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ABSTRACT With the exponentially growing COVID-19 (coronavirus disease 2019) pandemic, clinicians

continue to seek accurate and rapid diagnosis methods in addition to virus and antibody testing modalities.

Because radiographs such as X-rays and computed tomography (CT) scans are cost-effective and widely

available at public health facilities, hospital emergency rooms (ERs), and even at rural clinics, they could be

used for rapid detection of possible COVID-19-induced lung infections. Therefore, toward automating the

COVID-19 detection, in this paper, we propose a viable and efficient deep learning-based chest radiograph

classification (DL-CRC) framework to distinguish the COVID-19 cases with high accuracy from other

abnormal (e.g., pneumonia) and normal cases. A unique dataset is prepared from four publicly available

sources containing the posteroanterior (PA) chest view of X-ray data for COVID-19, pneumonia, and normal

cases. Our proposed DL-CRC framework leverages a data augmentation of radiograph images (DARI)

algorithm for the COVID-19 data by adaptively employing the generative adversarial network (GAN) and

generic data augmentation methods to generate synthetic COVID-19 infected chest X-ray images to train

a robust model. The training data consisting of actual and synthetic chest X-ray images are fed into our

customized convolutional neural network (CNN) model in DL-CRC, which achieves COVID-19 detection

accuracy of 93.94% compared to 54.55% for the scenario without data augmentation (i.e., when only a few

actual COVID-19 chest X-ray image samples are available in the original dataset). Furthermore, we justify

our customized CNN model by extensively comparing it with widely adopted CNN architectures in the

literature, namely ResNet, Inception-ResNet v2, and DenseNet that represent depth-based, multi-path-based,

and hybrid CNN paradigms. The encouragingly high classification accuracy of our proposal implies that it

can efficiently automate COVID-19 detection from radiograph images to provide a fast and reliable evidence

of COVID-19 infection in the lung that can complement existing COVID-19 diagnostics modalities.

INDEX TERMS COVID-19, convolutional neural network (CNN), deep learning, generative adversarial

network (GAN), pneumonia.

I. INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), first observed in Wuhan, China, turned into a global

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

pandemic of COVID-19 (coronavirus disease 2019) [1].

COVID-19 has a destructive impact on the well-being of peo-

ple, particularly senior citizens and patients with underlying

health conditions and compromised immunity levels. Bymid-

July 2020, the COVID-19 pandemic already contributed to

over 570,000 mortalities and more than 13 million cases
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of COVID-19 infection [2]. A critical step to combat the

pandemic is to effectively detect COVID-19 infected patients

as early as possible so that they may receive appropriate

attention and treatment. Early detection of COVID-19 is

also important to identify which patients should isolate to

prevent the community spread of the disease. However,

considering the recent spreading trend of the COVID-19,

an effective detection remains a challenging task, particularly

in communities with limited medical resources. While the

reverse transcription polymerase chain reaction (RT-PCR)

test-kits emerged as the main technique for COVID-19 diag-

nosis, chest X-ray (chest X-ray), computed tomography (CT)

scans, and biomarkers (i.e. high C-reactive protein (CRP),

low procalcitonin (PCT), low lymphocyte counts, elevated

Interleukin-6 (IL6), and Interleukin-10 (IL10)) are also being

increasingly considered by many nations to aid diagnosis

and/or provide evidence of more severe disease progres-

sion [3]–[5].

As depicted in Fig. 1, the existing system for detecting

COVID-19 using the aforementioned virus and antibody test-

ing modalities is time-consuming and requires additional

resources and approval, which can be a luxury in many devel-

oping communities. Hence, at many medical centers, the test

kits are often unavailable. Due to the shortage of kits and

false-negative rate of virus and antibody tests, the authorities

in Hubei Province, China momentarily employed radiologi-

cal scans as a clinical investigation for COVID-19 [6].

FIGURE 1. Challenges of existing system and our research focus for
COVID-19 screening in rural areas.

