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Abstract

Background: Genomic variations are associated with the metabolism and the occurrence of adverse reactions of many

therapeutic agents. The polymorphisms on over 2000 locations of cytochrome P450 enzymes (CYP) due to many factors

such as ethnicity, mutations, and inheritance attribute to the diversity of response and side effects of various drugs. The

associations of the single nucleotide polymorphisms (SNPs), the internal pharmacokinetic patterns and the vulnerability

of specific adverse reactions become one of the research interests of pharmacogenomics. The conventional

genomewide association studies (GWAS) mainly focuses on the relation of single or multiple SNPs to a specific risk

factors which are a one-to-many relation. However, there are no robust methods to establish a many-to-many network

which can combine the direct and indirect associations between multiple SNPs and a serial of events (e.g. adverse

reactions, metabolic patterns, prognostic factors etc.). In this paper, we present a novel deep learning model based on

generative stochastic networks and hidden Markov chain to classify the observed samples with SNPs on five loci of two

genes (CYP2D6 and CYP1A2) respectively to the vulnerable population of 14 types of adverse reactions.

Methods: A supervised deep learning model is proposed in this study. The revised generative stochastic networks

(GSN) model with transited by the hidden Markov chain is used. The data of the training set are collected from clinical

observation. The training set is composed of 83 observations of blood samples with the genotypes respectively on

CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F. The samples are genotyped by the polymerase chain reaction (PCR) method.

A hidden Markov chain is used as the transition operator to simulate the probabilistic distribution. The model can

perform learning at lower cost compared to the conventional maximal likelihood method because the transition

distribution is conditional on the previous state of the hidden Markov chain. A least square loss (LASSO) algorithm and a

k-Nearest Neighbors (kNN) algorithm are used as the baselines for comparison and to evaluate the performance of our

proposed deep learning model.

Results: There are 53 adverse reactions reported during the observation. They are assigned to 14 categories. In the

comparison of classification accuracy, the deep learning model shows superiority over the LASSO and kNN model with

a rate over 80 %. In the comparison of reliability, the deep learning model shows the best stability among the three

models.
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Conclusions: Machine learning provides a new method to explore the complex associations among genomic

variations and multiple events in pharmacogenomics studies. The new deep learning algorithm is capable of classifying

various SNPs to the corresponding adverse reactions. We expect that as more genomic variations are added as features

and more observations are made, the deep learning model can improve its performance and can act as a black-box but

reliable verifier for other GWAS studies.

Keywords: Deep learning, Genomewide association study, Pharmacogenomics, Single nucleotide polymorphisms,

Adverse drug reaction

Background

Genomewide association study (GWAS) is to explore

the correlations among genomic variations and a

series of genetic risk factors. It aims to reveal the

complexity of the changes of DNA sequence and their

corresponding effects on gene expression, proteins

and finally leading to the macro factors such as dis-

ease susceptibility, prognostic factor and pattern of

metabolism etc [1]. With the emergence of next gener-

ation of sequencing (NGS) and other improvements of

genotyping and analytic technologies, the cost of genetic

testing has decreased to reasonable cost-effective range

for population-based GWAS study and personal genetic

or whole genome testing [2]. The GWAS studies mainly

deal with the complex associations between SNPs and at-

tempt to measure and estimate the accumulative effect of

relevant SNPs to biological systems. The SNPs can be

markers to the changes of the macro systems or indirect

factors that influence the system [1, 3]. Accordingly,

the analytic strategies of GWAS can be categorized to

inferential analysis and associative analysis. The typical

inferential methods are the analysis of variance

(ANOVA) and the Chi-square test (including Fisher’s

exact test) which are to verify the associations between

SNPs and the target events. And the latter methods in-

clude generalized linear model (GLM) approaches and

multivariate logistic regression which are to select the

more closely relative factors of SNPs to the target

events from numerous candidates (usually in thousands

of SNPs). However, the above methods are only de-

signed to confirm the association between a specific

SNP and a target event or a serial of related SNPs and a

specific target event, which can be classified as a one-

to-one or a one-to-many problem. They are incapable

of solving the complex associative networks involving

multi-dimensional correlations of dependents and inde-

pendents, and those among independents and among

dependents themselves. As shown in Fig. 1, the two

chromosome segments (marked by orange and pink)

