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DIVISORIAL ZARISKI DECOMPOSITIONS
ON COMPACT COMPLEX MANIFOLDS

BY SÉBASTIEN BOUCKSOM

ABSTRACT. – Using currents with minimal singularities, we introduce pointwise minimal multiplic
for a real pseudo-effective(1,1)-cohomology classα on a compact complex manifoldX, which are the
local obstructions to the numerical effectivity ofα. The negative part ofα is then defined as the re
effective divisorN(α) whose multiplicity along a prime divisorD is just the generic multiplicity ofα
alongD, and we get in that way a divisorial Zariski decomposition ofα into the sum of a classZ(α)
which is nef in codimension1 and the class of its negative partN(α), which is an exceptional divisor i
the sense that it is very rigidly embedded inX. The positive partsZ(α) generate a modified nef con
and the pseudo-effective cone is shown to be locally polyhedral away from the modified nef con
extremal rays generated by exceptional divisors. We then treat the case of a surface and a hype
manifold in some detail. Using the intersection form (respectively the Beauville–Bogomolov form
characterize the modified nef cone and the exceptional divisors. The divisorial Zariski decompos
orthogonal, and is thus a rational decomposition, which fact accounts for the usual existence st
of a Zariski decomposition on a projective surface, which is thus extended to the hyper-Kähle
Finally, we explain how the divisorial Zariski decomposition of (the first Chern class of) a big line b
on a projective manifold can be characterized in terms of the asymptotics of the linear series|kL| as
k →∞.

 2004 Elsevier SAS

RÉSUMÉ. – En utilisant des courants à singularités minimales, nous introduisons les multip
minimales ponctuelles d’une(1,1)-classe de cohomologie pseudoeffectiveα sur une variété complex
compacteX, qui sont les obstructions locales à l’effectivité numérique deα. La partie négative deα est
alors définie comme le diviseur effectif réel dont la multiplicité le long d’un diviseur premierD n’est
autre que la multiplicité minimale générique deα le long deD, et nous obtenons de cette manière
décomposition de Zariski divisorielle deα en la somme d’une classeZ(α) qui est nef en codimension1 et
de la classe de sa partie négativeN(α), qui est un diviseur exceptionnel au sens où il est plongé de ma
très rigide dansX. Les parties positivesZ(α) engendrent un cône nef modifé, et nous montrons que le
pseudoeffectif est localement polyhédral en dehors du cône nef modifié, de rayons extrémaux enge
les diviseurs exceptionnels. Nous traitons ensuite le cas d’une surface et d’une variété hyperkäh
en détail. À l’aide de la forme d’intersection (respectively la forme de Beauville–Bogomolov),
caractérisons le cône nef modifié et les diviseurs exceptionnels. La décomposition de Zariski divisor
orthogonale, et donc rationnelle, ce qui explique le résultat d’existence connu pour les surfaces pro
que nous étendons ainsi au cas hyperkählérien. Finalement, nous expliquons comment la décomp
Zariski divisorielle (de la première classe de Chern) d’un fibré en droites gros sur une variété pro
peut être caractérisée en terme du comportement asymptotique des systèmes linéaires|kL| lorsquek →∞.

 2004 Elsevier SAS
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1. Introduction

It is known since the pioneering work of O. Zariski [19] that the study of the ring
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H0
(
X,O(kD)

)
,

whereD is an effective divisor on a projective surfaceX , can be reduced to the case wh
D is numerically effective (nef). The more precise result obtained by Zariski is tha
effective Q-divisor D on a projective surfaceX can be uniquely decomposed into a s
D = P + N whereP is a nef Q-divisor (the positive part),N =

∑
ajDj is an effective

Q-divisor (the negative part) such that the Gram matrix(Di · Dj) is negative definite, andP
is orthogonal toN with respect to the intersection form. Zariski shows that the natural inclu
H0(kP ) →H0(kD) is necessarily an isomorphism in that case, relating the decomposit
the original problem.

The proof of the uniqueness in this decomposition shows that the negative partN only depends
on the class{D} ofD in the Néron–Severi groupNS (X), so that{D} �→ {P} yields a map from
part of the pseudo-effective cone to the nef cone, which we want to study geometrically.

Building upon the construction by J.-P. Demailly of metrics with minimal singularities
pseudo-effective line bundleL over a compact complex manifold, we introduce the mini
multiplicity ν(α,x) of an arbitrary real pseudo-effective(1,1)-classα on a compact comple
manifoldX at some pointx ∈X . This multiplicity ν(α,x) is the local obstruction atx to the
numerical effectivity ofα. The set of pointsx ∈X at whichν(α,x) is positive is a countabl
union of closed analytic subsets which we call the non-nef locus ofα. It turns out that this non
nef locus contains only finitely many prime divisors (Theorem 3.14), and the divisorial Z
decomposition ofα is then obtained by subtracting fromα the divisorial part of its non-nef locu
counting multiplicities. More precisely, we define the negative part of such a classα by setting
N(α) =

∑
ν(α,D)D, whereD ranges over the prime divisors ofX andν(α,D) is the generic

multiplicity of α alongD (cf. Section 3). This negative partN(α) is an effectiveR-divisor
which is exceptional in the sense that it is very rigidly imbedded inX . For instance, whenX is
a surface, the divisors we obtain in that way are exactly the effectiveR-divisors whose suppo
D1, . . . ,Dr has negative definite Gram matrix(Di ·Dj).

The differenceZ(α) := α − {N(α)} is a real pseudo-effective(1,1)-class onX which we
call the Zariski projection ofα. It is not a nef class, but is somehow nef in codimension1, in the
sense that its non-nef locus does not contain any prime divisor. The set of such classes is
convex cone which we call the modified nef cone. The decompositionα= Z(α) + {N(α)} we
call the divisorial Zariski decomposition ofα, and it is just induced by the Siu decomposition
a closed positive current with minimal singularities inα when the latter is big. For such a b
class, we give a criterion to recognize a decompositionα = p + {N} into a modified nef and
big class and the class of an effective real divisor as the divisorial Zariski decomposition oα, in
terms of the non-Kähler locus ofp (cf. Section 3.5).

The geometric picture is now as follows: the pseudo-effective cone of a compact co
manifoldX is locally polyhedral away from the modified nef cone, with extremal rays
write R+{D} for some exceptional primeD of X . The Zariski projectionZ yields a projection
from the pseudo-effective cone to the modified nef cone parallel to these exceptional rays
map is concave (in some sense) and homogeneous, but not continuous up to the bou
the pseudo-effective cone in general. The fibreZ−1(p) of Z above a modified nef classp is a
countable union of simplicial cones generated by exceptional families of primes.

4e SÉRIE– TOME 37 – 2004 –N◦ 1



DIVISORIAL ZARISKI DECOMPOSITIONS 47

WhenX is a surface, a modified nef class is just a nef class; whenα is the class of an effective
Q-divisorD on a projective surface, the divisorial Zariski decomposition ofα is just the original
Zariski decomposition ofD. More generally, we show that the divisorial decomposition of a
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pseudo-effective classα on a Kähler surface is the unique orthogonal decomposition ofα into the
sum of a modified nef class and the class of an exceptional (in some sense) effectiveR-divisor.
This fact accounts for the rationality of the Zariski decomposition on a surface, meaning t
negative partN(α) is rational whenα is.

An interesting fact is that much of the well-known case of a surface carries on to the
whereX is a compact hyper-Kähler manifold. Using the quadratic Beauville–Bogomolov
on H1,1(X,R) and deep results due to D. Huybrechts, we can prove the following f
a family of primes is exceptional in our sense iff the corresponding Gram matrix is ne
definite. In particular, a prime is exceptional iff it has negative square, and this forces
be uniruled (Proposition 4.7). The modified nef cone of a hyper-Kähler manifold is jus
dual cone to the pseudoeffective cone, which is also the closure of the so-called bir
(or bimeromorphic) Kähler cone. Finally, the divisorial Zariski decomposition is the un
orthogonal decomposition into the sum of a modified nef class and an exceptional divi
particular, the divisorial Zariski decomposition is also rational in that case.

In a last part, we explain how to tackle the above constructions in a more algebraic fa
When L is a big R-divisor on a projective manifold, we prove that the divisorial Zar
projection ofL is the only decompositionL = P + N into real divisors withP modified nef
andH0(	kP 
) =H0(	kL
) for everyk. The minimal multiplicities of{L} (and thus its negativ
part) can be recovered from the asymptotic behaviour of the sections ofkL. The case of a gener
pseudo-effective line bundleL is then handled by approximating it byL+εA, whereA is ample.

Shortly after this paper was completed, we have been informed by R. Lazarsfeld
unpublished work of N. Nakayama [16] in which (among other things) the algebraic vers
our constructions is studied in detail, in the case of a pseudo-effectiveR-divisor on a projective
manifold. Following the advice of the referee, we have included as an appendix a brief su
of some aspects of [16] which may prove interesting in the perspective of the present wor

2. Technical preliminaries

2.1. ∂∂-cohomology

WhenX is an arbitrary complex manifold, the∂∂-lemma of Kähler geometry does not ho
and it is thus better to work with∂∂-cohomology. We will just need the(1,1)-cohomology
spaceH1,1

∂∂
(X,C), which is defined as the quotient of the space ofd-closed smooth(1,1)-forms

modulo the∂∂-exact ones. The real structure on the space of forms induces a real struc
H1,1

∂∂
(X,C), and we denote byH1,1

∂∂
(X,R) the space of real points.

The canonical map fromH1,1

∂∂
(X,C) to the quotient of the space ofd-closed(1,1)-currents

modulo the∂∂-exact ones is injective (because, for any degree0 currentf , ∂∂f is smooth iff
f is), and is also surjective: given a closed(1,1)-currentT , one can find a locally finite ope
coveringUj of X such thatT = ∂∂fj is ∂∂-exact onUj . If ρj is a partition of unity associate
toUj andf :=

∑
ρjfj , thenT − ∂∂f is smooth. Indeed, onUi, it is just∂∂

∑
j ρj(fi− fj), and

eachfi−fj is smooth since it is even pluri-harmonic. As a consequence, a classα ∈H1,1

∂∂
(X,C)

can be seen as an affine space of closed(1,1)-currents. We denote by{T } ∈H1,1

∂∂
(X,C) the

class of the currentT . Remark thati∂∂ is a real operator (on forms or currents), so that iT

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



48 S. BOUCKSOM

is a real closed(1,1)-current, its class{T } lies in H1,1

∂∂
(X,R) and consists of all the closed

currentsT + i∂∂ϕ whereϕ is a real current of degree0.
WhenX is furthermore compact, it can be shown thatH1,1(X,C) is finite dimensional. The
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operator∂∂ from smooth functions to smooth closed (1,1)-forms is thus an operator be
Fréchet spaces with finite codimensional range; it therefore has closed range, and the
mapθ �→ {θ} from smooth closed(1,1)-forms toH1,1

∂∂
(X,C) endowed with its unique finite

dimensional complex vector space Hausdorff topology is thus continuous and open.

2.2. General facts about currents

2.2.1. Siu decomposition
Let T be a closed positive current of bidegree(p, p) on a complexn-fold X . We denote

by ν(T,x) its Lelong number at a pointx ∈ X . The Lelong super-level sets are defined
Ec(T ) := {x ∈X,ν(T,x) � c} for c > 0, and a well known result of Y.T. Siu [18] asserts th
Ec(T ) is an analytic subset ofX , of codimension at leastp. As a consequence, for any analy
subsetY of X , the generic Lelong number ofT alongY , defined by

ν(T,Y ) := inf
{
ν(T,x), x ∈ Y

}
,

is also equal toν(T,x) for a very generalx ∈ Y . It is also true that, for any irreducible analy
subsetY of codimensionp in X , the currentT −ν(T,Y )[Y ] is positive. The symbol[Y ] denotes
the integration current onY , which is defined by integrating test forms on the smooth lo
of Y . SinceE+(T ) :=

⋃
c>0Ec(T ) is a countable union ofp-codimensional analytic subse

it contains an at most countable familyYk of p-codimensional irreducible analytic subsets.
what we have said,T − ν(T,Y1)[Y1]− · · · − ν(T,Yk)[Yk] is a positive current for allk, thus the
series

∑
k�0 ν(T,Yk)[Yk] converges, and we have

T =R+
∑
k

ν(T,Yk)[Yk]

for some closed positive(p, p)-currentR such that eachEc(R) has codimension> p. The
decomposition above is called the Siu decomposition of the closed positive(p, p)-currentT .
Sinceν(T,Y ) = 0 if Y is a p-codimensional subvariety not contained inE+(T ), it makes
sense to write

∑
k ν(T,Yk)[Yk] =

∑
ν(T,Y )[Y ], where the sum is implicitely extended ov

all p-codimensional irreducible analytic subsetsY ⊂X .

2.2.2. Almost positive currents
A real (1,1)-currentT on a complex manifoldX is said to be almost positive ifT � γ holds

for some smooth real(1,1)-form γ. Let T � γ be a closed almost positive(1,1)-current. On
a small enough open setU with coordinatesz = (z1, . . . , zn), we writeT = ∂∂ϕ whereϕ is a
degree0 current. Sinceγ + Ci∂∂|z|2 is a positive(1,1)-form onU for C > 0 big enough, we
get thati∂∂(ϕ+C|z|2) is positive, which means thatϕ+C|z|2 is (the current associated to)
(unique) pluri-subharmonic function onU . A locally integrable functionϕ onX such thati∂∂ϕ
is almost positive is called an almost pluri-subharmonic function, and is thus locally equ
pluri-subharmonic function modulo a smooth function.