Motivated by this, several researchers and sources

recommend the use of chest radiograph for suspected

COVID-19 detection [7]–[9]. Therefore, radiologists can

observe COVID-19 infected lung characteristics (e.g., ground

glass opacities and consolidation) by harnessing non-invasive

techniques such as CT scan or chest X-ray. However, it is

difficult to differentiate the COVID-19-inflicted features

from those of community acquired bacterial pneumonia [10].

Therefore, for many patients, manual inspection of the radio-

graph data and accurate decision making can be overwhelm-

ing for the radiologists, and an automated classification tech-

nique needs to be developed. In addition, radiologists may get

infected and need to isolate that may impact rural commu-

nities with a limited number of hospitals, radiologists, and

caregivers. Moreover, as the second wave of COVID-19 is

anticipated in the fall of 2020, preparedness to combat such

scenarios will involve increasing use of portable chest X-ray

devices due to widespread availability and reduced infection

control issues that currently limit CT utilization [10]. There-

fore, as depicted in Fig. 1, in this paper, to automate the

COVID-19 detection using X-ray images, we aim to develop

an artificial intelligence (AI)-based smart chest radiograph

classification framework to distinguish the COVID-19 cases

with high accuracy from other abnormal (e.g., pneumonia)

and normal cases. In this vein, the main contributions of the

paper can be summarized as follows:

• A deep learning-based predictive analytics approach is

employed to propose a smart and automated classifica-

tion framework for predicting COVID-19, pneumonia,

and normal cases. Our proposed deep learning-based

chest radiograph classification (DL-CRC) framework

consists of a data augmentation of radiograph images

(DARI) algorithm and a customized convolutional neu-

ral network model.

• A uniquely compiled dataset from multiple publicly

available sources is preparedwith radiographs of healthy

(normal), COVID-19, and pneumonia cases reported to

date. The limited number of COVID-19 instances in

the dataset is identified as the prime reason for train-

ing bottleneck of deep learning algorithms. As a solu-

tion, our proposed DARI algorithm essentially combines

a customized generative adversarial network (GAN)

model with several generic augmentation techniques

to generate synthetic radiograph data to overcome the

COVID-19 class imbalance problem due to limited

dataset availability.

• We train a customized CNN model based on combined

real and synthetic radiograph images that contributes to

significantly improved accuracy of 93.94% in contrast

with 54.55% when only actual COVID-19 instances in

public datasets are used for training. While chest X-ray

is regarded as a less sensitive modality in detecting

COVID-19 infection in lungs compared to CT scans

in the literature [10], we demonstrate the good per-

formance of our custom CNN model in identifying

COVID-19 cases in the real dataset with high accu-

racy implying that our approach nullifies the need

for using expensive CT scan machines because the

COVID-19 detection accuracy using our custom CNN

model is much higher compared to the reported base-

line [10].

• We rigorously analyze the computational complexity

of the DARI, training, and running/inference steps of

our proposed DL-CRC framework. The analyses, fur-

ther corroborated by experimental results, reveal that

our proposed methodology leads to significantly lower

training time, and particularly much improved infer-

ence time, which is crucial for deploying the trained

model into portable X-ray devices for fast and reliable

COVID-19 feature detection in lung radiographs.
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• The performance of our customized CNN model is

extensively compared with the state-of-the-art CNN

architectures in the literature (i.e., depth-based CNNs,

multi-path-basedCNNs, and so forth) [11]. Our proposal

is demonstrated to substantially outperform the contem-

porary models in terms of classification efficiency.

The remainder of the paper is organized as follows.

Section II surveys the relevant research work regarding

COVID-19 and the relevant use of AI. The problem of tradi-

tional COVID-19 detection and challenges associated with it

to apply in developing communities is discussed in section III.

Our proposed input representation and deep learning model

are presented in section IV. The performance of our proposal

is evaluated in section V and extensively compared with those

of well-known CNN architectures. Some of the limitations of

the study is briefly explored in section VI. Finally, section VII

concludes the paper.