can be associated with either the true association (the

link between the red markers) or the false association

(the link between the green marker). The false positive

error will not be discovered because it also belongs to a

high LD (Linkage Disequilibrium). These errors will ac-

cumulate as the associative network of SNPs and they

will eventually generate error information that causes

various problems. An example of this cost can be easily

found in pharmacogenomics studies where the false

linkage will cause either false prediction of risks or po-

tential dangers of drug adverse reactions after the prod-

ucts are on the market.

The objective of pharmacogenomics is to study

how the comprehensive genomewide variations (i.e.

groups of relevant SNPs) systematically affect the

patterns of pharmacokinetics and pharmacodynamics

of individuals and the variation of biological patterns

to the same or similar substances in different sub-

jects [4]. It is widely believed that the SNPs on cyto-

chrome P450 enzymes (CYP) are associated with

individualized response and adverse reactions of

many pharmaceutical and health products. For ex-

ample, the combined variation of the CYP3A5 gene

and breast cancer resistance protein (BCRP) can en-

hance the effect of rosuvastatin to decrease the blood

LDL level and is hopeful to decrease the recurrence

risk of cardiovascular disease [5]. Another study re-

ported that the SNPs on CYP2B6 combined with

ABCB1, SLC22A16 are associated with the toxicity

and efficacy of doxorubicin and cyclophosphamide

(AC) therapy for breast cancer [6]. The current stud-

ies summarize that the CYP polymorphisms on the

specific loci CYP2A6, CYP2B6, CYP2C9, CYP2C19,

and CYP2D6 are attributed to 20 % ~ 25 % the diver-

sity of individual drug response. The associations

have been extensively studied and characterized [7].

A research reported that the gene CYP2D6 affects

20 % ~ 25 % of the oxidative metabolism of clinical

drugs [8]. In addition, SNPs affected by ethnicity can

regulate the systematic biological functions of CYP.

An epigenetic study in Mozambique found the distri-

bution of the allele variants of CYP2B6 and CYP2C8

are homogeneous to other African populations, which

implies some degree of homology [9]. An Asian study

on the association of CYP and the interethnic variabil-

ity of warfarin dosage revealed that the higher toler-

ance to warfarin of the Indian population can be
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explained by the combined influence of the SNPs of

CYP2C9 and vitamin K epoxide oxidase reductase com-

plex subunit 1 (VKORC1) [10]. A whole genome study on

96 Tibetans in China found the frequency of the

CYP2D6*10 allele is lower than the other Chinese

people belonging to the Han ethnic groups [11].

The literature review shows that with the disseminations

of new genome sequencing technologies especially the de-

ployment of NGS, the cost-effective of genome sequencing

has reached a good ratio that makes large-scale individual

studies feasible in both laboratory and clinical context.

However, as a large sum of sequencing and SNPs data is

generated at low cost, the conventional GWAS analytic

methods have become the bottleneck for many study pur-

poses that stress the complex association network con-

nected to numerous SNPs and events with direct,

indirect, unilateral and bilateral linkages. As indicated

in Fig. 1, the available analytic methods are established

to measure the one-to-one or one-to-many relations,

but they are inadequate to measure the complex linkage

in the multi-dimensional networks, which is the com-

mon purpose of pharmacogenomics studies.

In order to solve this difficulty, we propose the

machine learning method which can effectively seal

the complexity of the SNPs and adverse drug associ-

ations into a computational model trained by empir-

ical data. This study will analyze the complex

associations among SNPs on two loci (CYP2D6 &

CYP1A2) of cytochrome P450 enzymes and the oc-

currences of adverse drug reactions (ADRs) which

are observed in a clinical observation. The goal is to

demonstrate the proposed deep learning model can

accurately classify the human participants with the

different combinations of SNPs to the susceptibility

of ADRs. The overall procedure is shown as Fig. 2,

where both the true and false associations are put

into the learning model. And we expect as more ac-

curately labeled data are added to train the learning

machine, the deep learning classifier will eventual

render a reliable outcome with satisfactory accuracy.

