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DIVISORS ON GENERIC COMPLETE
INTERSECTIONS IN PROJECTIVE SPACE

GENG XU

ABSTRACT. Let V be a generic complete intersection of hypersurfaces of degree
di,d2,- -+ ,dmn in n-dimensional projective space. We study the question when
a divisor on V is nonrational or of general type, and give an alternative proof
of a result of Ein. We also give some improvement of Ein’s result in the case
di+dg+ - +dm=n+2.

0. INTRODUCTION

Let V be a generic complete intersection of hypersurfaces of degree dy, dso, - - - , dp,
in P". A conjecture of Kobayashi (cf. [L]) states that V is hyperbolic if d =
dy+do+---+dpy >n+2. In general, S. Lang [L] has conjectured that a variety X
is hyperbolic if and only if every subvariety of X is of general type. In this paper,
we will prove the following

Theorem 1. Let V be a complete intersection of m generic hypersurfaces of degree
di,do, - ,dm inP", M CV areduced and irreducible divisor, pg(M) the geometric
genus of the desingularization of M. Assume that 1 <m <n —3 and d; > 2 for
all i. Then

1) pgM)>n—1ifd=di+do+--+dmn >n+2,

(2) M is of general type if d =dy +do + -+ dpm, > n+ 2.

In [E1,E2], Ein has shown that M is nonrational if d > n + 2, and is of general
type if d > n + 2. Here we are going to give an alternative proof of it. Ein also
proved that every subvariety of V' of dimension [ is nonrational if d > 2n—m—1[+1,
and is of general type if d > 2n — m — [ 4+ 1. Therefore the improvement we made
here is in the case d = n+ 2 and [ = n —m — 1. In particular, we conclude that the
divisor M can not be an abelian variety. If a variety X is hyperbolic, then every
rational map of an abelian variety or P! into X is constant. On the other hand,
Lang [L] conjectured that this condition is also sufficient for X to be hyperbolic.

If V is a generic hypersurface in P", it was first shown by Clemens [CKM] that
V contains no rational curves, if deg V' > n — 1. In [X1], we study generic surfaces
in P, obtain that every curve C' on S has geometric genus g(C) > 3d(d — 3) — 2
(d =deg S), and the bound is sharp. We also obtain results about divisors on a
generic hypersurface in P”. In [X2], we generalize these results to some nongeneric
cases.
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When V is a generic quintic 3-fold in P4, a conjecture of Clemens says that V
should contain only finitely many rational curves of given degree, which is equiv-
alent to the statement that every divisor on V must have a nonnegative Kodaira
dimension. Chang and Ran [CR] has proved that V' does not contain a reduced and
irreducible divisor which admits a desingularization having a numerically effective
anticanonical bundle.

To establish Theorem 1, we need to get control over the singularities of the
divisor M on V. The method we use here is deformation of singularity as we did
in [X1].

Throughout this paper we work over the complex number field C.

Finally, I am very grateful to Herbert Clemens, Mark Green and Jonathan Wahl
for helpful conversations.

1. DEFORMATION OF SINGULARITIES

For simplicity of notations, we will give a proof of Theorem 1 in the case m = 2.

First of all, we recall some definitions from [X1].

Let V be an n-dimensional smooth variety, and M C V be a reduced and irre-
ducible divisor. According to Hironaka [H], there is a desingularization of M:

Tm41 T, T2 ™1
Vm+1 =5 Vm—>—’vl—>‘/O:Va

so that the proper transform M of M in Vint1 is smooth. Here V; ER V;_1 is the
blow-up of V;_; along a v;_i-dimensional submanifold X;_; with F;_; C V; the
exceptional divisor. If X;_; is a p1;_1-fold singular submanifold of the proper trans-
form of M in Vj_q, we say that M has a type pp = (p;, X;,E; | j € {0,1,...,m})
singularity.

If M C V has a type p = (pj,X;, Ej | j € ') singularity, Q@ C V is an open set,
we localize our definition by saying that M has a type uo = (u;, X;, Ej | j € To =
{j | 3¢ € Ej, g, is an infinitely near point of some p € Q}) singularity on €.

Given any resolution of the singularity of M C V as above, if D C V is a divisor,
such that

w5 (o (ma (1 (D) = 6oEo) — 61By) — -+ ) — 61 Ej

is an effective divisor for all 7 = 1,2,...,m + 1, then we say that D has a weak
type 6 = (6;,X;,E; | 7 € {0,1,...,m}) singularity. It is easy to see that a type u
singularity implies a weak type p singularity.