II. RELATED WORK

This section explores the relevant research work in the lit-

erature from two perspectives, i.e., imaging modalities for

COVID-19 detection, and AI-based analysis of radiograph

samples.

A. IMAGING MODALITIES FOR COVID-19 DETECTION

Most nations had to take measures to react to the sudden

and rapid outbreak of COVID-19 within a relatively short

period of time. According to [12], radiology departments

have started to focus more on preparedness rather than diag-

nostic capability, after sufficient knowledge was gathered

regarding COVID-19. The study in [5] stated the resemblance

of COVID-19 with other diseases caused by other coron-

avirus variants such as the severe acute respiratory syndrome

(SARS) and the middle east respiratory syndrome (MERS).

The importance of a tracking the lung condition of a recov-

ering coronavirus patient using CT scans was also mentioned

in the study. Chest imaging techniques were highlighted to be

a crucial technique for detecting COVID-19 by capturing the

bilateral nodular and peripheral ground glass opacities in the

lung radiograph images [13].

B. AI-BASED RADIOGRAPH ANALYSIS

The application of AI, for early detection, diagnosis, moni-

toring, and developing vaccines for COVID-19, were elabo-

rately discussed in [14]. Several research work exist in the

literature that exploited various deep learning techniques on

X-ray data to demonstrate reasonable performance [15]–[18].

In [19], a model, referred to as DarkCovidNet, for early

detection of COVID-19 was proposed which utilized 17 con-

volutional layers to perform binary and multi-class classi-

fication involving normal, COVID, and pneumonia cases.

While the model reported an overall accuracy of 98.08%

for the binary classification and 87.02% for multi-class clas-

sification, our reconstruction of the DarkCovidNet using

multiple datasets indicated overtraining and much lower

accuracy when non-biased test data are presented to the

model. Several other papers applied deep learning models on

CT scan images to detect and monitor COVID-19 features

in the radiograph data [20], [21]. Ardakani et al. in [22]

employed implemented the state-of-the-art CNN architec-

tures such as AlexNet, ResNet-18, ResNet-50, ResNet-101,

SqueezeNet, VGG-16, VGG-19, MobileNet-V2, GoogleNet,

and XceptionCT to differentiate between COVID-19 and

non-COVID-19 cases. Their experiments showed that deep

learning could be considered as a feasible technique for iden-

tifying COVID-19 from radiograph images. To avoid poor

generalization and overfitting due to lack of COVID-19 sam-

ples in available datasets, a GAN model was used in [23]

to generate synthetic data, which achieved a dice coefficient

of 0.837. The applicability of GAN for COVID-19 radiograph

data synthesis can be confirmed from the broader spectrum of

GAN applications on various medical data according to the

survey in [24]. The survey identified various unique proper-

ties of GAN such as domain adaptation, data augmentation,

and image-to-image translation that encouraged researchers

to adopt it for image reconstruction, segmentation, detection,

classification, and cross-modality synthesis for various med-

ical applications.

III. PROBLEM STATEMENT

With the rapidly surging pandemic, the demand for efficient

COVID-19 detection has dramatically increased. The lack of

availability of COVID-19 viral and antibody test-kits, and the

time required to obtain the test results (in the order of days

to weeks) in many countries are posing a great challenge in

developing/rural areas with less equipped hospitals or clinics.