Fig. 2 Classification of the associations network of SNPs and ADR

Fig. 1 True and false association of SNPs
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Methods

Sequencing and ADRs

The blood samples collected from the 83 human partici-

pants were kept in ultra-low temperature freezer be-

fore processing. The DNA was extracted and preserved

at −80 °C. The alleles on the CYP1A2 and CYP2D6

gene were sequenced and genotyped by Polymerase

chain reactions (PCR) with Pfu enzyme (using TianGEN

Pfu PCR Mastermix kit). The sizes of the amplified five al-

leles of CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F are re-

spectively 312 bp, 443 bp, 235 bp, 597 bp, and 847 bp.

The electrophoresis for the CYP2D6 locus was per-

formed with 100 ng DNA in 2.5 % of agarose gel for

40 min. The gel with ladders for the CYP2D6 locus is

illustrated in Fig. 3, where the alleles are respectively

235 bp (CYP2D6*14), 443 bp (CYP2D6*10) and 312 bp

(CYP2D6*2). The electrophoresis for the CYP1A2

locus was performed with 100 ng DNA in 2 % of agar-

ose gel for 60 min. The gel with ladders for the

CYP1A2 locus is illustrated in Fig. 4, where the sizes of

the alleles are respectively 597 bp (CYP1A2*1C) and

847 bp (CYP1A2*1 F).

The sequencing and genotyping of the two genes

was done by Applied Biosystem 3130xl with the Invi-

trogen Bigdye® terminator v3.1 cycle sequencing kit

(Life Technology). The frequency of different SNPs is

presented in Table 1. It is noted that the CYP2D6*14

allele was not detected in this study due to the failure

of genotyping in some loci in sequencing. Table 1

shows the sequencing results.

There are 53 ADRs reported from clinical observa-

tion. The ADRs are categorized into 14 groups as listed

in Table 2.

Modeling and data preprocessing

In order to explore the association of ADRs and

SNPs on the two target, two data sets are set up re-

spectively for data conversion of the trial group and

Fig. 3 Gel of CYP2D6 alleles

Fig. 4 Gel of CYP1A2 alleles

Table 1 Frequency of SNPs on CYP2D6 and CYP1A2

Genotype Case Number Percentage (%)

CYP2D6*2 74 100

CC 59 79.7

CT 9 12.1

TT 6 8.1

CYP2D6*10 83 100

CC 16 19.3

CT 8 9.6

TT 59 71.1

CYP1A2*1C 66 100

GG 38 59.6

GA 21 31.8

AA 7 10.6

CYP1A2*1 F 77 100

CC 33 42.9

CA 11 14.3

AA 33 42.9

Liang et al. BMC Medical Genomics 2016, 9(Suppl 2):48 Page 198 of 204



the blank group. The data include: group ID, doses,

the genotypes of the alleles and all reported ADRs.

The five alleles (CYP2D6*2, CYP2D6*10, CYP2D6*14

CYP1A2*1C and CYP1A2*1 F) of the two loci are

coded by 15 dummy variables to indicate specific al-

lele combinations of the of the diploid (i.e. wild type,

homozygous and heterozygous), where we use “1” to

represent a positive result to the corresponding allele

and use “0” to represent a negative result to the cor-

responding allele. Accordingly, we use ordinal vari-

ables to represent the ADRs, where a “2” means an

ADR with extremely increased level, a “1” means

ADR occurrence with increased level, a “0” means no

ADR occurrence, a “−1” means an ADR with de-

creased level, and a “−2” means ADR with extremely

decreased level. All missing data are filled with “0”

too. This preprocessing strategy will not add extra in-

formation to the model and thus it minimizes the in-

fluence to the outcome of data analysis.

Generative stochastic networks

In the generative stochastic networks (GSN) P(X), we as-

sume X = (J,G, R), then P(X) can be modeled by a given

training of observed samples. Since the training data set

D is acquired from different individuals, we can assume

them as independent from P(X). In order to model

P(X|D), we use a Markov chain formed by the data

points. The transition matrix between the points is con-

sidered reflecting the ground truth distribution of P(X). A

two-dimension Gaussian distribution that contains 2000

states points is illustrated in Fig. 5.

