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DIVISORIAL ZARISKI DECOMPOSITIONS
ON COMPACT COMPLEX MANIFOLDS

By SEBASTIEN BOUCKSOM

ABSTRACT. — Using currents with minimal singularities, we introduce pointwise minimal multiplicities
for a real pseudo-effectivél, 1)-cohomology classx on a compact complex manifold, which are the
local obstructions to the numerical effectivity af The negative part of is then defined as the real
effective divisor N(a)) whose multiplicity along a prime divisab is just the generic multiplicity ofx
along D, and we get in that way a divisorial Zariski decompositionaointo the sum of a clasf(«)
which is nef in codimensioft and the class of its negative pavt(«), which is an exceptional divisor in
the sense that it is very rigidly embeddedXh The positive partsZ(«) generate a modified nef cone,
and the pseudo-effective cone is shown to be locally polyhedral away from the modified nef cone, with
extremal rays generated by exceptional divisors. We then treat the case of a surface and a hyper-Kéhler
manifold in some detail. Using the intersection form (respectively the Beauville-Bogomolov form), we
characterize the modified nef cone and the exceptional divisors. The divisorial Zariski decomposition is
orthogonal, and is thus a rational decomposition, which fact accounts for the usual existence statement
of a Zariski decomposition on a projective surface, which is thus extended to the hyper-Kéhler case.
Finally, we explain how the divisorial Zariski decomposition of (the first Chern class of) a big line bundle
on a projective manifold can be characterized in terms of the asymptotics of the linear|sé&iiess
k — oo.
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RESUME. — En utilisant des courants a singularités minimales, nous introduisons les multiplicités
minimales ponctuelles d'unél, 1)-classe de cohomologie pseudoeffectivesur une variété complexe
compacteX, qui sont les obstructions locales a I'effectivité numériquexdéa partie négative de est
alors définie comme le diviseur effectif réel dont la multiplicité le long d'un diviseur pretiarest
autre que la multiplicité minimale générique dele long de D, et nous obtenons de cette maniére une
décomposition de Zariski divisorielle deen la somme d'une class&«) qui est nef en codimensiahet
de la classe de sa partie négatiVéx), qui est un diviseur exceptionnel au sens ou il est plongé de maniere
trés rigide dansX. Les parties positive& («) engendrent un cone nef modifé, et nous montrons que le cone
pseudoeffectif est localement polyhédral en dehors du cone nef modifié, de rayons extrémaux engendrés par
les diviseurs exceptionnels. Nous traitons ensuite le cas d’une surface et d'une variété hyperkahlerienne
en détail. A l'aide de la forme d'intersection (respectively la forme de Beauville—Bogomolov), nous
caractérisons le cone nef modifié et les diviseurs exceptionnels. La décomposition de Zariski divisorielle est
orthogonale, et donc rationnelle, ce qui explique le résultat d’existence connu pour les surfaces projectives,
que nous étendons ainsi au cas hyperkahlérien. Finalement, nous expliquons comment la décomposition de
Zariski divisorielle (de la premiere classe de Chern) d'un fibré en droites gros sur une variété projective
peut étre caractérisée en terme du comportement asymptotique des systemes|lkigdoesquek — co.
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46 S. BOUCKSOM
1. Introduction

It is known since the pioneering work of O. Zariski [19] that the study of the ring

R(X,D):= @HO (X,0(kD)),
k>0

where D is an effective divisor on a projective surfadge can be reduced to the case where
D is numerically effective (nef). The more precise result obtained by Zariski is that any
effective Q-divisor D on a projective surfacé&X can be uniquely decomposed into a sum
D = P + N where P is a nefQ-divisor (the positive part)N = > a;D, is an effective
Q-divisor (the negative part) such that the Gram matdx - D;) is negative definite, an#®

is orthogonal taV with respect to the intersection form. Zariski shows that the natural inclusion
H°(kP) — H°(kD) is necessarily an isomorphism in that case, relating the decomposition to
the original problem.

The proof of the uniqueness in this decomposition shows that the negativé paly depends
onthe clas§ D} of D in the Néron—Severi groujS (X ), so tha{ D} — { P} yields a map from
part of the pseudo-effective cone to the nef cone, which we want to study geometrically.

Building upon the construction by J.-P. Demailly of metrics with minimal singularities on a
pseudo-effective line bundl& over a compact complex manifold, we introduce the minimal
multiplicity v(«,x) of an arbitrary real pseudo-effectiyé, 1)-classa on a compact complex
manifold X at some point: € X. This multiplicity v(«, z) is the local obstruction at to the
numerical effectivity ofa. The set of points € X at whichv(a, x) is positive is a countable
union of closed analytic subsets which we call the non-nef locus tifturns out that this non-
nef locus contains only finitely many prime divisors (Theorem 3.14), and the divisorial Zariski
decomposition o is then obtained by subtracting framthe divisorial part of its non-neflocus,
counting multiplicities. More precisely, we define the negative part of such aelagssetting
N(a) => v(a, D)D, whereD ranges over the prime divisors &f andv(«, D) is the generic
multiplicity of « along D (cf. Section 3). This negative palN(«) is an effectiveR-divisor
which is exceptional in the sense that it is very rigidly imbedded irFor instance, wheX is
a surface, the divisors we obtain in that way are exactly the effeRigivisors whose support
D, ..., D, has negative definite Gram mat(ik; - D).

The differenceZ(a) := o« — {N(«)} is a real pseudo-effectivd, 1)-class onX which we
call the Zariski projection of. It is not a nef class, but is somehow nef in codimengign the
sense that its non-nef locus does not contain any prime divisor. The set of such classes is a closed
convex cone which we call the modified nef cone. The decompositier” («) + { N(«)} we
call the divisorial Zariski decomposition of, and it is just induced by the Siu decomposition of
a closed positive current with minimal singularitiesdanwhen the latter is big. For such a big
class, we give a criterion to recognize a decompositicap + { N} into a modified nef and
big class and the class of an effective real divisor as the divisorial Zariski decompositiomof
terms of the non-Ké&hler locus gf(cf. Section 3.5).

The geometric picture is now as follows: the pseudo-effective cone of a compact complex
manifold X is locally polyhedral away from the modified nef cone, with extremal rays that
write R {D} for some exceptional prim® of X. The Zariski projectior? yields a projection
from the pseudo-effective cone to the modified nef cone parallel to these exceptional rays, which
map is concave (in some sense) and homogeneous, but not continuous up to the boundary of
the pseudo-effective cone in general. The filgre! (p) of Z above a modified nef clagsis a
countable union of simplicial cones generated by exceptional families of primes.
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DIVISORIAL ZARISKI DECOMPOSITIONS 47

WhenX is a surface, a modified nef class is just a nef class; whisrthe class of an effective
Q-divisor D on a projective surface, the divisorial Zariski decomposition &f just the original
Zariski decomposition ofb. More generally, we show that the divisorial decomposition of a
pseudo-effective clagson a Kahler surface is the unique orthogonal decompositianiato the
sum of a modified nef class and the class of an exceptional (in some sense) eledivisor.

This fact accounts for the rationality of the Zariski decomposition on a surface, meaning that the
negative parfV(«) is rational whenu is.

An interesting fact is that much of the well-known case of a surface carries on to the case
whereX is a compact hyper-Kahler manifold. Using the quadratic Beauville—Bogomolov form
on HY1(X,R) and deep results due to D. Huybrechts, we can prove the following facts:
a family of primes is exceptional in our sense iff the corresponding Gram matrix is negative
definite. In particular, a prime is exceptional iff it has negative square, and this forces it to
be uniruled (Proposition 4.7). The modified nef cone of a hyper-Kahler manifold is just the
dual cone to the pseudoeffective cone, which is also the closure of the so-called birational
(or bimeromorphic) Kahler cone. Finally, the divisorial Zariski decomposition is the unique
orthogonal decomposition into the sum of a modified nef class and an exceptional divisor. In
particular, the divisorial Zariski decomposition is also rational in that case.

In a last part, we explain how to tackle the above constructions in a more algebraic fashion.
When L is a big R-divisor on a projective manifold, we prove that the divisorial Zariski
projection of L is the only decompositioh = P + N into real divisors withP modified nef
andHO(|kP|) = H°(|kL]) for everyk. The minimal multiplicities of L} (and thus its negative
part) can be recovered from the asymptotic behaviour of the sectidris @he case of a general
pseudo-effective line bundlgis then handled by approximating it By+ ¢ A, whereA is ample.

Shortly after this paper was completed, we have been informed by R. Lazarsfeld of an
unpublished work of N. Nakayama [16] in which (among other things) the algebraic version of
our constructions is studied in detail, in the case of a pseudo-eff@tidiwisor on a projective
manifold. Following the advice of the referee, we have included as an appendix a brief summary
of some aspects of [16] which may prove interesting in the perspective of the present work.

2. Technical preliminaries
2.1. 09-cohomology

When X is an arbitrary complex manifold, thi#)-lemma of Kéahler geometry does not hold,
and it is thus better to work witl#9-cohomology. We will just need thél, 1)-cohomology
spaceH(;’g1 (X, C), which is defined as the quotient of the spacéd-afosed smootfi1, 1)-forms

modulo thedd-exact ones. The real structure on the space of forms induces a real structure on
H_2(X,C), and we denote bj7, > (X, R) the space of real points.
The canonical map fronﬁ{;"g1 (X, C) to the quotient of the space dfclosed(1,1)-currents

modulo thedd-exact ones is injective (because, for any dedrearrentf, 99 f is smooth iff
f is), and is also surjective: given a closgid 1)-current’, one can find a locally finite open
coveringU; of X such thafl’ = 99f; is d9-exact onU;. If p; is a partition of unity associated
toUjandf:=3_p;f;, thenT — 00f is smooth. Indeed, obi;, itis justdd }_, p;(fi — f;), and
eachf; — f; is smooth since itis even pluri-harmonic. As a consequence, acckasﬂég (X,C)
can be seen as an affine space of cloged)-currents. We denote byI'} € H;g (X,C) the
class of the currenf’. Remark thato is a real operator (on forms or currents), so thaf'if
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48 S. BOUCKSOM

is a real closed1, 1)-current, its clas{7T} lies in H;g (X,R) and consists of all the closed

currentsT” + id0p wherey is a real current of degree
When X is furthermore compact, it can be shown tlﬁ%%l (X, C) is finite dimensional. The

operatordd from smooth functions to smooth closed (1,1)-forms is thus an operator between
Fréchet spaces with finite codimensional range; it therefore has closed range, and the quotient
map# — {6} from smooth closedl, 1)-forms tng"_1 (X, C) endowed with its unique finite-
dimensional complex vector space Hausdorff topo?ogy is thus continuous and open.

2.2. General facts about currents

2.2.1. Siu decomposition

Let T be a closed positive current of bidegr@ep) on a complexn-fold X. We denote
by v(T,z) its Lelong number at a point € X. The Lelong super-level sets are defined by
E (T):={z € X,v(T,x) > ¢} for ¢ > 0, and a well known result of Y.T. Siu [18] asserts that
E.(T) is an analytic subset of, of codimension at leagt As a consequence, for any analytic
subsett” of X, the generic Lelong number @f alongY’, defined by

v(T,Y) :=inf{v(T,z), z €Y},

is also equal ta/(T, z) for a very generak € Y. It is also true that, for any irreducible analytic
subsett” of codimension in X, the currenf” — v(T',Y")[Y] is positive. The symbdl’] denotes
the integration current oft”, which is defined by integrating test forms on the smooth locus
of Y. Since By (T) := .-, Ec(T) is a countable union gf-codimensional analytic subsets,
it contains an at most countable famity; of p-codimensional irreducible analytic subsets. By
what we have said] — v(T,Y1)[Y1] —--- — v(T, Y%)[Yx] is a positive current for alt, thus the
seriesy -, v(T',Yy)[Y)] converges, and we have

T=R+Y v(T,Y;)[Vi]
k

for some closed positivép, p)-current R such that eactE.(R) has codimension- p. The
decomposition above is called the Siu decomposition of the closed pogitive-currentT.
Sincev(T,Y) =0 if Y is a p-codimensional subvariety not contained iy ('), it makes
sense to writey_, v(T,Y%)[Yi] = > v(T,Y)[Y], where the sum is implicitely extended over
all p-codimensional irreducible analytic subs&ts” X .

2.2.2. Almost positive currents

Areal (1,1)-currentT on a complex manifold¥ is said to be almost positive I > ~ holds
for some smooth redll, 1)-form +. Let T > v be a closed almost positi@, 1)-current. On
a small enough open sét with coordinates: = (z1, ..., z,), we write T = 90¢ wherey is a
degreed current. Sincey + Ci00|z|? is a positive(1, 1)-form on U for C' > 0 big enough, we
get thatidd(p + C|z|?) is positive, which means that+ C|z|? is (the current associated to) a
(unique) pluri-subharmonic function dn. A locally integrable functiorp on X such thatddy
is almost positive is called an almost pluri-subharmonic function, and is thus locally equal to a
pluri-subharmonic function modulo a smooth function.