The Lelong numberν(T,x) of a closed almost positive(1,1)-currentT can be defined
as ν(T + Ci∂∂|z|2, x) as above, since this does not depend on the smooth functionC|z|2.
Consequently, the Siu decomposition ofT can also be constructed, and writes

T =R+
∑

ν(T,D)[D],

4e SÉRIE– TOME 37 – 2004 –N◦ 1



DIVISORIAL ZARISKI DECOMPOSITIONS 49

whereD ranges over the prime divisors ofX , andR is a closed almost positive(1,1)-current.
In fact, we haveR� γ as soon asT � γ for a smooth formγ.
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2.2.3. Pull-back of a current
When f :Y → X is a surjective holomorphic map between compact complex manifo

and T is a closed almost positive(1,1)-current onX , it is possible to define its pull bac
f
T by f using the analogue of local equations for divisors: writeT = θ + i∂∂ϕ for some
smooth formθ ∈ {T }. ϕ is then an almost pluri-subharmonic function, thus locally a pl
subharmonic function moduloC∞. One definesf
T to bef
θ + i∂∂f
ϕ, as this is easily see
to be independent of the choices made. Of course, we then have{f
T } = f
{T }.

2.2.4. Gauduchon metrics and compactness
On any compact complexn-fold X , there exists a Hermitian metricω such thatωn−1 is

∂∂-closed. Such a metric is called a Gauduchon metric. As a consequence, for every
real (1,1)-form γ, the quotient mapT �→ {T } from the set of closed(1,1)-currentsT with
T � γ to H1,1

∂∂
(X,R) is proper. Indeed, the mass of the positive currentT − γ is controled by∫

(T − γ) ∧ ωn−1, and
∫
T ∧ ωn−1 = {T } · {ω} only depends on the class ofT . The result

follows by the weak compactness of positive currents with bounded mass. Another conse
is that the kernel ofT �→ {T } meets the cone of closed positive(1,1)-currents at the origin only

2.3. Cones in the∂∂-cohomology

We now assume thatX is compact, and fix some reference Hermitian formω (i.e. a smooth
positive definite(1,1)-form). A cohomology classα ∈H1,1

∂∂
(X,R) is said to be pseudo-effectiv

iff it contains a positive current;α is nef (numerically effective) iff, for eachε > 0, α contains a
smooth formθε with θε � −εω;α is big iff it contains a Kähler current, i.e. a closed(1,1)-current
T such thatT � εω for ε > 0 small enough. Finally,α is a Kähler class iff it contains a Kähle
form (note that a smooth Kähler current is the same thing as a Kähler form). Since an
Hermitian formsω1, ω2 are commensurable (i.e.C−1ω2 � ω1 � Cω2 for someC > 0), these
definitions do not depend on the choice ofω.

The set of pseudo-effective classes is a closed convex coneE ⊂ H1,1

∂∂
(X,R), called the

pseudo-effective cone. It has compact base, because so is the case of the cone of closed
(1,1)-currents. Similarly, one defines the nef coneN (a closed convex cone), the big coneB
(an open convex cone), and the Kähler coneK (an open convex cone). We obviously have
inclusions

K ⊂B ⊂ E and K ⊂N ⊂ E .

By definition,X is a Kähler manifold iff its Kähler coneK is non-empty. Similarly (but this is
theorem, cf. [7])X is a Fujiki manifold (i.e. bimeromorphic to a Kähler manifold) iff its big co
B is non-empty (see also the proof of Proposition 2.3 below). IfX is Kähler,K is trivially the
interior of the nef cone. Similarly, ifX is Fujiki, B is trivially the interior of the pseudo-effectiv
cone.

We will now and then denote by� the partial order relation onH1,1

∂∂
(X,R) induced by the

convex coneE .

2.4. The Néron–Severi space

Given a line bundleL on X , each smooth Hermitian metrich on L locally writes as
h(x, v) = |v|2e−2ϕ(x) for some smooth local weightϕ; the curvature formΘh(L) := i

π∂∂ϕ is a

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



50 S. BOUCKSOM

globally defined real(1,1)-form, whose class inH1,1

∂∂
(X,R) we denote byc1(L), the first Chern

class ofL. We writeddc = i
π∂∂ for short. A singular Hermitian metrich onL is by definition

a metrich = h e−2ϕ, whereh is a smooth Hermitian metric onL and the weightϕ is a

l
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) iff

,

losed

x

t

∞ ∞
locally integrable function. The curvature current ofh is defined asΘh(L) := Θh∞(L) + ddcϕ;
it also lies inc1(L). Conversely, given a smooth Hermitian metrich∞ on L, any closed rea
(1,1)-currentT in c1(L) can be written (by definition) asT = Θh∞(L) + ddcϕ. But ϕ is just
a degree0 currenta priori. However,ϕ is automaticallyL1

loc in caseT is almost positive (cf
Section 2.2.2), thus each almost positive currentT in c1(L) is the curvature form of a singula
Hermitian metric onL.

The image of the homomorphism Pic(X) → H1,1

∂∂
(X,R) L �→ c1(L) is called the Néron–

Severi group, denoted byNS (X). Its rank is denoted byρ(X), and called the Picard numb
of X . The real Néron–Severi spaceNS (X)R is just the real subspace of dimensionρ(X) in
H1,1

∂∂
(X,R) generated byNS(X). Kodaira’s embedding theorem can be formulated as follo

X is a projective manifold iff the intersection of the Kähler coneK with NS(X)R is non-
empty. Similarly,X is a Moishezon manifold (i.e. bimeromorphic to a projective manifold
the intersection of the big coneB with NS(X)R is non-empty (cf. [7]).

2.5. Currents with analytic singularities

2.5.1. Definition
A closed almost positive(1,1)-currentT on a compact complexn-fold X is said to have

analytic singularities (along a subschemeV (I) defined by a coherent ideal sheafI) if there
exists somec > 0 such thatT is locally congruent toc2dd

c log(|f1|2+ · · ·+ |fk|2) modulo smooth
forms, wheref1, . . . , fk are local generators ofI. T is thus smooth outside the support ofV (I),
and it is an immediate consequence of the Lelong–Poincaré formula that

∑
ν(T,D)D is just c

times the divisor part of the schemeV (I). If we first blow-upX alongV (I) and then resolve
the singularities, we get a modificationµ : X̃ → X , whereX̃ is a compact complex manifold
such thatµ−1I is justO(−D) for some effective divisorD upstairs. The pull-backµ
T clearly
has analytic singularities alongV (µ−1I) =D, thus its Siu decomposition writes

µ
T = θ+ cD

whereθ is a smooth(1,1)-form. If T � γ for some smooth formγ, thenµ
T � µ
γ, and thus
θ � µ
γ. This operation we call a resolution of the singularities ofT .

2.5.2. Regularization(s) of currents
We will need two basic types of regularizations (inside a fixed cohomology class) for c

(1,1)-currents, both due to J.-P. Demailly.

THEOREM 2.1 [4,5]. –LetT be a closed almost positive(1,1)-current on a compact comple
manifoldX , and fix a Hermitian formω. Suppose thatT � γ for some smooth real(1,1)-form
γ onX . Then:

(i) There exists a sequence of smooth formsθk in {T } which converges weakly toT , and such
thatθk � γ−Cλkω whereC > 0 is a constant depending on the curvature of(TX , ω) only, and
λk is a decreasing sequence of continuous functions such thatλk(x) → ν(T,x) for everyx ∈X .

(ii) There exists a sequenceTk of currents with analytic singularities in{T } which converges
weakly toT , such thatTk � γ − εkω for some sequenceεk > 0 decreasing to0, and such tha
ν(Tk, x) increases toν(T,x) uniformly with respect tox ∈X .

4e SÉRIE– TOME 37 – 2004 –N◦ 1



DIVISORIAL ZARISKI DECOMPOSITIONS 51

Point (ii) enables us in particular to approximate a Kähler currentT inside its cohomology
class by Kähler currentsTk with analytic singularities, with a very good control of the
singularities. A big class therefore contains plenty of Kähler currents with analytic singularities.
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2.6. Intersection of currents

Just as cycles, currents can be intersected provided their singular sets are in an ac
mutual position. Specifically, letT be a closed positive(1,1)-current on a complex manifoldX .
Locally, we haveT = ddcϕ with ϕ a pluri-subharmonic function, which is well defined mod
a pluri-harmonic (hence smooth) function. We therefore get a globally well-defined unbo
locusL(T ), which is the complement of the open set of points near whichϕ is locally bounded
Assume now thatT1, T2 are two closed positive(1,1)-currents such thatL(Tj) is contained in
an analytic setAj (which may beX); locally, we writeTj = ddcϕj with ϕj a pluri-subharmonic
function. IfA1 ∩A2 has codimension at least2, then it is shown in [5] thatϕ1dd

cϕ2 has locally
finite mass, and thatddcϕ1 ∧ ddcϕ2 := ddc(ϕ1dd

cϕ2) yields a globally defined closed positiv
(2,2)-current, denoted byT1 ∧ T2. It is also true thatT1 ∧ T2 lies in the product cohomolog
class{T1} · {T2} ∈H2,2

∂∂
(X,R).

We will only need the following two special cases: ifT1 is a closed positive(1,1)-current with
analytic singularities along a subscheme of codimension at least2, thenT1 ∧ T2 exists for every
closed positive(1,1)-currentT2.

If D1 andD2 are two distinct prime divisors, then[D1]∧ [D2] is a well defined closed positiv
(2,2)-current. Since its support is clearly contained in the set-theoretic intersectionD1 ∩ D2

(whose codimension is at least2), we have[D1] ∧ [D2] =
∑

aj [Yj ], where theYj ’s are the
components ofD1 ∩D2. In fact, it can be shown that

∑
ajYj is just the2-cycle associated to th

scheme-theoretic intersectionD1 ∩D2, thus[D1]∧ [D2] is just the integration current associat
to the cycleD1 ·D2.

2.7. The modified nef cone

For our purposes, we need to introduce a new cone inH1,1

∂∂
(X,R), which is somehow the

cone of classes that are nef in codimension1. Let X be a compact complexn-fold, andω be
some reference Hermitian form.

DEFINITION 2.2 (Modified nef and Kähler classes). – Letα be a class inH1,1

∂∂
(X,R).

(i) α is said to be a modified Kähler class iff it contains a Kähler currentT with ν(T,D) = 0
for all prime divisorsD in X .

(ii) α is said to be a modified nef class iff, for everyε > 0, there exists a closed(1,1)-current
Tε in α with Tε � −εω andν(Tε,D) = 0 for every primeD.

This is again independent of the choice ofω by commensurability of the Hermitian form
The set of modified Kähler classes is an open convex cone called the modified Kähler co
denoted byMK. Similarly, we get a closed convex coneMN , the modified nef cone. Using th
Siu decomposition, we immediately see thatMK is non-empty iff the big coneB is non-empty,
in which caseMK is just the interior ofMN .

Remark1. – Upon regularizing the currents using (ii) of Theorem 2.1, we can always as
that the currents involved in the definition have analytic singularities along a subsche
codimension at least2.

Remark2. – The modified nef cone of a compact complex surface is just its nef con
Section 4.2.1).
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52 S. BOUCKSOM

Remark3. – Just as for nef classes, one cannot simply takeε = 0 in the definition of a
modified nef class. We recall the example given in [8]: there exists a ruled surfaceX over an
elliptic curve such thatX contains an irreducible curveC with the following property: the

the
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me
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class{C} ∈H1,1

∂∂
(X,R) is nef, but contains only one positive current, which is of course

integration current[C].

The following proposition gives a more “algebraic” characterization ofMK, which also
explains the (seemingly dumb) terminology.

PROPOSITION 2.3. –A classα lies in MK iff there exist a modificationµ : X̃ → X and a
Kähler classα̃ on X̃ such thatα= µ
α̃.

Proof. –The argument is adapted from [7], Theorem 3.4. Ifω̃ is a Kähler form onX̃ andω
is our reference Hermitian form onX , thenµ
ω � Cω̃ for someC > 0, sinceX̃ is compact.
Sinceµ is a modification, we haveµ
µ
ω = ω, so we getT := µ
ω̃ � C−1ω, andT is thus a
Kähler current. Since the singular values ofµ are in codimension at least2, we immediately see
that ν(T,D) = 0 for every prime divisorD in X , and{T } = µ
{ω} lies in MK as desired
Conversely, ifα ∈ MK is represented by a Kähler currentT with ν(T,D) = 0 for all D,
there exists by (ii) of Theorem 2.1 a Kähler currentTk in α with analytic singularities alon
a subschemeVk with ν(Tk,D) � ν(T,D), so thatVk has no divisor component. We selec
resolution of the singularities ofTk µ : X̃ →X , and writeµ
Tk = θ + F , whereθ is a smooth
form andF is an effectiveR-divisor. SinceTk � εω for ε > 0 small enough, we get tha
θ � µ
εω. Denoting byE1, . . . ,Er theµ-exceptional prime divisors oñX , it is shown in [7],
Lemma 3.5, that one can findδ1, . . . , δr > 0 small enough and a closed smooth(1,1)-form τ in
{δ1E1 + · · ·+ δrEr} such thatµ
εω− τ is positive definite everywhere. It follows thatθ− τ is
a Kähler form upstairs. Now, we have

α= µ
{Tk} = µ

{
θ− (δ1E1 + · · ·+ δrEr)

}
= µ
{θ− τ},

sinceEj isµ-exceptional and so isF becauseµ
F is an effective divisor contained in the sche
Vk; this concludes the proof of Proposition 2.3.✷

That a modified nef class is somehow nef in codimension1 is reflected in the following

PROPOSITION 2.4. –If α is a modified Kähler(respectively nef) class, thenα|D is big
(respectively pseudo-effective) for every prime divisorD ⊂X .

