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DIVISORS OF POLYNOMIALS AND POWER SERIES
WITH POSITIVE COEFFICIENTS

T. S. MotzkKIN AND E. G. STRAUS

A polynomial P(xi, ---,z,) is positive if its coefficients are
= 0 and not all 0, copositive if it is > 0 whenever the variables
are = 0 and not all 0, Evidently (if needed, after multiplication
by -1) every real divisor () of a positive polynomial P with P(0) + 0
is copositive. Conversely, every real copositive polynomial Q
with copositive highest and copositive lowest homogeneous part
is a divisor of a positive polynomial P, and P/Q may be chosen (1)
as a product of positive 1-variable polynomials and positive homo-
geneous polynomials; or, alternatively, (2) positive and so that
all terms of P from its lowest up to its highest degree are posi-
tive; or, if n =1, (3) so that P has no more nonzero terms than
@Q; or, for n =1 and quadratic @, (4) as a power of a positive
linear function, or (5) so that (1) and (3) hold. For power series
in a multidisk analogous results hold, for » = 1 partly depending
on the finiteness of the number of complex zeros in the disk.

If P(x) is a positive polynomial, that is

P(@) = Plit, =+, 2,) = 3 oo 3 04 i1 -+ o 2l
Hp==0 H1=p
with e¢,...,, =0, ¢ .,>0, then P(x)= 0 for all # in the non-
negative orthant x,=0; g =1, ...-,n. This property is obviously
inherited by all polynomial divisors of P. In this note we examine
to what extent, conversely, every polynomial without real nonnegative
zeros is the divisor of a positive polynomial and investigate the type
of multipliers that yield positive products as well as the type of positive
products obtainable,
In §2 we consider polynomials of one variable. In §3 we generalize
these results to functions of an arbitrary number of variables. In §4
we consider generalizations to power series.

2. Polynomials of one variable without nonnegative zeros.
We may clearly restrict attention to polynomials with real coefficients
since the l.c.m. of P(x) and P(x) has a nonnegative zero if and only
if P(») does. Factoring the (monic) real polynomial P(x) over the reals
we may get some monic first degree polynomials, which by hypothesis
have positive coefficients, and some second degree factors

Q(x) = 22 — 2rcos O)x + 7*
corresponding to pairs of complex conjugate zeros re*, 0 < § < 7.
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THEOREM 2.1. Let n be the integer such that (n — 1) < & < n#;
then a positive polynomial divisible by Q(x) = x* — (2 cos )& + »* must
be of degree d =mn. If nb = then there exists o unique monic
polynomial P(x) = x™ -+ +* divisible by Q). If w8 > w then for each
m, 0 < m < n, there exists a unique positive monic trinomial

(2-2) Pm(a}) = " — M_ prTmpm Sm (In _ m)ﬁ o
sin mo sin mo

divistble by Q(x). The polynomials P, (x) are the vertices of the simplew
of posttive multiples of Q(x) in the space of all monic polynomials
of degree n,

If P(x) ts a positive monic multiple of Q(x) and deg P = n then
P(x)/Q(x) is montc with all coefficients > 0.

Proof. Since the points 1, re®, ..., *~le* 7 gll lie in the angle
0<argz < (n— 1) <m, any linear combination with nonnegative
coefficients lies in this angle; it can therefore be zero only if all the
coefficients are zero. Hence if P(x) is monic positive and deg P < n
then P(re*) = 0 so that P is not a multiple of Q.

If n6 = 7 then the points 1, re?, «-., r* ™0 prgin? gll lie in
the closed half-plane 0 < arg z < 7 and hence the only vanishing linear
combination with positive coefficients is a multiple of 7.1 4 1.y%e"?,
so that the only monic positive multiple of @ of degree n is P(x) = ™ + r".
The ratio

P(x) e sin 26 o

Q) sin ¢
SIN 80 opa—s o ... 4 SO — 1)
sin & sin &

has strictly positive coefficients.

