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DIVISORS ON GENERIC COMPLETE
INTERSECTIONS IN PROJECTIVE SPACE

GENG XU

Abstract. Let V be a generic complete intersection of hypersurfaces of degree
d1, d2, · · · , dm in n-dimensional projective space. We study the question when
a divisor on V is nonrational or of general type, and give an alternative proof

of a result of Ein. We also give some improvement of Ein’s result in the case
d1 + d2 + · · ·+ dm = n+ 2.

0. Introduction

Let V be a generic complete intersection of hypersurfaces of degree d1, d2, · · · , dm
in Pn. A conjecture of Kobayashi (cf. [L]) states that V is hyperbolic if d =
d1 +d2 + · · ·+dm ≥ n+ 2. In general, S. Lang [L] has conjectured that a variety X
is hyperbolic if and only if every subvariety of X is of general type. In this paper,
we will prove the following

Theorem 1. Let V be a complete intersection of m generic hypersurfaces of degree
d1, d2, · · · , dm in Pn, M ⊂ V a reduced and irreducible divisor, pg(M) the geometric
genus of the desingularization of M . Assume that 1 ≤ m ≤ n − 3 and di ≥ 2 for
all i. Then

(1) pg(M) ≥ n− 1 if d = d1 + d2 + · · ·+ dm ≥ n+ 2,
(2) M is of general type if d = d1 + d2 + · · ·+ dm > n+ 2.

In [E1,E2], Ein has shown that M is nonrational if d ≥ n+ 2, and is of general
type if d > n + 2. Here we are going to give an alternative proof of it. Ein also
proved that every subvariety of V of dimension l is nonrational if d ≥ 2n−m− l+1,
and is of general type if d > 2n−m− l + 1. Therefore the improvement we made
here is in the case d = n+ 2 and l = n−m− 1. In particular, we conclude that the
divisor M can not be an abelian variety. If a variety X is hyperbolic, then every
rational map of an abelian variety or P1 into X is constant. On the other hand,
Lang [L] conjectured that this condition is also sufficient for X to be hyperbolic.

If V is a generic hypersurface in Pn, it was first shown by Clemens [CKM] that
V contains no rational curves, if deg V ≥ n− 1. In [X1], we study generic surfaces
in P3, obtain that every curve C on S has geometric genus g(C) ≥ 1

2d(d − 3) − 2
(d =deg S), and the bound is sharp. We also obtain results about divisors on a
generic hypersurface in Pn. In [X2], we generalize these results to some nongeneric
cases.
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When V is a generic quintic 3-fold in P4, a conjecture of Clemens says that V
should contain only finitely many rational curves of given degree, which is equiv-
alent to the statement that every divisor on V must have a nonnegative Kodaira
dimension. Chang and Ran [CR] has proved that V does not contain a reduced and
irreducible divisor which admits a desingularization having a numerically effective
anticanonical bundle.

To establish Theorem 1, we need to get control over the singularities of the
divisor M on V . The method we use here is deformation of singularity as we did
in [X1].

Throughout this paper we work over the complex number field C.
Finally, I am very grateful to Herbert Clemens, Mark Green and Jonathan Wahl

for helpful conversations.

1. Deformation of Singularities

For simplicity of notations, we will give a proof of Theorem 1 in the case m = 2.

First of all, we recall some definitions from [X1].
Let V be an n-dimensional smooth variety, and M ⊂ V be a reduced and irre-

ducible divisor. According to Hironaka [H], there is a desingularization of M :

Vm+1
πm+1−→ Vm

πm−→ · · · π2−→ V1
π1−→ V0 = V,

so that the proper transform M̃ of M in Vm+1 is smooth. Here Vj
πj−→ Vj−1 is the

blow-up of Vj−1 along a νj−1-dimensional submanifold Xj−1 with Ej−1 ⊂ Vj the
exceptional divisor. If Xj−1 is a µj−1-fold singular submanifold of the proper trans-
form of M in Vj−1, we say that M has a type µ = (µj , Xj , Ej | j ∈ {0, 1, . . . ,m})
singularity.