Proof. –If α is a modified nef class andε > 0 is given, choose a currentTε � −εω in α with
analytic singularities in codimension at least2. Locally, we haveω �Cddc|z|2 for someC > 0,
thusTε + εCddc|z|2 writes asddcϕε, whereϕε is pluri-subharmonic and is not identically−∞
onD. Thus the restriction(ϕε)|D is pluri-subharmonic, and(Tε+εCddc|z|2)|D is a well defined
closed positive current. It follows that(Tε)|D is a well defined almost positive current onD,
with (Tε)|D � −εCω|D. This certainly implies thatα|D is pseudo-effective. The caseα ∈MK
is treated similarly. ✷
2.8. Currents with minimal singularities

Let ϕ1, ϕ2 be two almost pluri-subharmonic functions on a compact complex manifolX .
Then, following [10], we say thatϕ1 is less singular thanϕ2 (and writeϕ1 � ϕ2) if we have
ϕ2 � ϕ1 +C for some constantC. We denote byϕ1 ≈ ϕ2 the equivalence relation generated
the pre-order relation�. Note thatϕ1 ≈ ϕ2 exactly means thatϕ1 = ϕ2 modL∞.
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WhenT1 andT2 are two closed almost positive(1,1)-currents onX , we can also compare
their singularities in the following fashion: writeTi = θi + ddcϕi for θi ∈ {Tj} a smooth form
andϕi an almost pluri-subharmonic function. Since anyL1

loc functionf with ddcf smooth is
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,

itself smooth, it is easy to check thatϕi does not depend on the choices made up to equiva
of singularities, and we compare the singularities of theTi’s by comparing those of theϕi’s.

Let nowα be a class inH1,1

∂∂
(X,R) andγ be a smooth real(1,1)-form, and denote byα[γ] the

set of closed almost positive(1,1)-currentsT lying in α with T � γ. It is a (weakly) compact an
convex subset of the space of(1,1)-currents. We endow it with the pre-order relation� defined
above. For any familyTj , j ∈ J of elements ofα[γ], we claim that there exists an infimu
T = infj∈J Tj in (α[γ],�), which is therefore unique up to equivalence of singularities.
proof is pretty straightforward: fix a smooth formθ in α, and writeTj = θ+ddcϕj for some quas
pluri-subharmonic functionsϕj . SinceX is compact,ϕj is bounded from above; therefore, up
changingϕj into ϕj −Cj , we may assume thatϕj � 0 for all j ∈ J . We then takeϕ to be the
upper semi-continuous upper envelope of theϕj ’s, j ∈ J , and setT := θ+ddcϕ. It is immediate
to check thatT � Tj for all j, and that for everyS ∈ α[γ], S � Tj for all j implies thatS � T .
We should maybe explain whyT � γ: locally, we can choose coordinatesz = (z1, . . . , zn) and a
form q(z) =

∑
λj |zj |2 such thatddcq � γ andddcq is arbitrarily close toγ. Writing θ = ddcψ

for some smooth local potentialψ, the conditionθ+ ddcϕj � γ implies thatψ+ϕj − q is pluri-
subharmonic. The upper envelopeψ + ϕ− q is thus also pluri-subharmonic, which means t
T = θ+ ddcϕ� ddcq; lettingddcq tend toγ, we getT � γ, as desired.

Since any two closed almost positive currents with equivalent singularities have the
Lelong numbers, the Lelong numbers ofinf Tj do not depend on the specific choice of
current. In fact, it is immediate to check from the definitions that

ν(inf
j∈J

Tj, x) = inf
j∈J

ν(Tj , x).

As a particular case of the above construction, there exists a closed almost p
(1,1)-currentTmin,γ ∈ α[γ] which is a least element in(α[γ],�). Tmin,γ is well defined modulo
ddcL∞, and we call it a current with minimal singularities inα, for the given lower boundγ.
Whenγ = 0 andα is pseudo-effective, we just writeTmin = Tmin,0, and call it a positive curren
with minimal singularities inα. It must be noticed that, even for a big classα, Tmin will be a
Kähler current only in the trivial case:

PROPOSITION 2.5. –A pseudo-effective classα contains a positive current with minim
singularitiesTmin which is a Kähler current iffα is a Kähler class.

Proof. –We can writeTmin = θ + ddcϕ with θ a smooth form. IfTmin is Kähler, then so is
εθ+ (1 − ε)Tmin = θ+ ddc(1 − ε)ϕ for ε > 0 small enough. We therefore getϕ� (1 − ε)ϕ by
minimality, that is:(1−ε)ϕ� ϕ+C for some constantC. But this shows thatϕ is bounded, and
thusTmin is a Kähler current with identically zero Lelong numbers. Using (i) of Theorem
we can therefore regularize it into a Kähler form inside its cohomology class.✷

Finally, we remark that a positive current with minimal singularities in a pseudo-effective
is generally non-unique (as a current), as the example of a Kähler class already shows.

3. The divisorial Zariski decomposition

In this sectionX denotes a compact complexn-fold, andω is a reference Hermitian form
unless otherwise specified.
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3.1. Minimal multiplicities and non-nef locus

Whenα ∈H1,1

∂∂
(X,R) is a pseudo-effective class, we want to introduce minimal multiplicities

-
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ν(α,x), which measure the obstruction to the numerical effectivity ofα. For eachε > 0, let
Tmin,ε = Tmin,ε(α) be a current with minimal singularities inα[−εω] (cf. Section 2.8 for the
notation). We then introduce the following

DEFINITION 3.1 (Minimal multiplicities). – The minimal multiplicity atx∈X of the pseudo
effective classα ∈H1,1

∂∂
(X,R) is defined as

ν(α,x) := sup
ε>0

ν(Tmin,ε, x).

The commensurability of any two Hermitian forms shows that the definition does not d
on ω. Furthermore, we do haveν(α,x) < +∞, since trivially ν(α,x) � ν(T,x) if T is any
closed positive current inα. When D is a prime divisor, we define the generic minim
multiplicity of α alongD as

ν(α,D) := inf
{
ν(α,x), x ∈D

}
.

We then haveν(α,D) = supε>0 ν(Tmin,ε,D), and ν(α,D) = ν(α,x) for the very genera
x∈D.

PROPOSITION 3.2. –Letα ∈H1,1

∂∂
(X,R) be a pseudo-effective class.

(i) α is nef iffν(α,x) = 0 for everyx∈X .
(ii) α is modified nef iffν(α,D) = 0 for every primeD.

Proof. –If α is nef (respectively modified nef),α[−εω] contains by definition a smooth for
(respectively a currentTε with ν(Tε,D) = 0 for every primeD). We thus haveν(Tmin,ε, x) = 0
(respectivelyν(Tmin,ε,D) = 0) for everyε > 0, and thusν(α,x) = 0 (respectivelyν(α,D) = 0).
Conversely, ifν(α,x) = 0 for everyx ∈X , applying (i) of Theorem 2.1 toTmin,ε, we see tha
ν(Tmin,ε, x) = 0 for everyx ∈X implies thatα[−ε′ω] contains a smooth form for everyε′ > ε,
andα is thus nef. Finally, ifν(α,D) = 0 for every primeD, we haveν(Tmin,ε,D) = 0 for every
primeD. SinceTmin,ε lies inα[−εω], α is modified nef by the very definition.✷

In view of Proposition 3.2, we propose the

DEFINITION 3.3 (Non-nef locus). – The non-nef locus of a pseudo-effective cl
α ∈H1,1

∂∂
(X,R) is defined by

Enn(α) :=
{
x ∈X,ν(α,x)> 0

}
.

Recall that the setE+(T ) := {x ∈ X,ν(T,x) > 0} is a countable union of closed analy
subsets for every closed almost positive(1,1)-currentT . SinceEnn(α) =

⋃
ε>0E+(Tmin,ε),

the non-nef locus is also a countable union of closed analytic subsets. We do not claim h
that each super-level set{x ∈X,ν(α,x) � c} (c > 0) is an analytic subset (this is most certain
not true in general). Using results of M. Paun, Proposition 3.2 generalizes as follows:

PROPOSITION 3.4. –A pseudo-effective classα is nef iff α|Y is pseudo-effective for eve
irreducible analytic subsetY ⊂Enn(α).

Proof. –Paun’s result [17] states that a pseudo-effective class is nef iff its restriction to
irreducible analytic subset is nef. It is thus enough to notice the following fact: ifY ⊂X is an
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analytic subset not entirely contained in the non-nef locus ofα, thenα|Y is pseudo-effective.
This is proved exactly as Proposition 2.4, replacingD by Y there. ✷
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We now investigate the continuity ofα �→ ν(α,x) andν(α,D):

PROPOSITION 3.5. –For everyx ∈ X and every primeD, the mapsE → R α �→ ν(α,x)
andν(α,D) are convex, homogeneous. They are continuous on the interiorE0, and lower semi-
continuous on the whole ofE .

Proof. –Letα, β be two pseudo-effective classes. IfTmin,ε(α) andTmin,ε(β) are currents with
minimal singularities inα[−εω] andβ[−εω] respectively, thenTmin,ε(α) + Tmin,ε(α) belongs
to (α+ β)[−2εω], thus

ν
(
Tmin,2ε(α+ β), x

)
� ν

(
Tmin,ε(α), x

)
+ ν

(
Tmin,ε(β), x

)
� ν(α,x) + ν(β,x).

We infer from thisν(α + β,x) � ν(α,x) + ν(β,x), and a similar sub-additivity property fo
ν(·,D) is obtained along the same lines. Since the homogeneity of our two maps is obvio
convexity also follows.

The quotient mapθ �→ {θ} from the Fréchet space of closed smooth real(1,1)-forms to
H1,1

∂∂
(X,R) is surjective, thus open. Ifαk ∈ H1,1

∂∂
(X,R) is a sequence of pseudo-effect

classes converging toα andε > 0 is given, we can thus find a smooth formθk ∈ α − αk for
eachk big enough such that−εω � θk � εω. The currentTmin,ε(αk)+ θk then lies inα[−2εω],
and thusν(Tmin,2ε(α), x) � ν(Tmin,ε(αk), x) � ν(αk, x), for eachk big enough. We infer from
this thatν(Tmin,2ε(α), x) � lim infk→∞ ν(αk, x) for eachε > 0, hence

ν(α,x) � lim inf
k→∞

ν(αk, x),

by taking the supremum of the left hand side forε > 0. This means thatα �→ ν(α,x) is lower
semi-continuous, and similarly forν(α,D), just replacingx byD in the above proof.

Finally, the restrictions of our maps toE0 are continuous as any convex map on an open co
subset of a finite dimensional vector space is.✷

PROPOSITION 3.6. –Letα ∈H1,1

∂∂
(X,R) be a pseudo-effective class, andTmin be a positive

current with minimal singularities inα.
(i) We always haveν(α,x) � ν(Tmin, x) andν(α,D) � ν(Tmin,D).
(ii) Whenα is furthermore big, we haveν(α,x) = ν(Tmin, x) andν(α,D) = ν(Tmin,D).

Proof. –SinceTmin belongs toα[−εω] for every ε > 0, ν(α,x) � ν(Tmin, x) follows for
every x ∈ X , for any pseudo-effective classα. If α is furthermore big, we can choose
Kähler currentT in α with T � ω for some Hermitian formω. If Tmin,ε is a current with
minimal singularities inα[−εω], then(1 − ε)Tmin,ε + εT is a positive current inα, and thus
ν((1 − ε)Tmin,ε + εT,x) � ν(Tmin, x) by minimality ofTmin, from which we infer

(1 − ε)ν(α,x) + εν(T,x) � ν(Tmin, x).

We thus get the converse inequalityν(α,x) � ν(Tmin, x) by lettingε→ 0. The case ofν(α,D)
is similar. ✷
3.2. Definition of the divisorial Zariski decomposition

Let α ∈ H1,1

∂∂
(X,R) be again a pseudo-effective class, and choose a positive c

with minimal singularitiesTmin in α. Since ν(α,D) � ν(Tmin,D) for every primeD by
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Proposition 3.8, the series of currents
∑

ν(α,D)[D] is convergent, since it is dominated by∑
ν(Tmin,D)[D].
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DEFINITION 3.7 (Divisorial Zariski decomposition). – The negative part of a pseudo-effect
classα ∈ H1,1

∂∂
(X,R) is defined asN(α) :=

∑
ν(α,D)[D]. The Zariski projection ofα is

Z(α) := α − {N(α)}. We call the decompositionα = Z(α) + {N(α)} the divisorial Zariski
decomposition ofα.

It is certainly highly desirable that the negative partN(α) of a pseudo-effective class be
divisor, i.e. thatν(α,D) = 0 for almost every primeD. We will see in Section 3.3 that it i
indeed the case. For the time being, we concentrate on the Zariski projection, which we s
mapZ :E → E .

PROPOSITION 3.8. –Letα ∈H1,1

∂∂
(X,R) be a pseudo-effective class. Then:

(i) Its Zariski projectionZ(α) is a modified nef class.
(ii) We haveZ(α) = α iff α is modified nef.
(iii) Z(α) is big iff α is.
(iv) If α is not modified nef, thenZ(α) belongs to the boundary∂MN of the modified ne

cone.