If n8 > w then the point —r"¢™’ lies in the open angle 0 < arg z < méo
for each m =1, ---,n — 1. We therefore have a unique linear com-
bination with positive coefficients of 1 and "¢ which yields —o ™,

namely
_ SN npmgimay o SO = )0 i
sin mé sin my

which shows that (2.2) yields the only positive monic trinomial involving
1, 2™ and z® which is divisible by @. The ratio

Pm(x) = 2 Si-n 20 3 oeee sin (7? - 1)0 P2
Q(x) sin 4 sin 6

_ s.1n ng Tn_,ﬂ(xm_z i 51.n 26 pam—s L ... o Sid (m — 1)8 ym_2>
sin mé sin & sin 0
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has all coefficients > 0.
It is clear that any combination 3% A, P.(x) with »,, = 0, 32, =1
is a monic positive multiple of @ of degree n. Conversely, if

P=cx"+cax™t+ +-vc,, >0,
is a positive multiple of @ and P = ¢, P,, then so is

¢,, sin mo
P4y Zm o
r*=™ gin nd

m

for each m =1, -++,n — 1. For, otherwise, let ), be the maximal
number for which P — A, P, has nonnegative coefficients, Then either
A, = ¢, and deg (P — A, P,) < n, a contradiction ; or

e~ sinmb
sin(n — m)é

and P — A, P, is divisible by 2. But then (P — \,P,)/«" is a positive
multiple of @ of degree n — & for some %k =1, a contradiction. Re-
peating this argument we get

P=-3 cms1r}c9m P
r*=™ sin nod

COROLLARY 2.3. If NO > then the set .2, of positive poly-
nomials R(x) of degree N — 2 such that R(x)Q(x) is positive has a
nonempty interior in the space of all polynomials of degree at most
N — 2. In particular, there exists an R(x) with positive integral
coefficients so that all coefficients of R(x)Q(x) are positive.

Proof. If we prove the corollary for one N then it is proved
for N + 1 since the convex hull of <%, and x.<%, is contained in .,
and has a nonempty interior in the space of all polynomials of degree
at most N — 1., Now if nf > « in Theorem 2.1 then <#.Q was shown
to consist of a nondegenerate simplex, so that <2, possesses interior
points. If n0 = 7z, then by the same argument as in the proof of
Theorem 2.1 there exist trinomials

Pm — x’ﬂ—f—l — Sin (n + 1)0 ,’,.n+1——mxm
sin mé
4 sin(n + 1 — m)&rnﬂ
sin md

foreach m =1, -+-, n — 1 which are positive multiples of Q. Together
with the two binomials z* + #* and #"*' + r"¢ these polynomials are
the vertices of a nondegenerate simplex <Z,.,Q so that <#, ., has interior
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points. Since the polynomials with rational coefficients are dense, it
follows that .2, contains polynomials with positive rational coefficients.
Multiplying by the denominator we therefore can find polynomials with
positive integral coefficients in <.

COROLLARY 2.4. If a real polynomial Q of degree d has no zeros
whose argument is less than w/n then there exists a positive polynomial
R so that RQ is positive and

deg RQ < max {d, nd/2}.

THEOREM 2.5. Let Q(x) be a monic real polynomial of degree d
without nonnegative real zeros. Then among the positive multiples
P of Q of minimal degree n there are either at least n — d + 1 dif-
Jerent (d + l)-nomials or there is at least one d-nomial. (Here k-
nomial means the sum of k or fewer monomials.)