Then we assume X− is a sample set independently from

P(X). The probability of P(X|X−) is calculated by the Bayes'

theorem. It is noted that both P(X|X−) and P(X) can be re-

evaluated and be used to produce another distribution of

sample space if the prior distribution P0(X|X
−) is known.

Their relation is presented by P XjX−ð Þ ¼ 1
β
P0 XjX−ð Þ

where β is a constant independent of X.

Based on the above assumption, we can apply the

GSN model with a denoising auto-encoder (DAE)

with the parameters xi ~ P0(X
−|xi) and xi + 1 ~ P(X|x0,

θ), where xi is the ith outcome regarding the prob-

abilities of ADRs of the study, and θ stands for the

parameters (mean and covariance) of the Gaussian

distribution. A hidden variable Hi is assumed to

govern the result xi via a serial of unknown associa-

tions. Thus, the hidden Markov chain with X and H

as its state variables can be expressed by Eq. (1) and

Eq. (2):

H iþ1eP H jH ið Þ; xi; θ1 ð1Þ

xiþ1eP XjH iþ1; θ2ð Þ ð2Þ

Table 2 Report of ADRs

ADR category Number of Case (%)

Abnormal platelet counting 3 (5.7)

Abnormal protein counting 8 (15.1)

Abnormal TBIL 4 (7.5)

Abnormal neutrophil ratio 6 (11.3)

Abnormal lymphocyte ratio 7 (13.2)

Fecal occult blood 5 (9.4)

Abnormal fibrinogen 4 (7.5)

Prolonged PT 6 (11.3)

Abnormal blood chlorine 3 (5.7)

Abnormal hemoglobin 2 (3.8)

Abnormal RBC 2 (3.8)

Abnormal urobilinogen 1 (1.9)

Urine protein 1 (1.9)

Abnormal APTT 1 (1.9)

Total 53 (100)

Fig. 5 Two dimension Gaussian distribution
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In order to launch the hidden Markov chain, we

need the initial values of the hidden variable H0 and

which can determine x0 and H1. Unfortunately, the

value of H0 is not directly acquired because we do

not have direct information regarding H0. An alterna-

tive method to get the value of H0 is to set it as a

constant [14], but in this study, we assume that H0 is

determined by the prior knowledge via some

methods. Assume x* to be the mean of all xi ∈X and

M* to be the co-variance of X, then the mode of H0

can be calculated with x* and M* and consequently

the Gaussian distribution can be determined by H0.

Based on the idea of Bengio et al., the following the-

orem can plot the main property of the GSN model

defined by Eq. (1) and Eq. (2) [15].

Given (Hi, xi)i = 0
N is a hidden Markov chain defined by

Eq. (1) and Eq. (2). If N is big enough, we can define a

stationary distribution ∏(H, x) where the samples of X

determined by (H, x) comes from the same distribution

X0. Thus we can build the connection between the GSN

model and a deep network to generate data samples

based on the distribution of the original set. A denoising

auto-encoder (DAE) is set up to train the model, and to

sample and evaluate its consistency. The purpose of

training DAE is to predict X under the given distribution

P(X|X−, θi) where X− is from a sample set. P is a distri-

bution affected by θ1, which can be a normal distribu-

tion or a t-distribution. The training of DAE is a general

Bayesian procedure with a maximal likelihood

regularization term. Eq. (3) represents the expected

value of the joint distribution of X:

P X;X−jθ1ð Þ ¼ P Xð ÞP0 X−jX; θ1ð Þ ð3Þ

Then according to the Gibbs sampling theory, the

procedure of sampling is presented as:

xieP Xjxi−1; θ1ð Þ ð4Þ

x−i eP0 x−jxið Þ ð5Þ

where x−is a data sample acquired from P0(X). Let Tj be

the transitional operator of the hidden Markov chain:

T j xijxi−1ð Þ ¼

Z
Pθj xijx

−ð ÞP0 x−jxj−1
� �

dx− ð6Þ

And let T* be the ground truth transitional operator of

the hidden Markov train where

j T �
−T j

� �
α

�� ��j2≤ jT �
−T jj

�� ��
2
→0 ð7Þ

In the end, we get Pθn(X|X
−)→ P(X|X−) when n→∞.