The Lelong number (7, z) of a closed almost positivél, 1)-current? can be defined
asv(T + Cidd|z|*,z) as above, since this does not depend on the smooth funCtiol.
Consequently, the Siu decompositiorifotan also be constructed, and writes

T=R+)» v(T,D)D],
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DIVISORIAL ZARISKI DECOMPOSITIONS 49

where D ranges over the prime divisors &f, andR is a closed almost positive, 1)-current.
In fact, we haveR > ~ as soon ag" > ~ for a smooth formy.

2.2.3. Pull-back of a current

When f:Y — X is a surjective holomorphic map between compact complex manifolds
andT is a closed almost positivél, 1)-current onX, it is possible to define its pull back
f*T by f using the analogue of local equations for divisors: wifite= § + i90¢ for some
smooth formé € {T'}. ¢ is then an almost pluri-subharmonic function, thus locally a pluri-
subharmonic function modulé™>. One defineg*T to be f*0 + id0f*p, as this is easily seen
to be independent of the choices made. Of course, we then{lfad& = f*{T}.

2.2.4. Gauduchon metrics and compactness

On any compact complex-fold X, there exists a Hermitian metric such thatw™ ! is
00-closed. Such a metric is called a Gauduchon metric. As a consequence, for every smooth
real (1,1)-form ~, the quotient ma@” — {T'} from the set of closed1, 1)-currentsT" with
T>~to H;g (X,R) is proper. Indeed, the mass of the positive curf@nt - is controled by

J(T —~)Aw™ ! and [T Aw™ !t = {T} - {w} only depends on the class @ The result
follows by the weak compactness of positive currents with bounded mass. Another consequence
is that the kernel of" — {T'} meets the cone of closed positiiie 1)-currents at the origin only.

2.3. Cones in the)d-cohomology

We now assume that is compact, and fix some reference Hermitian fasr{i.e. a smooth
positive definitg(1, 1)-form). A cohomology clase € H;'g(X, R) is said to be pseudo-effective
iff it contains a positive currenty is nef (numerically effective) iff, for each > 0, « contains a
smooth formd, with 6. > —cw; ais big iff it contains a K&hler current, i.e. a clos@d1)-current
T such thatl’ > ew for € > 0 small enough. Finallyy is a Kéhler class iff it contains a Kéhler
form (note that a smooth Ké&hler current is the same thing as a Kahler form). Since any two
Hermitian formsw;, wy are commensurable (i.€~'w,; < w; < Cw, for someC > 0), these
definitions do not depend on the choice.of

The set of pseudo-effective classes is a closed convex £anel/' (X, R), called the
pseudo-effective cone. It has compact base, because so is the case of the cone of closed positive
(1,1)-currents. Similarly, one defines the nef colfe(a closed convex cone), the big coBie
(an open convex cone), and the Kahler céhéan open convex cone). We obviously have the
inclusions

KcBcé& and KCcNCE.

By definition, X is a K&hler manifold iff its Kéhler con& is non-empty. Similarly (but this is a
theorem, cf. [7])X is a Fujiki manifold (i.e. bimeromorphic to a Kéhler manifold) iff its big cone
B is non-empty (see also the proof of Proposition 2.3 belowX lis Kahler, K is trivially the
interior of the nef cone. Similarly, iX is Fujiki, 3 is trivially the interior of the pseudo-effective
cone.

We will now and then denote by the partial order relation oﬁ{;g(X, R) induced by the
convex cone.

2.4. The Néron—Severi space

Given a line bundleL on X, each smooth Hermitian metric on L locally writes as
h(z,v) = |v|?e~2#(*) for some smooth local weight; the curvature forn®,, (L) := L0y is a

T
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50 S. BOUCKSOM

globally defined rea(1, 1)-form, whose class iﬂ;g (X,R) we denote by (L), the first Chern

class ofL. We write dd® = %85 for short. A singular Hermitian metrik on L is by definition
a metrich = ho.e~ 2%, whereh,, is a smooth Hermitian metric oh and the weightp is a
locally integrable function. The curvature currenthois defined a®©, (L) := Oy, (L) + dd°yp;

it also lies incy(L). Conversely, given a smooth Hermitian mettig, on L, any closed real
(1,1)-currentT in ¢1 (L) can be written (by definition) a8 = ©,__ (L) + dd®p. But ¢ is just
a degred currenta priori. However,y is automaticallyL,. . in caseT is almost positive (cf.
Section 2.2.2), thus each almost positive curfBrim ¢, (L) is the curvature form of a singular
Hermitian metric on_.

The image of the homomorphism PX) — H = (X,R) L~ ci(L) is called the Néron—
Severi group, denoted h¥S(X). Its rank is denoted by(X ), and called the Picard number
of X. The real Néron—Severi spadés (X )r is just the real subspace of dimensiefX) in
H;'g(X, R) generated byVS(X). Kodaira's embedding theorem can be formulated as follows:
X is a projective manifold iff the intersection of the K&hler colfewith NS(X)g is non-
empty. Similarly,X is a Moishezon manifold (i.e. bimeromorphic to a projective manifold) iff
the intersection of the big corgwith NS(X)g is non-empty (cf. [7]).

2.5. Currents with analytic singularities

2.5.1. Definition

A closed almost positivél, 1)-current? on a compact complex-fold X is said to have
analytic singularities (along a subschefi€Z) defined by a coherent ideal shegf if there
exists some > 0 such thafl" is locally congruent g dd® log(| f1*+- - - +| fx|*) modulo smooth
forms, wherefy,. .., fi are local generators @. T is thus smooth outside the supporfiofz),
and it is an immediate consequence of the Lelong—Poincaré formul@Iwéf’, D)D is justc
times the divisor part of the schemZ). If we first blow-up X alongV'(Z) and then resolve
the singularities, we get a modificatiqanf( — X, whereX is a compact complex manifold,
such thay =17 is justO(— D) for some effective divisoP upstairs. The pull-back*T clearly
has analytic singularities alorig(;.~*Z) = D, thus its Siu decomposition writes

wT=0+cD

whered is a smooth(1,1)-form. If T > ~ for some smooth formy, theny*T > p*, and thus
0 > p*~. This operation we call a resolution of the singularitie§of

2.5.2. Regularization(s) of currents
We will need two basic types of regularizations (inside a fixed cohomology class) for closed
(1,1)-currents, both due to J.-P. Demailly.

THEOREM 2.1 [4,5]. —LetT be a closed almost positiyé, 1)-current on a compact complex
manifold X, and fix a Hermitian formw. Suppose thaf’ > ~ for some smooth redll, 1)-form
~vonX. Then

() There exists a sequence of smooth fofmim {7} which converges weakly 6, and such
thatd, > v — CA\yw whereC' > 0 is a constant depending on the curvaturé Bk, w) only, and
Ai, is a decreasing sequence of continuous functions such\thiia) — v(T', z) for everyx € X.

(i) There exists a sequen@g of currents with analytic singularities ifiT’} which converges
weakly toT’, such thatT, > v — e,w for some sequencg, > 0 decreasing td, and such that
v(Ty, x) increases to/(T, z) uniformly with respect ta: € X.
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DIVISORIAL ZARISKI DECOMPOSITIONS 51

Point (ii) enables us in particular to approximate a Kahler curiémside its cohomology
class by Kahler currentd} with analytic singularities, with a very good control of the
singularities. A big class therefore contains plenty of Kahler currents with analytic singularities.

2.6. Intersection of currents

Just as cycles, currents can be intersected provided their singular sets are in an acceptable
mutual position. Specifically, |&F' be a closed positivél, 1)-current on a complex manifold .
Locally, we havel’ = dd“y with ¢ a pluri-subharmonic function, which is well defined modulo
a pluri-harmonic (hence smooth) function. We therefore get a globally well-defined unbounded
locusL(T'), which is the complement of the open set of points near whichlocally bounded.
Assume now thaf, T, are two closed positivél, 1)-currents such thal(T}) is contained in
an analytic se#l; (which may beX); locally, we writeT; = dd“y; with ¢; a pluri-subharmonic
function. If A; N A, has codimension at lea®tthen it is shown in [5] thap, dd“y2 has locally
finite mass, and thald®p; A dd°ps := dd°(p1dd°p2) yields a globally defined closed positive
(2,2)-current, denoted b§; A T5. It is also true thafl; A T3 lies in the product cohomology
class{T1} - {Tb} € H2Z(X,R).

We will only need the following two special casesTif is a closed positiv€l, 1)-current with
analytic singularities along a subscheme of codimension atle#tstnT; A 15 exists for every
closed positive 1, 1)-currentT%.

If Dy andD- are two distinct prime divisors, théh, ] A [D-] is a well defined closed positive
(2,2)-current. Since its support is clearly contained in the set-theoretic intersdetionD,
(whose codimension is at lea3}, we have[D:] A [Ds] = > a;[Y;], where theY;’s are the
components oD; N Ds. In fact, it can be shown that’ a;Y; is just the2-cycle associated to the
scheme-theoretic intersectidh N D, thus[D;] A [D-] is just the integration current associated
to the cycleD; - Ds.

2.7. The modified nef cone

For our purposes, we need to introduce a new cond id (X, R), which is somehow the
cone of classes that are nef in codimensiohet X be a compact complex-fold, andw be
some reference Hermitian form.

DEFINITION 2.2 Modified nef and Kahler classps- Leta be a class i, = (X, R).

(i) o is said to be a modified Kéhler class iff it contains a Kéhler curfentith v(7, D) =0
for all prime divisorsD in X.

(i) « is said to be a modified nef class iff, for every 0, there exists a closed, 1)-current
T. in a with T, > —ew andv(T:, D) =0 for every primeD.

This is again independent of the choicewwby commensurability of the Hermitian forms.
The set of modified K&hler classes is an open convex cone called the modified K&éhler cone and
denoted byM K. Similarly, we get a closed convex cond N, the modified nef cone. Using the
Siu decomposition, we immediately see thatC is non-empty iff the big con® is non-empty,
in which caseMK is just the interior ofMN/.

Remark 1. — Upon regularizing the currents using (ii) of Theorem 2.1, we can always assume
that the currents involved in the definition have analytic singularities along a subscheme of
codimension at leagt

Remark2. — The modified nef cone of a compact complex surface is just its nef cone (cf.
Section 4.2.1).
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52 S. BOUCKSOM

Remark3. — Just as for nef classes, one cannot simply take0 in the definition of a
modified nef class. We recall the example given in [8]: there exists a ruled suXfameer an
elliptic curve such thatX contains an irreducible curv€ with the following property: the
class{C} e H;g (X,R) is nef, but contains only one positive current, which is of course the

integration currenfC].

The following proposition gives a more “algebraic” characterization\@fC, which also
explains the (seemingly dumb) terminology.

PROPOSITION 2.3. —A classa lies in MK iff there exist a modificatioma:f( — X and a
Kahler classa on X such thate = p,ar.

Proof. —The argument is adapted from [7], Theorem 3.4. lis a Kahler form onX andw
is our reference Hermitian form oN, thenp*w < Cw for someC > 0, since X is compact.
Sincey is a modification, we havg, *w = w, so we getl’ := u,& > C~lw, andT is thus a
Kahler current. Since the singular valuesoére in codimension at lea®t we immediately see
thatv(T, D) = 0 for every prime divisorD in X, and{T} = u,{w} lies in MK as desired.
Conversely, ifa € MK is represented by a Kéhler currefitwith v(7',D) = 0 for all D,
there exists by (ii) of Theorem 2.1 a Kahler curr@itin o with analytic singularities along
a subschemé&, with v(Ty, D) < v(T, D), so thatV}, has no divisor component. We select a
resolution of the singularities dfy, 1 : X — X, and writep*Ty, = 6 + F, whered is a smooth
form and F is an effectiveR-divisor. SinceT}, > cw for € > 0 small enough, we get that
0 > p*ew. Denoting byF;, ..., E, the u-exceptional prime divisors o, it is shown in [7],
Lemma 3.5, that one can find, .. ., §,, > 0 small enough and a closed smog¢th1)-form 7 in
{61E1 + -+ 6, E,} such thafu*ew — 7 is positive definite everywhere. It follows that- 7 is
a Kéhler form upstairs. Now, we have

a=p{Th} = pud0 — (1B + -+ 6, Bp) } = {0 — 7},

sinceE; is u-exceptional and so B because, F is an effective divisor contained in the scheme
Vi this concludes the proof of Proposition 2.3

That a modified nef class is somehow nef in codimensiareflected in the following

PROPOSITION 2.4. -If « is a modified Kahler(respectively nef class, thenop is big
(respectively pseudo-effect)fer every prime divisoD C X.