Proof. –(i) Let Tmin,ε be as before a current with minimal singularities inα[−εω],
and consider its Siu decompositionTmin,ε = Rε +

∑
ν(Tmin,ε,D)[D]. First, we claim tha

Nε :=
∑

ν(Tmin,ε,D)[D] converges weakly toN(α) asε goes to0. For any smooth formθ of
bidimension(1,1), θ+Cωn−1 is a positive form forC > 0 big enough. Every suchθ is thus the
difference of two positive forms, and it is enough to show that

∫
Nε ∧ θ→

∫
N(α)∧ θ for every

smooth positive formθ. But
∫
Nε ∧ θ =

∑
ν(Tmin,ε,D)

∫
[D] ∧ θ is a convergent series who

general termν(Tmin,ε,D)
∫
[D]∧θ converges toν(α,D)

∫
[D]∧θ asε→ 0 and is dominated b

ν(Tmin,D)
∫
[D] ∧ θ; since

∑
ν(Tmin,D)

∫
[D] ∧ θ �

∫
Tmin ∧ θ converges, our claim follow

by dominated convergence.
In particular, the class{Nε −N(α)} converges to zero. Since the mapθ �→ {θ} is open on

the space of smooth closed(1,1)-form, we can find a sequenceθk � −δkω of smooth forms
with θk ∈ {Nεk

−N(α)} for some sequencesεk � δk going to zero. It remains to notice th
Tk :=Rεk

+ θk is a current inZ(α) with Tk � −(εk + δk)ω andν(Tk,D) = 0 for every prime
D. Sinceεk + δk converges to zero,Z(α) is modified nef by definition.

(ii) Since N(α) =
∑

ν(α,D)[D] is a closed positive(1,1)-current, it is zero iff its class
{N(α)} ∈H1,1

∂∂
(X,R) is. The assertion is thus just a reformulation of (ii) in Proposition 3.2

(iii) If Z(α) is big, then of courseα = Z(α) + {N(α)} is also big, as the sum of
big class and a pseudo-effective one. If converselyα is big, it contains a Kähler currentT ,
whose Siu decomposition we writeT = R +

∑
ν(T,D)[D]. Note thatR is a Kähler curren

sinceT is; sinceT belongs toα[−εω] for every ε > 0, we haveν(T,D) � ν(α,D), and
R+

∑
(ν(T,D)− ν(α,D))[D] is thus a Kähler current inZ(α) as desired.

(iv) Assume thatZ(α) belongs to the interiorMN 0 of the modified nef cone. B
Proposition 3.2, we have to see thatν(α,D) = 0 for every primeD. Suppose therefore th
ν(α,D0) > 0 for some primeD0. The classZ(α) + ε{D0} has to lie in the open coneMN 0

for ε small enough, thus we can write for0< ε< ν(α,D0):

α=
(
Z(α) + ε{D0}

)
+

(
ν(α,D0)− ε

)
{D0} +

{ ∑
D �=D0

ν(α,D)D
}
.
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We deduce that

ν(α,D0) � ν
(
Z(α) + ε{D0},D0

)
+

(
ν(α,D0)− ε

)
.
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Indeed, the class{D0} (respectively{
∑
D �=D0

ν(α,D)D}) has minimal multiplicity� 1 (re-
spectively 0) alongD0, because so is the generic Lelong numbers of the positive current[D0]
(respectively

∑
D �=D0

ν(α,D)[D]) alongD0. Now, we also haveν(Z(α) + ε{D0},D0) = 0
since Z(α) + ε{D0} is modified nef by assumption, hence the contradic
ν(α,D0) � ν(α,D0) − ε. ✷

PROPOSITION 3.9. – (i) The mapα �→ N(α) is convex and homogeneous onE . It is
continuous on the interior of the pseudo-effective cone.

(ii) The Zariski projectionZ :E →MN is concave and homogeneous. It is continuous on
interior of E .

Proof. –We have already noticed thatν(α + β,D) � ν(α,D) + ν(β,D) for every primeD
and every two pseudo-effective classesα, β. This implies thatN(α + β) � N(α) + N(β).
Homogeneity is obvious, and the first assertion follows. To show continuity, it is enou
above to show thatα �→

∫
N(α)∧ θ is continuous onE0 for every positive formθ. But the latter

map is convex, and thus continuous onE0 as any convex map on an open convex subset
finite dimensional vector space is. (ii) is now an obvious consequence of (i) and the re
Z(α) = α− {N(α)}. ✷
3.3. Negative part and exceptional divisors

If A=D1, . . . ,Dr is a finite family of prime divisors, we denote byV+(A) ⊂H1,1

∂∂
(X,R) the

closed convex cone generated by the classes{D1}, . . . ,{Dr}. Every element ofV+(A) writes
α= {E} for some effectiveR-divisor supported by theDj ’s. Since[E] is a positive current in
α, we haveN(α) �E, and thusZ(α) can be represented by the effectiveR-divisorE −N(α),
which is also supported by theDj ’s. We conclude:V+(A) is stable under the Zariski projectio
Z . In particular, we haveZ(V+(A)) = 0 iff V+(A) meetsMN at 0 only.

DEFINITION 3.10 (Exceptional divisors). – (i) A family D1, . . . ,Dq of prime divisors is said
to be an exceptional family iff the convex cone generated by their cohomology classes me
modified nef coneMN at 0 only.

(ii) An effectiveR-divisorE is said to be exceptional iff its prime components constitute
exceptional family.

We have the following

PROPOSITION 3.11. – (i)An effectiveR-divisorE is exceptional iffZ({E}) = 0.
(ii) If E is an exceptional effectiveR-divisor, we haveE =N({E}).
(iii) If D1, . . . ,Dq is an exceptional family of primes, then their classes{D1}, . . . ,{Dq} are

linearly independent inNS(X)R ⊂ H1,1

∂∂
(X,R). In particular, the length of the exception

families of primes is uniformly bounded by the Picard numberρ(X).

Proof. –(i) Let A = D1, . . . ,Dr denote the family of primes supportingE, and choose a
Gauduchon metricω (cf. Section 2.2.4). Sinceωn−1 is ∂∂-closed,

∫
Z(α) ∧ ωn−1 is well

defined, and defines a mapE → R α �→
∫
Z(α) ∧ ωn−1, which is concave and homogeneo

(by Proposition 3.11), and everywhere non-negative. The restriction of this map toV+(A) shares
the same properties, and the classα := {E} is a point in the relative interior of the convex co
V+(A) at which

∫
Z(α) ∧ ωn−1 = 0. By concavity, we thus get

∫
Z(α) ∧ ωn−1 = 0 for every

α ∈ V+(A), and thusZ(α) = 0 for every suchα ∈ V+(A).
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(ii) WhenE is exceptional, we have bothE �N({E}) (because the positive current[E] lies
in the class{E}) and{E} = {N({E})} (becauseZ({E}) = 0). Since a closed positive current
which yields zero inH1,1(X,R) is itself zero, we get the result.
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(iii) SinceD1, . . . ,Dq are linearly independent in Div(X)⊗ R, the assertion is equivalent

the fact that the quotient mapD �→ {D} is injective on theR-vector space of divisors generat
by theDj ’s. But this is easy: ifE =

∑
ajDj lies in the kernel, we can writeE =E+ −E− with

E+ andE− effective such that{E+} = {E−}. By (iii), we getE+ =E−, whenceE = 0. ✷
We state as a theorem the following important consequences of (iii):

THEOREM 3.12. – (i)For every pseudo-effective classα ∈ E , the negative partN(α) is an
exceptional effectiveR-divisor supported by at mostρ(X) primes.

(ii) X carries at most countably many exceptional primes.
(iii) The exceptional fiberZ−1(0) is contained inNS (X)R, and is a union of at mos

countably many simplicial cones over exceptional families of primes.

Proof. –(i) We haveZ(α) � Z(Z(α)) + Z({N(α)}), andZ(Z(α)) = Z(α) by Proposi-
tion 3.10, thusZ({N(α)}) = 0. We immediately deduce from this that any family of prim
D1, . . . ,Dr such thatν(α,Dj) > 0 for everyj is an exceptional family, and the assertion f
lows from (iii) of Proposition 3.13.

(ii) We just have to notice thatD �→ {D} is injective on the set of exceptional primes, a
maps into the latticeNS (X) ⊂ NS(X)R.

(iii) Since {A} is a linearly independent set for every exceptional family of primesA, we
see thatV+(A) =

∑
D∈AR+{D} is a simplicial cone. It remains to observe thatα lies in

the exceptional fiberZ−1(0) iff α = {N(α)}, thusZ−1(0) is covered by the simplicial cone
V+(A). ✷

We will see in Section 4.3 that a familyD1, . . . ,Dq of primes on a surface is exceptional iff t
Gram matrix(Di ·Dj) is negative definite, i.e. iffD1, . . . ,Dq can all be blown down to points b
a modification towards an analytic surface (singular in general). On a general compact c
n-fold X , an exceptional divisor is still very rigidly embedded inX :

PROPOSITION 3.13. –If E is an exceptional effectiveR-divisor, then its class{E} contains
but one positive current, which is[E]. In particular, whenE is rational, its Kodaira–Iitaka
dimensionκ(X,E) is zero.

Proof. –If T is a positive current in{E}, we haveν(T,D) � ν({E},D) for every primeD.
Using the Siu decomposition ofT , we thus see thatT �

∑
ν({E},D)D =N({E}) =E, since

E is exceptional. But we also have{T } = {E}, henceT = E, as was to be shown. To get t
last point, letD be an element of the linear system|kE| for some integerk > 0 such thatkE is
Cartier. The positive current1k [D] then lies in{E}, thus we have[D] = k[E] as currents, henc
D = kE as divisors. This shows thath0(kE) = 1 for eachk > 0. ✷
3.4. Discontinuities of the Zariski projection

It is remarkable that the Zariski projectionZ is not continuous in general up to the bound
∂E .

PROPOSITION 3.14. –If X carries infinitely many exceptional primes, then the Zar
projectionZ :E →MN is not continuous.

Proof. –We use the following

4e SÉRIE– TOME 37 – 2004 –N◦ 1



DIVISORIAL ZARISKI DECOMPOSITIONS 59

LEMMA 3.15. –If Dk is an infinite sequence of divisors, the raysR+{Dk} ⊂ E can
accumulate onMN only.

ce
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Proof. –Suppose thattk{Dk} converges to some non-zeroα ∈ E (for tk > 0). For each prime
D, we then haveDk �= D and thusν(tk{Dk},D) = tkν({Dk},D) = 0 for infinitely many
k, because the familyDk is infinite. By lower semi-continuity (Proposition 3.7) we dedu
ν(α,D) = 0 for every primeD, i.e.α is modified nef (by Proposition 3.2).
Assume now that an infinite sequence of exceptional prime divisorsDk exists. SinceE has
a compact base, upon extracting a subsequence, we can assume thattk{Dk} converges to
some non-zeroα ∈ E (with tk > 0 an appropriate sequence). SinceDk is exceptional, we
haveZ(tk{Dk}) = 0 for everyk, butZ(α) = α sinceα is modified nef by the above lemm
Consequently,Z−1(0) is not closed, andZ is not continuous. ✷

To get an example of discontinuous Zariski projection, just takeX to be the blow-up ofP2 in
at least 9 general points. Such a rational surface is known to carry countably many exce
curves of the first kind (cf. [13, p. 409]). Since a prime divisorC on a surface is exceptional i
C2 < 0 (cf. Section 4.3), the set of exceptional primes onX is infinite, and we have our exampl

3.5. When is a decomposition the Zariski decomposition?

Suppose that we have a decompositionα = p + {N} of a pseudo-effective classα into the
sum of a modified nef classp and the class of an effectiveR-divisorN . We want a criterion tha
tells us when it is the Zariski decomposition ofα. We haveN(α) �N(p) +N , andN(p) = 0
sincep is modified nef, thusN(α) =N happens iffZ(α) = p, and our question is equivalent
the study of the fibersZ−1(p), with p ∈MN .

We will need the following

DEFINITION 3.16 (Non-Kähler locus). – If α ∈H1,1

∂∂
(X,R) is a big class, we define its no

Kähler locus asEnK(α) :=
⋂
T E+(T ) for T ranging among the Kähler currents inα.

Let us explain the terminology:

THEOREM 3.17. –Letα ∈H1,1

∂∂
(X,R) be a big class. Then:

(i) The non-nef locusEnn(α) is contained in the non-Kähler locusEnK(α).
(ii) There exists a Kähler current with analytic singularitiesT in α such that

E+(T ) =EnK(α).

In particular, the non-Kähler locusEnK(α) is an analytic subset ofX .
(iii) α is a Kähler class iffEnK(α) is empty. More generally,α is a Kähler class iffα|Y is a

Kähler class for every irreducible componentY of the analytic setEnK(α).

Proof. –(i) Sinceα is big, its non-nef locusEnn(α) is just the set{x ∈X,ν(Tmin, x)> 0},
since we haveν(α,x) = ν(Tmin, x) in that case (cf. Proposition 3.8). For every Kähler currenT
in α, we haveν(T,x) � ν(Tmin, x) by minimality, and the inclusionEnn(α) ⊂EnK(α) ensues

(ii) First, we claim that given two Kähler currentsT1, T2 in α, there exists a Kähler curre
with analytic singularitiesT such thatE+(T ) ⊂ E+(T1) ∩ E+(T2). Indeed, we can findε > 0
small enough such thatTj � εω. Our currentsT1 andT2 thus belong toα[εω], and admit an
infimumT3 in that set with respect to� (cf. Section 2.8). In particular,T3 is a current inα with
T3 � εω andν(T3, x) = min{ν(T1, x), ν(T2, x)} for everyx∈X . By (ii) of Theorem 2.1, there
exists a Kähler current with analytic singularitiesT in α such thatν(T,x) � ν(T3, x) for every
x∈X , henceE+(T ) ⊂E+(T1) ∩E+(T2), and this proves the claim.
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Using the claim and (ii) of Theorem 2.1, it is easy to construct a sequenceTk of Kähler currents
with analytic singularities such thatE+(Tk) is a decreasing sequence with

ence
y get
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riski
EnK(α) =
⋂
k

E+(Tk).

SinceTk has analytic singularities,E+(Tk) is an analytic subset, thus the decreasing sequ
E+(Tk) has to be stationary (by the strong Nötherian property), and we eventuall
EnK(α) =E+(Tk) for somek, as desired.