Assume that M C V has a type p = (uj, X, E; | j € {0,1,...,m}) singularity.
The following lemma describes the connection between the singularities of M and
the canonical bundle of the desingularization M of M.

Lemma 2. A section of Ky ® M with o weak type p—1 = (u; —1,X,,E; | j €
{0,1,...,m}) singularity induces a section of K ;.

Proof. Proposition 1.1 in [X1]. q.e.d.

Definition. Let 7' C CV be an open neighborhood of the origin 0 € 7. Assuming
that 0: M — T is a family of reduced equidimensional algebraic varieties, M; =
o~1(t), then we say that the family M, is p-equisingular at ¢ = 0 in the sense
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that we can resolve the singularity of M; simultaneously, that is, there is a proper
morphism 7: M — M, so that o om: M — T is a flat map and

com:M; = (com) () — M,

is a resolution of the singularities of M;. Moreover, if M; has a type u(t) =
(s (t), X;(¢), E;(t) | j € T'(t)) singularity with the above resolution, then y;(t) = pu;
and I'(t) = T are independent of ¢, and the exceptional divisors and the singular
loci of the desingularization M, — M, have the same configuration for all ¢.

Now we state a lemma concerning the local deformation theory of singular divi-
Sors.

Lemma 3. If My = {gi(z1,... ,2n) = 0} is a p-equisingular family of varieties
defined in an open set Q C C", and M has a type p(t)o = (5, X;(t), E;(t) |
j €40,...,m}) singularity on Q, then the variety {% li—o= 0} has a weak type
1(0)o —1 = (u; —1,X;(0),E;(0) | j €{0,...,m}) singularity on Q.

Proof. Lemma 4.4 in [X1]. q.e.d.

Let {Z;} be some homogeneous coordinates of P, F' € H*(P",O(r)) and G €
H°(P™,0(l)) be homogeneous polynomials. We define

OF OF
I(F,G) _ et 7% 97
Zi, Z;) 5% 5%

The next lemma tells us how to use deformation of singularities to produce
special homogeneous polynomials.

Lemma 4. Let Fi, € H(P",0(d1)), Foy € HO(P™, 0(ds)), Gy € HO(P™, O(k)),
and My = {F1; =0}N{F>; = 0} N{G; = 0} be a p-equisingular family of varieties
with a type p(t) = (1;, X;(t), E;(t) | j € T') singularity. Setting

Fra | o WP g 4G
dt t=0 1 dt t=0 29 dt t=0 )

and assuming that both the varieties {F;, = 0} (i = 1,2) and {F1, = 0}N{Fs, = 0}
are smooth for t in a neighborhood of 0. Then the divisor

(Fi0, F0) v 9(Go, Foo) ., O(Fi0,Go) .,
{ (Zi, Z;) ¢ (Z;, Zy) f NZi, Z;) FQ_O}

(1, =0,1,...,n) on V. = {F10 = 0} N {Fso = 0} has a weak type u(0) —1 =
(nj —1,X5(0),E;(0) | j €T) singularity, where {Zy, Z1,--- , Z,} are homogeneous
coordinates of P™.

Proof. For any point P € My, we can find an open set 2 5 P of V, and generic
homogeneous coordinates {Z/} with
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so that
O(F1,0, F20)

oz, 7y 7

on Qforalli#j(i,j=0,1,---,n). Assuming M, has a type pa(0) = (1, X;(0),
E;(0) | j € T'q) singularity on €. Denoting

Zi Zy Zn
Zé? Zé? ) Z(/) )

{21, 22, 2n} = {
if we solve the equation
Fi.(1,21,22,- - ,2,) =0, Fo,(1,21,22, -+ ,2n) =0
near the point P(t), where P(0) = P, and get

21 = <P1,t(237 te 7Zn>7 z9 = 502715(237 te 7271)7

then on some open set of C"~2, M; is a p-equisingular family of divisors locally
defined by the equation

Gt(17 3017t7 802,257 23, 7z’ﬂ> =0.
By Lemma 3, the divisor locally defined by the equation

dG
d_tt(:[’ (pl)t(237 e 7zn)7 8027t(z37 e 7277,)72:37 e 7Zn> |t:0: 0

on Q has a weak type puo(0) —1 = (u; — 1, X;(0), E;(0) | j € T'q) singularity.
Now a detailed computation shows that

th v BGO d‘ﬁl,t BGO d(pg)t
i (L @16, 92,4, 23,7+, 2n) |t=0= G + 97, dt lt=0 T lt=0
_ {3(F1,0,F2,0) }_1{8(F1’0’F2’0)G’ _ 9(Go, Fao) 1y OFro, GO)F/}
AZY 0(Z1, Z) oz1,2z5) " 0z, 25) N
Then the divisor
{8(F170,F2)0) , 9(Go, Fa0) ., B(Fl,OaGO)F/ _ 0}
(21, Z3) oz1.25) " 0(Z.2) ?