Proof. —If « is a modified nef class and> 0 is given, choose a currefit > —cw in o with
analytic singularities in codimension at least.ocally, we haves < Cdde|z|? for someC > 0,
thusT. + eCdde|z|? writes asdd®p., wherep. is pluri-subharmonic and is not identicalyso
on D. Thus the restrictiofiy. )| p is pluri-subharmonic, an(l. +=Cdd°|z|*), p is a well defined
closed positive current. It follows thaf’.) p is a well defined almost positive current d@n,
with (7%.)p = —eCw|p. This certainly implies that| ;, is pseudo-effective. The casec MK
is treated similarly. O

2.8. Currents with minimal singularities
Let 1, 2 be two almost pluri-subharmonic functions on a compact complex mankold
Then, following [10], we say thap; is less singular tham, (and writeyp; < ¢5) if we have

2 < 1 + C for some constanf'. We denote by, ~ 5 the equivalence relation generated by
the pre-order relatior. Note thatp; = ¢, exactly means that; = 2 mod L.
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WhenT; andT5 are two closed almost positi@, 1)-currents onX, we can also compare
their singularities in the following fashion: writg; = 6, 4+ dd°p; for 6; € {T;} a smooth form
and; an almost pluri-subharmonic function. Since ahy,, function f with dd° f smooth is
itself smooth, it is easy to check that does not depend on the choices made up to equivalence
of singularities, and we compare the singularities offfie by comparing those of the;’s.

Let nowa be a class irH;’E1 (X,R) andvy be a smooth redll, 1)-form, and denote by[+] the
set of closed almost positivé, 1)-currentsI” lying in « with 7' > . Itis a (weakly) compact and
convex subset of the space(df 1)-currents. We endow it with the pre-order relatigrdefined
above. For any familyI;, j € J of elements ofa[y], we claim that there exists an infimum
T =inf;c;T; in (afy], <), which is therefore unique up to equivalence of singularities. The
proofis pretty straightforward: fix a smooth fohin «, and writeT; = 6+ dd“y; for some quasi
pluri-subharmonic functiong;. SinceX is compacty; is bounded from above; therefore, upon
changingp; into ¢; — C;, we may assume that; < 0 for all j € J. We then takep to be the
upper semi-continuous upper envelope ofghts, j € J, and sefl” := 6 + dd°p. It is immediate
to check thaf” < T; for all j, and that for even§ € a[y], S < T} for all j implies thatS < T.

We should maybe explain wtg > ~: locally, we can choose coordinates- (z1,. .., 2,) and a
form g(z) = > \j|z;|* such thatld®q < v anddd®q is arbitrarily close toy. Writing 8 = dd“y

for some smooth local potential, the conditiord + dd“y; > v implies thaty + ¢; — ¢ is pluri-
subharmonic. The upper envelopet ¢ — ¢ is thus also pluri-subharmonic, which means that
T =60+ dd°p > dd°q; letting dd°q tend to~y, we getT > v, as desired.

Since any two closed almost positive currents with equivalent singularities have the same
Lelong numbers, the Lelong numbersiat 7; do not depend on the specific choice of the
current. In fact, it is immediate to check from the definitions that

V(}IelgTj,I) :}QEV(TJ',SC).
As a particular case of the above construction, there exists a closed almost positive

(1,1)-currentTiin 4 € a[y] which is a least element ifa[], <). Tin,~ is well defined modulo

ddcL*, and we call it a current with minimal singularities in for the given lower bound.

When~ = 0 anda is pseudo-effective, we just writE,;, = Twmin,0, and call it a positive current

with minimal singularities inx. It must be noticed that, even for a big clags7},;, will be a

Kahler current only in the trivial case:

PROPOSITION 2.5. —A pseudo-effective class contains a positive current with minimal
singularitiesT,,,;;, which is a Kahler current iffy is a Kéhler class.

Proof. —~We can writeTi,;, = 0 + dd°p with 8 a smooth form. Ifl},;, is Kahler, then so is
€0+ (1 — &)Twin = 0 + dd°(1 — €)¢ for e > 0 small enough. We therefore get= (1 — )¢ by
minimality, that is:(1 — )¢ < ¢+ C for some constan®'. But this shows thap is bounded, and
thusT,;, is a Kéhler current with identically zero Lelong numbers. Using (i) of Theorem 2.1,
we can therefore regularize it into a Kéhler form inside its cohomology class.

Finally, we remark that a positive current with minimal singularities in a pseudo-effective class
is generally non-unique (as a current), as the example of a Kéhler class already shows.

3. The divisorial Zariski decomposition

In this sectionX denotes a compact complexfold, andw is a reference Hermitian form,
unless otherwise specified.
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3.1. Minimal multiplicities and non-nef locus

Whena € H;'g (X,R) is a pseudo-effective class, we want to introduce minimal multiplicities
v(«a,x), which measure the obstruction to the numerical effectivityvofor eache > 0, let
Tmin,e = Tmin,c(a) be a current with minimal singularities im[—cw] (cf. Section 2.8 for the
notation). We then introduce the following

DEFINITION 3.1 Minimal multiplicitie. — The minimal multiplicity atc € X of the pseudo-
effective class: € H, (X, R) is defined as

v(a, ) :=supv(Tiin.e, ).
e>0

The commensurability of any two Hermitian forms shows that the definition does not depend
on w. Furthermore, we do have(a,z) < 400, since trivially v(«, z) < v(T,x) if T is any
closed positive current inv. When D is a prime divisor, we define the generic minimal
multiplicity of « alongD as

v(a, D) :=inf{v(o,x),z € D}.

We then havev(a, D) = sup,~o V(Tmin,e, D), andv(a, D) = v(«, ) for the very general
zeD.

PROPOSITION 3.2. —Leta € H 2 (X, R) be a pseudo-effective class.
() ais nefiffv(a,z) =0 foreveryz € X.
(i) « is modified nef ifi:(«, D) = 0 for every primeD.

Proof. —If « is nef (respectively modified nefj[—cw] contains by definition a smooth form
(respectively a currerif, with (T, D) = 0 for every primeD). We thus have (Tiin ., z) =0
(respectively/(Tin.e, D) = 0) for everye > 0, and thus/(«, x) = 0 (respectively (a, D) = 0).
Conversely, ifv(a, z) = 0 for everyz € X, applying (i) of Theorem 2.1 t@1,in ., We see that
V(Tmin,e, x) = 0 for everyz € X implies thata[—¢’w] contains a smooth form for every> ¢,
anda is thus nef. Finally, it/(«, D) = 0 for every primeD, we havey(Tiin ., D) = 0 for every
prime D. SinceT iy ¢ lies ina[—cw], « is modified nef by the very definition.o

In view of Proposition 3.2, we propose the
DEFINITION 3.3 (Non-nef locus — The non-nef locus of a pseudo-effective class
a€ H,5(X,R) is defined by
Epn(a) :={z € X,v(a,x) > 0}.

Recall that the seE, (T) := {z € X,v(T,z) > 0} is a countable union of closed analytic
subsets for every closed almost positide1)-currentT". Since E,,,, () = U, ¢ E+ (Tmin,e),
the non-nef locus is also a countable union of closed analytic subsets. We do not claim however
that each super-level st € X, v(a, z) > ¢} (¢ > 0) is an analytic subset (this is most certainly
not true in general). Using results of M. Paun, Proposition 3.2 generalizes as follows:

PROPOSITION 3.4. —A pseudo-effective class is nef iff oy is pseudo-effective for every
irreducible analytic subset” C E,,,,(«).

Proof. —Paun’s result [17] states that a pseudo-effective class is nef iff its restriction to every
irreducible analytic subset is nef. It is thus enough to notice the following fakt:df X is an
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analytic subset not entirely contained in the non-nef locus,ahency is pseudo-effective.
This is proved exactly as Proposition 2.4, replacingy Y there. O

We now investigate the continuity of — v(«, ) andv(«, D):

PROPOSITION 3.5. —For everyz € X and every primeD, the maps — R a — v(a, )
andv(a, D) are convex, homogeneous. They are continuous on the int#tj@nd lower semi-
continuous on the whole éf

Proof. —Let «, 8 be two pseudo-effective classesTfiy, - () andTin . (3) are currents with
minimal singularities iny[—cw] and G[—ew] respectively, theM yin,c () + Tiin.e () belongs
to (o + §)[—2ew], thus

V(Tmin,Qs (Oé + ﬁ)a I) < V(Tmin,s (Oé), x) + V(Tmin,s(ﬁ)a I) < I/(Oé, x) + V(ﬁa I)

We infer from thisv(a + 8,2) < v(a,x) + v(6,x), and a similar sub-additivity property for
v(-, D) is obtained along the same lines. Since the homogeneity of our two maps is obvious, the
convexity also follows.
The quotient map — {6} from the Fréchet space of closed smooth rdall)-forms to
H1 1(X R) is surjective, thus open. Iifi, € H1 1(X R) is a sequence of pseudo-effective
classes converging te@ ande > 0 is given, we can thus find a smooth folip € o — «; for
eachk big enough such thatew < 0), < ew. The currentl iy « () + 05 then lies ina[—2¢cw],
and thus/(Thyin 26 (@), ) < V(Tmin.e (), ) < v(ag,z), for eachk big enough. We infer from
this thaty(Tiin 2: (@), z) < liminfy_ o v(ax, z) for eachs > 0, hence

v(a,z) < liminf v(ayg, x),
k—o00

by taking the supremum of the left hand side far 0. This means thad — v(«, x) is lower
semi-continuous, and similarly fer(«, D), just replacinge by D in the above proof.

Finally, the restrictions of our maps & are continuous as any convex map on an open convex
subset of a finite dimensional vector space isi

PROPOSITION 3.6. —Leta € H; 1(X R) be a pseudo-effective class, dhdi, be a positive
current with minimal smgularmes Q.

(i) We always have(a, z) < v(Twmin, ) andv(a, D) < v(Twmin, D).

(i) Whena is furthermore big, we have(«, ©) = v(Tiin, ) andv(a, D) = v(Twin, D).

Proof. —Since T,,;, belongs toa[—cw] for everye > 0, v(a,x) < v(Tmin, z) follows for
every z € X, for any pseudo-effective class. If « is furthermore big, we can choose a
Kahler currentT” in o with T' > w for some Hermitian formw. If T, iS @ current with
minimal singularities ina[—cw], then(1 — &)Twin,- + €T is a positive current iny, and thus
v((1 = &)Tmine + T, x) = v(Thin, ) by minimality of T,,,, from which we infer

(1—e)v(a,x) +ev(T,z) = v(Tmin, T).

We thus get the converse inequalitity, 2) > v(Twmin, ) by lettinge — 0. The case of(«, D)
is similar. O

3.2. Definition of the divisorial Zariski decomposition

Let a € H;’gl(X, R) be again a pseudo-effective class, and choose a positive current
with minimal singularitiesT i, in . Since v(a, D) < v(Twin, D) for every primeD by
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Proposition 3.8, the series of curretSv(«, D)[D] is convergent, since it is dominated by
> v(Twin, D)[D].

DEFINITION 3.7 Divisorial Zariski decomposition— The negative part of a pseudo-effective
classa € H, 7 (X,R) is defined asV(a) := Y v(a, D)[D]. The Zariski projection ofx is
Z(a) :=a — {N(a)}. We call the decompositioa = Z(«) + {N(a)} the divisorial Zariski
decomposition ofv.

It is certainly highly desirable that the negative paffa) of a pseudo-effective class be a
divisor, i.e. thatv(a, D) = 0 for almost every primeD. We will see in Section 3.3 that it is
indeed the case. For the time being, we concentrate on the Zariski projection, which we see as a
mapZ:£ — €&.

PROPOSITION 3.8. —Leta € H,~ (X, R) be a pseudo-effective class. Then

(i) Its Zariski projectionZ («) is a modified nef class.

(i) We haveZ («) = « iff « is modified nef.

(i) Z(«) is big iff«is.

(iv) If a is not modified nef, the&@(«) belongs to the bounda@MN of the modified nef
cone.

Proof. —(i) Let Twine be as before a current with minimal singularities dif—sw],
and consider its Siu decompositi@in,: = R: + Y v(Twmin,e, D)[D]. First, we claim that
N :=> v(Twine, D)[D] converges weakly tdV («) ase goes to0. For any smooth fornd of
bidimension(1,1), # + Cw™ ! is a positive form folC' > 0 big enough. Every sudhis thus the
difference of two positive forms, and it is enough to show that. A0 — [ N(«) A 6 for every
smooth positive fornd. But [ N. A 0 = > v(Twin,e, D) [[D] A 0 is a convergent series whose
general termv(Tiin,e, D) [[D] A6 convergeste(a, D) [[D] A6 ase — 0 and is dominated by
V(Tmin, D) [[D] A 8; sinced” v(Tnin, D) [[D] A0 < [ Timin A 6 converges, our claim follows
by dominated convergence.

