±1

s ], and put B = k(X)[t1, . . . , ts]. Recall that D1,

. . . ,Ds are Weil divisors on a normal projective variety X such that ND1+

· · ·+ NDs contains an ample Cartier divisor. We denote T (X;D1, . . . ,Ds)

and R(X;D1, . . . ,Ds) simply by T and R, respectively.

Since

T =R ∩B,

T is a Krull domain. We have proved Theorem 1.3(1).

By Theorem 1.2(2), we have

R=
( ⋂
V ∈C1(X)

RPV

)
∩A,

A=
⋂

P∈NHP1(R)

RP ,

where NHP1(R) is the set of nonhomogeneous prime ideals of R of height 1.

It is easy to see that RP = TP∩T for P ∈NHP1(R). Therefore, we have

A=
⋂

P∈NHP1(R)

TP∩T .

Since TP∩T is a discrete valuation ring, P ∩ T is a nonhomogeneous prime

ideal of T of height 1.
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For V ∈C1(X), put QV = PV ∩T . Then, RPV
= TQV

, since
∑

iNDi con-

tains an ample divisor. Therefore, QV is a homogeneous prime ideal of T of

height 1.

On the other hand, we have Qi = T ∩ tiB(ti) and TQi ⊂B(ti). Note that

B =A∩
( s⋂
j=1

B(tj)

)
.

Then, we have

T =R ∩B

=
( ⋂
V ∈C1(X)

RPV

)
∩A∩B(3.3)

=
( ⋂
V ∈C1(X)

TQV

)
∩
( ⋂

P∈NHP1(R)

TP∩T
)
∩
( s⋂
j=1

B(tj)

)
.

Put

Tj =
⊕

(n1,...,nj−1,nj+1,...,ns)∈Ns−1
0

H0
(
X,OX

(∑
i �=j

niDi

))
tn1
1 · · · tnj−1

j−1 t
nj+1

j+1 · · · tns
s .

We need the following lemma.

Lemma 3.3. With notation as above, the following conditions are equiv-

alent:

(1) TQj =B(tj);

(2) the height of Qj is 1;

(3) the height of Qj is less than 2; and

(4) j ∈ U , that is, tr.degk Tj = d+ s− 1.

Proof. By Lemma 3.2, we have Q(T ) =Q(B). It is easy to see that B(tj)

is a discrete valuation ring. Since Qj is a nonzero prime ideal of a Krull

domain T , the equivalence of (1), (2), and (3) is easy to see.

Here, we will prove (1)⇒ (4). Note that T/Qj = Tj . Then, we have

Q(Tj) = TQj/QjTQj =B(ti)/(ti)B(ti) = k(X)(t1, . . . , tj−1, tj+1, . . . , ts).

The implication that (4)⇒ (3) immediately follows from

ht(Qj)≤ tr.degk T − tr.degk(Tj) = 1.

This inequality follows from Lemma 3.1 and from the fact that Tj = T/Qj .
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By (3.3), Lemma 3.3, and [7, Theorem 12.3], we know that

{
QV

∣∣ V ∈C1(X)
}
∪ {Qj | j ∈ U}

is the set of homogeneous prime ideals of T of height 1, and that

{
P ∩ T

∣∣ P ∈NHP1(R)
}

is the set of nonhomogeneous prime ideals of T of height 1. Further, we

obtain

T =
( ⋂
V ∈C1(X)

TQV

)
∩
( ⋂

P∈NHP1(R)

TP∩T
)
∩
(⋂
j∈U

TQj

)
.

The proof of Theorem 1.3(2) is completed.

Let

Div(X) =
⊕

V ∈C1(X)

Z · V

be the set of Weil divisors on X . Let

HDiv(T ) =
( ⊕
V ∈C1(X)

Z · Spec(T/QV )
)
⊕
(⊕
j∈U

Z · Spec(T/Qj)
)

be the set of homogeneous Weil divisors of Spec(T ).

Here, we define

φ : Div(X)−→HDiv(T )

by φ(V ) = Spec(T/QV ) for each V ∈C1(X). Then, it satisfies the following.

• For each a ∈ k(X)×, we have

φ
(
divX(a)

)
= divT (a) ∈

⊕
V ∈C1(X)

Z · Spec(T/QV )⊂HDiv(T ).

• If j ∈ U , then

divT (tj) = Spec(T/Qj) + φ(Dj).

• If j /∈ U , then

divT (tj) = φ(Dj).
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They are proven essentially in the same way as in [2, pp. 631–632]. Then,

we have an exact sequence

0−→
∑
j /∈U

ZDj −→Cl(X)
q−→Cl(T )−→ 0

such that q(F ) = φ(F ) in Cl(T ). Here, remember that Cl(T ) coincides with

HDiv(T ) divided by the group of homogeneous principal divisors (see, e.g.,

[9, Proposition 7.1]).