If M ⊂ V has a type µ = (µj , Xj, Ej | j ∈ Γ) singularity, Ω ⊂ V is an open set,
we localize our definition by saying that M has a type µΩ = (µj , Xj , Ej | j ∈ ΓΩ =
{j | ∃q ∈ Ej , q, is an infinitely near point of some p ∈ Ω}) singularity on Ω.

Given any resolution of the singularity of M ⊂ V as above, if D ⊂ V is a divisor,
such that

π∗j (· · · (π∗2(π∗1(D)− δ0E0)− δ1E1)− · · · )− δj−1Ej−1

is an effective divisor for all j = 1, 2, . . . ,m + 1, then we say that D has a weak
type δ = (δj , Xj , Ej | j ∈ {0, 1, . . . ,m}) singularity. It is easy to see that a type µ
singularity implies a weak type µ singularity.

Assume that M ⊂ V has a type µ = (µj , Xj, Ej | j ∈ {0, 1, . . . ,m}) singularity.
The following lemma describes the connection between the singularities of M and
the canonical bundle of the desingularization M̃ of M .

Lemma 2. A section of KV ⊗M with a weak type µ − 1 = (µj − 1, Xj, Ej | j ∈
{0, 1, . . . ,m}) singularity induces a section of KM̃ .

Proof. Proposition 1.1 in [X1]. q.e.d.

Definition. Let T ⊂ CN be an open neighborhood of the origin 0 ∈ T . Assuming
that σ:M −→ T is a family of reduced equidimensional algebraic varieties, Mt =
σ−1(t), then we say that the family Mt is µ-equisingular at t = 0 in the sense
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that we can resolve the singularity of Mt simultaneously, that is, there is a proper
morphism π: M̃ −→M , so that σ ◦ π: M̃ −→ T is a flat map and

σ ◦ π: M̃t = (σ ◦ π)−1(t) −→Mt

is a resolution of the singularities of Mt. Moreover, if Mt has a type µ(t) =
(µj(t), Xj(t), Ej(t) | j ∈ Γ(t)) singularity with the above resolution, then µj(t) = µj
and Γ(t) = Γ are independent of t, and the exceptional divisors and the singular

loci of the desingularization M̃t −→Mt have the same configuration for all t.

Now we state a lemma concerning the local deformation theory of singular divi-
sors.

Lemma 3. If Mt = {gt(z1, . . . , zn) = 0} is a µ-equisingular family of varieties
defined in an open set Ω ⊂ Cn, and Mt has a type µ(t)Ω = (µj , Xj(t), Ej(t) |
j ∈ {0, . . . ,m}) singularity on Ω, then the variety

{
dgt
dt |t=0= 0

}
has a weak type

µ(0)Ω − 1 = (µj − 1, Xj(0), Ej(0) | j ∈ {0, . . . ,m}) singularity on Ω.

Proof. Lemma 4.4 in [X1]. q.e.d.

Let {Zi} be some homogeneous coordinates of Pn, F ∈ H0(Pn,O(r)) and G ∈
H0(Pn,O(l)) be homogeneous polynomials. We define

∂(F,G)

∂(Zi, Zj)
= det

∣∣∣∣∣
∂F
∂Zi

∂F
∂Zj

∂G
∂Zi

∂G
∂Zj

∣∣∣∣∣ .
The next lemma tells us how to use deformation of singularities to produce

special homogeneous polynomials.

Lemma 4. Let F1,t ∈ H0(Pn,O(d1)), F2,t ∈ H0(Pn,O(d2)), Gt ∈ H0(Pn,O(k)),
and Mt = {F1,t = 0}∩{F2,t = 0}∩{Gt = 0} be a µ-equisingular family of varieties
with a type µ(t) = (µj , Xj(t), Ej(t) | j ∈ Γ) singularity. Setting

dF1,t

dt
|t=0= F ′1,

dF2,t

dt
|t=0= F ′2,

dGt
dt
|t=0= G′,

and assuming that both the varieties {Fi,t = 0} (i = 1, 2) and {F1,t = 0}∩{F2,t = 0}
are smooth for t in a neighborhood of 0. Then the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
G′ − ∂(G0, F2,0)

∂(Zi, Zj)
F ′1 −

∂(F1,0, G0)

∂(Zi, Zj)
F ′2 = 0

}
(i, j = 0, 1, . . . , n) on V = {F1,0 = 0} ∩ {F2,0 = 0} has a weak type µ(0) − 1 =
(µj − 1, Xj(0), Ej(0) | j ∈ Γ) singularity, where {Z0, Z1, · · · , Zn} are homogeneous
coordinates of Pn.