Proof. We know that Q(zx) has positive multiples. Let m =n — d.
The set <% of all R(x) in the space of monic polynomials of degree
m is convex polyhedral, the intersection of m -~ d halfspaces, deter-
mined by the linear inequalities which express the fact that the coef-
ficients of RQ are nonnegative. If <# were unbounded then there
would exist R ¢ <2 with arbitrarily large coefficients. Let || R|| de-
note the maximal absolute value of the coefficients. Then as || R|| —
the polynomials R/||R| have a convergent subsequence which con-
verges to a nonzero polynomial S with deg S < m so that SQ is positive,
a contradiction. If <# is a bounded nondegenerate polyhedron then it
has at least m vertices V., so that each V.Q is positive of degree n
with at least m coefficients equal to 0. Thus each V,.Q is a (d + 1)-
nomial. If <% is a degenerate polyhedron then each vertex V lies on
at least m 4 1 bounding hyperplanes. Thus V@ is a d-nomial.

It would be wrong to assume that the set <Z of multipliers R(x)
of minimal degree for which RQ is positive must contain a positive
polynomial. For example the ecyclotomic polynomial @ (x) divides 2 + 1
but @, has a quadratic factor x* — (2cos w/15)x + 1 that divides no
other monic positive polynomial of degree 15 or less, while

B+ 1

) D) Do) Do)

f

=g — -+ 1.

We conclude this section by showing that every real quadratic
polynomial @ without nonnegative real zeros, and hence every real poly-
nomial without nonnegative real zeros, can be multiplied by powers of
linear positive polynomials to yield positive products.
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THEOREM 2.6. If cos@ < m/(m + 2) then
P(x) = (x* — @rcos )z + ) (x + 7)™

18 positive.

REMARK. For small 4, the smallest admissible m is asymptotically
4n¥/7®, with n as in Theorem 2.1,

Proof. We have

P®(Q) = y»*+2m «oc (m — k + 3)

Jk(k—1) — 2k(m — k + 2y cos 0 + (m — k + 2)(m — k + 1)]
2,,.m-k+2m"'(m_k+3)
B m+ 2

Jk(E — LY (m + 2) — 2k(m — k + 2)m
+ m—k+ 2)(m —k+ L(m + 2)]

rrttimim — 1) oo (m — k + 3)(m — 2k 4 2)*(m + 1)/(m + 2)
0.

v

By choosing m odd we can make all P%*(0) > 0.

COROLLARY 2.7. A real polynomial Q(x) without mnonnegative
real zeros can be multiplied by a polynomial R(x) with only negative
real zeros so that R(x)Q(x) is positive. We can also require that all
coefficients of R(x)Q(x) are positive, and that the coefficients of R(x)
are integers.

3. Polynomials of several variables without zeros in the real
nonnegative orthant. As in §2 we may assume that we are dealing
with real polynomials. Now assume that Q(x, ---,%,) # 0 for all
% =0,+--,2, 20. Writing x = & where r = ||z |;and & = (&, +--, &,)
is a unit vector we can write

3.1) Q) = Q + rQi(8) + -+ + 7'Qu(8)

where Q,;(x) is the homogeneous part of degree 6 of @. If Q,(x) has
nonnegative zeros then it may be impossible to find nonzero homogeneous
multiples of @,(x) with nonnegative coeflicients, so that the leading
homogeneous part of any nonzero product R(x)Q(x) has some negative
coefficients. For example the polynomial Q(x,y) =1 + (x — y)* has
no real and hence no positive zeros, yet (x — ¥)*R(zx, y¥) cannot have
nonnegative coeflicients for any nonzero polynomial R(x,y). Thus, in
order to generalize the results of §2 we must modify our hypothesis,
by excluding *‘ zeros at infinity >’ in the nonnegative orthant.
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THEOREM 3.2. If Q(x) s a real polynomial without zeros in
the nonnegative orthant and if the leading homogeneous part, Q. (x),
has no zeros on the nonnegative orthant of the unit sphere, then there
exist positive polynomials R(x.), Ry(xy), <+, B (x,) so that the homo-
geneous parts of P(x) = R(zx) --- R,(x,)Q(x) are positive on the non-
negative orthant of the unit sphere,