For instance, in many developing countries, hospitals do

not have sufficient COVID-19 test-kits, and therefore, they

require the assistance of more advanced medical centers to

collect, transport, and test the samples. This creates a bot-

tleneck in mass testing for COVID-19. Therefore, to meet

the daily demand for an enormous amount of new test cases,

an automated and reliable complementary COVID-19 detec-

tion modality is necessary, particularly to confront the sec-

ond wave of the pandemic. Radiograph image utilization for

initial COVID-19 screening may play a pivotal role in areas

with inadequate access to a viral/antibody testing. In several

studies, CT scans were used for analyzing and detecting fea-

tures of COVID-19 [25] due to higher resolution of features

of ground glass opacities and lung consolidation compared

to chest X-ray images. However, due to infection control

matters associated with patient transport to CT suites, rela-

tively high cost (for procurement, operation and maintenance

of CT equipment), and the limited number of CT machines

in developing/rural areas, CT scan is not a practical solu-

tion for detecting COVID-19 [10]. On the other hand, chest

X-ray can be employed to identify COVID-19 or other pneu-

monia cases as a more practical and cost-effective solution

because X-ray imaging equipment are pervasive at hospital

ERs, public healthcare facilities, and even rural clinics. Even

for trained radiologists, detecting chest X-ray images pose
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challenges to distinguish between features of COVID-19 and

community acquired bacterial pneumonia [10]. Moreover,

the influx of patients into hospital ERs during pandemic,

manual inspection of radiograph data and accurate decision

making can lead to a formidable tradeoff between detection

time and accuracy that can overwhelm the radiologist depart-

ment. Therefore, an automated classification technique needs

to be designed. As the second wave of COVID-19 is expected

in many countries, preparedness to combat the pandemic

will involve increasing use of portable chest X-ray devices

due to widespread availability and reduced infection control

issues that currently limit CT utilization [10]. In the following

section, we address the aforementioned problem and present

a deep learning-based approach to effectively solve the prob-

lem.

FIGURE 2. Our customized generative adversarial network (GAN) model
for data augmentation.

IV. PROPOSED DEEP LEARNING-BASED CHEST

RADIOGRAPH CLASSIFICATION (DL-CRC) FRAMEWORK

Deep learning in smart health analytics is a prominent inter-

disciplinary field that merges computer science, biomedi-

cal engineering, health sciences, and bioinformatics. Various

medical imaging devices have a dedicated image and signal

analysis and processing module, on which deep learning-

based models can be implemented to provide accurate, real-

time inferences. Motivated by this, we conceptualize a deep

learning-based chest radiograph classification (DL-CRC)

framework, which can used for automating COVID-19 detec-

tion from radiograph images.

Our proposed DL-CRC framework consists of two compo-

nents: (i) the data augmentation of radiology images (DARI)

algorithm, and (ii) a deep learning model. Our proposed

DARI algorithm generates synthetic X-ray images by adap-

tively switching between a customized GAN architecture

and generic data augmentation techniques such as zoom and

rotation. The synthetic X-ray images are combined with the

actual radiograph data to build a robust dataset for efficiently

training the deep learning model, i.e., the second component

of our DL-CRC framework. A custom CNN architecture is

designed to construct the deep learning model to carry out

automated feature extraction and classification of the radio-

graph images.

Next, the details of the proposed DARI algorithm and

custom CNN model of our envisioned DL-CRC framework

are presented, followed by a rigorous complexity analysis of

the proposed methodology in training and inference phases.

A. PROPOSED DARI ALGORITHM

Here, we propose an adaptive data augmentation of radio-

graph images algorithm, referred to as DARI. Our proposed

DARI algorithm performs an on-demand generation of syn-

thetic X-ray images, triggered by class imbalance in the orig-

inal dataset. The generated synthetic images are combined

with actual radiograph images to construct a robust training

dataset. This is essential, in the COVID-19 context, where

enough representative samples of COVID-19 chest X-ray

images are not sufficient in the currently available datasets.

DARI leverages a custom GAN model, as depicted in Fig. 2,

along with generic data augmentation techniques such as

zoom and rotation. The GAN model is invoked if the number

of samples in a class is less than a certain pre-defined thresh-

old (δ). In the GAN model, a generator (G) and a discrimi-

nator (D) are trained simultaneously until the discriminator

is unable to separate the generated data samples from the

original ones. The generator receives random noise as input

and produces chest X-ray images, which are, in turn, received

by the discriminator. Thus, the GAN can be regarded as a

two-player minimax game between a discriminative model

(D) and a generative model (G) [26]. By exerting a noisy

sample nx with the data distribution of p(nx) as the input,

the generative network G outputs new data X ′, distribution

of which, denoted by p(X ′), is supposed to be identical to that

of the distribution of original data, p(X ). The discriminative

network,D, is employed to distinguish the true data sample X

with the distribution of p(X ) and the generated sampleX ′ with

a distribution of p(X ′). Then, this adversarial training process

can be formulated as follows,

minG maxDV (D,G) = EX∼p(X )log(D(X ))