Proof. For any point P ∈ M0, we can find an open set Ω 3 P of V , and generic
homogeneous coordinates {Z ′i} with

Z ′i =
n∑
j=0

lijZj (i = 0, 1, . . . , n),
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so that
∂(F1,0, F2,0)

∂(Z ′i, Z
′
j)
6= 0

on Ω for all i 6= j (i, j = 0, 1, · · · , n). Assuming M0 has a type µΩ(0) = (µj , Xj(0),
Ej(0) | j ∈ ΓΩ) singularity on Ω. Denoting

{z1, z2, · · · , zn} =
{Z ′1
Z ′0
,
Z ′2
Z ′0
, · · · , Z

′
n

Z ′0

}
,

if we solve the equation

F1,t(1, z1, z2, · · · , zn) = 0, F2,t(1, z1, z2, · · · , zn) = 0

near the point P (t), where P (0) = P , and get

z1 = ϕ1,t(z3, · · · , zn), z2 = ϕ2,t(z3, · · · , zn),

then on some open set of Cn−2, Mt is a µ-equisingular family of divisors locally
defined by the equation

Gt(1, ϕ1,t, ϕ2,t, z3, · · · , zn) = 0.

By Lemma 3, the divisor locally defined by the equation

dGt
dt

(1, ϕ1,t(z3, · · · , zn), ϕ2,t(z3, · · · , zn), z3, · · · , zn) |t=0= 0

on Ω has a weak type µΩ(0)− 1 = (µj − 1, Xj(0), Ej(0) | j ∈ ΓΩ) singularity.
Now a detailed computation shows that

dGt
dt

(1, ϕ1,t, ϕ2,t, z3, · · · , zn) |t=0= G′ +
∂G0

∂Z ′1

dϕ1,t

dt
|t=0 +

∂G0

∂Z ′2

dϕ2,t

dt
|t=0

=
{∂(F1,0, F2,0)

∂(Z ′1, Z
′
2)

}−1{∂(F1,0, F2,0)

∂(Z ′1, Z
′
2)

G′ − ∂(G0, F2,0)

∂(Z ′1, Z
′
2)
F ′1 −

∂(F1,0, G0)

∂(Z ′1, Z
′
2)
F ′2

}
.

Then the divisor{∂(F1,0, F2,0)

∂(Z ′1, Z
′
2)

G′ − ∂(G0, F2,0)

∂(Z ′1, Z
′
2)
F ′1 −

∂(F1,0, G0)

∂(Z ′1, Z
′
2)

F ′2 = 0
}

has a weak type µΩ(0)− 1 singularity on Ω. Similarly, the divisor{∂(F1,0, F2,0)

∂(Z ′i, Z
′
j)

G′ − ∂(G0, F2,0)

∂(Z ′i, Z
′
j)

F ′1 −
∂(F1,0, G0)

∂(Z ′i, Z
′
j)

F ′2 = 0
}

(i, j = 0, 1, · · · , n)

has a weak type µΩ(0)− 1 singularity on Ω. Finally, since the expression

∂(F1,0, F2,0)

∂(Zi, Zj)
G′ − ∂(G0, F2,0)

∂(Zi, Zj)
F ′1 −

∂(F1,0, G0)

∂(Zi, Zj)
F ′2
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is a linear combination of expressions

∂(F1,0, F2,0)

∂(Z ′s, Z
′
l)

G′ − ∂(G0, F2,0)

∂(Z ′s, Z
′
l)
F ′1 −

∂(F1,0, G0)

∂(Z ′s, Z
′
l)
F ′2, (s, l = 0, 1, · · · , n)

and weak type µΩ(0)− 1 singularity is additive (cf. section 1 in [X1]), we conclude
that the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
G′ − ∂(G0, F2,0)

∂(Zi, Zj)
F ′1 −

∂(F1,0, G0)

∂(Zi, Zj)
F ′2 = 0

}
has a weak type µΩ(0) − 1 singularity on Ω, hence it has a weak type µ(0) − 1
singularity on V . q.e.d.