has a weak type pq(0) — 1 singularity on . Similarly, the divisor

O(F1,0,Go)
oz, z})

{B(FI’O’F2’O>G’ _ 6(G0,F270)F, _
1

Fy=0 (i,j =0,1,-- ,n)
9%, Z;) 9(Z;, Zj) }

has a weak type uq(0) — 1 singularity on . Finally, since the expression

3(F1,0,F2,0)G/ 3(G0,F2,0)F/ a(Fl,o,Go)F/
- 1 2

NZi, Zj) NZi, Z5) NZi, Z;)
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is a linear combination of expressions

0(F1,0,F>0) , 0(Go,Fap) ., O(Fi,,Go) ., B
ozz) O aznz) T ez o 0

and weak type puq(0) — 1 singularity is additive (cf. section 1 in [X1]), we conclude
that the divisor

{a(Fl,Oa FQ,O) - 8(G0a FQ,O)F/ _ 8(F1707 GO)F/ — 0}
0(2;, Z;) 0(Zi, Z)) Y 0(Zi, Zy) 2

has a weak type pq(0) — 1 singularity on €, hence it has a weak type p(0) — 1
singularity on V. q.e.d.

Remark. In general, if
Vi={Fi:=0n{F;=0}N---N{Fn:=0}

is a complete intersection of m hypersurfaces, and M} = V, N {G; = 0} is a p-
equisingular family of divisors. Then one can state and prove an analogy of Lemma

4 with the divisor
0(F10,F20) ., 0(Go,Fap) , 0(F1,0,Go)
0~ 2, - O pr - 2oL 0
{ Zi, Z;) ¢ 0Zi,Z;) ' 0Zi,Zy) " ? 0}

replaced by a divisor of the form

{6(F10,F20,F307--. Fm,o)G,_ B(GO7F207F307'-' o
8(Z111Z127 2137 T Z’Lm) 8(2“,2127 Z 7sz
I(F1,0,Go, F30, - ’Fm’O)F _O(F, 0,F20,G07"' 7Fmo)F,
B(ZhaZzzaZzga"' Zz' 3

’
m) ? B(ZualeleS?”' 7Zim)

_ O(Fy0,Fa0, Fso, - ,GO)F/ :O}
a(Z117Z127Z137"' 7Zim) " ’

here i1, -+ , 4, =0,1,--- ,n.

2. PROOF OF THEOREM 1

Let V. = {F, = 0} N {F, = 0} C P™ be a complete intersection of generic
hypersurfaces {F; = 0} and {F; = 0} of degree d; and dy. By our assumption
m < n — 3, that is dim V > 3, we know that Pic V = Z and it is generated by
Oy (1), thanks to the Lefschetz theorem. Now if M C V is a reduced and irreducible
divisor, then it is a complete intersection of V' with another hypersurface {G = 0}
of degree k. Here Iy, F5 and G are homogeneous polynomials.

Proposition 5. Let V be a complete intersection of m generic hypersurfaces of
degree dy,da, -+ ,dy in P™, and M CV a reduced and irreducible divisor. Assume
thatd =dy+do+---+dm >n+2,1<m<n-—3andd; > 2 for all i. Then there
is a desingularization o : M— M of M, and we have

dim H(M, K ® 0*O(—(d —n —2))) >n — 1.
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Remark. This is an improvement of an early result of L. Ein [E2] which states that
H'(M, Ky ®0*O(—(d —n —2))) #0.

Assuming Proposition 5, now we can give the

Proof of Theorem 1. (1) If d > n+2, then H°(M, O(d—n—2)) # 0, by Proposition
9,
dim H'(M, Ky ® 0*O(=d+n+2)) >n— 1.

Hence we have

py(M) = dim H°(M, K ;)
> dim H(M, K ® 0*O(—d +n + 2)) + dim H*(M,0*O(d —n —2)) — 1
2 n— 1)

thanks to Hopf’s theorem.
(2)Ifd>n+2,then d—n—2> 1. From

dim H'(M, Ky ® 0*O(—(d—n—2))) >n—1>0,

we conclude that M is of general type. q.e.d.