In addition, α is a control parameter determined by

dependent on DAE. Eventually, we can implement the

above steps by Algorithm 1.

As shown above, the training subsets are generated

by a Gibbs sampling procedure in order to measure P

(Line 3 to 7). And it is a generative distribution. Dur-

ing this procedure, the original training Set D is ex-

tracted from the sample set simultaneously (Line 8 to

10). P is a Gaussian distribution tuned by the param-

eter θ. The algorithm will render the θ value and a

stacked DAE of r layers. The algorithm scans the

training set D rendered by the code in Line 10 to 18

in order to tune the stacked DAE to keep it consist-

ent with P. The training of DAE applies a stepwise al-

gorithm, and we can adopt the strategy to train the

stacked DAE layer by layer, therefore, the encodings

can be restored to original inputs as much as possible

through the trained DAE [15]. Through the number

of layers of stacked DAE is defined as r, the numbers

of inputs and outputs are not determined by parame-

ters. Random numbers are in the range of [2d, 5d]

where d stands for the dimension of training data

sample. Finally, the time complexity of the algorithm

is a polynomial function of D set at the beginning.

Results

In order to evaluate the effectiveness of the new al-

gorithm, we provide two conventional algorithms

from the previous studies [12, 16] for comparison.

The first one is a baseline method based on a least

square loss (LASSO) algorithm to establish the con-

nection between the SNPs and ADRs [12]. This

method adopts a special minimum least square loss

procedure with a hinge loss constraint to identify the
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model parameters. It assumes there is some polyno-

mial relationship between the observed SNPs and

ADRs, and thus the LASSO algorithm is able to get

a parameterized discriminate function between the

inputs and the outputs. The same data set was used

to test and evaluate the LASSO algorithm as in this

study. The second comparison algorithm is k-Nearest

Neighbors (k-NN) implemented by Li et. al [13]. In

their study, k-NN is used to solved the problem by

treating it as a multiple target regression. The k-NN

model applied directly predictions on a sample set

based on the whole the training set, where k-NN does

not determine a function to solve the problem but in-

stead it implements a transductive learning procedure.

In our evaluation, the LASSO algorithm is labeled as

M, the k-NN algorithm is labeled as M2, and the pro-

posed GSN generative algorithm is labeled as M3. It is

noted that the results generated by these algorithms are

the distributions of probabilities.

There are two evaluation criteria. The first one is

the prediction accuracy which is to assess the overall

performance of the algorithm. The second one is the

impact on the model performance of noise to the

predictions associated with the sample size of the

training set. In order to indicate the predictive accur-

acy of the three model, we need to evaluate the loss

of accuracy through the predictions where the loss of

accuracy is the difference between the ground truth

and the predictive value. The accumulative effect of

the loss of accuracy through a single experiment with

n test samples can be indicated be the average of ac-

curacy loss defined in Eq. (8):

la ¼
1

n

Xn

i¼1

h xið Þ−y�i
y�i

ð8Þ

����

Where yi
* stands for the ground truth value related to

xi, and the value of la is the average of the n tests.

Table 3 presents the results of the accuracy predictions

by the three algorithms. In order to present the results

consistently, we list the average accuracy losses in each

test, where a higher la reflects less accurate of the corre-

sponding prediction.

The results from Table 3 indicate that in the predic-

tion of each category of ADR, the new GSN generative

algorithm (M3) has the best performance for it has the

less average accuracy losses (la) in the predictions to all

categories compared to M1 (LASSO algorithm) and M2

(k-NN algorithm). In the evaluation of the impacts of

sample size and noise, we continuously change the vol-

ume of the training set and noise, and then we compute

the average accuracy losses (la) given a specific ratio of

the training set and test data set. The whole data set is

respectively partitioned into the training set and test

data set with the ratios from 1:9, then 2:8, and to 9:1,

where the data points are randomly selected. The test

results are shown in Fig. 6. The data indicates the pre-

diction accuracy of all three models increase (as the

value of la decreases) when more data are allocated to

the training set. The GNS generative algorithm (M3)

has the lowest average loss (la) when the training/test-

ing set ratio is over 0.2. This indicates that M3 starts

and keeps having the best performance over the three

algorithms when the training set is 20 % in size of the

testing set.