In particular, the clas§N. — N(«)} converges to zero. Since the mép- {6} is open on
the space of smooth closéd, 1)-form, we can find a sequendg > —d,w of smooth forms
with 8 € {N., — N(«)} for some sequences, < J; going to zero. It remains to notice that
Ty := R, + 05 is a currentinZ («) with Ty, > — (e, + dx)w andv(T}, D) = 0 for every prime
D. Sincezsy, + &), converges to zerd («) is modified nef by definition.

(i) Since N(«) = > v(«, D)[D] is a closed positivé1, 1)-current, it is zero iff its class
{N(a)} € H;'g (X,R) is. The assertion is thus just a reformulation of (ii) in Proposition 3.2.

(i) If Z(«) is big, then of coursex = Z(«) + {N(a)} is also big, as the sum of a
big class and a pseudo-effective one. If convergelis big, it contains a Kahler currerif,
whose Siu decomposition we wrifE = R + > v(T, D)[D]. Note thatR is a K&hler current
since T is; sinceT belongs toa[—cw] for everye > 0, we havev(T, D) > v(«, D), and
R+ > (v(T,D) — v(a, D))[D] is thus a K&hler current if («) as desired.

(iv) Assume thatZ(a) belongs to the interiotMA® of the modified nef cone. By
Proposition 3.2, we have to see thgi, D) = 0 for every primeD. Suppose therefore that
v(a, Do) > 0 for some primeDy. The classZ(a) + e{ Dy} has to lie in the open consA\®
for e small enough, thus we can write foK ¢ < v(a, Dy):

a=(Z(a)+e{Do}) + (v(e, Do) — €){Do} + { Z u(a,D)D}.

D+#Dg
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We deduce that
v(a, Dy) < V(Z(a) + E{Do},Do) + (l/(a,Do) — 6).

Indeed, the clas§ Do} (respectively{}_,,_, , v(e, D)D}) has minimal multiplicity< 1 (re-
spectively 0) alongD,, because so is the generic Lelong numbers of the positive cyibgit
(respectively),, p v(a, D)[D]) along Do. Now, we also have/(Z(a) + e{Do}, Do) =0
since Z(a) + ¢{Do} is modified nef by assumption, hence the contradiction
v(a, Do) <v(a, Do) —e. O

PROPOSITION 3.9. — (i) The mapa — N(«) is convex and homogeneous én It is
continuous on the interior of the pseudo-effective cone.

(i) The Zariski projectior? : £ — MN is concave and homogeneous. It is continuous on the
interior of £.

Proof. -We have already noticed thata + 3, D) < v(a, D) + v(3, D) for every primeD
and every two pseudo-effective classess. This implies thatV(a + 8) < N(a) + N(3).
Homogeneity is obvious, and the first assertion follows. To show continuity, it is enough as
above to show that — [ N(«a) A § is continuous org? for every positive fornd. But the latter
map is convex, and thus continuous & as any convex map on an open convex subset of a
finite dimensional vector space is. (ii) is now an obvious consequence of (i) and the relation
Za)=a—{N(a)}. O

3.3. Negative part and exceptional divisors

If A=Dx,..., D, isafinite family of prime divisors, we denote b (4) C H,- (X, R) the
closed convex cone generated by the clagdes},...,{D,}. Every element o/, (A) writes
a = {E} for some effectiveR-divisor supported by th®;’s. Since[E] is a positive current in
a, we haveN (a) < F, and thusZ(«a) can be represented by the effectRedivisor E — N («),
which is also supported by th®,’s. We conclude¥ (A) is stable under the Zariski projection
Z. In particular, we haveZ (V. (A)) = 0 iff V. (A) meetsMN at0 only.

DEFINITION 3.10 Exceptional divisors — (i) A family D, ..., D, of prime divisors is said
to be an exceptional family iff the convex cone generated by their conomology classes meets the
modified nef coneVIA at0 only.

(ii) An effective R-divisor E is said to be exceptional iff its prime components constitute an
exceptional family.

We have the following

ProPOSITION 3.11. — (i)An effectiveR-divisor E is exceptional iffZ ({ E}) = 0.

(i) If Eis an exceptional effectivR-divisor, we havel = N ({ E'}).

(i) If Dy,...,D, is an exceptional family of primes, then their clas$és },...,{D,} are
linearly independent inVS(X)g C H;g(X, R). In particular, the length of the exceptional
families of primes is uniformly bounded by the Picard numiiéf).

Proof. —(i) Let A = D1,..., D, denote the family of primes supporting, and choose a
Gauduchon metrico (cf. Section 2.2.4). Since™~! is d9-closed, [ Z(a) A w™~! is well
defined, and defines a m@p— R a — [ Z(a) A w"™~!, which is concave and homogeneous
(by Proposition 3.11), and everywhere non-negative. The restriction of this mMag tb) shares
the same properties, and the class= { E'} is a point in the relative interior of the convex cone
Vi (A) at which [ Z(a) Aw™™! = 0. By concavity, we thus gef Z(a) A w™~! = 0 for every
a € V4 (A), and thusZ(«) = 0 for every suchy € V. (4).
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(il) When E is exceptional, we have botfi > N({E}) (because the positive curreliff] lies
inthe clasg{ F}) and{E} ={N({E})} (becauseZ ({ E}) = 0). Since a closed positive current
which yields zero irH(;’g1 (X,R) is itself zero, we get the result.

(iii) Since Dy, ..., D, are linearly independent in DiX') ® R, the assertion is equivalent to
the fact that the quotient map — { D} is injective on theR-vector space of divisors generated
by theD;’s. Butthis is easy: i = > a; D, lies in the kernel, we can writ€ = E, — E_ with
E, andE_ effective suchthatE, } = {E_}. By (iii), we getE, = E_, whenceE =0. O

We state as a theorem the following important consequences of (iii):

THEOREM 3.12. — (i) For every pseudo-effective classe £, the negative pariV(«a) is an
exceptional effectiv®-divisor supported by at mogt X ) primes.

(i) X carries at most countably many exceptional primes.

(i) The exceptional fibeZ ~1(0) is contained iNNS(X)r, and is a union of at most
countably many simplicial cones over exceptional families of primes.

Proof. —(i) We haveZ(a) > Z(Z(a)) + Z({N(a)}), and Z(Z (o)) = Z(«) by Proposi-
tion 3.10, thusZ({ N («)}) = 0. We immediately deduce from this that any family of primes
Dy, ..., D, such thatv(«, D;) > 0 for everyj is an exceptional family, and the assertion fol-
lows from (iii) of Proposition 3.13.

(i) We just have to notice thab — {D} is injective on the set of exceptional primes, and
maps into the latticéVS(X) Cc NS(X)r.

(iii) Since {A} is a linearly independent set for every exceptional family of pridesve
see thatV, (A) = > ., R{D} is a simplicial cone. It remains to observe thaties in
the exceptional fibeZ —1(0) iff a« = {N(«a)}, thusZ~1(0) is covered by the simplicial cones
Vi(4). O

We will see in Section 4.3 that a family,, . .., D, of primes on a surface is exceptional iff the
Gram matrix(D; - D;) is negative definite, i.e. ifD,, ..., D, can all be blown down to points by
a modification towards an analytic surface (singular in general). On a general compact complex
n-fold X, an exceptional divisor is still very rigidly embeddedin

PropPosITION 3.13. —If E is an exceptional effectiB-divisor, then its clas§ E'} contains
but one positive current, which i&]. In particular, whenE is rational, its Kodaira—litaka
dimensiorx(X, E) is zero.

Proof. —If T is a positive currentif E'}, we havev (T, D) > v({E}, D) for every primeD.
Using the Siu decomposition @f, we thus see thafl > > v({E}, D)D = N({E}) = E, since
E is exceptional. But we also ha{@'} = { E'}, hencel = E, as was to be shown. To get the
last point, letD be an element of the linear systekF| for some integek > 0 such thak E is
Cartier. The positive curreqt[D] then lies in{ E'}, thus we havéD] = k[E] as currents, hence
D = kF as divisors. This shows thaf (kE) = 1 for eachk > 0. O

3.4. Discontinuities of the Zariski projection

It is remarkable that the Zariski projectidhis not continuous in general up to the boundary
OE.

PrRopPOSITION 3.14. —If X carries infinitely many exceptional primes, then the Zariski
projectionZ : £ — MM is not continuous.

Proof. —We use the following
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LeEmmA 3.15.-f Dy is an infinite sequence of divisors, the rals, {Dy} C £ can
accumulate ofMA only.

Proof. —Suppose that, { D).} converges to some non-zexce £ (for t;, > 0). For each prime
D, we then haveD;, # D and thusv(tx{Dx}, D) = tyv({ Dy}, D) = 0 for infinitely many
k, because the family, is infinite. By lower semi-continuity (Proposition 3.7) we deduce
v(a, D) =0 for every primeD, i.e. « is modified nef (by Proposition 3.2).
Assume now that an infinite sequence of exceptional prime divisqrexists. Sincef€ has
a compact base, upon extracting a subsequence, we can assumg{ihg} converges to
some non-zerax € £ (with ¢, > 0 an appropriate sequence). Sinbg is exceptional, we
haveZ(t,{Dy}) = 0 for everyk, but Z(«) = « since« is modified nef by the above lemma.
ConsequentlyZ ~1(0) is not closed, and is not continuous. O

To get an example of discontinuous Zariski projection, just t&k® be the blow-up oP? in
at least 9 general points. Such a rational surface is known to carry countably many exceptional
curves of the first kind (cf. [13, p. 409]). Since a prime divisdon a surface is exceptional iff
C? < 0 (cf. Section 4.3), the set of exceptional primesXiis infinite, and we have our example.

3.5. When is a decomposition the Zariski decomposition?

Suppose that we have a decompositioa: p + { N} of a pseudo-effective class into the
sum of a modified nef clagsand the class of an effectii-divisor N. We want a criterion that
tells us when it is the Zariski decomposition®f We haveN (a) < N(p) + N, andN(p) =0
sincep is modified nef, thusV(a) = N happens iffZ(«) = p, and our question is equivalent to
the study of the fiber& —*(p), with p € MN.

We will need the following

DEFINITION 3.16 (Non-K&hler locup — If « € H;g (X,R) is a big class, we define its non-
Ké&hler locus ase,, x (a) := (" E4+(T') for T ranging among the Ké&hler currentsdn

Let us explain the terminology:

THEOREM 3.17. —Leta € H = (X, R) be a big class. Then

(i) The non-neflocu&,,,,(«) is contained in the non-Kahler locus, k ().
(ii) There exists a Kahler current with analytic singulariti€sn « such that

EL(T) = Enx (o).

In particular, the non-Ké&hler locu®,, x («) is an analytic subset oX .
(iii) o is a Kahler class iffE,, x (o) is empty. More generallyy is a Kahler class ifiy)y is a
K&hler class for every irreducible componéntof the analytic sef,, ().

Proof. —(i) Sincea is big, its non-nef locud?,,,, («) is just the sef{x € X, v(Tinin, x) > 0},
since we have(a, x) = v(Tmin, ) in that case (cf. Proposition 3.8). For every K&hler curf@ént
in a, we have/ (T, z) > v(Twmin, ) by minimality, and the inclusio,,,,(«) C E, x («) ensues.

(i) First, we claim that given two Kéahler curreni§, 7 in «, there exists a Kahler current
with analytic singularitie§” such thatt (T') C E4(T1) N E4+(T3). Indeed, we can find > 0
small enough such th&; > sw. Our currentsl; and T, thus belong tax[ew], and admit an
infimum T35 in that set with respect te& (cf. Section 2.8). In particulaf; is a current i with
T5 > ew andv (15, z) = min{v (T, x), v(Ts,x)} for everyz € X. By (ii) of Theorem 2.1, there
exists a Kahler current with analytic singulariti€sn « such that/ (T, z) < v(T5, x) for every
x € X, henceE (T) C E4(T1) N E4(T>), and this proves the claim.
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Using the claim and (i) of Theorem 2.1, it is easy to construct a sequignaiKahler currents
with analytic singularities such th#, (T}) is a decreasing sequence with

Bk (a) = B+ (Th).
k

SinceT}, has analytic singularitiedy, (T}) is an analytic subset, thus the decreasing sequence
E,(Ty) has to be stationary (by the strong Notherian property), and we eventually get
E, k(o) = E(Ty) for somek, as desired.