We now begin the proof of Proposition 5. For simplicity of notation, we will
assume that m = 2.

Assume the contrary; namely, for any generic complete intersection of 2 hyper-
surfaces of degree di,ds, there is a reduced and irreducible divisor on it with

dim H'(M, Ky ® 0*O(—(d —n —2))) <n — 1.
Set
B ={{F, R} c H(P",0(d))) x H*(P",O(dz))| both varieties
{F; =0}(i=1,2) and {F, = 0} N {Fy = 0} are smooth},
Ap = {{F1, F»,G} € H(P",0(d1)) x H*(P™,0(d2)) x H*(P™, O(k))|
{F1,F»} € B,M = {G =0} NV is a reduced and irreducible divisor on
V ={F =0} n{F =0}, dim H*(M,Ky ® 0*O(—(d —n —2))) <n—1}.

Then the map
U Ak — B
k=1

is dominant by assumption. Hence the map Ay — B is dominant for some k.
Therefore at some regular point {F, F5} of B, we can find a smooth section B —
Aj, that is, there is a triple

{Fy,F»,G} € H'(P™,0(dy)) x H*(P",0(dz)) x H*(P™, O(k)),

which has the following property: both varieties {F; =0} (i =1,2) and V = {F} =
0} N{F> = 0} are smooth, the divisor M = VN{G = 0} is reduced and irreducible,
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and for any deformation Fy; of Fi = Fy o and Fy; of Fy = Fy g, there is a unique
deformation G; of G = Gy, so that the divisor

M, = {F1, = 0} N {Fy, = 0} N {G, = 0}
on {Flvt = O} n {FQ,t = 0} has
dim HO(Mt,KMt ®o;O(—(d—n—-2))) <n-—1.

Here o} : M, — M, is a desingularization of M;. Moreover, we can assume that
the family M, is p-equisingular, and M; has a type p(t) = (1, X;(t), E;j(t) | €T)
singularity.

Let {Z;} be fixed homogeneous coordinates of P™. By Lemma 4, for any defor-
mation F| € HY(P",O(dy)) of Fy and F} € H°(P™,O(dz)) of F», there is a unique
deformation G’ € H°(P™, O(k)) of G, so that the divisor

0(F1,0,Go)
8(Zivzj>

{B(Fl’O’F2’O>G’ 0(Go, Fay)

J— I J—
02, 2,) 0z 2,) !

F2’:0} (i,j=0,1,....,n)

onV ={Fig =0tN{Fo =0} = {FA = 0} N{F, = 0} has a weak type
1(0) —1 = (u; —1,X;(0),E;(0) | j € T') singularity. Denote G’ = ®(FY, F3). Then
we have a map

®: HP",0(d)) x H'(P™, O(dz)) — H°(P",0(k))/(F1, F», G),
here (F, Fy, G) is the ideal generated by Fy, F5, G.

Lemma 6. ® is linear in Fy, F» mod (Fy, F3,G).

Proof. Otherwise, since

%@(aﬂ + bF], Fy) — a®(F],0) — b®(F],0) — ®(0, F}))
— (S glatar + oy, 1) — S8 by - GO )
(Co 7 o - 5575 w)
Tz 0 - g R
and for any point P € V| oF
ez o

for some 7, j. By Lemma 4 and the additivity of weak type p(0) — 1 singularity, the
divisor ~ R
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will have a weak type p(0) — 1 = (u; — 1, X;(0), E;(0)|j € T') singularity on V. On
the other hand, by the adjunction formula, we have

Ky@M=0(d+k—n-1).
If @ is not linear mod (Fy, F», G), then
®(aF] + bF], F}) — a®(F},0) — b®(F],0) — (0, F3)

will generate a section of Ky ® O(—(d —n —2) —1) by Lemma 2, which will imply
that
dim HO(M, Ky ® 0*O(—(d —n —2))) >n —1

because dim HO(M,O(1)) > n — 1. Here we use the fact that deg F; = d; > 2.
q.e.d.

Let {Y;} be another homogeneous coordinate of P". Now we take a special
deformation F{ =Y, U (p=0,1,--- ,n) of F} with U € H*(P",O(d; — 1)). Since

O(F1,0,F2p)
B O(F1,0, Fo0) 0(Go, Fa )
= I B AN Y,U)
O0(F1,0,F2p) 0(Go, Fa )
_Yq( (Zi, Z;) *(¥,0,0) (Zi, Z;) YPU)’

by Lemma 4 we conclude that the divisor {Y,®(Y,U,0) — Y, ®(Y,U,0) = 0} on V
has a weak type p(0) — 1 singularity.