(iii) If α is a Kähler class,E+(ω) is empty for every Kähler formω in α, and thus so is
EnK(α). Conversely, assume thatα|Y is a Kähler class for every componentY of E+(α), and
let T be a Kähler current with analytic singularities such thatE+(T ) = EnK(α). α is then a
Kähler class by Proposition 3.3 of [7].✷

We can now state the following

THEOREM 3.18. –Let p be a big and modified nef class. Then the primesD1, . . . ,Dr
contained in the non-Kähler locusEnK(p) form an exceptional familyA, and the fiber ofZ
abovep is the simplicial coneZ−1(p) = p+ V+(A). Whenp is an arbitrary modified nef class
Z−1(p) is an at most countable union of simplicial conesp+ V+(A), whereA is an exceptiona
family of primes.

Proof. –Note that, by the very definitions, for every pseudo-effective classα, the prime
components of its negative partN(α) are exactly the setA of primesD contained in the non
nef locusEnn(α). Furthermore,Z(α) + V+(A) is entirely contained in the fiberZ−1Z(α).
Indeed, the restriction ofZ to this simplicial cone is a concave map above the affine con
mapZ(α), and both coincide at the relative interior pointα, thus they are equal on the whole
Z(α) + V+(A). This already proves the last assertion.

Assume now thatp is modified nef and big, and suppose first thatα lies in Z−1(p). To see
that α lies in p + V+(A), we have to prove that every primeD0 with ν(α,D0) > 0 lies in
EnK(p), that is:ν(T,D0)> 0 for every Kähler currentT in p. If not, choose a smooth formθ
in {D0}. SinceT is a Kähler current, so isT + εθ for ε small enough. For0 < ε < ν(α,D0)
small enough,Tε := T + εθ + (ν(α,D0) − ε)[D0] +

∑
D �=D0

ν(α,D)[D] is then a positive
current inα with ν(Tε,D0) = ν(α,D0) − ε < ν(α,D) = ν(Tmin,D0) (the last equality hold
by Proposition 3.8 becauseα is big sincep is); this is a contradiction which proves the inclusi
Z−1(p) ⊂ p+ V+(A).

In the other direction, letT be a Kähler current inp, and letT = R +
∑

ν(T,D)D be its
Siu decomposition.R is then a Kähler current withν(R,D) = 0 for every primeD, thus its
classβ := {R} is a modified Kähler class. We first claim that we haveDj ⊂ Enn(p− εβ) for
everyε > 0 small enough and every prime componentDj of the non-Kähler locusEnK(p) of p.
Indeed, sincep− εβ is big for ε > 0 small enough, we haveν(p− εβ,Dj) = ν(T,Dj) if T is a
positive current with minimal singularities inp− εβ, and we have to see thatν(T,Dj)> 0. But
T + εR is a Kähler current inp, thusDj ⊂EnK(p) ⊂E+(T + εR) by definition, which exactly
means thatν(T + εR,Dj)> 0. The claim follows sinceν(R,Dj) = 0 by construction ofR.

As a consequence of this claim, each primeD1, . . . ,Dr of our familyA occurs in the negativ
partN(p− εβ) for ε > 0 small enough. Consequently, by the first part of the proof, the Za
projection ofZ(p− εβ) + {E} is justZ(p− εβ) for every effectiveR-divisorE supported by
theDj ’s and everyε > 0 small enough. Sincep is big,Z is continuous atp, thusZ(p − εβ)
converges toZ(p), which is justp because the latter is also modified nef. Finally,Z is also
continuous at the big classp+ {E}, thus the Zariski projection ofZ(p− εβ) + {E} converges
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to that ofp+ {E}, and thusZ(p+ {E}) = p holds. This means thatp+ V+(A) ⊂ Z−1(p), and
concludes the proof of Theorem 3.20.✷
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3.6. Structure of the pseudo-effective cone

Using our constructions, we will prove the

THEOREM 3.19. –The boundary of the pseudo-effective cone is locally polyhedral a
from the modified nef cone, with extremal rays generated by(the classes of) exceptional prime
divisors.

Proof. –This is in fact rather straightforward by now: for each primeD, the set

ED :=
{
α ∈ E , ν(α,D) = 0

}
is a closed convex subcone ofE . This follows from the fact thatα �→ ν(α,D) is convex,
homogeneous, lower semi-continuous and everywhere non-negative. Ifα ∈ ∂E does not belong
to MN , it does not belong toED for some primeD by Proposition 3.2. For everyβ ∈ E ,
we have eitherβ ∈ ED, or D occurs in the negative partN(β). Therefore,E is generated by
R+{D} andED, and the latter does not containα. This means that∂E is locally polyhedra
nearα. Sinceν(α,D)> 0, we also see thatD is exceptional. Finally, the extremal rays ofE not
contained inMN =

⋂
D ED have to lie outsideED for some exceptional primeD, and since

E = ED + R+{D}, each such extremal ray is generated by{D} for someD. ✷
3.7. Volumes

Recall that the volume of a pseudo-effective classα on a compact Kählern-fold is defined
to be the supremumv(α) of

∫
X
T nac for T a closed positive(1,1)-current inα (cf. [2]). A class

α is big iff v(α) > 0, and the volume is a quantitative measure of its bigness. We have a
noticed thatZ(α) is big iff α is; we have the following quantitative version:

PROPOSITION 3.20. –Let α be a pseudo-effective class onX compact Kähler. The
v(Z(α)) = v(α).

The proof is in fact immediate: ifT is a positive current inα, then we haveT �N(α) since
T belongs toα[−εω] for eachε > 0, and we deduce thatT → T −N(α) is a bijection between
the positive currents inα and those inZ(α). It remains to notice that(T −N(α))ac = Tac to
conclude the proof.

4. Zariski decomposition on a surface and a hyper-Kähler manifold

It is known since the pioneering work of Zariski [19] that any effective divisorD on a
projective surface admits a unique Zariski decompositionD = P + N , i.e. a decompositio
into a sum ofQ-divisorsP andN with the following properties:

(i) P is nef,N =
∑

ajNj is effective,
(ii) P ·N = 0,
(iii) the Gram matrix(Ni ·Nj) is negative definite.
We want to show that our divisorial Zariski decomposition indeed is a generalization o

a Zariski decomposition on a surface.
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4.1. Notations

X will stand for a compact Kähler surface, or a compact hyper-Kähler manifold. For such an

t

ffective

one

s in
us
ähler

s a
in [15].
iff

f
se
h).

but the
. In the

o-
X , we denote byq the quadratic form onH1,1(X,R) defined as follows: whenX is a surface, we
setq(α) :=

∫
α2, and whenX is hyper-Kähler, we choose a symplectic holomorphic formσ, and

let q(α) :=
∫
α2(σσ)m−1 be the usual Beauville–Bogomolov quadratic form, withσ normalized

so as to achieveq(α)m =
∫
X
α2m (with dimX = n = 2m). In both cases(H1,1(X,R), q) is

Lorentzian, i.e. it has signature(1, h1,1(X) − 1); the open cone{α ∈ H1,1(X,R), q(α) > 0}
has thus two connected components which are convex cones, and we denote byP the componen
containing the Kähler coneK. We callP the positive cone (attached to the quadratic formq). In
general, given a linear formλ onH1,1(X,R), we will denote its kernel byλ⊥ and the two open
half-spaces it defines byλ>0 andλ<0. The dualC
 of a convex coneC in H1,1(X,R) is seen as
a cone inH1,1(X,R), using the duality induced byq.

4.2. The dual pseudo-effective cone

In both cases, we shall prove that the modified nef cone is the dual cone to the pseudo-e
cone.

4.2.1. The case of a surface
We suppose thatX is a surface. We prove the following essentially well-known

THEOREM 4.1. –WhenX is a surface, the Kähler cone and the modified Kähler c
coincide. The dual pseudo-effective cone is just the nef cone.

Proof. –If α ∈ MK, it can be represented by a Kähler current with analytic singularitie
codimension 2, that is at some pointsx1, . . . , xr . Therefore we see that the non-Kähler loc
EnK(α) is a discrete set. Since the restriction of any class to a point is (by convention) a K
class, Theorem 3.19 shows thatα lies in fact inK.

Since
∫
X
ω∧T is positive for every Kähler formω and every positive currentT , we of course

haveK ⊂ E
, and thus alsoN = K ⊂ E
. The other inclusion is much deeper, since it i
consequence of the Nakai–Moishezon criterion for Kähler classes on a surface, as given
Indeed, this criterion implies that a real(1,1)-classα on a Kähler surface is a nef class
α ·ω � 0 for everyω ∈K andα ·C � 0 for every irreducible curveC. Since a class inE
 clearly
satisfies these conditions, we getE
 ⊂N , and the proof of Theorem 4.1 is over.✷

As a consequence, sinceK is contained inP and sinceP is self dual (just becauseq is
Lorentzian), we get dually thatP ⊂ E and thus thatP ⊂ E0 = B, which means the following: i
α is a real(1,1)-class withα2 > 0, thenα or −α is big. This generalizes the well known ca
whereα is (the first Chern class of) a line bundle (whose proof is based on Riemann–Roc

4.2.2. The hyper-Kähler case
In that case, the dual pseudo-effective cone is also equal to the modified nef cone,

proof uses another description, due to D. Huybrechts, of the dual pseudo-effective cone
easy direction, we have:

PROPOSITION 4.2. – (i) The modified nef coneMN is contained in both the dual pseud
effective coneE
 and the closure of the positive coneP .

(ii) We haveq(D,D′) � 0 for any two distinct prime divisorsD �=D′.

Proof. –To prove (i), we only have to prove thatMK ⊂ E
. Indeed,MK ∩ E
 ⊂ E ∩ E
 is
trivially contained inP . We pick a modified Kähler classα and a pseudo-effective classβ ∈ E ,
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and choose a Kähler currentT in α with analytic singularities in codimension at least2, and a
positive currentS in β. By Section 2.6, the wedge productT ∧ S is well defined as a closed
positive(2,2)-current, and lies in the classα · β. Since(σσ)m−1 is a smooth positive form of
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bidimension(2,2), the integral
∫
X
T ∧ S ∧ (σσ)m−1 is positive. But(σσ)m−1 is also closed

thus we have ∫
X

T ∧ S ∧ (σσ)m−1 = α · β ·
{
(σσ)m−1

}
= q(α,β),

so we have proven thatq(α,β) � 0 as desired.
The second contention is obtained similarly, noting that{D} · {D′} contains a closed positiv

(2,2)-current, which is[D ·D′], whereD ·D′ is the effective intersection cycle.✷
The other directionE
 ⊂ MN is much deeper. The effective1-dimensional cyclesC and

the effective divisorsD define linear forms onH1,1(X,R) via the intersection form and th
Beauville–Bogomolov formq respectively, and we define a rational (respectively uniru
chamber of the positive coneP to be a connected component ofP −

⋃
C⊥ (respectively

P −
⋃
D⊥), whereC (respectivelyD) runs over the rational curves (respectively the uniru

divisors). By a rational curve (respectively a uniruled divisor) we mean an effective1-dimen-
sional cycle all of whose components are irreducible rational curves (respectively an ef
divisor all of whose components are uniruled prime divisors). The rational chamber ofP cut
out by all theC>0 ’s (respectivelyD>0’s) will be called the fundamental rational chamb
(respectively the fundamental uniruled chamber). WhenX is a K3 surface, the rational an
uniruled chambers are the same thing and coincide with the traditional chambers in that si
We can now state the following fundamental result:

THEOREM 4.3 [14]. – (i)The positive coneP is contained inE .
(ii) If α ∈ P belongs to one of the rational chambers, then there exists a bimeromorphi

f :X−→X ′ to a hyper-KählerX ′ such that

f
α= ω′ + {D′},

whereω′ ∈KX′ is a Kähler class andD′ is a uniruledR-divisor.
(iii) Whenα ∈ P lies in both the fundamental uniruled chamber and one of the rati

chambers, then no uniruled divisorD′ occurs in(ii) .
(iv) The fundamental rational chamber coincides with the Kähler cone ofX .

In fact, [14] states this only for a very general elementα ∈ P , but we have noticed in [1] tha
the elements of the rational chambers are already very general in that respect.

In the situation (iii),α lies in f
KX′ for some bimeromorphicf :X−→X ′ towards a hyper
KählerX ′. The union of such open convex conesKf := f
KX′ is called the bimeromorphi
Kähler cone, and is denoted byBK. The union in question yields in fact a partition ofBK into
open convex conesKf (since a bimeromorphic map between minimal manifolds which s
one Kähler class to a Kähler class is an isomorphism by a result of A. Fujiki);BK is an open
cone, but definitely not convex in general. (iii) tells us that each intersection of a rational ch
with the fundamental uniruled chamber is contained inBK, and thus in one of theKf ’s.

We can now describe the dual pseudo-effective cone:

PROPOSITION 4.4. –The dual pseudo-effectiveE
 of a hyper-Kähler manifold coincides wi
the modified nef coneMN .

Proof. –By Proposition 4.2, it remains to see thatE
 is contained in the modified nef con
MN . By (i) of Theorem 4.3, we haveE
 ⊂ P , and it will thus be enough to show that
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element of the interior ofE
 which belongs to one of the rational chambers lies inMN . But
an elementα of the interior ofE
 hasq(α,D) > 0 for every primeD, thus it certainly lies
in the fundamental uniruled chamber. Ifα lies in both the interior ofE
 and one of the rational

f

ix

e

t

nd is

that

n
other
the

o

matrix

e

e

-
e
e

chambers, it therefore lies inKf = f
KX′ for some bimeromorphicf :X−→X ′, and it remains
to see thatKf ⊂MN . But if ω is a Kähler form onX ′, its pull-backT := f
ω can be defined
using a resolution off , and it is easy to check thatT is a Kähler current withν(T,D) = 0 for
every primeD, sincef induces an isomorphismX−A→X ′ −A′ for A, A′ analytic subsets o
codimension at least2 (this is becauseX andX ′ are minimal). Therefore,{T } = f
{ω} belongs
to MK⊂MN . ✷
4.3. Exceptional divisors

WhenX is a surface or a hyper-Kähler manifold, the fact that a familyD1, . . . ,Dr of prime
divisors is exceptional can be read off its Gram matrix.