(iii) If « is a Kahler classF . (w) is empty for every Kéhler forrv in «, and thus so is
E,k (a). Conversely, assume thafy is a Kahler class for every componéritof £, («), and
let T be a Kahler current with analytic singularities such that(T') = E,x(«). « is then a
Kéhler class by Proposition 3.3 of [7].0

We can now state the following

THEOREM 3.18.-Let p be a big and modified nef class. Then the prinies..., D,
contained in the non-Kahler locuk,, i (p) form an exceptional familyl, and the fiber ofZ
abovep is the simplicial coneZ ~!(p) = p + V.. (A). Whenp is an arbitrary modified nef class,
Z~Y(p) is an at most countable union of simplicial cones V., (A), whereA is an exceptional
family of primes.

Proof. —Note that, by the very definitions, for every pseudo-effective classhe prime
components of its negative pa¥(«) are exactly the sel of primesD contained in the non-
nef locusE,,,,(«). FurthermoreZ(a) + V4 (A) is entirely contained in the fiber ~1Z(«).
Indeed, the restriction of to this simplicial cone is a concave map above the affine constant
mapZ(«), and both coincide at the relative interior pointthus they are equal on the whole of
Z(«a) + V4 (A). This already proves the last assertion.

Assume now thap is modified nef and big, and suppose first thalies in Z=1(p). To see
that « lies in p + V. (A4), we have to prove that every primigy with v(c, Dg) > 0 lies in
E.k(p), thatis:v(T, Do) > 0 for every Kéhler current in p. If not, choose a smooth forth
in {Dy}. SinceT is a K&hler current, so i + ¢ for e small enough. Fob < ¢ < v(a, Dy)
small erjough_Ts =T + €0 + (v(a, Do) — €)[Do] + > p.p, v(e, D)[D] is then a _positive
current ina with v(T, Do) = v(a, Do) — € < v(a, D) = v(Twin, Do) (the last equality holds
by Proposition 3.8 becauseis big sincep is); this is a contradiction which proves the inclusion
Z7Y(p) Cp+ Vi (A).

In the other direction, lef” be a Kahler current ipp, and letT = R + Y v(T, D)D be its
Siu decompositionR is then a Kahler current witlv(R, D) = 0 for every primeD, thus its
classg := {R} is a modified K&hler class. We first claim that we hdveC E,,,,(p — ) for
everye > 0 small enough and every prime componéntof the non-Kahler locu®,, x (p) of p.
Indeed, since — ¢4 is big fore > 0 small enough, we have(p — 3, D;) =v(T,D;) if T'is a
positive current with minimal singularities jn— ¢3, and we have to see thatT', D;) > 0. But
T +¢eRis aKahler currentin, thusD; C E,k (p) C E+(T +¢R) by definition, which exactly
means that (T + R, D;) > 0. The claim follows since/(R, D;) = 0 by construction of?.

As a consequence of this claim, each pribe . .., D,. of our family A occurs in the negative
part N(p — 3) for e > 0 small enough. Consequently, by the first part of the proof, the Zariski
projection ofZ(p — ef8) + {E} is just Z(p — 3) for every effectiveR-divisor E supported by
the D;’s and everye > 0 small enough. Since is big, Z is continuous ap, thusZ(p — ¢03)
converges taZ(p), which is justp because the latter is also modified nef. Finallyjs also
continuous at the big clags+ { E'}, thus the Zariski projection of (p — £3) + { E'} converges
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to that ofp + { £}, and thusZ(p + { E}) = p holds. This means that+ V. (4) C Z~'(p), and
concludes the proof of Theorem 3.200

3.6. Structure of the pseudo-effective cone

Using our constructions, we will prove the

THEOREM 3.19. -The boundary of the pseudo-effective cone is locally polyhedral away
from the modified nef cone, with extremal rays generatefih®yclasses gfexceptional prime
divisors.

Proof. —This is in fact rather straightforward by now: for each primgthe set
Ep={ac& v(a,D)=0}

is a closed convex subcone &f This follows from the fact thaty — v(a, D) is convex,
homogeneous, lower semi-continuous and everywhere non-negative.d# does not belong
to MN, it does not belong t&€, for some primeD by Proposition 3.2. For everg € &,
we have eithed € £p, or D occurs in the negative paf¥ (). Therefore £ is generated by
R {D} and&p, and the latter does not contain This means thad€ is locally polyhedral
neara. Sincev(a, D) > 0, we also see thaD is exceptional. Finally, the extremal rays&hot
contained inMN =, Ep have to lie outside, for some exceptional prim®, and since
&€ =&p + R, {D}, each such extremal ray is generated )} for someD. O

3.7. Volumes

Recall that the volume of a pseudo-effective classn a compact Kéhler-fold is defined
to be the supremum(«) of [, T, for T a closed positivé1, 1)-current ina (cf. [2]). A class
«a is big iff v(a)) > 0, and the volume is a quantitative measure of its bigness. We have already
noticed thatZ () is big iff « is; we have the following quantitative version:

PrROPOSITION 3.20. -Let o be a pseudo-effective class oi compact Kahler. Then

v(Z(a)) =v(a).

The proof is in fact immediate: i" is a positive current iy, then we havd” > N(«a) since
T belongs tox[—ew] for eache > 0, and we deduce thdt — T — N («) is a bijection between
the positive currents i and those inZ(«). It remains to notice thatl’ — N («))qc = Tye tO
conclude the proof.

4. Zariski decomposition on a surface and a hyper-Kéhler manifold

It is known since the pioneering work of Zariski [19] that any effective divigbron a
projective surface admits a unique Zariski decomposifivbe- P + N, i.e. a decomposition
into a sum ofQ-divisors P and N with the following properties:

(i) Pisnef,N =3 a;N; is effective,

(i) P-N =0,

(i) the Gram matrix(V; - N;) is negative definite.

We want to show that our divisorial Zariski decomposition indeed is a generalization of such
a Zariski decomposition on a surface.
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4.1. Notations

X will stand for a compact Kahler surface, or a compact hyper-Kéhler manifold. For such an
X, we denote by the quadratic form o/ ! (X, R) defined as follows: wheX is a surface, we
setg(a) := [ a?, and whenX is hyper-Kahler, we choose a symplectic holomorphic fetrand
letg(a) := [ a?(07)™ ! be the usual Beauville—Bogomolov quadratic form, withormalized
so as to achieve(a)™ = [ o®™ (with dim X = n = 2m). In both casesH"*(X,R),q) is
Lorentzian, i.e. it has signatuke, h**(X) — 1); the open conda € H'1(X,R),q(a) > 0}
has thus two connected components which are convex cones, and we deRdteslgomponent
containing the Kahler conk. We callP the positive cone (attached to the quadratic fgjrin
general, given a linear formmon 1! (X, R), we will denote its kernel by and the two open
half-spaces it defines by..o and\ (. The dualC* of a convex con€ in H'!(X, R) is seen as
a cone inH>'(X,R), using the duality induced hy.

4.2. The dual pseudo-effective cone

In both cases, we shall prove that the modified nef cone is the dual cone to the pseudo-effective
cone.

4.2.1. The case of a surface
We suppose thaX is a surface. We prove the following essentially well-known

THEOREM 4.1. -When X is a surface, the Kahler cone and the modified Kahler cone
coincide. The dual pseudo-effective cone is just the nef cone.

Proof. —If a € MK, it can be represented by a Kéhler current with analytic singularities in
codimension 2, that is at some points, ..., z,.. Therefore we see that the non-Kahler locus
E,k(«) is a discrete set. Since the restriction of any class to a point is (by convention) a Kahler
class, Theorem 3.19 shows thaties in fact ink.

SincefX w AT is positive for every Kahler formv and every positive currefit, we of course
have X c £*, and thus alsoV = K C £*. The other inclusion is much deeper, since it is a
consequence of the Nakai—Moishezon criterion for K&hler classes on a surface, as given in [15].
Indeed, this criterion implies that a reél, 1)-classa on a Kahler surface is a nef class iff
a-w > 0foreveryw € K anda - C' > 0 for every irreducible curvé’'. Since a class ig* clearly
satisfies these conditions, we getc A/, and the proof of Theorem 4.1 is overo

As a consequence, sindé is contained inP and sinceP is self dual (just because is
Lorentzian), we get dually th& c £ and thus thaP c £° = B, which means the following: if
ais areal(1,1)-class witha? > 0, thena or —« is big. This generalizes the well known case
whereq is (the first Chern class of) a line bundle (whose proof is based on Riemann—Roch).

4.2.2. The hyper-Kéahler case

In that case, the dual pseudo-effective cone is also equal to the modified nef cone, but the
proof uses another description, due to D. Huybrechts, of the dual pseudo-effective cone. In the
easy direction, we have:

PROPOSITION 4.2. — (i) The modified nef con81\ is contained in both the dual pseudo-
effective con€* and the closure of the positive coe
(i) We havey(D, D") > 0 for any two distinct prime divisor® # D’.

Proof. —To prove (i), we only have to prove tha/X C £*. Indeed MK NE* CENE* is
trivially contained inP. We pick a modified Kéhler class and a pseudo-effective clags &,
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and choose a Kahler currehtin « with analytic singularities in codimension at le@stand a
positive currentS in 8. By Section 2.6, the wedge produEtAa S is well defined as a closed
positive (2, 2)-current, and lies in the class- 3. Since(oa)™ ! is a smooth positive form of
bidimension(2,2), the integral[, T'A S A (07)™ ! is positive. But(c@)™ ! is also closed,
thus we have

/T/\ SA(e7)" ' =a-B-{(c7)" '} = q(a, B),
X

so we have proven thata, 5) > 0 as desired.
The second contention is obtained similarly, noting that - { D’} contains a closed positive
(2,2)-current, which igD - D'], whereD - D' is the effective intersection cycle.

The other directiorf* ¢ MN is much deeper. The effectiviedimensional cycle€” and
the effective divisorsD define linear forms o7 **(X,R) via the intersection form and the
Beauville—Bogomolov formg respectively, and we define a rational (respectively uniruled)
chamber of the positive con® to be a connected component Bf — [ JC* (respectively
P — U D), whereC (respectivelyD) runs over the rational curves (respectively the uniruled
divisors). By a rational curve (respectively a uniruled divisor) we mean an effettilimen-
sional cycle all of whose components are irreducible rational curves (respectively an effective
divisor all of whose components are uniruled prime divisors). The rational chamiyrcat
out by all theCs's (respectivelyD~(’s) will be called the fundamental rational chamber
(respectively the fundamental uniruled chamber). Wheis a K3 surface, the rational and
uniruled chambers are the same thing and coincide with the traditional chambers in that situation.
We can now state the following fundamental result:

THEOREM 4.3 [14]. — (i) The positive con® is contained ir¢.
(i) If « € P belongs to one of the rational chambers, then there exists a bimeromorphic map
f:X—— X'to a hyper-KahlerX’ such that

f*Oé:w/—i-{D/},

wherew’ € K is a Kahler class and)’ is a uniruledR-divisor.

(i) Whena € P lies in both the fundamental uniruled chamber and one of the rational
chambers, then no uniruled divis@’ occurs in(ii).

(iv) The fundamental rational chamber coincides with the Kahler coné.of

In fact, [14] states this only for a very general elemert P, but we have noticed in [1] that
the elements of the rational chambers are already very general in that respect.

In the situation (iii),« lies in f*K x for some bimeromorphi¢ : X — — X’ towards a hyper-
Kahler X’. The union of such open convex con€s := f*K - is called the bimeromorphic
Kéhler cone, and is denoted /. The union in question yields in fact a partition BK into
open convex conek ¢ (since a bimeromorphic map between minimal manifolds which sends
one Kéhler class to a Kahler class is an isomorphism by a result of A. Fujiki)is an open
cone, but definitely not convex in general. (iii) tells us that each intersection of a rational chamber
with the fundamental uniruled chamber is containe# 8, and thus in one of th&’s.

We can now describe the dual pseudo-effective cone:

PROPOSITION 4.4. —The dual pseudo-effecti¥e of a hyper-Kahler manifold coincides with
the modified nef cong1N.

Proof. —By Proposition 4.2, it remains to see ti&t is contained in the modified nef cone
MN. By (i) of Theorem 4.3, we havé* c P, and it will thus be enough to show that an
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element of the interior of* which belongs to one of the rational chambers lies\itaV'. But
an elemenix of the interior of€* hasq(a, D) > 0 for every primeD, thus it certainly lies
in the fundamental uniruled chamberdlflies in both the interior of€* and one of the rational
chambers, it therefore lies iy = f*K x. for some bimeromorphi¢: X — — X’, and itremains
to see thalC; ¢ MN. But if w is a Kahler form onX’, its pull-back? := f*w can be defined
using a resolution of , and it is easy to check thdt is a Kahler current withy(T', D) = 0 for
every primeD, sincef induces an isomorphisthi — A — X’ — A’ for A, A’ analytic subsets of
codimension at leagt(this is becaus& and X’ are minimal). Thereforg,T'} = f*{w} belongs
to MKC MN. O

4.3. Exceptional divisors

When X is a surface or a hyper-Kéhler manifold, the fact that a family .. . ., D,. of prime
divisors is exceptional can be read off its Gram matrix.