+Enx∼p(nx )log(1− D(nx)). (1)

We customize the GAN model for chest X-ray image

augmentation as follows. The generator is constructed with

a stack of ng hidden layers. Each layer comprises a dense

layer, followed by Leaky Rectified Linear Unit (LeakyReLU)

as the activation function. In each successive layer (ith) of the

generator, the number of neuron units (i.e., nodes) is twice

the number of nodes in the preceding layer. On the other

hand, in the discriminator model, it receives collections of

original (X ) and generated (X ′) X-ray radiograph data with

COVID-19 infected lung images. Here, the inputs to the dis-

criminator are X = [x1, x2, . . . xn] and X
′ = [x ′1, x

′
2, . . . x

′
n],

where each xi represents an original image while each x ′i
denotes an augmented chest X-ray image. Similar to the
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generator, the discriminator’s structure also consists of nd
hidden layers, and each ith layer contains a sequence of a

dense layer with LeakyReLU as the activation function [27].

A dropout layer is then included. Let pi denote the dropout

rate. The number of nodes in each ith layer is denoted by Di.

Note that Di =
1
2
· Di−1. The discriminator aims to optimize

the loss function by distinguishing generated images from the

original ones. Our custom GAN model is trained for ξmax
number of iterations, where ξmax ∈ Z

+. The detailed steps of

our proposed DARI algorithm are presented in Algorithm 1.

Here, we either invoke the GAN or a more generic type of

data augmentation, based upon a given condition as illustrated

in Algorithm 1. This procedure takes two inputs: (i) type

of augmentation, and (ii) data for augmentation. For one

condition, the proposed GANmodel gets executed from steps

2 to 22. When the other condition is fulfilled, the generic data

augmentation is performed as described in steps 23 to 25,

which includes enlarging the image byZ quantity and rotating

by θ amount.

B. PROPOSED CUSTOM CNN MODEL FOR

COVID-19 DETECTION IN X-ray IMAGES

Next, we need to train a deep learning model which can take

advantage of the robust dataset obtained from our proposed

DARI algorithm in section IV-A. Since the problem can

be regarded as a classification task of normal, COVID-19,

and other abnormal cases (e.g., pneumonia), we investigate

the contemporary deep learning architectures suited for clas-

sification. In contrast with other variants of deep learning

architectures (i.e., long-short term memory (LSTM), deep

belief networks, and so forth) and extreme learningmachines,

CNNs are regarded as the most powerful deep learning

architecture for image classification. Therefore, we explore

the robust CNN models recently employed to gain rea-

sonable classification accuracy with chest X-ray data [19].

By applying the contemporary CNN models on the latest

dataset compiled from four public repositories, we realize that

their reported performances are constrained by overfitting

and influenced by biased test data. To address this issue,

we propose a two-dimensional (2-D), custom CNN model

for classifying X-ray images to predict COVID-19 cases as

depicted in Fig. 3. The 2-D CNN structure is utilized to learn

the discriminating patterns automatically from the radiograph

images.

The proposed CNN model consists of three components.

The first component is a stack of nc convolution layers while

the second segment consists of nd fully connected layers.

The final component is responsible for generating the output

probability. At first, the convolution layers (i.e., the first com-

ponent of the model) receive radiograph images (X ) as input,

identify discriminative features from the input examples, and

pass them to the next component for the classification task.