Remark. In general, if

Vt = {F1,t = 0} ∩ {F2,t = 0} ∩ · · · ∩ {Fm,t = 0}

is a complete intersection of m hypersurfaces, and M∗t = Vt ∩ {Gt = 0} is a µ-
equisingular family of divisors. Then one can state and prove an analogy of Lemma
4 with the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
G′ − ∂(G0, F2,0)

∂(Zi, Zj)
F ′1 −

∂(F1,0, G0)

∂(Zi, Zj)
F ′2 = 0

}
replaced by a divisor of the form{∂(F1,0, F2,0, F3,0, · · · , Fm,0)

∂(Zi1 , Zi2 , Zi3 , · · · , Zim)
G′ − ∂(G0, F2,0, F3,0, · · · , Fm,0)

∂(Zi1 , Zi2 , Zi3 · · · , Zim)
F ′1

− ∂(F1,0, G0, F3,0, · · · , Fm,0)

∂(Zi1 , Zi2 , Zi3 , · · · , Zim)
F ′2 −

∂(F1,0, F2,0, G0, · · · , Fm,0)

∂(Zi1 , Zi2 , Zi3 , · · · , Zim)
F ′3

− · · · − ∂(F1,0, F2,0, F3,0, · · · , G0)

∂(Zi1 , Zi2 , Zi3 , · · · , Zim)
F ′m = 0

}
,

here i1, · · · , im = 0, 1, · · · , n.

2. Proof of Theorem 1

Let V = {F1 = 0} ∩ {F2 = 0} ⊂ Pn be a complete intersection of generic
hypersurfaces {F1 = 0} and {F2 = 0} of degree d1 and d2. By our assumption
m ≤ n − 3, that is dim V ≥ 3, we know that Pic V = Z and it is generated by
OV (1), thanks to the Lefschetz theorem. Now if M ⊂ V is a reduced and irreducible
divisor, then it is a complete intersection of V with another hypersurface {G = 0}
of degree k. Here F1, F2 and G are homogeneous polynomials.

Proposition 5. Let V be a complete intersection of m generic hypersurfaces of
degree d1, d2, · · · , dm in Pn, and M ⊂ V a reduced and irreducible divisor. Assume
that d = d1 + d2 + · · ·+ dm ≥ n+ 2, 1 ≤ m ≤ n− 3 and di ≥ 2 for all i. Then there
is a desingularization σ : M̃ →M of M , and we have

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) ≥ n− 1.
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Remark. This is an improvement of an early result of L. Ein [E2] which states that

H0(M̃,KM̃ ⊗ σ
∗O(−(d− n− 2))) 6= 0.

Assuming Proposition 5, now we can give the

Proof of Theorem 1. (1) If d ≥ n+2, then H0(M,O(d−n−2)) 6= 0, by Proposition
5,

dim H0(M̃,KM̃ ⊗ σ∗O(−d+ n+ 2)) ≥ n− 1.

Hence we have

pg(M) = dim H0(M̃,KM̃ )

≥ dim H0(M̃,KM̃ ⊗ σ∗O(−d+ n+ 2)) + dim H0(M̃, σ∗O(d− n− 2))− 1

≥ n− 1,

thanks to Hopf’s theorem.
(2) If d > n+ 2, then d− n− 2 ≥ 1. From

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) ≥ n− 1 > 0,

we conclude that M is of general type. q.e.d.

We now begin the proof of Proposition 5. For simplicity of notation, we will
assume that m = 2.

Assume the contrary; namely, for any generic complete intersection of 2 hyper-
surfaces of degree d1, d2, there is a reduced and irreducible divisor on it with

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) < n− 1.