THEOREM 4.5. –A familyD1, . . . ,Dr of prime divisors is exceptional iff its Gram matr
(q(Di,Dj)) is negative definite.

Proof. –Let V (respectivelyV+) be the real vector space ofR-divisors (respectively effectiv
R-divisors) supported by theDj ’s. We begin with a lemma of quadratic algebra:

LEMMA 4.6. –Assume that(V, q) is negative definite. Then everyE ∈ V such that
q(E,Dj) � 0 for all j belongs toV+.

Proof. –If E ∈ V is non-positive against eachDj , we writeE = E+ − E− whereE+ and
E− are effective with disjoint supports. We have to prove thatE− = 0, and this is equivalen
by assumption toq(E−) � 0. But q(E−) = q(E−,E+) − q(E−,E). The first term is positive
becauseE+ andE− have disjoint supports, using (ii) of Proposition 4.2, whereas the seco
positive by assumption onE. ✷

LetD1, . . . ,Dr be primes with negative definite Gram matrix. In particular, we then have
{V+} ⊂H1,1(X,R) meetsP at 0 only. Since the modified nef coneMN is contained inP by
Proposition 4.2,{V+} a fortiori meets the modified nef cone at0 only, which means by definitio
thatD1, . . . ,Dr is an exceptional family, and this proves necessity in Theorem 4.5. In the
direction, assume thatD1, . . . ,Dr is an exceptional family of primes. We first prove that
matrix(q(Di,Dj)) is semi-negative. If not, we find anR-divisorE in V with q(E)> 0. Writing
againE = E+ − E−, with E+ andE− two effective divisors inV+ with disjoint supports, we
have againq(E+,E−) � 0 by (ii) of Proposition 4.2, and thusq(E+) + q(E−) � q(E)> 0. We
may therefore assume thatE lies inV+, with q(E)> 0. But thenE or−E is big, and it has to be
E because it is already effective. Its Zariski projectionZ({E}) is then non-zero since it is als
big (by Proposition 3.10), and it lies in both{V+} andMN , a contradiction.

To conclude the proof of Theorem 4.5, we may assume (by induction) that the Gram
of D1, . . . ,Dr−1 is negative definite. If(V, q) is degenerate, the spanV ′ of D1, . . . ,Dr−1 is
such that its orthogonal spaceV ′⊥ in V is equal to the null-space ofV . We then decompos
Dr = E + F in the direct sumV = V ′ ⊕ V ′⊥. Sinceq(E,Dj) = q(Dr,Dj) � 0 for j < r,
Lemma 4.6 yields thatE � 0. Therefore,F =Dr −E lies inV+, and is certainly non-zero. W
claim that{F} is also modified nef, which will yield the expected contradiction. ButF lies in the
null-space ofV , and is therefore non-negative against every prime divisorD. If α is a pseudo
effective class, we haveq({F}, α) = q({F},Z(α))+q(F,N(α)). The first term is positive sinc
Z(α) ∈ MN = E
, and the second one is positive becauseF is positive against every effectiv
divisor. We infer from all this that{F} lies inE
 = MN , and the claim follows. ✷
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The theorem says in particular that a prime divisorD is negative iffq(D) < 0. On a K3
surface, an easy and well-known argument using the adjunction formula shows that the prime
divisors with negative square are necessarily smooth rational curves with square−2. In higher
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,
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dimension, we have:

PROPOSITION 4.7. –On a hyper-Kähler manifoldX , the exceptional prime divisors a
uniruled.

Proof. –SinceD is exceptional, it lies outsideP = P
, and we thus find a classα ∈P
lying in one of the rational chambers such thatq(α,D) < 0. By (ii) of Theorem 4.3,
there exists a bimeromorphic map between hyper-Kähler manifoldsf :X− → X ′ such that
f
α = ω′ +

∑
ajD

′
j with ω′ a Kähler class,aj � 0 andD′

j a uniruled prime divisor. Sinc
the quadratic form is preserved byf , we have0 > q(α,D) = q(ω′, f
D) +

∑
ajq(D′

j , f
D),
andq(D′

j , f
D) has to be negative for somej. But this implies that the two primesD′
j andf
D

coincide, and thusD = f
D′
j is uniruled sinceD′

j is. ✷
4.4. Rationality of the Zariski decomposition

We want to prove that the divisorial Zariski decomposition is rational (whenX is a surface o
a hyper-Kähler manifold) in the sense thatN(α) is a rational divisor whenα is a rational class
We first show the following characterization of the divisorial Zariski decomposition:

THEOREM 4.8. –If α ∈ H1,1(X,R) is a pseudo-effective class, its divisorial Zaris
decompositionα = Z(α) + {N(α)} is the unique orthogonal decomposition ofα into the sum
of a modified nef class and the class of an exceptional effectiveR-divisor.

Proof. –We first prove uniqueness: assume thatα= p+ {N} is an orthogonal decompositio
with p a modified nef class andN an effective exceptionalR-divisor. We claim thatN(α) =N .
To see this, letD1, . . . ,Dr be the support ofN ; the Gram matrix(q(Di,Dj)) is negative definite
by Theorem 4.5, andp is orthogonal to eachDj becauseq(p,N) = 0 andq(p,Dj) � 0 for all j
sincep is a modified nef class. We haveN(α) � N(p) +N andN(p) = 0 sincep is modified
nef, thusN(α) � N . But N(α) − N is supported by primesD1, . . . ,Dr whose Gram matrix
is negative definite, andq(N(α) −N,Dj) = q(p,Dj) − q(Z(α),Dj) is non-positive sincep is
orthogonal toDj andZ(α) belongs toMN = E
. Lemma 4.6 thus yieldsN(α) � N , and the
claim follows. To prove Theorem 4.8, we will show the existence of an orthogonal decompo
α = p + {N} with p a modified nef class andN an exceptionalR-divisor. When this is done
we must haveN = N(α) by the claim, so thatα = Z(α) + {N(α)} is itself an orthogona
decomposition.

LEMMA 4.9. –A pseudo-effective classα lies inE
 iff q(α,D) � 0 for every primeD.

Proof. –If β is a pseudo-effective class, we writeq(α,β) = q(α,Z(β)) + q(α,N(β)). The
first term is positive becauseZ(β) lies in E
, and the second one is positive ifq(α,D) � 0 for
each primeD. ✷

LEMMA 4.10. –Let α be a pseudo-effective class and letD1, . . . ,Dr, E1, . . . ,Ep be two
families of primes such that:

(i) q(α,Dj)< 0 andq(α,Ei) � 0 for everyj andi.
(ii) E1, . . . ,Er is an exceptional family.
Then the union of these two families is exceptional.

Proof. –Let F be an effective divisor supported byDj ’s andEi’s, and assume that{F} is a
modified nef class. We have to see thatF = 0. But q(α,F ) is positive sinceF is modified nef,
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thus we see using (i) thatF is in fact supported byEi’s, and then (ii) enables us to conclude that
F = 0 as desired. ✷
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At this point, the argument is similar to [11]. If the pseudo-effective classα is already inE ,
we trivially have our decomposition. Otherwise, consider the familyA of primesD such that
q(α,D)< 0. That family is exceptional by Lemma 4.10 withE1, . . . ,Ep an empty family, thus
A is finite with negative definite Gram matrix, and is non-empty by Lemma 4.9. Let

α= α1 + {N1}

be the decomposition in the direct sumV ⊥ ⊕ V , whereV ⊂ H1,1(X,R) is spanned byA.
We claim thatN1 is effective and thatα1 is pseudo-effective. Sinceq(N1,D) = q(α,D) < 0
for everyD ∈ A, Lemma 4.6 yields thatN1 is effective. We can also writeN(α) = E + F
whereE and F are effective with disjoint supports andF is supported by elements ofA.
Then for everyD ∈ A we haveq(F − N1,D) � q(N(α) − N1,D) since E and D are
disjoint, andq(N(α) − N1,D) = q(α1,D) − q(Z(α),D) is non-positive becauseα1 andD
are orthogonal andZ(α) lies in E
. We infer from this thatN(α) �N1 using Lemma 4.6, an
α1 = Z(α) + {N(α)−N1} is thus pseudo-effective, and this proves our claim.

If α1 lies in E
, we have our decomposition by construction; otherwise, we iterate
construction: letB be the non-empty exceptional family of primesD such thatq(α1,D) < 0.
SinceA is already exceptional andq(α1,D) = 0 for D ∈A, we infer from Lemma 4.10 that th
unionA1 of A andB is again an exceptional family. We decompose

α1 = α2 + {N2}

in the direct sumV ⊥
1 ⊕ V1, whereV1 ⊂ H1,1(X,R) is spanned byA1. The same argumen

as above show in that case also thatα2 is pseudo-effective, and also thatN2 is effective (since
q(N2,D) = q(α1,D) � 0 for eachD ∈ A1). But sinceB is non-empty,A1 is an exceptiona
family strictly bigger thanA. Since the length of the exceptional families is uniformly boun
by the Picard numberρ(X) by Theorem 3.14, the iteration of the construction has to stop
l steps, for which we get a classαl which is modified nef. The desired decomposition is t
obtained by settingp := αl andN :=N1 + · · ·+Nl, which is exceptional since it is supported
elements ofA∪A1 ∪ · · · ∪Al =Al (sinceA⊂A1 ⊂ · · · ⊂A1 by construction). This conclude
the proof of Theorem 4.8.✷

COROLLARY 4.11 (Rationality of the Zariski decomposition). –The divisorial Zariski de-
composition is rational in caseX is a surface or a hyper-Kähler manifold. In particular, wh
D is a pseudo-effective divisor onX , the modified nefR-divisor P := D −N({D}) is ratio-
nal and such that the canonical inclusion ofH0(X,O(kP )) in H0(X,O(kD)) is surjective for
everyk such thatkP is Cartier.

Proof. –If α ∈ NS(X) ⊗ Q is a rational class,N(α) is necessarily the image ofα by the
orthogonal projectionNS(X) ⊗Q → VQ(α), whereVQ(α) is theQ-vector space generated
the cohomology classes of the components ofN(α). The latter is therefore rational. As to th
second part, letE be an element of the linear system|kD|. Since the integration current1k [E]
is positive and lies in{D}, we haveE � kN({D}). But this exactly means thatkN({D}) is
contained in the base scheme of|kD|, as was to be shown.✷

PROPOSITION 4.12 (Rationality of the volume). –If p ∈H1,1(X,R) is a modified nef clas
onX , its volume is equal to

v(p) = q(p)m =
∫
pdimX .

4e SÉRIE– TOME 37 – 2004 –N◦ 1



DIVISORIAL ZARISKI DECOMPOSITIONS 67

In general, we havev(α) =
∫
Z(α)dimX ; in particular, the volume of a rational class is rational.

Proof. –We have already proven in Proposition 3.22 thatv(α) = v(Z(α)), so only the first∫
dimX
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assertion needs a proof. We have shown in [2] that the equalityv(p) = p is always true
whenp is a nef class, so the contended equality holds on a surface. In the hyper-Kähler cas
we have chosen the symplectic formσ so thatq(α)m = α2m for any classα, we just have to prov
v(p) = q(p)m for p ∈ MN . The latter cone is also the closure of the bimeromorphic Kä
coneBK, so we may assume thatp lies in f
KX′ for some bimeromorphic mapf :X−→X ′

between hyper-Kähler manifolds (because bothq and the volume are continuous). But sincef is
an isomorphism in codimension1, the volume is invariant underf , and so is the quadratic for
q, so we are reduced to the case wherep is a Kähler class, for which the equality is always t
as we have said above.✷

5. The algebraic approach

In this section, we would like to show what the constructions we have made become
α = c1(L) is the first Chern class of a line bundle on a projective complex manifoldX . The
general philosophy is that the divisorial Zariski decomposition of a big line bundle can be d
algebraically in terms of the asymptotic linear series|kL|. WhenL is just pseudo-effective
sections are of course not sufficient, but we are led back to the big case by approximati
those who are reluctant to assume projectivity too quickly, we remark that a compact
manifold carrying a big line bundle is automatically projective.

5.1. From sections to currents and back

Let L → X be a line bundle over the projective manifoldX . Each timeL has sections
σ1, . . . , σl ∈H0(X,L), there is a canonical way to construct a closed positive currentT ∈ c1(L)
with analytic singularities as follows: choose some smooth Hermitian metrich on L, and
consider

ϕ(x) :=
1
2

log
∑
j

h
(
σj(x)

)
.

Then we defineT = Θh(L)+ ddcϕ, whereΘh(L) is the first Chern form ofh. One immediately
checks thatT is positive and independent of the choice ofh, and thus depends on the sectionsσj
only. T has analytic singularities exactly along the common zero-schemeA of theσj ’s, and its
Siu decomposition therefore writesT =R+D, whereD is the divisor part ofA. When(σj) is a
basis ofH0(X,L), we setT|L| := T . Another way to seeT|L| is as the pull-back of the Fubiny
Study form onPH0(X,L)
 = PN (the identification is determined by the choice of the basi
H0(L)) by the rational mapφ|L| :X−→ PH0(X,L)
. T|L| is independent of the choice of th
basis up to equivalence of singularities, and carries a great deal of information about the
system|L|: the singular schemeA of T|L| is the base schemeB|L| of the linear system|L|, the
Lelong numberν(T|L|, x) at x is just the so-called multiplicity of the linear system atx, which
is defined by

ν
(
|L|, x

)
:= min

{
ν(E,x),E ∈ |L|

}
.