Each ith layer among the nc convolution layers consists of a

filter size of zi. Initially, the filter size is set to xir in the 1st

layer, and it is decreased by λ in each successive layer. In the

Algorithm 1 Data Augmentation of Radiograph Images

(DARI)

Input: type (type of data augmentation,

possible values ‘generic’,

‘GAN’), D (collection of data

for augmentation)

Output: γ (augmented sample data)

1 γ ← ∅

2 if (type=‘GAN’) then

3 Initialize ξmax (maximum number of

epochs), B (mini-batch size), and

naug (number of data to augment)

4 mg ← construct generator model as

depicted in Fig. 2

5 md ← construct discriminator model

as depicted in Fig. 2

6 foreach e ∈ ξmax do

7 for (i=1 to B) do

8 nx ← generate naug samples of

random noise to initialize

the generator

9 gi ← generate image by

passing nx to the generator mg
10 ri ← select random set of

samples from D

11 X∗ ← construct collection

from generated (gi) and

original samples (ri)

12 md ← update the discriminator

model by batch training using

X∗

13 end

14 nx ← generate naug samples of

random noise

15 mg ← update the generator model

parameters

16 if e=ξmax then

17 γ ← generate collection of

augmented images by using nx
18 foreach img ∈ γ do

19 save img to corresponding

directory
20 end

21 end

22 end

23 else

24 γ ← augment data by applying

zooming rate of Z and rotation of θ

on each item from data collection D
25 end

26 return γ

forward pass, the convolution operation is performed between

the input image and the filter coefficients using Eq. 2. Here,
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FIGURE 3. Proposed DL-CRC framework consisting of our envisioned
DARI algorithm and custom CNN model. (1) The test data is obtained by
splitting the original images that are not used for training. (2) DARI
algorithm adaptively uses GAN and generic data augmentation
techniques to generate synthetic chest X-ray images which are combined
with the remaining original radiograph images to construct a robust
training dataset. (3) The training input is passed to our customized CNN
model, which performs automated feature extraction and classification.

x lij and w
l
ij denote the output and the filter weights of the l th

layer, respectively.

x lij =

∑

i∈xir ,j∈xic

�(x l−1ij × w
l
ij). (2)

Hyper-parameter tuning is conducted to select the optimal

activation function, �, as shown in in Eq. 2. The activation

function considers a constant, denoted by α > 0.

Next, we apply a dropout of rate pi as the regularization

technique that will assist the network in evading overfit-

ting and achieve better model generalization by randomly

disregarding randomly selected neurons in the hidden lay-

ers [28]. To reduce the feature size and computational power

need, we introduce the max-pooling layer with a pool size

of ki = (k ir , k
i
c) in the hidden layers where ki is set to a

fraction µ of the initial dimension of the input xi. The max-

pooling layers assist the model in capturing abstract spatial

information more robustly and enhancing the model’s gen-

eralization ability of the model [29]. The output features of

the convolution layers are converted into a one-dimensional

(1-D) vector by flattening the layer, and then forwarded to the

stack of nd fully-connected or dense layers for the automated

classification stage. The number of nodes in the first dense

layer is equal to xir , and it is decreased by a factor of λ in each

successive ith layer with respect to the number of nodes in the

previous layer. The output of the nth dense layer is propagated

through a dropout layer of rate pi.

Finally, the output layer computes the probability of the

input xi belonging to each class. The learning is set to a

constant ηc throughout the training of the model. The clas-

sification task receives radiograph samples as input X =

[x1, x2, . . . xn], and outputs a sequence of labels Y =

[y1, y2, . . . yn]. Here, each xi corresponds to the pixel values

of the input images. On the other hand, each yi denotes a

distinct class. Each xi has the dimension of (xir , xic , ϑi). In this

case, xir , xic , and ϑi denote the image height, width, and the

number of channels for the ith sample. The augmented and

real samples are passed to the training data during the training

phase, and some part of the real samples are considered as the

test dataset during the testing phase.

C. TRAINING AND RUNNING PHASES OF PROPOSED

DL-CRC

From hereon, we discuss the steps of the training and running

phases of our proposed DL-CRC algorithm.