Set

B = {{F1, F2} ∈ H0(Pn,O(d1))×H0(Pn,O(d2))| both varieties

{Fi = 0}(i = 1, 2) and {F1 = 0} ∩ {F2 = 0} are smooth},
Ak = {{F1, F2, G} ∈ H0(Pn,O(d1))×H0(Pn,O(d2))×H0(Pn,O(k))|
{F1, F2} ∈ B,M = {G = 0} ∩ V is a reduced and irreducible divisor on

V = {F1 = 0} ∩ {F2 = 0}, dim H0(M̃,KM̃ ⊗ σ
∗O(−(d− n− 2))) < n− 1}.

Then the map
∞⋃
k=1

Ak → B

is dominant by assumption. Hence the map Ak → B is dominant for some k.
Therefore at some regular point {F1, F2} of B, we can find a smooth section B →
Ak, that is, there is a triple

{F1, F2, G} ∈ H0(Pn,O(d1))×H0(Pn,O(d2))×H0(Pn,O(k)),

which has the following property: both varieties {Fi = 0} (i = 1, 2) and V = {F1 =
0}∩{F2 = 0} are smooth, the divisor M = V ∩{G = 0} is reduced and irreducible,
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and for any deformation F1,t of F1 = F1,0 and F2,t of F2 = F2,0, there is a unique
deformation Gt of G = G0, so that the divisor

Mt = {F1,t = 0} ∩ {F2,t = 0} ∩ {Gt = 0}

on {F1,t = 0} ∩ {F2,t = 0} has

dim H0(M̃t,KM̃t
⊗ σ∗tO(−(d− n− 2))) < n− 1.

Here σ∗t : M̃t → Mt is a desingularization of Mt. Moreover, we can assume that
the family Mt is µ-equisingular, and Mt has a type µ(t) = (µj , Xj(t), Ej(t) | j ∈ Γ)
singularity.

Let {Zi} be fixed homogeneous coordinates of Pn. By Lemma 4, for any defor-
mation F ′1 ∈ H0(Pn,O(d1)) of F1 and F ′2 ∈ H0(Pn,O(d2)) of F2, there is a unique
deformation G′ ∈ H0(Pn,O(k)) of G, so that the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
G′ − ∂(G0, F2,0)

∂(Zi, Zj)
F ′1 −

∂(F1,0, G0)

∂(Zi, Zj)
F ′2 = 0

}
(i, j = 0, 1, . . . , n)

on V = {F1,0 = 0} ∩ {F2,0 = 0} = {F1 = 0} ∩ {F2 = 0} has a weak type
µ(0)− 1 = (µj − 1, Xj(0), Ej(0) | j ∈ Γ) singularity. Denote G′ = Φ(F ′1, F

′
2). Then

we have a map

Φ : H0(Pn,O(d1))×H0(Pn,O(d2)) −→ H0(Pn,O(k))/(F1, F2, G),

here (F1, F2, G) is the ideal generated by F1, F2, G.

Lemma 6. Φ is linear in F1, F2 mod (F1, F2, G).

Proof. Otherwise, since

∂(F1,0, F2,0)

∂(Zi, Zj)
(Φ(aF ′1 + bF̃ ′1, F

′
2)− aΦ(F ′1, 0)− bΦ(F̃ ′1, 0)− Φ(0, F ′2))

=
{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(aF ′1 + bF̃ ′1, F

′
2)− ∂(G0, F2,0)

∂(Zi, Zj)
(aF ′1 + bF̃ ′1)− ∂(F1,0, G0)

∂(Zi, Zj)
F ′2

}
− a
{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(F ′1, 0)− ∂(G0, F2,0)

∂(Zi, Zj)
F ′1

}
− b
{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(F̃ ′1, 0)− ∂(G0, F2,0)

∂(Zi, Zj)
F̃ ′1

}
−
{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(0, F ′2)− ∂(F1,0, G0)

∂(Zi, Zj)
F ′2

}
,

and for any point P ∈ V ,
∂(F1,0, F2,0)

∂(Zi, Zj)
(P ) 6= 0

for some i, j. By Lemma 4 and the additivity of weak type µ(0)− 1 singularity, the
divisor

{Φ(aF ′1 + bF̃ ′1, F
′
2)− aΦ(F ′1, 0)− bΦ(F̃ ′1, 0)− Φ(0, F ′2)) = 0}
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will have a weak type µ(0)− 1 = (µj − 1, Xj(0), Ej(0)|j ∈ Γ) singularity on V . On
the other hand, by the adjunction formula, we have

KV ⊗M = O(d+ k − n− 1).