Proof. As a consequence of §2 we know that for each non-
negative unit vector & there exists a positive polynomial R.(r) so that
R.(r)Q(r§) is a strictly positive polynomial in ». Hence R,(r)Q(rn) is
a positive polynomial in » for all unit vectors 7 in a neighborhood U,
of £, By the Heine-Borel theorem there exists a finite set of neigh-
borhoods Ue“ cos, UgN which covers the nonnegative orthant of the
unit sphere. Hence Rel(oﬂ) ce REN(?")Q(TE) is a positive polynomial in
7 for all nonnegative vectors &. Now let

R.(v) = IR (/%)

where the product is extended over all & whose nonzero component
of minimal index is the v-th component &. Then

P(x) = Ri(x) -+ B,(2,)Q(x)

is a positive polynomial in » for all # in the nonnegative orthant.
In other words the homogeneous parts of P(x) are positive in the
positive orthant.

We have thus reduced the problem to that of homogeneous divisors
of positive polynomials.

LeMMA 3.3. If Q(zx) is a homogeneous polynomial which is posi-
tive on the monnegative orthant of the unit sphere then there exists
a positive homogeneous polynomial R(x) so that R(x)Q(x) has positive
coefficients.

Proof. We use induction on the number of variables, #. Consider

the polynomial @*(y,, -+ -, ¥.—.) = Q¥y, * -+, ¥», 1). Then by hypothesis
Q*(y) > 0 for all ¥ in the nonnegative orthant and its leading homo-
geneous part Q(y, ---,¥..., 0) is positive for all nonnegative unit

vectors y. Thus by Theorem 3.2 there exists multiplier
R?(?/l) et R:zk—l(yn—d)
so that
P*(y) = Rly(yl) b R;~l(yn——l)Qx(/y)

has homogeneous parts which are positive on the nonnegative orthant
of the unit sphere in y-space. By the induction hypothesis each homo-
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geneous part P; of P* has a positive homogeneous multiplier Si(y)

so that Pi(y)Si(y) has positive coefficients.
Thus (/1S5 (¥))P*(y) has positive coefficients. The polynomial

x T \psf % Ty
1,---,-—’£——>P< . 3

x, 2, x, %,

22 17 53

where D = deg [({[;S7(y))P*(y)], has now the desired property.
Combining Theorem 3.2 and Lemma 3.3 we get

THEOREM 3.4. For every real wolynomial Q(x) which is positive
in the nonnegative orthant and whose leading homogeneous part 1s
positive on the nonnegative orthant of the unit sphere, there exist
positive polynomials R,(x,), ---, R.(x,) and positive homogeneous poly-
nomaials S(x), - -+, Sv(z) so that the product

(3.5) P(x) = Bi(x) «++ Ru(2,)S.(®) « - Sy(@)Q(x)

has nonnegative coefficients.
If Q(0) = 0 s allowed then we must make a similar assumption

Jor the “trailing’ (lowest-degree) homogeneous part.

The polynomial P(x) in (3.5) has homogeneous factors and there-
fore in general P(0) = 0. However, assuming again @(0) > 0, it is
possible to construct positive multiples P(x) of Q(x) so that any pre-
scribed monomial has a positive coefficient or even so that all monomials
whose degree is no higher than deg P have positive coefficients. To
see this we proceed by induction on the number of variables, to find
positive multipliers R,(%., -+, 2,), By, @, =0, X)), »o v, B2, ¢+, Tuy)
so that R0, ---,0) >0; v=1,.---, 1 and

Ry(mu e gy Loyttt xoz)Q(xu Ty @, Oy Lygry =2, a;n)

has nonnegative coefficients. If
Q@ = (1 B Q)

contains a monomial

e 14
n x'll ces

177y

c o

with ¢, ... <0 then f, >0 for all v=1, ..., n. We consider the
usual partial ordering of the n-tuples (g4, «--, t£,). If the polynomial
P(x) of (3.5) contains a monomial of lower index then there exists a
positive multiple P,(x) of P(x) so that Q,(x) + P,(x) contains a positive
multiple of ®/7 --. #/=, The monomials with negative coefficients whose
indices are not above those of monomials in P(x) can be eliminated
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successively through multiplication by

14 el @3 ee s afn
where

C;ll""u'n > —QI(O)CIII""U'IL .