THEOREM 4.5. A family D1, ..., D, of prime divisors is exceptional iff its Gram matrix
(¢(D;, D,)) is negative definite.

Proof. —Let V' (respectivelyy; ) be the real vector space Bf-divisors (respectively effective
R-divisors) supported by th®;’s. We begin with a lemma of quadratic algebra:

LEMMA 4.6.—-Assume that(V,q) is negative definite. Then everlf € V' such that
q(E, D;) <0 for all j belongs toV, .

Proof. —If £ € V is non-positive against eadh;, we write £ = E, — E_ whereE and
E_ are effective with disjoint supports. We have to prove that= 0, and this is equivalent
by assumption tq(E_) > 0. But ¢(E_) = ¢(E_,Ey) — q(E_, E). The first term is positive
becausdr, andE_ have disjoint supports, using (ii) of Proposition 4.2, whereas the second is
positive by assumption oR. O

Let Dy,..., D, be primes with negative definite Gram matrix. In particular, we then have that
{V,} Cc H*'(X,R) meetsP at0 only. Since the modified nef con®l\ is contained ir® by
Proposition 4.2{V, } a fortiori meets the modified nef conet@only, which means by definition
thatDq,..., D, is an exceptional family, and this proves necessity in Theorem 4.5. In the other
direction, assume thab,,..., D, is an exceptional family of primes. We first prove that the
matrix (¢(D;, D;)) is semi-negative. If not, we find dR-divisor £ in V with ¢(E) > 0. Writing
againk = E, — E_, with E; andE_ two effective divisors in/;. with disjoint supports, we
have againy(E, E_) > 0 by (ii) of Proposition 4.2, and thug E; ) + ¢(E_) > q(E) > 0. We
may therefore assume th&tlies in V., with ¢(E) > 0. But thenE or — E is big, and it has to be
E because it is already effective. Its Zariski projectibff{ E'}) is then non-zero since it is also
big (by Proposition 3.10), and it lies in bofV, } and M/, a contradiction.

To conclude the proof of Theorem 4.5, we may assume (by induction) that the Gram matrix
of Dy,...,D,_; is negative definite. I{V, q) is degenerate, the spaf of Dy,...,D,_; is
such that its orthogonal spad€" in V is equal to the null-space 6f. We then decompose
D, = E + F in the direct sumV = V' @ V'+. Sinceq(E, D;) = q(D,,D;) > 0 for j <r,
Lemma 4.6 yields thak’ < 0. Therefore /' = D,. — E lies in V., and is certainly non-zero. We
claim that{ F'} is also modified nef, which will yield the expected contradiction. Buies in the
null-space ofi/, and is therefore non-negative against every prime divisolf « is a pseudo-
effective class, we havg{F'},a) = ¢({ F'}, Z(a)) +q(F, N(c)). The first term is positive since
Z(a) € MN = £*, and the second one is positive becalisis positive against every effective
divisor. We infer from all this thaf '} lies in £* = M/, and the claim follows. O
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The theorem says in particular that a prime divigoris negative iff¢g(D) < 0. On a K3
surface, an easy and well-known argument using the adjunction formula shows that the prime
divisors with negative square are necessarily smooth rational curves with sgRialre higher
dimension, we have:

PROPOSITION 4.7.—On a hyper-Kahler manifoldX, the exceptional prime divisors are
uniruled.

Proof. —Since D is exceptional, it lies outsid® = P*, and we thus find a class € P
lying in one of the rational chambers such thgiv, D) < 0. By (ii) of Theorem 4.3,
there exists a bimeromorphic map between hyper-Kéhler manifpldé— — X’ such that
fra=w' + > a; D} with w’ a Kahler classq; > 0 and D’; a uniruled prime divisor. Since
the quadratic form is preserved lfy we have0 > q(a, D) = q(v', fxD) + > a;q(Dy, f. D),
andq(D’, f.D) has to be negative for someBut this implies that the two prime®’; and f, D
coincide, and thu®) = f* D’ is uniruled sinceD’ is. O

4.4. Rationality of the Zariski decomposition

We want to prove that the divisorial Zariski decomposition is rational (wkiés a surface or
a hyper-Kahler manifold) in the sense théf«) is a rational divisor whem is a rational class.
We first show the following characterization of the divisorial Zariski decomposition:

THEOREM 4.8.-If o € HY(X,R) is a pseudo-effective class, its divisorial Zariski
decompositiony = Z(«) + {N(«)} is the unigue orthogonal decompositionefnto the sum
of a modified nef class and the class of an exceptional effeRtidéevisor.

Proof. —We first prove uniqueness: assume that p + { N} is an orthogonal decomposition
with p a modified nef class anly an effective exceptiond-divisor. We claim thatV(a) = N.
To seethis, leDy, . .., D, be the support olV; the Gram matriXq(D;, D;)) is negative definite
by Theorem 4.5, ang is orthogonal to eaclv; because(p, N) =0 andq(p, D;) > 0 for all j
sincep is a modified nef class. We havé(a) < N(p) + N and N (p) = 0 sincep is modified
nef, thusN(«) < N. But N(a) — N is supported by prime®y, ..., D, whose Gram matrix
is negative definite, ang( N («) — N, D,) = q(p, D;) — ¢(Z (), D;) is non-positive since is
orthogonal toD; andZ(«) belongs toMN = £*. Lemma 4.6 thus yieldd/(«) > N, and the
claim follows. To prove Theorem 4.8, we will show the existence of an orthogonal decomposition
a=p+ {N} with p a modified nef class an¥ an exceptionaR-divisor. When this is done,
we must haveV = N(«) by the claim, so thatt = Z(a) + {N(«)} is itself an orthogonal
decomposition.

LEMMA 4.9. —A pseudo-effective classlies in £* iff ¢(«, D) > 0 for every primeD.

Proof. —If 3 is a pseudo-effective class, we wriiéx, 3) = q(a, Z(3)) + q(a, N(3)). The
first term is positive becausg() lies in £*, and the second one is positiveyifa, D) > 0 for
each primeD. O

LEMMA 4.10.-Let o be a pseudo-effective class and Iet,...,D,, E1,...,E, be two
families of primes such that

(i) ¢(a, D) < 0 andg(a, E;) < 0 for everyj andi.

(i) Eq,..., E,is an exceptional family.

Then the union of these two families is exceptional.

Proof. —Let F' be an effective divisor supported ly;’s and E;’s, and assume thdtF'} is a
modified nef class. We have to see tifat 0. But ¢(a, F) is positive sinceF’ is modified nef,
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thus we see using (i) thdt is in fact supported by;’s, and then (ii) enables us to conclude that
F =0 asdesired. O

At this point, the argument is similar to [11]. If the pseudo-effective ctassalready inc™*,
we trivially have our decomposition. Otherwise, consider the familgf primes D such that
q(a, D) < 0. That family is exceptional by Lemma 4.10 witfy, .. ., E, an empty family, thus
A is finite with negative definite Gram matrix, and is non-empty by Lemma 4.9. Let

Oé:Oél—F{Nl}

be the decomposition in the direct s @ V, whereV ¢ HY'(X,R) is spanned byA.
We claim thatV; is effective and thaty; is pseudo-effective. Sincg( N1, D) = ¢(a, D) < 0
for every D € A, Lemma 4.6 yields thalv; is effective. We can also writ&/ (o) = E + F
where I/ and I are effective with disjoint supports anfl is supported by elements of.
Then for everyD € A we haveq(F — Ny,D) < ¢(N(o) — N1,D) since E and D are
disjoint, andq(N («) — N1, D) = q(a1, D) — q(Z(«), D) is non-positive because; and D
are orthogonal and («) lies in £*. We infer from this thatV(«) > N; using Lemma 4.6, and
oy = Z(a) + {N(a) — N1} is thus pseudo-effective, and this proves our claim.

If a; lies in £, we have our decomposition by construction; otherwise, we iterate the
construction: letB be the non-empty exceptional family of prim&ssuch thaty(«;, D) < 0.
SinceA is already exceptional andas, D) =0 for D € A, we infer from Lemma 4.10 that the
union A; of A andB is again an exceptional family. We decompose

a; =as + {Na}

in the direct sumV;- @ Vi, whereV; ¢ H%'(X,R) is spanned by4;. The same arguments
as above show in that case also thatis pseudo-effective, and also th&} is effective (since
g(N2, D) = q(a1,D) < 0 for eachD € A,). But sinceB is non-empty,4; is an exceptional
family strictly bigger thanA. Since the length of the exceptional families is uniformly bounded
by the Picard numbes(X) by Theorem 3.14, the iteration of the construction has to stop after
[ steps, for which we get a class which is modified nef. The desired decomposition is then
obtained by setting := oy andN := N; + - - -+ N, which is exceptional since it is supported by
elementsofAU A; U---U A; = A; (sinceA C Ay C --- C Ay by construction). This concludes
the proof of Theorem 4.8. 0

COROLLARY 4.11 (Rationality of the Zariski decomposition)The divisorial Zariski de-
composition is rational in cas&’ is a surface or a hyper-Kahler manifold. In particular, when
D is a pseudo-effective divisor oK, the modified neR-divisor P := D — N({D}) is ratio-
nal and such that the canonical inclusion&f (X, O(kP)) in H°(X,O(kD)) is surjective for
everyk such thatk P is Cartier.

Proof. —If o € NS(X) ® Q is a rational classN («) is necessarily the image of by the
orthogonal projectiodVs (X) ® Q — Vq(«), whereVg(«) is the Q-vector space generated by
the cohomology classes of the componentdVdty). The latter is therefore rational. As to the
second part, leE be an element of the linear systehD|. Since the integration curreft{ £]
is positive and lies if D}, we haveE > kN ({D}). But this exactly means th&tN ({D}) is
contained in the base schemdhD|, as was to be shown.O

PROPOSITION 4.12 (Rationality of the volume). ¥ p € H''1(X,R) is a modified nef class
on X, its volume is equal to
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In general, we have(a) = [ Z(a)d™X; in particular, the volume of a rational class is rational.

Proof. -We have already proven in Proposition 3.22 th&t) = v(Z(«)), so only the first
assertion needs a proof. We have shown in [2] that the equality= [ pi™ ¥ is always true
whenp is a nef class, so the contended equality holds on a surface. In the hyper-Kéhler case, since
we have chosen the symplectic fosnso thaty (o)™ = o?™ for any classy, we just have to prove
v(p) = q(p)™ for p € MN. The latter cone is also the closure of the bimeromorphic Kahler
coneBK, so we may assume thatlies in f*K . for some bimeromorphic map: X — — X’
between hyper-Kéahler manifolds (because hp#md the volume are continuous). But sintces
an isomorphism in codimensidn the volume is invariant undef, and so is the quadratic form
q, SO we are reduced to the case wheie a Kéhler class, for which the equality is always true
as we have said aboven

5. The algebraic approach

In this section, we would like to show what the constructions we have made become when
a = ¢1(L) is the first Chern class of a line bundle on a projective complex maniXaldhe
general philosophy is that the divisorial Zariski decomposition of a big line bundle can be defined
algebraically in terms of the asymptotic linear serjgs|. When L is just pseudo-effective,
sections are of course not sufficient, but we are led back to the big case by approximating. For
those who are reluctant to assume projectivity too quickly, we remark that a compact Kéhler
manifold carrying a big line bundle is automatically projective.

5.1. From sections to currents and back

Let L — X be a line bundle over the projective manifald. Each timel has sections
o1,...,00 € HY(X, L), there is a canonical way to construct a closed positive cuitent; (L)
with analytic singularities as follows: choose some smooth Hermitian matrin L, and
consider

o(z) = % logz h(o;(z)).