Lemma 7. [fdim HO(M, K ; ® 0*O(—(d—n—2))) < n—1, then there is a linear
map

®, : HO(P",0(dy — 1)) x H*(P™,0(dy — 1)) — H°(P™,0(k —1))/(F1, F2, G),
s0 that for any U € H°(P™,O(dy — 1)), and W € H°(P",O(dy — 1)), the divisor

a(GmFQ,O)U 0(F1,0,Go)

O (U, W) — (Zi, Z;) B AZs, Zy)

{3(F1,0,F2,0)

0(Zs, Z;) W= O}

(i,7j=0,1,--- ,n) on V has a weak type u(0) — 1 singularity.
Proof. Let Y, H € H°(P™,O(1)) be 2 hyperplanes, and U € H°(P",O(d; — 1)) be
a fixed polynomial. By the argument before Lemma 7 (choose Y, = Y,Y, = H),
we know that the divisor {Y®(HU,0) — H®(YU,0) = 0} on V has a weak type
1(0) — 1 singularity. Since we have

Ky®M=0(d+k—-—n-1),
and Y®(HU,0) — HO(YU,0) € HO(P™,O(k + 1)), if

Y®(HU,0) — H®(YU,0) 2 0
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on M, that is Y®(HU,0) — H®(YU,0) & (Fy, F3,G), then it will induce a section
of Ky ® 0*O(—(d —n —2)) by Lemma 2. Denote

Ay = {Y|Y®(HU,0) — H®(YU,0) € (Fy, F»,G)} c H'(P",0(1)).

The linearity of ® implies that Ay is a linear subspace of H°(P" O(1)). We
conclude that dim Ay > 2 by our assumption that

dim HO(M, Ky ® 0*O(—(d —n —2))) <n — 2.
Hence there is a nontrivial hyperplane Yz € Ay such that
YH g (H7F17F27G>7

thanks to the fact that degF; > 2.

Let o : M — M be a desingularization of M. Then the linear system |o*O(1)|
on M is base point free. Since dim M =dim V — 1 > 2, and M is reduced and
irreducible, Bertini’s theorem implies that the generic hyperplane section of M is
irreducible. Therefore we can choose a generic hyperplane H, so that H N M is
irreducible and reduced. By our construction of Yz, we have

Yu®(HU,0) — H®(YU,0) € (Fy, F»,G),

that is Yy ®(HU,0) € (H, Fy, F5,G). The fact that Yy & (H, Fy, F>,G) and that
H N M is irreducible now gives us ®(HU,0) € (H, Fy, F>,G). Therefore,

®(HU,0) = HU* mod (Fy, F»,G)

for some U* € H(P",O(k — 1)), and U* is unique mod (Fy, s, G) because M
is reduced and irreducible. Similarly, for any W € H(P™, O(dy — 1)), there is a
W* e HO(P", O(k — 1)), such that

®(0, HW) = HW* mod (Fi, 3, G).
Now we define
O (U,W)=U*+W* e HP",0(k —1))/(F1, F>,G),

then @, is independent of the choice of the generic hyperplane H.
From Lemma 4, we know that the divisor

{3(F1,0,F2,0)

0(Go, Fa) 0(F1,0,Go)
2(Zs 2,) HY

8(Z17ZJ) B a(ZlaZJ)

S(HU, HW) — HW = 0}

on V has a weak type p(0) — 1 singularity. Using the fact that
O(HU, HW) = ®(HU,0) + (0, HW) = Hd1 (U, W) mod (F, F3, G),

we find that the divisor

O0(F1,0,F0)

{H( S J0(Go, F2 ) O0(F10,Go)

QO =572 U~ 0z 2,) W) =0}
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on V has a weak type p(0) — 1 singularity. Therefore we know that the divisor

O0(F1,0,Fap) 0(Go, F2 ) 0(F10,Go) ..
{ 0(Z:, Z;) P W) - 0(Zi, Z;) V- 9(Zi, Z;) W_O}

on V has a weak type p(0) — 1 singularity if we choose the generic hyperplane H
such that it is in general position with respect to the singular locus of M. Again,
we may assume that ®; to be linear mod (F1, Fz, G) as we did for ®. q.e.d.