It is easy to see that the class of the Weil divisor q(F ) corresponds to the

isomorphism class of the reflexive module

MF ∩
(⋂
j∈U

TQj

)
=MF ∩A∩

(⋂
j∈U

TQj

)

=MF ∩ k(X)
[
t1, . . . , ts,{t−1

j | j /∈ U}
]
.

The proof of Theorem 1.3(3) is completed.

Remark 3.4. It is easy to see that

td11 · · · tdss MF+
∑

i diDi
=MF

for any integers d1, . . . , ds. Therefore, we have

MF ∩ td11 · · · tdss k(X)
[
t1, . . . , ts,{t−1

j | j /∈ U}
]

= td11 · · · tdss
(
MF+

∑
i diDi

∩ k(X)
[
t1, . . . , ts,{t−1

j | j /∈ U}
])
.

Hence,

MF ∩ td11 · · · tdss k(X)
[
t1, . . . , ts,{t−1

j | j /∈ U}
]

is isomorphic to

(3.4) MF+
∑

i diDi
∩ k(X)

[
t1, . . . , ts,{t−1

j | j /∈ U}
]

as a T -module. Note that this is not an isomorphism as a Zs-graded mod-

ule. The isomorphism class to which module (3.4) belongs coincides with

q(F +
∑

i diDi).

In the rest, we assume that T is Noetherian. We will prove that ωT is

isomorphic to

MKX
∩ t1 · · · tsk(X)

[
t1, . . . , ts,{t−1

j | j /∈ U}
]
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as a Zs-graded module. (Suppose that it is true. If we forget the grading, it

is isomorphic to

MKX+
∑

iDi
∩ k(X)

[
t1, . . . , ts,{t−1

j | j /∈ U}
]

by Remark 3.4, that is, corresponding to q(KX +
∑

iDi) in Cl(T ). There-

fore, we know that ωT is T -free if and only if

KX +
∑
i

Di ∈
∑
j /∈U

ZDj

in Cl(X).)

Put X ′ =X \Sing(X). We choose positive integers a1, . . . , as and sections

f1, . . . , ft ∈H0(X,
∑

i aiDi) such that

•
∑

i aiDi is an ample Cartier divisor,

• X ′ =
⋃

kD+(fk), and

• all of the Di are principal Cartier divisors on D+(fk) for k = 1, . . . , t.

Put W = {n ∈ Zs | ni ≥ 0 if i ∈ U}. Put D′
i =Di|X′ for i= 1, . . . , s. Con-

sider the morphism

Y = SpecX′

(⊕
n∈W

OX′

(∑
i

niD
′
i

)
tn1
1 · · · tns

s

)
π−→X ′.

Further, we have the natural map

ξ : Y −→ Spec(T ).

The group Gs
m naturally acts on Spec(T ) and Y and trivially acts on X ′.

Both π and ξ are equivariant morphisms.

Claim 3.5. There exists an equivariant open subscheme Z of both Y and

Spec(T ) such that

• the codimension of Y \Z in Y is greater than or equal to 2, and

• the codimension of Spec(T ) \Z in Spec(T ) is greater than or equal to 2.

Proof. For u ∈ U , there exist integers c1u, . . . , csu such that

• H0(X,OX(
∑

i ciuDi)) �= 0,

• cuu =−au, and

• ciu > 0 if i �= u.
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In fact, if u ∈ U , there exist positive integers q1, . . . , qu−1, qu+1, . . . , qs such

that ∑
i �=u

qiDi

is a sum of an ample divisor D and a Weil divisor F , which is linearly

equivalent to an effective divisor by Lemma 3.2. Then,

H0
(
X,OX

(
q
(∑
i �=u

qiDi

)
− auDu

))
=H0

(
X,OX

(
q(D+ F )− auDu

))
�= 0

for q� 0.

For each u ∈ U , we set

(b1u, . . . , bsu) = (c1u, . . . , csu) + (a1, . . . , as).

Here, note that buu = 0 and biu > 0 if i �= u.

We choose

0 �= gu ∈H0
(
X,OX

(∑
i

ciuDi

))

for each u ∈ U .

Consider the closed set of Spec(T ) defined by the ideal J generated by

{fkta11 · · · tass | k = 1, . . . , t}

and

{gufktb1u1 · · · tbsus | k = 1, . . . , t;u ∈ U}.
By Theorem 1.3(2), we know that the height of J is greater than or equal

to 2 since there is no prime ideal of T of height 1 which contains J .