Then we defind’ = ©,,(L) + dd°p, whereO; (L) is the first Chern form of. One immediately
checks thaf" is positive and independent of the choicéwpfind thus depends on the sectiofis
only. T has analytic singularities exactly along the common zero-schéwiethe o;’s, and its

Siu decomposition therefore writds= R + D, whereD is the divisor part ofA. When(s;) is a
basis of H°(X, L), we setl|.| :=T'. Another way to seé|, is as the pull-back of the Fubiny—
Study formonP H° (X, L)* = P¥ (the identification is determined by the choice of the basis of
H°(L)) by the rational map,,| : X — — PH"(X, L)*. T}, is independent of the choice of the
basis up to equivalence of singularities, and carries a great deal of information about the linear
system|L|: the singular schemd of 7} is the base schem®, of the linear systenL|, the
Lelong numbew(T|.,r) atz is just the so-called multiplicity of the linear systenuatwhich

is defined by

v(|L],z) :== min{v(E,z),E €|L|}.
If a modification.: X — X is chosen such that*|L| = [M| + F, whereM has no base-point
and F' is an effective divisor, thew*T|;| = T),«|z| = T|a + F whereT],, is smooth since

|M]| is generated by global sections. The so-called moving self-intersectidn which is by
definition LI" := M™, is thus also equal td, (7].,)..
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WhenL is a big line bundle, we get, for eaéh> 0 big enough, a positive curre}, := %TIkLI
in ¢1(L). A result of Fujita (cf. [9]) claims that the volumg L) is the limit of ﬁ(kL)[”], thus
we havev(L) = limg o0 [ T} oo

Finally, if T, is @ positive current with minimal singularities in (L), we can choose a
singular Hermitian metrié,,,;;, on L whose curvature current i§,;, (by Section 2.4). IfL is
still big and if for eachk we choose the basis df°(kL) to be orthonormal with respect to
h2% , then it can be shown thdl, — Tiin, and we will see in 5.2 that(T, ) = Lv(|kL|,z)
converges ta/(Tmin, ) = v(c1(L),x). In some sense, the family, deriving from |kL| is
cofinite (¢ (L) ™, X).

It should however be stressed that ;| will in generalnot be a Kahler current, even ff is
big. Indeed, consider the pull-baék= p.* A of some ample line bundlé by a blow-upu. Then
kL will be generated by global sections fobig enough, and 1| is thus smooth for such/a
but not a K&ahler current, sindeis not ample and a smooth Kahler current is just a Kahler form.

Conversely, to go from currents to sections is the job ofthestimates for thé operator, e.g.
in the form of Nadel’s vanishing theorem. Recall that the multiplier ideal Sh€EJ of a closed
almost positive(1, 1)-currentT is defined locally as follows: writd” = dd¢y locally at some
x. Then the stalkZ (T'),. is the set of germs of holomorphic functionszasuch that f|?e=2¢
is locally integrable at. Then Nadel's vanishing states thaflifis a Kahler current in the first
Chern class; (L) of a line bundleL, thenHY(X,O(Kx + L) ® Z(T')) =0 for everyg > 0. In
particular, ifV(T') denotes the schemé&(Z (7)), then the restriction map

H°(X,0x(Kx +1L)) — H(V(T),Ov () (Kx + L))

is surjective. This gives a tool to prove the generation of jets at some points, using the following
lemma (cf. [9]):

LEmMmMA 5.1 (Skoda’s lemma). ¥ v(T,x) < 1, thenZ(T), = Oy. If v(T,z) = n + s, we
haveZ(T), C M.

To illustrate how this works, let us prove the following algebraic characterization of the non-
Kahler locus:

PROPOSITION 5.2. —If L is a big line bundle, then the non-Kahler loci, x (c1 (L)) is
the intersection of the non-finite lo&i, of the rational mapspy, .|, defined as the union of
the reduced base locuB,;| and the set oft € X — B, such that the fiber through

¢>‘—,€1L‘ (@11 (x)) is positive-dimensional somewhere.

Proof. —-If zi,...,z, € X lie outside E, x(c1(L)), then we can find a K&hler current
T € ¢1 (L) with analytic singularities such that each lies outside the singular locus @f. The
latter being closed, there exists a neighbourhdpdf «; such thav/(T', z) = 0 for everyz € U;.
We artificially force an isolated pole at eachby setting

T=T+ Z dd®(e0;(z)log|z — ),

1<G<r

whered; is a smooth cut-off function near;, ande > 0 is so small thaf” is still Kahler. We
havev(T,x;) = ¢, whereas/(T, z) is still zero for everyz # x; in U;. We now choose some

smooth formr in ¢; (K x ), and consider the currefy, := kT — 7. It lies in the first Chern class
of L := kL — Kx, and is certainly still K&hler fok big enough. We also hav& T}, z) = 0 for
everyz # x; close toz;, andv(Ty,x;) = ke. Givensy, ..., s, we see that, fok big enough,
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eachz; will be isolated in& (T},), whereas (Ty)., C M;@“, using Skoda’s lemma. Nadel's
vanishing then implies that the global sectionskdf generates;-jets atx; for everyj. This
implies that the non-finite locus,, is contained in&,, i (c1(L)).

To prove the converse inclusion, we have to find for each Kahler current;,, in ¢; (L) with
E,(T,,) C ¥,,. To do this, we copy the proof of Proposition 7.2 in [6]x

LEMMA 5.3.-If L is any line bundle such that the non-finite lo¢lig of m L is distinct from
X for somem, then, for every line bundi€, the base locus dkL — G| is contained in%,,, for
k big enough.

We then takeG to be ample, and se€f,, := %(T‘M,G\ + w) with k& big enough so that
Bjkr—c| C X andw a Kahler formine; (G).

To prove Lemma 5.3, note that:L| is not empty, so we can select a modificat;on)? —X
such thatu*|mL| = |L| + F, where|L| is base-point free. It is immediate to check that it is
enough to prove the lemma fdr, so we can assume from the beginning thas base-point
free, withm = 1. We set¢ := ¢|: X — P" andX := ¥;. Upon adding a sufficiently ample
line bundle toG, it is also clear that we may assurGeto be very ample. Ift € X lies outside
¥, the fiberg=1(¢(x)) is a finite set, so we can find a divisér € |G| which does not meet it.
Therefore we have(z) € PV — ¢(D), so that fork big enough there existd € |Opn (k)| with
H > ¢, D which does not pass througtiz). The effective divisopp* H — D is then an element
of |[kL — G| which does not pass through The upshot is: for every € X outsideX, we have
r € X — Bjyr—g for k big enough. By Nétherian induction, we therefore findbig enough
such thatB|. 1, ¢ is contained ir¥;, as was to be shown.

5.2. Minimal Lelong numbers

When L is a big R-divisor, we denote byL, := |kL| the round-down ofkL, and by
Ry, := kL — Ly, the fractional part ok L. We then consider the sequen}g:e(|Lk|, x). Itis easily
seen to be subadditive, and therefotgL||, z) := limy .+« £v(|kL|,z) exists. We then prove
the following

THEOREM 5.4. —If L is a bigR-divisor onX anda := {L} € NS(X)r, then
vieyz) =v(|L|,z)

for everyzr € X.

Proof. —-Let L = %" a,;D; be the decomposition df into its prime components. We choose
arbitrary smooth formsg, in {D;}, and denote by, := > (ka; — | ka,|)n, the corresponding
smooth form in{ R }. Sincer, has bounded coefficients, we can choose a fixed K&hler dorm
such that-w < 7, < w for everyk. If E is an effective divisor irLg|, then1/k([E] + %) is
a current ina[—1/kw], therefore%u(E,x) 2 V(Tiin,1 /x> ), WhereT iy, 1k IS @ current with
minimal singularities imy[—1/kw], and this yields

.1 .
kli{go EV(|L;C|,9C) > klingo V(Tmin1 k> ) = v(o, ).

In the other direction, we use a related argumentin [9], Theorem 1.11. The Ohsawa—Takegoshi—
Manivel L? extension theorem says in particular that if we are given a Hermitian line bundle
(A, h4) with sufficiently positive curvature form, then for every pseudo-effective line bufidle
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and every singular Hermitian metricon G with positive curvature curreflt € ¢; (G) and every
x € X, the evaluation map

HY(X,0(G+A)@I(T)) = O,(G+ A) @ L(T),

is surjective, with an.? estimate independent ¢, h) andz € X.

We now fix a Hermitian line bundlgA, h 4 ) with a sufficiently positive curvature formy to
satisfy the Ohsawa—Takegoshi theorem. We select a positive current with minimal singularities
Twin IN o, and also a Kahler currerif’ in «, which is big by assumption; we can then
find almost pluri-subharmonic functions,,;, and ¢ on X such thatT,,;;, — dd°¢m;, and
T — dd°p are smooth. We s&¥, .= L, — A=kL — R, — A= (k— ko)L + (koL — R, — A),
and fix ko big enough so thak,T — w — w4 is a Kéhler current. Fok > kg, the current
Ty := (k — ko) Tmin + (koT — 7 —wa) is then a positive current iy (G, thus we can choose
for eachk a smooth Hermitian metrid;, on G, such thatT}, is the curvature current of the
singular Hermitian metriexp(—2(k — ko)@min — 2kop)hi. Applying the Ohsawa—Takegoshi
to G, equipped with this singular Hermitian metric, we thus get a seetien/°(X, L;,) such
that

hi (a(x)) exp(—?(k — ko) Pmin(z) — 290(95)) =1
and

/hk(cr) exp(—Q(k —k0)Pmin — 2(,0) dV < Oy,
X

whereC; does not depend ohandz. If we choose a basis;, . ..,o; of HY(X, L), we infer
from this that

1 1
P = 20k — ko)

< mlogzhk(w)) +Ca,

whereC, does not depend an The latter inequality comes from the bound on fitfenorm of
o, since theL? norm dominates th&> norm. Therefore

©min(z) + log hy (o(z))

1
k—ko

Cs
k—ko'

V(|Lk|7x) g V(‘Pminax) +

whereC is a bound on the Lelong numbers®f If we let k — oo in the last inequality, we get
v(||L|],z) < v(a,z) as desired. O

5.3. Zariski decompositions of a divisor

The usual setting for the problem of Zariski decompositions is the followingXldie a
projective manifold, and. a divisor on it. One asks when it is possible to find tRedivisors P
andN such that:

() L=P+N,

(ii) P is nef,

(i) N is effective,

(iv) H°(X,kL) = H°(X, |kP|) for all k > 0, where the round-dowpF'| of anR-divisor F’
is defined coefficient-wise.
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This can of course happen onlyfif is already pseudo-effective. When this is possible, one
says thatl, admits a Zariski decomposition (ov& or Q, depending whether the divisors are
real or rational). We want to show that, for a big dividarthis can be read off the negative part

N{L}).

THEOREM 5.5. —Let L be a big divisor onX, and let
N(L):=N({L}) and P(L):=L—N(L).

ThenL = P(L) + N (L) is the unique decompositidh= P + N into a modified neR-divisor
P and an effectiv@R-divisor N' such that the canonical inclusioH®(|kP|) — H°(kL) is an
isomorphism for eack > 0.

Proof. —First, we have to check thai’(X,kL) = H°(X, |kP(L)]). If E is an effective
divisor in the linear systenL|, we have to see thaf > [kN(L)]. But +[E] is a positive
currentin{L}, thusFE > kN(L), and soF > [kN(L)] sinceE has integer coefficients.

Conversely, assume that= P + N is a decomposition as in Theorem 5.5. We have to show
thatN = N(L),i.e.v({L},D)=wv(N, D) for every primeD. In view of Theorem 5.4, this will
be a consequence of the following

LEMMA 5.6. —Suppose that a big divisak writes L = P + N, where P is an R-divisor
and N is an effectiveR-divisor such that{®(X, kL) = H°(X, | kP|) for everyk > 0. Then we
have

() If Pis nef, therv(||L]|, ) = v(N,z) for everyx € X.

(i) If P is modified nef, then(||L||, D) = v(N, D) for every primeD.

Proof. —The assumptio®l (X, kL) = H'(X, | kP|) means precisely that for eveyc |k L|
we haveE > [kN], thusv(|kL|,z) > > @V(Dj,x) if we write N =" a;D;. We deduce
from this the inequalityimy . +v(|kL|,z) > 3 a;v(D;,z) = v(N,z). To get the converse
inequalities, notice that

v(|kL|,z) < v(|Pil,x) + v(kN,z)
with Py, := |kP] as before; dividing this out by and lettingk — +oo, we deduce

1 1
kli)rgo EV(|/€L|,:E) < kli)rgo EV(kN,,T) =v(N,z)

whenP is nef, since/({ P}, z) = limy,_.oc +v(Ps, z) is then always zero, and similarly with
in place ofz when P is modified nef (remark thaP is big becausd. is). This concludes the
proof of Theorem 5.5. O

COROLLARY 5.7 (Cutkosky’s criterion). £et L be a big divisor onX, and assume that
v({L}, D) is irrational for some irreducible divisoD. Then there cannot exist a modification

u: X — X such thatu* L admits a Zariski decomposition ovey.

Proof. —If a modificationy as stated exists, then the negative péft.* L) has to be rational
by Theorem 5.5, and we get a contradiction using the following easy

LEMMA 5.8.-Leta be a pseudo-effective class &n and lety : X — X be a modification.
Then we have

N(a) = peN (" ).