The steps of the training phase of our proposed DL-CRC

framework is presented in Algorithm 2. The training stage of

DL-CRC commences from Algorithm 2, which takes C , k , B,

λ, and δ as inputs to our custom CNNmodel. The description

of each input parameter is provided in the input section of the

algorithm. Steps 1 to 3 of Algorithm 2 initialize the required

parameters. In steps 4 to 10, all data are loaded from location,

and the test data are split by the ratio of λ to be utilized in the

running phase for evaluating the model. Initially, all data are
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Algorithm 2 Training Phase (DL-CRC)

Input: C (collection for training,

testing, and validation data

location), k (number of fold

in cross-validation), ξ

(number of epoch), B

(mini-batch size), λ (test

ratio), δ (threshold value for

class imbalance ratio), N

(total number of samples

across all classes)

Output: Mt (Trained model)

1 Mt ← ∅

2 X ← []

3 Y ← []

4 X∗ ← read all data from C[train]

5 if (len(X∗)> 0) then

6 I∗ ← generate random values in

range[0, λ× len(X∗)]

7 foreach index i ∈ I∗ do

8 move C[train]+ X∗[i] to C[test]+ X∗[i]

9 end

10 end

11 foreach class ci ∈ C[train] do

12 x∗i ← read all data from ci
13 if (len(x∗i )/N < δ) then

14 x∗i += DARI(‘gan’, x∗i )

15 end

16 foreach class data ∈ x∗i do

17 X+=data

18 Y+=ci
19 end

20 end

21 for (fold no. j=1 to k) do

22 Xtrain, ytrain, Xval, yval ← set data and

labels of jth fold from X, Y

23 Xtrain += DARI(‘generic’, Xtrain)

24 Xval += DARI(‘generic’, Xval)

25 Mt ← update the CNN model depicted

in Fig. 3 by training it using Xtrain
for ξ and B

26 evaluate Mt by using Xval, yval
27 end

28 save the model parameters of Mt

29 return Mt

stored in the training directory. Hence, they are loaded from

the location of training data. Steps 11 to 20 are responsible for

checking whether any data augmentation is required or not,

and accordingly preparing all the training and validation data

from the dataset. Specifically, steps 13 to 15 check whether

the training data in any class is less than a predefined thresh-

old δ or not, based on the condition if it can exploit the

Algorithm 3 Running Phase (DL-CRC)

Input: testPath (location of test

images)

Output: ypred (prediction of testing

samples)

1 Xtest ← read all data from testPath

2 Mt ← load the saved pre-trained model

3 yprob ← predict the probabilities of

each data from Xtest
4 ypred ← argmax(yprob)

5 return ypred

proposed data augmentation of radiograph images (DARI)

algorithm described in Algorithm 1. Our customized CNN

model is trained in steps 21-27, utilizing the model structure

illustrated in Fig. 3. At the penultimate step, the trained

model (Mt ) is stored for further testing and validation. Finally,

in step 29, the algorithm returns the trained model.

Next, in the running phase, the CNNmodel of our proposed

DL-CRC framework follows Algorithm 3. It receives the

location of sample data for inference and returns the predicted

class labels (ypred) for the corresponding data. After reading

the data from step 1, the pre-trained model (Mt ) is loaded in

the following step. In step 4, the model Mt is employed to

predict the probabilities for a sample test data to be in each of

the possible classes. Finally, in the last step, the class with the

maximum probability is identified for each sample data, and

then returned as a collection of predictions for all the data.

D. COMPUTATION OVERHEAD ANALYSIS

In the remainder of the section, we rigorously analyze the

computational overhead of our proposed model in terms of

time-complexity. The analyses are divided into training and

running phases.