If Φ is not linear mod (F1, F2, G), then

Φ(aF ′1 + bF̃ ′1, F
′
2)− aΦ(F ′1, 0)− bΦ(F̃ ′1, 0)− Φ(0, F ′2)

will generate a section of KM̃ ⊗O(−(d−n− 2)− 1) by Lemma 2, which will imply
that

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) ≥ n− 1

because dim H0(M,O(1)) ≥ n − 1. Here we use the fact that deg Fi = di ≥ 2.
q.e.d.

Let {Yi} be another homogeneous coordinate of Pn. Now we take a special
deformation F ′1 = YpU (p = 0, 1, · · · , n) of F1 with U ∈ H0(Pn,O(d1 − 1)). Since

∂(F1,0, F2,0)

∂(Zi, Zj)
(YpΦ(YqU, 0)− YqΦ(YpU, 0))

= Yp
(∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(YqU, 0)− ∂(G0, F2,0)

∂(Zi, Zj)
YqU

)
− Yq

(∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(YpU, 0)− ∂(G0, F2,0)

∂(Zi, Zj)
YpU

)
,

by Lemma 4 we conclude that the divisor {YpΦ(YqU, 0) − YqΦ(YpU, 0) = 0} on V
has a weak type µ(0)− 1 singularity.

Lemma 7. If dimH0(M̃,KM̃ ⊗σ∗O(−(d−n− 2))) < n− 1, then there is a linear
map

Φ1 : H0(Pn,O(d1 − 1))×H0(Pn,O(d2 − 1))→ H0(Pn,O(k − 1))/(F1, F2, G),

so that for any U ∈ H0(Pn,O(d1 − 1)), and W ∈ H0(Pn,O(d2 − 1)), the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ1(U,W )− ∂(G0, F2,0)

∂(Zi, Zj)
U − ∂(F1,0, G0)

∂(Zi, Zj)
W = 0

}
(i, j = 0, 1, · · · , n) on V has a weak type µ(0)− 1 singularity.

Proof. Let Y,H ∈ H0(Pn,O(1)) be 2 hyperplanes, and U ∈ H0(Pn,O(d1 − 1)) be
a fixed polynomial. By the argument before Lemma 7 (choose Yp = Y, Yq = H),
we know that the divisor {YΦ(HU, 0) − HΦ(Y U, 0) = 0} on V has a weak type
µ(0)− 1 singularity. Since we have

KV ⊗M = O(d+ k − n− 1),

and Y Φ(HU, 0)−HΦ(Y U, 0) ∈ H0(Pn,O(k + 1)), if

YΦ(HU, 0)−HΦ(Y U, 0) 6≡ 0
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on M , that is YΦ(HU, 0)−HΦ(Y U, 0) 6∈ (F1, F2, G), then it will induce a section
of KM̃ ⊗ σ∗O(−(d− n− 2)) by Lemma 2. Denote

ΛH = {Y |Y Φ(HU, 0)−HΦ(Y U, 0) ∈ (F1, F2, G)} ⊂ H0(Pn,O(1)).

The linearity of Φ implies that ΛH is a linear subspace of H0(Pn,O(1)). We
conclude that dim ΛH ≥ 2 by our assumption that

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) ≤ n− 2.