Proof. —Very easily checked using that a modification is an isomorphism in codimen-
sionl. O

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



72 S. BOUCKSOM

5.3.1. An example of Cutkosky

We propose to analyze in our setting an example due to S.D. Cutkosky [3] of a big line
bundleL on a3-fold X whose divisorial Zariski decomposition is not rational, but whose Zariski
projectionZ ({L}) is nef. We start from any projective manifold for which Ny- = £y. Thus
Y might be a smooth curve or any manifold with nef tangent bundle (cf. [8]). We pick two
very ample divisord andH onY’, and consideX := P(O(D) & O(—H)), with its canonical
projection7: X — Y. If we denote byL := O(1) the canonical relatively ample line bundle on
X, then it is well known that

HY''X,R)=n"H"'(Y,R)®&RL.

SinceD is ample,L is big, but it will not be nef since- H is not. We are first interested in the
divisorial Zariski decomposition af. We have a hypersurfade:= P(O(—H)) C X, and since
D has a section, we see that+ 7* D € |L|. Therefore we gelN (L) < N(x*D) + E; butz*D

is nef, so hasV(n*D) =0, and we deduc&'(L) < E. ConsequentlyN (L) = ur F for some
0<ur<1l,andL=Z(L)+ prE. We claim that

0L :min{t>07 (L—tE)E ENE}.

First, we havel. — tE' = 7*D + (1 — ¢)E, and sincer* D is nef, we get that the non-nef locus
Enn(L —tE) is contained inE for 0 < ¢t < 1. ThereforeL — tE € N iff (L —tE)|p € Ng.

If this is the case, we haw¥ (L) < N(L — tE) + tE =tFE, and thug > uy,. Conversely, since
L—ppE=Z(L)liesin MN, we getthatZ(L)z € £ = N by Proposition 2.4 (sinc& is
isomorphic toY” via 7), and we deduce the equality. Now, notice that the projectiomuces an
isomorphism~ — Y such thatl, becomes-H and thusF|; becomes-D — H. The condition
(L —tE) g € Ngisturnedinto-H + (D + H) € Ny, and we get in the end

pr =min{t>0,—H +t(D+ H) € Ny }.

The picture can be made more precise:

PROPOSITION 5.9. — (i) The nef coneéVx is generated by* Ny and L + 7* H.

(i) The pseudo-effective cofig is generated by* y- and byE.

(i) The only exceptional divisor ol is F, and the modified Kahler cone coincides with the
K&hler cone. The Zariski projectiofi («) of a pseudo-effective classis thus the projection of
aonNx paralleltoR  E.

Proof. —Given line bundled.q, ..., L, on a compact Kahler manifoldl, a classa = 7*
over

X=P(l1o®  -aL,)

is nef (respectively pseudo-effective) fifis. A classae = O(1) + n* 3 is nef iff 3+ L; is nef
for all j, anda is big iff the convex cone generated By L1, ...,5 + L, meets the big cone
of Y', which condition is equivalent (by homogeneity) o+ conv(Lq,..., L,) meets the big
cone; finallya is pseudo-effective iffi + conv(Ly, ..., L,) meetsfy. In our casex =73+ L
is thus nef iff 3 — H is nef, andx is pseudo-effective iftv + [— H, D] meetsNy . The latter
condition is clearly equivalent ta — D € Ny. Now an arbitrary clase on X uniquely writes
a=tL + 7. If ais pseudo-effective, theh> 0 (sinceL is relatively ample); ift = 0, then
a € ™ Ny . Otherwise, we may assume by homogeneity thatl, and thus (i) and (ii) follow
from the above discussion.
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By (ii), a pseudo-effective clagswrites7* 3 + t E' with 3 nef. Therefore we ge¥ (a) < tE,
andF is thus the only exceptional divisor on. In fact, we even havg,,,,(«) C E, and thusy is
nefiff o g is nef. In particular, we see thatX = K as desired (use Proposition 2.4 againji

We now assume thaf is a surface. The assumptigfy, = & implies that\y = Py = &y,
andy, is none but the least of the two roots of the quadratic polynomialnH +¢(D + H))?;
it will thus be irrational for most choices df andD (on, say, an abelian surface). This already
yields that the divisorial Zariski decomposition of the rational clagg) will not be rational in
general, that is, the analogue of Corollary 4.11 is not true in generaBefold.

SinceZ(L) is nef, the volume of. is justv(Z (L)) = Z(L)3, with

Z(L)=1—pr)L+ pr7*D.
The cubic intersection form is explicit ai 1 (X, R) from the relations
L}~ (D-H)-L*-D-H-L=0

andr,L =1, m,L? = D — H, thus we can check tha{ L) is an explicit polynomial of degrez
in ©z, which is also irrational for most choices 6f and H. We conclude: there exists a big line
bundle on a projectivd-fold with an irrational volume, by contrast with Proposition 4.12.

Appendix A. Nakayama's algebraic approach
A.1. Algebraic minimal multiplicities

In this appendix, we will briefly survey Nakayama'’s algebraic approach to the divisorial
Zariski decomposition. Consider a projective manifotd and a bigR-divisor B on it.
Denote by|B| the set of effectiveR-divisors which are linearly equivalent t®, in the
sense that their round-downs are linearly equivalent and their fractional part coincide, and by
|Blq := Uy £ |kB| the set of effectiveR-divisors which areQ-linearly equivalent toB.
Nakayama then sets for everye X:

02(B) :=inf{v(D,z),D € |Blq}.

This is clearly homogeneous and convex with respeét,tand is zero for every € X as soon as
Bis ample. Note that it is none but what we denoted yB||, z) in 5.2. Now takeB as before,
and fix an ampléR-divisor A such thatB — A =: C is effective. If D is numerically equivalent
to B ande > 0 is given, we havél +¢)B=(B— D +¢cA)+ D +eC,whereB— D +¢cA s
ample, and thuél +¢)o,,(B) < 0, (D) +e0,(C) by homogeneity and convexity. Lettiagyo to
zero, we get,(B) < 0,(D), which shows by symmetry that,(B) = inf{v(D,x),D € |B|r},
where|B|r is the set of effectiv®R-divisors numerically equivalent t8. This argument, due to
Nakayama, shows that the minimal multiplicity (B) of the bigR-divisor B only depends on
its numerical class, and is computed as a liiity, . - v(By, z) for some sequencBy, € | B|r.
But the latter set is non-compact, and admits as a natural compactification the set of all closed
positive currents cohomologous . The limit object which computes,.(B) is then a closed
positive current with minimal singularities, aad(B) is just the minimal multiplicity (o, x) we
have defined, iftv := { B} is the cohomology class @ — this is the content of our Theorem 5.4.
Going back to the algebraic setting, Nakayama definé®) for an arbitrary pseudo-effective
R-divisor D as the limit ofo,,(D + £A), whereA is ample. Each of the formal properties of the
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minimal multiplicities (continuity, finiteness of the divisorial part of the non-nef locus), are
established by Nakayama using divisors only, and then going to the limit. The crucial point, as
in the argument above, is that ampleness is a numerical property.

We will now present an algebraic characterization of the non-nef locus given in [16]. Just as a
pseudo-effective class is the numerical analogue of an effective divisor, a nef class is the analogue
of a base-point free divisor. The non-nef locus is thus a “numerical base locus”, and Nakayama
relates it to the usual base loci by proving the

THEOREM A.l. —There exists a sufficiently ample divisbion X such thatif D is a pseudo-
effective divisor, then its non-nef locus is the union of all the base Id&if A| for & > 0.

Nakayama’'s proof uses the Kawamata—Viehweg vanishing theorem, but is most easily
explained using Nadel's formulation: taketo be any ample divisor such that— Kx — nH is
still ample, where is very ample. Then one can find, for everyg X, a Kéhler currenf” in
the class ofA — K x with an isolated singularity at such that (7, z) = n. Suppose now that
x is a nef point ofD. Then one can find currents in its class which are smoothmnead with
an arbitrarily small negative part; using the curréhabove, we can thus find for eveky> 0
a Kahler current irkD + A — Kx with an isolated singularity at of multiplicity n. Skoda’s
lemma and Nadel’s vanishing then imply thidD + A is free atx.

A.2. Two counter-examples

We now present two constructions from [16], based on the same ideas as Cutkosky’s
Example 5.3.1, which provide counter-examples to natural questions concerning Zariski
decompositions.

The first case is a discontinuous minimal multiplicity (cf. Proposition 3.5)LIbe a nef line
bundle squaring to zero over a surfacavhose nef cone coincides with its positive cone (such
as an abelian surface), and setX =P(O & O(-L)) —» Y, andDy := P(O(—L)) C X. As
in 5.3.1, one checks thatif = 7* 5 + H is a pseudo-effective class df, thenv(a, Dy) is the
least real number > 0 such thats — (1 — ¢)L is nef. If we choose? € 9P ande > 0, then
(B —eL)?=—2¢3- L <0, and this is zero iff3 is proportional toL, sinceL- meetsdP along
R L by the non-degeneracy of the intersection form. It follows that L+ H, D) = 0, whereas
v(r* B+ H, Do) =1 as soon ag € 9P is not proportional td_. In particular,a — v(a, D) is
not continuous at*L + H.

The second example is much more important but also much more involved, and we will only
describe it. It yields a nef and big line bundleon a4-fold X for which no modification
wu: X — X can be found so thaf (u* L) be nef. In other words, it shows the non-existence of a
Zariski decomposition in general, even in its most optimistic form. To get this, one starts again
from a surfaceY” whose nef cone is the closure Bf and which also admits two ample line
bundles4; and A, whose cohomology classes are not proportional (for instance an abelian sur-
face with Picard number at lea&t Then one considers: X = P(O ¢ O(41) & O(A42)) — Y,

H :=0O(1) and a big class = 7* 3 + H which satisfies the following conditions:

(i) B is not nef.

(i) B+ Ay andg + As are nef.

As in 5.3.1, one then checks thatis nef in codimension 1 but not nef. Its non-nef locus is
V = Dy N Dy, with D; =P(O & O(42)) C X andDs; =P(O & O(4;)) C X. The minimal
multiplicity v(«, x) = v is furthermore constant far € V', equal to the least real numbek: 0
such that3 + t[a;, as] meetsP. Let us add the following third requirement:

(iii) B+ va1,az] is tangenttdP at 3 + va for somer € Jay, as|.

In order to get a Zariski decomposition af the idea is to successively blow up the non-nef
loci and subtract the divisorial part at each step. Thus weXget= X, Ey := D1, Go := Do
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and V, := V. Consider the blow-upr,: X; — X, along V;, with exceptional divisorE;.
Denote byG; the strict transform of7y, which is a smooth hypersurface &f; meetingE;
transversally along a surfadg isomorphic tol” under the projection map. Define inductively
mn: X, — X,_1 as the blow-up along/,_1, with exceptional divisorE,,, and letG,, be
the strict transform ofG,,_;, which cuts E,, transversally along a surfacg, isomorphic
to V' by projection. At each step, set, := Z(u)«,—1), which is also equal tor’c,,—1 —
v(an-1, Vn-1){E,} thanks to the relation

V(W;an—la En) = V(Oén_l, Vn—l)

(this is easy to obtain in the algebraic setting, but can also be proved in the more general analytic
setting). In other wordsy,, is the residual part of} «.,,—1 once its negative divisorial part has
been subtracted. Then the main fact proved in [16] is thas contained in the non-nef locus of
ay, for everyn, i.e. thaty,, :=v(a,, V,,) is positive.

We will not reproduce the proof of this fact, which is long and technical, but we will give
the proof of the following criterion from [16] which enables to conclude that there exists NO
modificationy : X — X such thatZ (u*«) is nef.

LEMMA A2.—-Letm,: X, — X,,_1 be asequence of blow-ups with smo2ttodimensional
centreV,,_; C X,,_1 and exceptional divisoE,, C X,,, and leta be a big class onX, which
is nef in codimensiof, and such that

() Vv,, Cc E,, for eachn.

(i) V4, is contained in the non-neflocus of the strict transferme H!(X,,, R) of oy under
T -

Then there exists no modificatipg : )Nfo — Xy such thatZ (u§ao) is nef.

Proof. —~Argue by contradiction. Then one can build two sequences of modifications
[T X — X,, and7,,: X — Xn 1 such thal‘,un 10 7Tn =Ty O fin. Let O 1= piap anday,
be the pull-back ofyy under the composed ma’ﬁn — X,. Then the nefness df (ap) implies
that the Zariski decomposition @f,, is just the pull-back of that ok, for eachn. In particular,
the number of prime divisors in the negative partgfis independent ofi. On the other hand,
we claim that the strict transform &,, C X,, undery,, is contained in the non-nef locus af,,
which will imply that the number of components of its negative part is strictly increasingwyith
and will thus yield a contradiction. Actually, the claim is an immediate consequence of the fact
that £, is contained in the non-nef locus of a1, which in turn follows from the formula

V(W;an—la En) = V(Oén_l, Vn—l)

(cf. above). O
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