To sum up we have the following.

THEOREM 3.6, For every polynomial Q(x) which s nonzero in
the monmnegative orthant and whose leading homogeneous part is
nongero on the nonnegative orthant of the umnit sphere there exists a
positive polynomial R(x) so that P(x) = R(x)Q(x) has positive coef-
ficients for every monomial whose degree is no greater than deg P.

If Q(0) = 0 ¢s allowed then P(x) will only have positive coef-
fictents for every monomial whose degree is no greater than deg P
and no less than that of the trailing part of P.

We note that like Corollary 2.4 for polynomials of one variable,
and Lemma 3.3 for homogeneous polynomials, but unlike Theorem 3.4,
Theorem 3.6 implies that the class of divisors of polynomials with
specified positivity or nonnegativity properties of their coefficients
coincides with the class of polynomials which, together with their
leading and their trailing part, have no zeros, other than 0, in the
nonnegative orthant.

In a manner analogous to that used in the proof of Theorem 2.5
we could get bounds on the minimal number of monomials in a posi-

tive multiple of Q(x). The results are harder to state and we omit
them.

4. Divisors of positive power series.
THEOREM 4.1. Given a power series
fley =1+ > c,2z"
n=1

with radius of convergence r (0 < r £ ) and without zeros in the
interval [0, v), there exists o power series

Px) =1+ 2 D&

with p, = 0; n=1,2,.-- with radius of convergence = r so that
P@)/f(z) is analytic for |x| < 7.

Proof. Let the zeros of f(x) be x,, %,, -+- with &, = r,¢"» where
o<r<rm< - <r,< - <rand 0< 40, <2r. For each ¢, there
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exist arbitrarily large integers N, so that N,8, is in the closed second
quadrant, and x, satisfies the equation with nonnegative coeflicients

1— (2cos Nm,)( @ )N” + (2 )V ~0.

T T

If we choose N, so large that (»,/r.) " < 2™ for all », < v, then
the product

o= s - e a2) 5 (2)7)

converges for all |z| < » and has nonnegative coefficients. Since
every zero of f(x) in x| < r is a zero of no lower multiplicity of
P(z), it follows that P/f is analytic in |x]| < 7.

The function P(zx) is a polynomial if f has a finite number of zeros
in {a| < r., Otherwise P(x) has infinitely many zeros in |z| < r and
therefore its radius of convergence is 7.

The construction of P(xz) does not permit us to say that P/f can

be chosen to be a positive power series and we have not been able to
solve the following.

PROBLEM 4.2. Assume the power series f(z) of Theorem 4.1 s
real. Is it possible to find a positive power series g(x) with radius
of convergence r so that f(x)g(x) has positive coefficients?

We can answer the problem in the affirmative for any radius of
convergence o < 7.

LeMMA 4.3, If fle)=£0 in (x| <r and f(x) is a real power
series, f(0) = 1, then there exists a positive power series g(x) con-
verging for |x| < r so that f(x)g(x) has positive coefficients.

Proof. Under our hypothesis @(x) = log f(x), normalized by ¢(0) = 0,
is a real analytic function in |z| <». Let o(r) = X7, b,2" then
g(x) = exp (337-. | b, | #™) has the desired properties.

COROLLARY 4.4. Let f(x) be a real power series with radius of
convergence r and only a finite number of zeros in |x| < r and no
zeros in the interval [0, ). If f(0) = 1 then there exists a positive

power series g(x) converging for |x| < r so that f(x)g(x) has positive
coefficients.

Proof. We can write f(z) = Q()f.(x) where Q(z) is a polynomial
and f,(x) satisfies the hypotheses of Lemma 4.3. Then by Corollary
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2.4 and Lemma 4.3 there exists a positive polynomial R(x) and a
positive power series g,(z) so that Q(x)E(x) is positive and f,(z)g.(x)
is positive. Hence g(z) = R(x)g.(x) has the desired properties.