We choose dki ∈ k(X)× satisfying

H0
(
D+(fk),OX(Di)

)
= dkiH

0
(
D+(fk),OX

)

for each k and i. Then

(3.5) Y =

t⋃
k=1

π−1
(
D+(fk)

)
and π−1

(
D+(fk)

)
= Spec(Ck),

where

Ck =H0
(
D+(fk),OX

)[
dk1t1, . . . , dksts,

{
(dkjtj)

−1
∣∣ j /∈ U

}]
.

We put

Z = Spec(T ) \ V (J).
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Then we have

Z =

t⋃
k=1

[
Spec

(
T
[
(fkt

a1
1 · · · tass )−1

])

(3.6)

∪
{⋃
u∈U

Spec
(
T
[
(gufkt

b1u
1 · · · tbsus )−1

])}]
.

Here, we have

T
[
(fkt

a1
1 · · · tass )−1

]
=H0

(
D+(fk),OX

)[
(dk1t1)

±1, . . . , (dksts)
±1

]
(3.7)

= Ck

[(∏
j∈U

(dkjtj)
)−1]

.

On the other hand,

T
[
(gufkt

b1u
1 · · · tbsus )−1

]

=
⊕

(n)∈Zs

T
[
(gufkt

b1u
1 · · · tbsus )−1

]
(n1,...,ns)

=
⊕

(n)∈Zs

nu≥0

R
[
(gufkt

b1u
1 · · · tbsus )−1

]
(n1,...,ns)

=
⊕

(n)∈Zs

nu≥0

R
[
(fkt

a1
1 · · · tass )−1, (gufkt

b1u
1 · · · tbsus )−1

]
(n1,...,ns)

=Ck

[{
(dkjtj)

−1
∣∣ j �= u

}
, (gufkt

b1u
1 · · · tbsus )−1

]
.

Let βku be an element in H0(D+(fk),OX) such that

gufkt
b1u
1 · · · tbsus = βku(dk1t1)

b1u · · · (dksts)bsu

for k = 1, . . . , t and u ∈ U . Then,

Ck

[{
(dkjtj)

−1
∣∣ j �= u

}
, (gufkt

b1u
1 · · · tbsus )−1

]
(3.8)

=Ck

[(
βku

∏
j∈U
j �=u

(dkjtj)
)−1]

.
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By (3.5), (3.6), (3.7), and (3.8), we know that Z is an open subscheme

of Y . The ideal of Ck generated by

∏
j∈U

(dkjtj) and
{
βku

∏
j∈U
j �=u

(dkjtj)
∣∣∣ u ∈ U

}

is the unit ideal or of height 2. (If U = ∅, then Z = Y by the construction.

If U = {u} and if βku is a unit element, then this ideal is the unit. In other

cases, this ideal is of height 2.) Therefore, the codimension of Y \Z in Y is

greater than or equal to two.

We can define the graded canonical module as in [5, Definition 3.1] using

the theory of the equivariant twisted inverse functor (see [4]).

By Claim 3.5 above and [5, Remark 3.2], we have ωT =H0(Y,ωY ). On

the other hand, we have

ωY =

s∧
ΩY/X′ ⊗ π∗OX′(KX′)

= π∗OX′

(∑
i

D′
i

)
(−1, . . . ,−1)⊗OY

π∗OX′(KX′)

= π∗OX′

(∑
i

D′
i +KX′

)
(−1, . . . ,−1),

where (−1, . . . ,−1) denotes the shift of degree (see [4, Theorem 28.11]).

Then, we have

H0(Y,ωY ) =H0
(
X ′, π∗π

∗OX′

(∑
i

D′
i +KX′

)
(−1, . . . ,−1)

)
.

By the projection formula (see [4, Lemma 26.4]),

π∗π
∗OX′

(∑
i

D′
i +KX′

)
(−1, . . . ,−1)

=
(
OX′

(∑
i

D′
i +KX′

)
⊗ π∗OY

)
(−1, . . . ,−1)

=
(
OX′

(∑
i

D′
i +KX′

)
⊗
[⊕
n∈W

OX′

(∑
i

niD
′
i

)])
(−1, . . . ,−1)
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=
(⊕
n∈W

OX′

(∑
i

(ni + 1)D′
i +KX′

))
(−1, . . . ,−1)

=
⊕

n∈W+(1,...,1)

OX′

(∑
i

niD
′
i +KX′

)
.

Therefore, we have

H0(Y,ωY ) =H0
(
X ′,

⊕
n∈W+(1,...,1)

OX′

(∑
i

niD
′
i +KX′

))

=
⊕

n∈W+(1,...,1)

H0
(
X ′,OX′

(∑
i

niD
′
i +KX′

))

=
⊕

n∈W+(1,...,1)

H0
(
X,OX

(∑
i

niDi +KX

))

=MKX
∩ t1 · · · tsk(X)

[
t1, . . . , ts,{t−1

j | j /∈ U}
]
.

We have completed the proof of Theorem 1.3.
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