We continue the proof of Theorem 1. If
dim HO(M, Ky ® 0*O(—(d —n —2))) <n — 1,
we can repeat the argument in the proof of Lemma 7 again on the triple
(U,W,®,(U,W)) € H*(P",0(d; — 1)) x H*(P",0(dy — 1)) x H(P",O(k — 1))
instead of the triple
(F{, F3, ®(F], F3)) € H(P",0(d1)) x H°(P",0(d2)) x H"(P", O(k)),

and using Lemma 7 instead of Lemma 4. After repeating this process for several
times, eventually we arrive at the following situation.
Case (1). di < k and dy < k. There are

Rij € H'(P",0(k — dy)) and S;; € H*(P™,O(k — d2)),
so that both the divisor
Fio, F. F
{8( 10, F20) , 9(Go, Fap) 1— 0}

(Zi, Z)) Y 9(Zi, Zj)

and the divisor

{8(F1,07F2,0) 0(F1,0,Go) 1= 0}
0(Z;, Z;) (Zi, Z;)

on V have weak type p(0) — 1 singularities. Moreover,

SZH_

Rij = R, Sij =S mod (Fl,FQ,G)

are independent of i, j, because we assume that the deformation G’ = ®(Fy, F3) is
unique for given FY, F (the reason is the same as we assume that ® is linear).
Consider the following linear equation

8F1,0 8F270 o 8G0 8F1,0 8F2,0
“ oz, +0 oZ; — 0Z; 07, R= 07, S

8F170 BFQ)O o 8G0 8F170 8F270
57 TPz oz, oz, N Tz, o

When we solve this equation, we get

d(F10,F20)  0(Go, Fap) O(F1,0,F2p)

002.7) O 02 2) T 0znz)
a(Fl’O’FQ’O)ﬁ _ OF10,Go) | 9(Fro, Fao) ¢
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Hence the divisor

{ O(F1,0,F2p)
0(Z;, Z;)

(BGO _ 8F170R_ BFQ)O

9z, 0z 0z, ) = 0}

on V has a weak type pu(0) — 1 singularity. For any point P € V| we can choose
generic homogeneous coordinates so that

O(F1,0, Fo0)

a(Ziv Zj) 7& 0

near P for all ¢ # j. Then the divisor

8G 8F1 8FQ o - 8G0 8F170 8FQ,0 -
{azi B 6ZiR_ aZiS_O} _{azi Y7 R 07, S_O}

has a weak type ©(0) — 1 singularity in a neighborhood of P. Now let {Y;} be
another homogeneous coordinate of P™. Since
oG _OF , oR

dY; anR_a—YjS

is a linear combination of expressions

oG _OF , OF,
0Z; 07, 97

S (i=0,1,---,n)

and weak type p(0) — 1 singularity is additive, we conclude that the divisor

oG OF ., 0F .

on V has a weak type p(0) — 1 singularity. If

0G O0F; OF,
S i Y S F, F
oY, BYjR anS 0 mod (F1, F>,G)

for all j, then
oG 0F oF,
— ——R—-——=5=0 d (Fy, F:
oy, oy, oy, mod (Fi, F)
because it’s degree k — 1 < k, and the Euler equation will imply that G € (F, Fy),
which is impossible.
Therefore
oG _oF , oF,

for some j, that is,

oG _or o,

aY; 9y _a_yjsio

on M. Now we can choose

Hy, -+ Hn_q € H(P",0(1)),
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so that H; generates a linear subspace of dimension n — 1 and G is not there (in
case deg G = 1). Then

(8G OF , OF

g 22\ mH, (i=1,2,---,n—1
oY, anR anS> 1 (i n )

will induce n —1 linear independent sections of K ; ® 0*O(—(d —n—2)) by Lemma
2. A contradiction.
Case (2). di < k < dz. Then Lemma 7 implies that the divisor

on V has a weak type u(0) — 1 singularity. The argument in case (1) (take S = 0)
shows that for some j, the divisor

on V has a weak type ©(0) — 1 singularity, and it is nontrivial on M. Again we get
dim H'(M, Ky ® 0*O(—(d —n —2))) >n — 1.
Case (3). di > k and dy > k. This time, we conclude that both divisors

on V have weak type p(0) — 1 singularities. The argument in case (1) (take R =
S = 0) shows that for some j, the divisor {2 = 0} on V has a weak type z(0) — 1
singularity, and it is nontrivial on M. We conclude again that

dim H'(M, Ky ® 0*O(—(d —n —2))) >n — 1.
This completes the proof of Proposition 7.
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