Hence there is a nontrivial hyperplane YH ∈ ΛH such that

YH 6∈ (H,F1, F2, G),

thanks to the fact that degFi ≥ 2.
Let σ : M̃ → M be a desingularization of M . Then the linear system |σ∗O(1)|

on M̃ is base point free. Since dim M =dim V − 1 ≥ 2, and M is reduced and
irreducible, Bertini’s theorem implies that the generic hyperplane section of M̃ is
irreducible. Therefore we can choose a generic hyperplane H, so that H ∩M is
irreducible and reduced. By our construction of YH , we have

YHΦ(HU, 0)−HΦ(YHU, 0) ∈ (F1, F2, G),

that is YHΦ(HU, 0) ∈ (H,F1, F2, G). The fact that YH 6∈ (H,F1, F2, G) and that
H ∩M is irreducible now gives us Φ(HU, 0) ∈ (H,F1, F2, G). Therefore,

Φ(HU, 0) = HU∗ mod (F1, F2, G)

for some U∗ ∈ H0(Pn,O(k − 1)), and U∗ is unique mod (F1, F2, G) because M
is reduced and irreducible. Similarly, for any W ∈ H0(Pn,O(d2 − 1)), there is a
W ∗ ∈ H0(Pn,O(k − 1)), such that

Φ(0, HW ) = HW ∗ mod (F1, F2, G).

Now we define

Φ1(U,W ) = U∗ +W ∗ ∈ H0(Pn,O(k − 1))/(F1, F2, G),

then Φ1 is independent of the choice of the generic hyperplane H.
From Lemma 4, we know that the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ(HU,HW )− ∂(G0, F2,0)

∂(Zi, Zj)
HU − ∂(F1,0, G0)

∂(Zi, Zj)
HW = 0

}
on V has a weak type µ(0)− 1 singularity. Using the fact that

Φ(HU,HW ) = Φ(HU, 0) + Φ(0, HW ) = HΦ1(U,W ) mod (F1, F2, G),

we find that the divisor{
H(

∂(F1,0, F2,0)

∂(Zi, Zj)
Φ1(U,W )− ∂(G0, F2,0)

∂(Zi, Zj)
U − ∂(F1,0, G0)

∂(Zi, Zj)
W ) = 0

}
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on V has a weak type µ(0)− 1 singularity. Therefore we know that the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
Φ1(U,W )− ∂(G0, F2,0)

∂(Zi, Zj)
U − ∂(F1,0, G0)

∂(Zi, Zj)
W = 0

}
on V has a weak type µ(0) − 1 singularity if we choose the generic hyperplane H
such that it is in general position with respect to the singular locus of M . Again,
we may assume that Φ1 to be linear mod (F1, F2, G) as we did for Φ. q.e.d.

We continue the proof of Theorem 1. If

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) < n− 1,

we can repeat the argument in the proof of Lemma 7 again on the triple

(U,W,Φ1(U,W )) ∈ H0(Pn,O(d1 − 1))×H0(Pn,O(d2 − 1))×H0(Pn,O(k − 1))

instead of the triple

(F ′1, F
′
2,Φ(F ′1, F

′
2)) ∈ H0(Pn,O(d1))×H0(Pn,O(d2))×H0(Pn,O(k)),

and using Lemma 7 instead of Lemma 4. After repeating this process for several
times, eventually we arrive at the following situation.

Case (1). d1 ≤ k and d2 ≤ k. There are

Rij ∈ H0(Pn,O(k − d1)) and Sij ∈ H0(Pn,O(k − d2)),

so that both the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
Rij −

∂(G0, F2,0)

∂(Zi, Zj)
· 1 = 0

}
and the divisor {∂(F1,0, F2,0)

∂(Zi, Zj)
Sij −

∂(F1,0, G0)

∂(Zi, Zj)
· 1 = 0

}
on V have weak type µ(0)− 1 singularities. Moreover,

Rij ≡ R,Sij ≡ S mod (F1, F2, G)

are independent of i, j, because we assume that the deformation G′ = Φ(F ′1, F
′
2) is

unique for given F ′1, F
′
2 (the reason is the same as we assume that Φ is linear).

Consider the following linear equation

α
∂F1,0

∂Zi
+ β

∂F2,0

∂Zi
=
∂G0

∂Zi
− ∂F1,0

∂Zi
R− ∂F2,0

∂Zi
S,

α
∂F1,0

∂Zj
+ β

∂F2,0

∂Zj
=
∂G0

∂Zj
− ∂F1,0

∂Zj
R− ∂F2,0

∂Zj
S.