If a modificationµ : X̃ →X is chosen such thatµ
|L| = |M | + F , whereM has no base-poin
andF is an effective divisor, thenµ
T|L| = Tµ�|L| = T|M| + F whereT|M| is smooth since
|M | is generated by global sections. The so-called moving self-intersection ofL, which is by
definitionL[n] :=Mn, is thus also equal to

∫
X

(T|L|)nac.
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WhenL is a big line bundle, we get, for eachk > 0 big enough, a positive currentTk := 1
kT|kL|

in c1(L). A result of Fujita (cf. [9]) claims that the volumev(L) is the limit of 1
kn (kL)[n], thus

we havev(L) = limk→+∞
∫

T n .
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to
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Finally, if Tmin is a positive current with minimal singularities inc1(L), we can choose
singular Hermitian metrichmin on L whose curvature current isTmin (by Section 2.4). IfL is
still big and if for eachk we choose the basis ofH0(kL) to be orthonormal with respect
h⊗kmin, then it can be shown thatTk → Tmin, and we will see in 5.2 thatν(Tk, x) = 1

kν(|kL|, x)
converges toν(Tmin, x) = ν(c1(L), x). In some sense, the familyTk deriving from |kL| is
cofinite(c1(L)+,�).

It should however be stressed thatT|kL| will in generalnot be a Kähler current, even ifL is
big. Indeed, consider the pull-backL= µ
A of some ample line bundleA by a blow-upµ. Then
kL will be generated by global sections fork big enough, andT|kL| is thus smooth for such ak,
but not a Kähler current, sinceL is not ample and a smooth Kähler current is just a Kähler fo

Conversely, to go from currents to sections is the job of theL2 estimates for the∂ operator, e.g
in the form of Nadel’s vanishing theorem. Recall that the multiplier ideal sheafI(T ) of a closed
almost positive(1,1)-currentT is defined locally as follows: writeT = ddcϕ locally at some
x. Then the stalkI(T )x is the set of germs of holomorphic functions atx such that|f |2e−2ϕ

is locally integrable atx. Then Nadel’s vanishing states that ifT is a Kähler current in the firs
Chern classc1(L) of a line bundleL, thenHq(X,O(KX +L) ⊗I(T )) = 0 for everyq > 0. In
particular, ifV (T ) denotes the schemeV (I(T )), then the restriction map

H0
(
X,OX(KX +L)

)
→H0

(
V (T ),OV (T )(KX +L)

)
is surjective. This gives a tool to prove the generation of jets at some points, using the fol
lemma (cf. [9]):

LEMMA 5.1 (Skoda’s lemma). –If ν(T,x) < 1, thenI(T )x = Ox. If ν(T,x) � n + s, we
haveI(T )x ⊂Ms+1

x .

To illustrate how this works, let us prove the following algebraic characterization of the
Kähler locus:

PROPOSITION 5.2. –If L is a big line bundle, then the non-Kähler locusEnK(c1(L)) is
the intersection of the non-finite lociΣk of the rational mapsφ|kL|, defined as the union o
the reduced base locusB|kL| and the set ofx ∈ X − B|kL| such that the fiber throughx
φ−1
|kL|(φ|kL|(x)) is positive-dimensional somewhere.

Proof. –If x1, . . . , xr ∈ X lie outsideEnK(c1(L)), then we can find a Kähler curre
T ∈ c1(L) with analytic singularities such that eachxj lies outside the singular locus ofT . The
latter being closed, there exists a neighbourhoodUj of xj such thatν(T, z) = 0 for everyz ∈Uj .
We artificially force an isolated pole at eachxj by setting

T̃ = T +
∑

1�j�r
ddc

(
εθj(z) log |z − xj |

)
,

whereθj is a smooth cut-off function nearxj , andε > 0 is so small that̃T is still Kähler. We
haveν(T̃ , xj) = ε, whereasν(T̃ , z) is still zero for everyz �= xj in Uj . We now choose som
smooth formτ in c1(KX), and consider the currentTk := kT̃ − τ . It lies in the first Chern clas
of Lk := kL−KX , and is certainly still Kähler fork big enough. We also haveν(Tk, z) = 0 for
everyz �= xj close toxj , andν(Tk, xj) = kε. Givens1, . . . , sr, we see that, fork big enough,
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eachxj will be isolated inE1(Tk), whereasI(Tk)xj ⊂Msj+1
xj , using Skoda’s lemma. Nadel’s

vanishing then implies that the global sections ofkL generatesj -jets atxj for every j. This
implies that the non-finite locusΣk is contained inEnK(c1(L)).

t
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To prove the converse inclusion, we have to find for eachm a Kähler currentTm in c1(L) with
E+(Tm) ⊂ Σm. To do this, we copy the proof of Proposition 7.2 in [6].✷

LEMMA 5.3. –If L is any line bundle such that the non-finite locusΣm ofmL is distinct from
X for somem, then, for every line bundleG, the base locus of|kL−G| is contained inΣm for
k big enough.

We then takeG to be ample, and setTm := 1
k (T|kL−G| + ω) with k big enough so tha

B|kL−G| ⊂ Σm andω a Kähler form inc1(G).
To prove Lemma 5.3, note that|mL| is not empty, so we can select a modificationµ : X̃ →X

such thatµ
|mL| = |L̃| + F , where|L̃| is base-point free. It is immediate to check that i
enough to prove the lemma for̃L, so we can assume from the beginning thatL is base-poin
free, withm = 1. We setφ := φ|L| :X → PN andΣ := Σ1. Upon adding a sufficiently amp
line bundle toG, it is also clear that we may assumeG to be very ample. Ifx ∈X lies outside
Σ, the fiberφ−1(φ(x)) is a finite set, so we can find a divisorD ∈ |G| which does not meet it
Therefore we haveφ(x) ∈PN −φ(D), so that fork big enough there existsH ∈ |OPN (k)| with
H � φ
D which does not pass throughφ(x). The effective divisorφ
H −D is then an elemen
of |kL−G| which does not pass throughx. The upshot is: for everyx ∈X outsideΣ, we have
x ∈ X − B|kL−G| for k big enough. By Nötherian induction, we therefore findk big enough
such thatB|kL−G| is contained inΣ, as was to be shown.

5.2. Minimal Lelong numbers

When L is a big R-divisor, we denote byLk := 	kL
 the round-down ofkL, and by
Rk := kL−Lk the fractional part ofkL. We then consider the sequence1

kν(|Lk|, x). It is easily
seen to be subadditive, and thereforeν(||L||, x) := limk→+∞

1
kν(|kL|, x) exists. We then prov

the following

THEOREM 5.4. –If L is a bigR-divisor onX andα := {L} ∈NS (X)R, then

ν(α,x) = ν
(
‖L‖, x

)
for everyx ∈X .

Proof. –Let L =
∑

ajDj be the decomposition ofL into its prime components. We choo
arbitrary smooth formsηj in {Dj}, and denote byτk :=

∑
(kaj − 	kaj
)ηj the correspondin

smooth form in{Rk}. Sinceτk has bounded coefficients, we can choose a fixed Kähler foω
such that−ω � τk � ω for everyk. If E is an effective divisor in|Lk|, then1/k([E] + τk) is
a current inα[−1/kω], therefore1

kν(E,x) � ν(Tmin,1/k, x), whereTmin,1/k is a current with
minimal singularities inα[−1/kω], and this yields

lim
k→∞

1
k
ν
(
|Lk|, x

)
� lim
k→∞

ν(Tmin,1/k, x) = ν(α,x).

In the other direction, we use a related argument in [9], Theorem 1.11. The Ohsawa–Take
Manivel L2 extension theorem says in particular that if we are given a Hermitian line bu
(A,hA) with sufficiently positive curvature form, then for every pseudo-effective line bundG
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and every singular Hermitian metrich onG with positive curvature currentT ∈ c1(G) and every
x∈X , the evaluation map

larities
en

e
e
hi

t

H0
(
X,O(G+A) ⊗I(T )

)
→Ox(G+A) ⊗I(T )x

is surjective, with anL2 estimate independent of(G,h) andx ∈X .
We now fix a Hermitian line bundle(A,hA) with a sufficiently positive curvature formωA to

satisfy the Ohsawa–Takegoshi theorem. We select a positive current with minimal singu
Tmin in α, and also a Kähler currentT in α, which is big by assumption; we can th
find almost pluri-subharmonic functionsϕmin and ϕ on X such thatTmin − ddcϕmin and
T − ddcϕ are smooth. We setGk := Lk −A= kL−Rk −A= (k − k0)L+ (k0L−Rk −A),
and fix k0 big enough so thatk0T − ω − ωA is a Kähler current. Fork � k0, the current
Tk := (k− k0)Tmin + (k0T − τk −ωA) is then a positive current inc1(Gk), thus we can choos
for eachk a smooth Hermitian metrichk on Gk such thatTk is the curvature current of th
singular Hermitian metricexp(−2(k − k0)ϕmin − 2k0ϕ)hk. Applying the Ohsawa–Takegos
to Gk equipped with this singular Hermitian metric, we thus get a sectionσ ∈H0(X,Lk) such
that

hk
(
σ(x)

)
exp

(
−2(k− k0)ϕmin(x) − 2ϕ(x)

)
= 1

and ∫
X

hk(σ) exp
(
−2(k− k0)ϕmin − 2ϕ

)
dV �C1,

whereC1 does not depend onk andx. If we choose a basisσ1, . . . , σl of H0(X,Lk), we infer
from this that

ϕmin(x) +
1

k− k0
ϕ(x) =

1
2(k− k0)

loghk
(
σ(x)

)
� 1

2(k− k0)
log

∑
hk

(
σj(x)

)
+C2,

whereC2 does not depend onx. The latter inequality comes from the bound on theL2 norm of
σ, since theL2 norm dominates theL∞ norm. Therefore

1
k− k0

ν
(
|Lk|, x

)
� ν(ϕmin, x) +

C3

k− k0
,

whereC3 is a bound on the Lelong numbers ofT . If we let k→∞ in the last inequality, we ge
ν(||L||, x) � ν(α,x) as desired. ✷
5.3. Zariski decompositions of a divisor

The usual setting for the problem of Zariski decompositions is the following: letX be a
projective manifold, andL a divisor on it. One asks when it is possible to find twoR-divisorsP
andN such that:

(i) L= P +N ,
(ii) P is nef,
(iii) N is effective,
(iv) H0(X,kL) =H0(X, 	kP 
) for all k > 0, where the round-down	F 
 of anR-divisorF

is defined coefficient-wise.
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This can of course happen only ifL is already pseudo-effective. When this is possible, one
says thatL admits a Zariski decomposition (overR or Q, depending whether the divisors are
real or rational). We want to show that, for a big divisorL, this can be read off the negative part

how
l

e

e

t
on

l

.

en-
N({L}).
THEOREM 5.5. –LetL be a big divisor onX , and let

N(L) :=N
(
{L}

)
and P (L) := L−N(L).

ThenL= P (L) +N(L) is the unique decompositionL= P +N into a modified nefR-divisor
P and an effectiveR-divisorN such that the canonical inclusionH0(	kP 
) →H0(kL) is an
isomorphism for eachk > 0.

Proof. –First, we have to check thatH0(X,kL) = H0(X, 	kP (L)
). If E is an effective
divisor in the linear system|kL|, we have to see thatE �  kN(L)!. But 1

k [E] is a positive
current in{L}, thusE � kN(L), and soE �  kN(L)! sinceE has integer coefficients.

Conversely, assume thatL= P +N is a decomposition as in Theorem 5.5. We have to s
thatN =N(L), i.e.ν({L},D) = ν(N,D) for every primeD. In view of Theorem 5.4, this wil
be a consequence of the following

LEMMA 5.6. –Suppose that a big divisorL writes L = P + N , whereP is an R-divisor
andN is an effectiveR-divisor such thatH0(X,kL) =H0(X, 	kP 
) for everyk > 0. Then we
have:

(i) If P is nef, thenν(||L||, x) = ν(N,x) for everyx ∈X .
(ii) If P is modified nef, thenν(||L||,D) = ν(N,D) for every primeD.

Proof. –The assumptionH0(X,kL) =H0(X, 	kP 
) means precisely that for everyE ∈ |kL|
we haveE �  kN!, thusν(|kL|, x) �

∑ 
kaj�
k ν(Dj , x) if we write N =

∑
ajDj . We deduce

from this the inequalitylimk→∞
1
kν(|kL|, x) �

∑
ajν(Dj , x) = ν(N,x). To get the convers

inequalities, notice that

ν
(
|kL|, x

)
� ν

(
|Pk|, x

)
+ ν(kN,x)

with Pk := 	kP 
 as before; dividing this out byk and lettingk→ +∞, we deduce

lim
k→∞

1
k
ν
(
|kL|, x

)
� lim
k→∞

1
k
ν(kN,x) = ν(N,x)

whenP is nef, sinceν({P}, x) = limk→∞
1
kν(Pk, x) is then always zero, and similarly withD

in place ofx whenP is modified nef (remark thatP is big becauseL is). This concludes th
proof of Theorem 5.5. ✷

COROLLARY 5.7 (Cutkosky’s criterion). –Let L be a big divisor onX , and assume tha
ν({L},D) is irrational for some irreducible divisorD. Then there cannot exist a modificati
µ : X̃ →X such thatµ
L admits a Zariski decomposition overQ.

Proof. –If a modificationµ as stated exists, then the negative partN(µ
L) has to be rationa
by Theorem 5.5, and we get a contradiction using the following easy

LEMMA 5.8. –Letα be a pseudo-effective class onX , and letµ : X̃ →X be a modification
Then we have

N(α) = µ
N(µ
α).