To evaluate the influence of noise level to model per-

formance, we divide the whole data set evenly in half for

training and testing (i.e. the training/testing set ratio is

5:5). The Gaussian noise is assumed to affect all the fea-

tures of the sample points in the training sets. Since the

stratification effects brought by the factors such as ethni-

city, geographic region, and social environment can be

adjusted by expanding the whole data set, and no sys-

tematic bias is identified, we assume all the features are

independent and thus the noise can be effectively con-

trolled by the mean and variance estimated based on

Gaussian distribution. Let a be the average value of a

given feature. The algorithm changes the mean from 0

to 0.5a with the step of 0.1a. And the variance is de-

fined as half of the corresponding mean. By the above

settings, the impact of noise on the prediction can be

evaluated by observing the average loss of accuracy (la)

at different noise levels. The evaluation results are illus-

trated in Fig. 7.

The data from Fig. 7 indicates that the new GSN genera-

tive model (M3) has less impact on the noise since it has

Table 3 Prediction Accuracy of the 3 Models in la (%)

ADR category M1 M2 M3

Abnormal platelet counting 16.2 18.6 13.9

Abnormal protein counting 18.4 15.2 15.0

Abnormal TBIL 16.9 14.8 14.5

Abnormal neutrophil ratio 13.2 13,7 11.0

Abnormal lymphocyte ratio 12.9 14.3 11.4

Fecal occult blood 17.8 18.9 16.1

Abnormal fibrinogen 14.7 15.0 12.9

Prolonged PT 15.9 18.9 14.6

Abnormal blood chlorine 14.7 16.0 14.1

Abnormal hemoglobin 20.6 20.9 18.7

Abnormal RBC 15.7 14.9 13.4

Abnormal urobilinogen 21.8 19.9 17.5

Urine protein 20.1 21.6 19.8

Abnormal APTT 14.6 13.7 12.5
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the lowest accuracy loss through all noise levels. This can

be explained by the nature of the probability models

which makes it less sensitive to noise compared to the

LASSO algorithm which uses a discriminate function and

the k-NN algorithm which uses a transductive function.

Therefore, we conclude the new GSN generative model

has the best performance and is capable of minimizing the

effects of Gaussian noise.

Conclusions and discussions

Genomewide association study or GWAS is one of the

main trends in genomics research. GWAS aims to ex-

plore the variations across the human genome in order

to identify the genetic risk factors associating with spe-

cific events in health (e.g. disease, ADRs, metabolic pat-

terns, etc.) and to generalize the research results in the

population. GWAS provides a valuable solution for

pharmacogenetics whose goal is to identify the DNA se-

quence variations or SNPs and their association with

drug metabolism, efficacy and adverse effects [1]. The

conventional analytic strategy of GWAS focuses on ex-

ploring the relation between a single or multiple SNPs

to a specific risk factor, which can be confined as the

one-to-many. These studies consequently apply the in-

ferential statistical models such as ANOVA (for quanti-

tative) and Chi-square test (including Fisher’s exact test,

for qualitative data) to verify these relations or use gen-

eralized linear model (GLM) or multivariate logistic re-

gression to select the factors with statistical significance.

However, the associations linking the genomic variants

to efficacy and adverse effects are neither linear nor dir-

ectly related. As indicated in Fig. 2, some identified asso-

ciations between a SNP and an ADR are false but they

have significance in the statistical tests since they are lo-

cated in the same high LD (linkage disequilibrium) re-

gion. In addition, the SNPs that affect the same ADR

might have mutual internal associations, and further-

more, the links and associations among the SNPs in a

group or between different groups of SNPs are too

complex to be explained by any single associative models

Fig. 7 Comparison of the average loss at different noise levels

Fig. 6 Comparison of average loss of Accuracy in different training/testing set ratios
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because of the complexity of the internal many-to-many

relations. This complex association network with SNPs

and ADRs is most likely to provide numerous informa-

tion to interpret or predict the individual response of

the people with a certain genomic patterns (i.e. showing

similarity in their genome to a certain degree) to a spe-

cific product. Thus, it is among the main interests of

both health researchers and the pharmaceutical industry.