When we solve this equation, we get

∂(F1,0, F2,0)

∂(Zi, Zj)
α =

∂(G0, F2,0)

∂(Zi, Zj)
· 1− ∂(F1,0, F2,0)

∂(Zi, Zj)
R,

∂(F1,0, F2,0)

∂(Zi, Zj)
β =

∂(F1,0, G0)

∂(Zi, Zj)
· 1− ∂(F1,0, F2,0)

∂(Zi, Zj)
S.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIVISORS ON GENERIC COMPLETE INTERSECTIONS 2735

Hence the divisor{∂(F1,0, F2,0)

∂(Zi, Zj)
(
∂G0

∂Zi
− ∂F1,0

∂Zi
R− ∂F2,0

∂Zi
S) = 0

}
on V has a weak type µ(0) − 1 singularity. For any point P ∈ V , we can choose
generic homogeneous coordinates so that

∂(F1,0, F2,0)

∂(Zi, Zj)
6= 0

near P for all i 6= j. Then the divisor{ ∂G
∂Zi
− ∂F1

∂Zi
R − ∂F2

∂Zi
S = 0

}
=
{∂G0

∂Zi
− ∂F1,0

∂Zi
R− ∂F2,0

∂Zi
S = 0

}
has a weak type µ(0) − 1 singularity in a neighborhood of P . Now let {Yi} be
another homogeneous coordinate of Pn. Since

∂G

∂Yj
− ∂F1

∂Yj
R− ∂F2

∂Yj
S

is a linear combination of expressions

∂G

∂Zi
− ∂F1

∂Zi
R− ∂F2

∂Zi
S (i = 0, 1, · · · , n)

and weak type µ(0)− 1 singularity is additive, we conclude that the divisor

{ ∂G
∂Yj
− ∂F1

∂Yj
R− ∂F2

∂Yj
S = 0

}
on V has a weak type µ(0)− 1 singularity. If

∂G

∂Yj
− ∂F1

∂Yj
R− ∂F2

∂Yj
S = 0 mod (F1, F2, G)

for all j, then
∂G

∂Yj
− ∂F1

∂Yj
R − ∂F2

∂Yj
S = 0 mod (F1, F2)

because it’s degree k− 1 < k, and the Euler equation will imply that G ∈ (F1, F2),
which is impossible.

Therefore
∂G

∂Yj
− ∂F1

∂Yj
R − ∂F2

∂Yj
S 6∈ (F1, F2, G)

for some j, that is,
∂G

∂Yj
− ∂F1

∂Yj
R− ∂F2

∂Yj
S 6≡ 0

on M . Now we can choose

H1, · · · , Hn−1 ∈ H0(Pn,O(1)),
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so that Hi generates a linear subspace of dimension n − 1 and G is not there (in
case deg G = 1). Then( ∂G

∂Yj
− ∂F1

∂Yj
R− ∂F2

∂Yj
S
)
H1Hi (i = 1, 2, · · · , n− 1)

will induce n−1 linear independent sections of KM̃ ⊗σ∗O(−(d−n−2)) by Lemma
2. A contradiction.

Case (2). d1 ≤ k < d2. Then Lemma 7 implies that the divisor{∂(F1,0, G0)

∂(Zi, Zj)
= 0
}

on V has a weak type µ(0)− 1 singularity. The argument in case (1) (take S = 0)
shows that for some j, the divisor{ ∂G

∂Yj
− ∂F1

∂Yj
R = 0

}
on V has a weak type µ(0)−1 singularity, and it is nontrivial on M . Again we get

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) ≥ n− 1.

Case (3). d1 > k and d2 > k. This time, we conclude that both divisors{∂(F1,0, G0)

∂(Zi, Zj)
= 0
}

and
{∂(G0, F2,0)

∂(Zi, Zj)
= 0
}

on V have weak type µ(0) − 1 singularities. The argument in case (1) (take R =
S = 0) shows that for some j, the divisor { ∂G∂Yj = 0} on V has a weak type µ(0)− 1

singularity, and it is nontrivial on M . We conclude again that

dim H0(M̃,KM̃ ⊗ σ∗O(−(d− n− 2))) ≥ n− 1.

This completes the proof of Proposition 7.
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