Proof. –Very easily checked using that a modification is an isomorphism in codim
sion1. ✷
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5.3.1. An example of Cutkosky
We propose to analyze in our setting an example due to S.D. Cutkosky [3] of a big line

bundleL on a3-foldX whose divisorial Zariski decomposition is not rational, but whose Zariski

two
l
on

e

us

the
f

e

projectionZ({L}) is nef. We start from any projective manifoldY for which NY = EY . Thus
Y might be a smooth curve or any manifold with nef tangent bundle (cf. [8]). We pick
very ample divisorsD andH onY , and considerX := P(O(D) ⊕O(−H)), with its canonica
projectionπ :X → Y . If we denote byL := O(1) the canonical relatively ample line bundle
X , then it is well known that

H1,1(X,R) = π
H1,1(Y,R)⊕RL.

SinceD is ample,L is big, but it will not be nef since−H is not. We are first interested in th
divisorial Zariski decomposition ofL. We have a hypersurfaceE := P(O(−H)) ⊂X , and since
D has a section, we see thatE + π
D ∈ |L|. Therefore we getN(L) �N(π
D) +E; butπ
D
is nef, so hasN(π
D) = 0, and we deduceN(L) � E. Consequently,N(L) = µLE for some
0 � µL � 1, andL= Z(L) + µLE. We claim that

µL = min
{
t > 0, (L− tE)|E ∈NE

}
.

First, we haveL− tE = π
D + (1 − t)E, and sinceπ
D is nef, we get that the non-nef loc
Enn(L− tE) is contained inE for 0 < t < 1. ThereforeL− tE ∈ NX iff (L− tE)|E ∈ NE .
If this is the case, we haveN(L) �N(L− tE) + tE = tE, and thust� µL. Conversely, since
L− µLE = Z(L) lies in MN , we get thatZ(L)|E ∈ EE = NE by Proposition 2.4 (sinceE is
isomorphic toY via π), and we deduce the equality. Now, notice that the projectionπ induces an
isomorphismE → Y such thatL becomes−H and thusE|E becomes−D−H . The condition
(L− tE)|E ∈NE is turned into−H + t(D +H) ∈NY , and we get in the end

µL = min
{
t > 0,−H + t(D +H) ∈NY

}
.

The picture can be made more precise:

PROPOSITION 5.9. – (i)The nef coneNX is generated byπ
NY andL+ π
H .
(ii) The pseudo-effective coneEX is generated byπ
NY and byE.
(iii) The only exceptional divisor onX is E, and the modified Kähler cone coincides with

Kähler cone. The Zariski projectionZ(α) of a pseudo-effective classα is thus the projection o
α onNX parallel toR+E.

Proof. –Given line bundlesL1, . . . ,Lr on a compact Kähler manifoldY , a classα = π
β
over

X := P(L1 ⊕ · · · ⊕Lr)

is nef (respectively pseudo-effective) iffβ is. A classα = O(1) + π
β is nef iff β + Lj is nef
for all j, andα is big iff the convex cone generated byβ + L1, . . . , β + Lr meets the big con
of Y , which condition is equivalent (by homogeneity) to:β + conv(L1, . . . ,Lr) meets the big
cone; finallyα is pseudo-effective iffβ + conv(L1, . . . ,Lr) meetsEY . In our caseα= π
β +L
is thus nef iffβ −H is nef, andα is pseudo-effective iffα + [−H,D] meetsNY . The latter
condition is clearly equivalent toα−D ∈ NY . Now an arbitrary classα onX uniquely writes
α = tL + π
β. If α is pseudo-effective, thent � 0 (sinceL is relatively ample); ift = 0, then
α ∈ π
NY . Otherwise, we may assume by homogeneity thatt = 1, and thus (i) and (ii) follow
from the above discussion.

4e SÉRIE– TOME 37 – 2004 –N◦ 1



DIVISORIAL ZARISKI DECOMPOSITIONS 73

By (ii), a pseudo-effective classα writesπ
β + tE with β nef. Therefore we getN(α) � tE,
andE is thus the only exceptional divisor onX . In fact, we even haveEnn(α) ⊂E, and thusα is
nef iff α|E is nef. In particular, we see thatMK = K as desired (use Proposition 2.4 again).✷
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We now assume thatY is a surface. The assumptionNY = EY implies thatNY = PY = EY ,
andµL is none but the least of the two roots of the quadratic polynomial int (−H+ t(D+H))2;
it will thus be irrational for most choices ofH andD (on, say, an abelian surface). This alrea
yields that the divisorial Zariski decomposition of the rational classc1(L) will not be rational in
general, that is, the analogue of Corollary 4.11 is not true in general on a3-fold.

SinceZ(L) is nef, the volume ofL is justv(Z(L)) = Z(L)3, with

Z(L) = (1 − µL)L+ µLπ

D.

The cubic intersection form is explicit onH1,1(X,R) from the relations

L3 − π
(D−H) ·L2 −D ·H ·L= 0

andπ
L= 1, π
L2 =D−H , thus we can check thatv(L) is an explicit polynomial of degree3
in µL which is also irrational for most choices ofD andH . We conclude: there exists a big lin
bundle on a projective3-fold with an irrational volume, by contrast with Proposition 4.12.

Appendix A. Nakayama’s algebraic approach

A.1. Algebraic minimal multiplicities

In this appendix, we will briefly survey Nakayama’s algebraic approach to the divis
Zariski decomposition. Consider a projective manifoldX , and a bigR-divisor B on it.
Denote by |B| the set of effectiveR-divisors which are linearly equivalent toB, in the
sense that their round-downs are linearly equivalent and their fractional part coincide,
|B|Q :=

⋃
k>0

1
k |kB| the set of effectiveR-divisors which areQ-linearly equivalent toB.

Nakayama then sets for everyx∈X :

σx(B) := inf
{
ν(D,x),D ∈ |B|Q

}
.

This is clearly homogeneous and convex with respect toB, and is zero for everyx∈X as soon as
B is ample. Note that it is none but what we denoted byν(||B||, x) in 5.2. Now takeB as before
and fix an ampleR-divisorA such thatB −A=:C is effective. IfD is numerically equivalen
to B andε > 0 is given, we have(1 + ε)B = (B −D + εA) +D + εC, whereB −D + εA is
ample, and thus(1+ε)σx(B) � σx(D)+εσx(C) by homogeneity and convexity. Lettingε go to
zero, we getσx(B) � σx(D), which shows by symmetry thatσx(B) = inf{ν(D,x),D ∈ |B|R},
where|B|R is the set of effectiveR-divisors numerically equivalent toB. This argument, due t
Nakayama, shows that the minimal multiplicityσx(B) of the bigR-divisorB only depends on
its numerical class, and is computed as a limitlimk→+∞ ν(Bk, x) for some sequenceBk ∈ |B|R.
But the latter set is non-compact, and admits as a natural compactification the set of all
positive currents cohomologous toB. The limit object which computesσx(B) is then a closed
positive current with minimal singularities, andσx(B) is just the minimal multiplicityν(α,x) we
have defined, ifα := {B} is the cohomology class ofB – this is the content of our Theorem 5

Going back to the algebraic setting, Nakayama definesσx(D) for an arbitrary pseudo-effectiv
R-divisorD as the limit ofσx(D+ εA), whereA is ample. Each of the formal properties of t
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minimal multiplicities (continuity, finiteness of the divisorial part of the non-nef locus,. . . ) are
established by Nakayama using divisors only, and then going to the limit. The crucial point, as
in the argument above, is that ampleness is a numerical property.
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We will now present an algebraic characterization of the non-nef locus given in [16]. Ju
pseudo-effective class is the numerical analogue of an effective divisor, a nef class is the a
of a base-point free divisor. The non-nef locus is thus a “numerical base locus”, and Nak
relates it to the usual base loci by proving the

THEOREM A.1. –There exists a sufficiently ample divisorA onX such that: if D is a pseudo-
effective divisor, then its non-nef locus is the union of all the base loci of|kD+A| for k � 0.

Nakayama’s proof uses the Kawamata–Viehweg vanishing theorem, but is most
explained using Nadel’s formulation: takeA to be any ample divisor such thatA−KX −nH is
still ample, whereH is very ample. Then one can find, for everyx ∈X , a Kähler currentT in
the class ofA−KX with an isolated singularity atx such thatν(T,x) = n. Suppose now tha
x is a nef point ofD. Then one can find currents in its class which are smooth nearx and with
an arbitrarily small negative part; using the currentT above, we can thus find for everyk > 0
a Kähler current inkD + A −KX with an isolated singularity atx of multiplicity n. Skoda’s
lemma and Nadel’s vanishing then imply thatkD+A is free atx.

A.2. Two counter-examples

We now present two constructions from [16], based on the same ideas as Cutk
Example 5.3.1, which provide counter-examples to natural questions concerning Z
decompositions.

The first case is a discontinuous minimal multiplicity (cf. Proposition 3.5): letL be a nef line
bundle squaring to zero over a surfaceY whose nef cone coincides with its positive cone (s
as an abelian surface), and setπ :X = P(O ⊕O(−L)) → Y , andD0 := P(O(−L)) ⊂X . As
in 5.3.1, one checks that ifα= π
β +H is a pseudo-effective class onX , thenν(α,D0) is the
least real numbert � 0 such thatβ − (1 − t)L is nef. If we chooseβ ∈ ∂P andε > 0, then
(β − εL)2 = −2εβ ·L� 0, and this is zero iffβ is proportional toL, sinceL⊥ meets∂P along
RL by the non-degeneracyof the intersection form. It follows thatν(π
L+H,D0) = 0, whereas
ν(π
β +H,D0) = 1 as soon asβ ∈ ∂P is not proportional toL. In particular,α �→ ν(α,D0) is
not continuous atπ
L+H .

The second example is much more important but also much more involved, and we wi
describe it. It yields a nef and big line bundleL on a 4-fold X for which no modification
µ : X̃ →X can be found so thatZ(µ
L) be nef. In other words, it shows the non-existence
Zariski decomposition in general, even in its most optimistic form. To get this, one starts
from a surfaceY whose nef cone is the closure ofP , and which also admits two ample lin
bundlesA1 andA2 whose cohomology classes are not proportional (for instance an abelia
face with Picard number at least2). Then one considersπ :X = P(O ⊕O(A1)⊕O(A2)) → Y ,
H := O(1) and a big classα= π
β +H which satisfies the following conditions:

(i) β is not nef.
(ii) β +A1 andβ +A2 are nef.
As in 5.3.1, one then checks thatα is nef in codimension 1 but not nef. Its non-nef locus

V = D1 ∩D2, with D1 = P(O ⊕ O(A2)) ⊂X andD2 = P(O ⊕O(A1)) ⊂X . The minimal
multiplicity ν(α,x) = ν is furthermore constant forx ∈ V , equal to the least real numbert � 0
such thatβ + t[a1, a2] meetsP . Let us add the following third requirement:

(iii) β + ν[a1, a2] is tangent toP atβ + νx for somex ∈ ]a1, a2[.
In order to get a Zariski decomposition ofα, the idea is to successively blow up the non-

loci and subtract the divisorial part at each step. Thus we setX0 := X , E0 := D1, G0 := D2
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and V0 := V . Consider the blow-upπ1 :X1 → X0 along V0 with exceptional divisorE1.
Denote byG1 the strict transform ofG0, which is a smooth hypersurface ofX1 meetingE1

transversally along a surfaceV1 isomorphic toV under the projection map. Define inductively
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πn :Xn → Xn−1 as the blow-up alongVn−1, with exceptional divisorEn, and letGn be
the strict transform ofGn−1, which cutsEn transversally along a surfaceVn isomorphic
to V by projection. At each step, setαn := Z(µ
nαn−1), which is also equal toπ
nαn−1 −
ν(αn−1, Vn−1){En} thanks to the relation

ν(π
nαn−1,En) = ν(αn−1, Vn−1)

(this is easy to obtain in the algebraic setting, but can also be proved in the more general
setting). In other words,αn is the residual part ofπ
nαn−1 once its negative divisorial part ha
been subtracted. Then the main fact proved in [16] is thatVn is contained in the non-nef locus
αn for everyn, i.e. thatνn := ν(αn, Vn) is positive.

We will not reproduce the proof of this fact, which is long and technical, but we will
the proof of the following criterion from [16] which enables to conclude that there exists
modificationµ : X̃ →X such thatZ(µ
α) is nef.

LEMMA A.2. –Letπn :Xn→Xn−1 be a sequence of blow-ups with smooth2-codimensiona
centreVn−1 ⊂Xn−1 and exceptional divisorEn ⊂Xn, and letα0 be a big class onX0 which
is nef in codimension1, and such that:

(i) Vn ⊂En for eachn.
(ii) Vn is contained in the non-nef locus of the strict transformαn ∈H1,1(Xn,R) ofα0 under

πn.
Then there exists no modificationµ0 : X̃0 →X0 such thatZ(µ
0α0) is nef.

Proof. –Argue by contradiction. Then one can build two sequences of modifica
µn : X̃n →Xn and π̃n : X̃n → X̃n−1 such thatµn−1 ◦ π̃n = πn ◦ µn. Let α̃0 := µ
0α0 andα̃n
be the pull-back of̃α0 under the composed map̃Xn → X̃0. Then the nefness ofZ(α̃0) implies
that the Zariski decomposition of̃αn is just the pull-back of that of̃α0 for eachn. In particular,
the number of prime divisors in the negative part ofα̃n is independent ofn. On the other hand
we claim that the strict transform ofEn ⊂Xn underµn is contained in the non-nef locus ofα̃n,
which will imply that the number of components of its negative part is strictly increasing win,
and will thus yield a contradiction. Actually, the claim is an immediate consequence of th
thatEn is contained in the non-nef locus ofπ
nαn−1, which in turn follows from the formula

ν(π
nαn−1,En) = ν(αn−1, Vn−1)

(cf. above). ✷
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