THEOREM 4.5. Let f(x) be a real power series satisfying the
hypotheses of Theorem 4.1, Then for every o < r there exists a posi-
tive power series g(x) with radius of convergence = p so that f(x)g(x)
is @ positive power series.

Proof. In |z| < p the function f satisfies the hypotheses of Co-
rollary 4.4, with r replaced by p.

In a manner analogous to that used in §3 we can now establish
the following generalization of Theorem 4.5 to power series in several
variables.

THEOREM 4.6. Let

f(xlr ) xn) =1+ Z c,,l...ynxf‘l DR

Hybeeet =1

be a real power series which converges for |x,|<7r,; v=1---,n
and is positive for 0 < x, < 7r,; v =1, ---, n. Then for every p, with
0, <r,; v=1 .-, n there exist positive power series

gu(x») =1+ i ’Yywa ; PTou > 0

p=1

with radius of convergence = p, so that
guf = Z() @yﬂ(xly ey By Bugay m xn)xf ’ v = 19 tee,
p=

where each ¢, is positive for

0§“1‘z§(01; )":19"':1)_1:’)_1‘17"'3%-

Proof. For each vector ¢ = (§,,++«, 6,1, 80, -+, &) With 0§, <
0;, there exists by Theorem 4.5 a positive power series P.(x,) with
radius of convergence p, so that P.(0) = 1 and all the coefficients of
JE, o %, iy, ov e, oo0, £ Pe(2,) (considered as a power series in
x,) are positive. If, as we may, we further multiply by (1 — x,/0))™
where p, < o, < r, then the power series

f(ély Tty Ev——lr L, Ev+1v Sty En)Pé(xu)(l - WV/(O:>_1
= 3 et
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satisfies

M
<Cy,u(5)<w; #20,1,2,"'

ro
v

where M is a positive constant independent of £&. The upper bound
is just an application of Cauchy’s inequality. The functions p)"c,.(¢§)
are equicontinuous functions of & for 0 < &, < p.; and hence there
exists a neighborhood U, of & so that

f(y)u ctty 77v—11 e 77;«-(—1; ] pn)Pé(xu)(l - xv/(o:)—l

has positive coeflicients (as power series in x,) for every » ¢ U,. By
the Heine-Borel theorem there is a finite set of neighborhoods

Uél, e, UfN which covers the set

0§52§10/y 7\’:19 "',7)-1,”—’—1, AR (7
so that
f(xly crcy xn)Psl(xv) cee PeN(xu)(l - xy/[o:)—l = f(x)gu(xv)
satisfies the conditions of the theorem.

REMARK 4.7. Theorem 4.6 does not insure the existence of a
multiple of f(x) which is a power series with positive coefficients in
X, -+, %,. However the condition on the leading homogeneous part
which we had to impose in §3 becomes vacuous for power series. For

example the polynomial 1 + (x — »)?, which cannot be the divisor of
a positive polynomial, is the divisor of the positive entire function

A, y) =1 + (& — y)le=”
-1 S n+1 2_2'”"‘1. 2> -2
NP <x A SO

Now by a homogeneous version of Theorem 2.6 each of the poly-
nomials

(m“’ -2 Z - i vy + yz)(x + 9

= (&* — 2cos Oxy + ¥ )z + y)"

has positive coefficients, since

cos f =

n~1<n—1:2n——2: m
n + 1 n on m+ 2

ProBLEM 4.8. Let f(x, ---,2x,) be a power series which con-
verges for lu,| <7r,; v=1 << n, so that f(x) >0 for 0 <z, < r,.
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Does there exist a power series g(x) which converges for |x,| <7,;
v=1, ..+, n so that fg has positive coefficients? If so, can g be
chosen to have positive coefficients ?
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