One solution to reveal the associations inside the net-

work of SNPs and ADRs is to use machine learning

methods in which the complex internal relations can be

concealed into a black box. After trained by the labeled

data set, the classifier will develop a capacity to differen-

tiate the latent patterns and label the new data. In this

study, we propose a deep learning model based on Gen-

erative Stochastic Network (GSN) as the implementation

to solve the associations between the SNPs on two loci

of cytochrome P450 enzyme and the ADRs in clinical

observation. The generative model is considered more

cost-effective compared to the conventional Bayesian

models because it does not need to compute the joint

likelihood and posterior distribution at a high computa-

tional cost. The GSN will learn the transition operator

of a hidden Markov chain via the labeled training set,

and the probability distribution of the training set can be

estimated by the stationary distribution of the transition

operator learned from the training set. This generative

model is more efficient compared to the Bayesian algo-

rithms because in a certain state of the Markov chain

the transition operator is conditional on its previous

state thus it only needs to compute a small step between

the current and former states with a significantly lower

cost at computation compared to the Bayesian models.

On the other hand, GWAS requires a large sample

of observations covering numerous SNPs (i.e. thou-

sands of genetic loci for example) in order to acquire

a result of associations between SNPs and the due

events with an acceptable degree of power. This usu-

ally causes the potential problem of a false positive

result because except for the high cost of organizing

a large-scale clinical study, the SNPs truly related to

the risk factor are likely to be confounded by the

false relations of the SNPs in the same or the adja-

cent high DL region. This risk is unable to be effect-

ively prevented by the current mainstream GWAS

analytic methods so far. The advantage of using ma-

chine learning model to classify the associated and

unassociated SNPs is that the model performance is

expected to be enhanced by increasing the size of the

training set which can be acquired from empirical

data. The GSN based deep learning model shows its

robustness in that it is insensitive to system noise

compared with other non-generative models. And this

feature is important to classify a skewed sample.

The current studies imply that the cytochrome P450

enzymes play an important role in the metabolism of

most drugs [4–11] and the SNPs in the loci are CYP2A6,

CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP1A2 and

CYP3A4 [7]. Though this study only selects two loci on

CYP1A2 and CYP2D6 due to the limitation of the se-

quencing technology used for genotyping (i.e. PCR), the

evaluation results reflect that the performance of GSN

generative model will remain reliable and robust if more

features are added. Additionally, the deep learning

model will demonstrate its merits in large scale comput-

ing if bigger data sets are added to the model.

The uncertainty of ADRs is one of the major threats

to healthcare. The economic loss caused by various

ADRs relevant to medications is over 100 billion dollars

annually in the US, and the expense of treatments for

ADRs are actually comparable to the cost of the normal

healthcare [17, 18]. A systematic review in the US re-

ported that 86 % for the ADRs are related to the SNPs

of cytochrome P450 enzymes [19]. Many current studies

believed that the SNPs of cytochrome P450 enzymes are

associated with the risk of ADRs and further related to

the susceptive population. If a reliable strategy can be

found to analyze the complexity of these genomic pat-

terns and to render a predictive risk level to a serial of

ADRs, it will hopeful lower the risk of ADRs both in

new product development and clinical medication.

The study results indicate the GSN based generative algo-

rithm is able to provide reliable and accurate predictions of

risk levels to different ADRs after the deep learning model

is trained by a relatively small data set [20]. As implied by

our previous experiment [20], the deep learning model in

this study shows its superiority in noise resistance and reli-

ability over the convention models which requires the ana-

lyzed data sets in specific distributions or with low noise

information [21–23]. Therefore, we believed the deep learn-

ing algorithm will provide an effective solution for the data

complexity of GWAS in the short future.
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