1) TRAINING PHASE

The training phase includes both our proposed DARI (Algo-

rithm 1) for data augmentation and training our customized

CNN model (Algorithm 2). Particularly for the analysis

of Algorithm 2, we consider that the appropriate hyper-

parameters of our CNN model are already selected after

hyperparameter tuning. We partition the analysis of the train-

ing phase into three main segments, i.e., DP (required data

preparation), DA (data augmentation), and CNN (the execu-

tion of the CNN model). Therefore, the total computational

complexity can be expressed as follows.

C(T ) = O(DP)+ O(DA)+ O(CNN). (3)

In the first three steps (1-3) of Algorithm 2, where initial-

ization is conducted, the time complexity can be denoted as

constant time, O(1). In the 4th step, all the data from the train

path are read. So, if there are fn number of data available to

train, the time complexity will beO(fn). Steps 5-9 split the test

data by the λ ratio. Therefore, the complexity associated with
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these steps is O(λ). Hence, the computational complexity of

the data preparation phase can be denoted as:

O(DP) = O(3)+ O(fn)+ O(λ) ≈ O(fn)+ O(λ). (4)

The data augmentation part of the complexity analy-

sis mainly consists of our proposed DARI (Algorithm 1),

invoked in steps 13-15 of Algorithm 2. This requires loading

data from each class in step 12 that results in the computa-

tional complexity of O(cl × f
i
n). Here, cl denotes the number

of classes while f in refers to the number of data read from

ith class. Then, through steps 13-15, the DARI algorithm is

invoked and its complexity is denoted as ODARI. Suppose

that ng and nd denote the numbers of layers in the genera-

tor and discriminator, respectively. Then, the computations

required by the generator and the discriminator models can

be denoted as Gc (Eq. 5) and Dc (Eq. 6), respectively:

Gc = 2(

ng∑

i=1

x ig × w
i
g + b

i
g), (5)

Dc = 2(

nd∑

i=1

x id × w
i
d + b

i
d ). (6)

Combining the previous two expressions of Gc and Dc,

the overall overhead of DARI (Algorithm 1) is evaluated as

follows.

O(DARI) = O(cl×ξmax×B×(Gc+Dc))+O(cl × naug),

(7)

where naug, ξmax, andB denote the number of data to augment,

maximum number of epochs, and mini-batch size, respec-

tively.

In steps 16-19 of the training algorithm, assuming the

length of each x∗i as lx
∗
i , the computational overhead isO(lx∗i ).

Therefore, the overall complexity of the data augmentation

stage can be expressed as:

O(DA) = O(cl × f
i
n)+ O(DARI)+ O(lx

∗
i ). (8)

From steps 21 to 27, the training algorithm invokes the

adopted 2-D CNN structure. The computational overhead for

this part can be derived from Eq. 9:

O(CNN) = O(CNNcl)+ O(CNNdl), (9)

where O(CNNcl) and O(CNNdl) denote the computational

overheads in the convolutional layers and dense layers,

respectively. If we consider for a layer i, the number of filters

in the ith layer zi, input image x i with the dimension of

(x ir , x
i
c) and kernel k i with the dimension of (k ir , k

i
c), then the

computational complexity of the convolutional layers can be

expressed as:

O(CNNcl) = O(zi × (

nc∑

i=1

(x ir × x
i
c × k

i
r × k

i
c))). (10)

After the convolutional layers, for n layers, assuming wi

and bi are the weight vector and the bias of ith layer, the com-

plexity of the fully connected layers is given by:

O(CNNdl) = O(

nd∑

i=1

(x ir × x
i
c × w

i + bi)). (11)

Hence, combining the aforementioned equations, to final-

ize the computational complexity of the proposed CNN,

we can re-write Eq. 9 as follows:

O(CNN) = O(zi × (

nc∑

i=1

(x ir × x
i
c × k

i
r × k

i
c)))

+O(

nd∑

i=1

(x ir × x
i
c × w

i + bi)). (12)

Finally, to determine the total time complexity of the train-

ing phase of the DL-CRC algorithm, we can substitute the

corresponding values from Eqs. 4, 8, and 12 into Eq. 3.

2) RUNNING PHASE

The running phase is conducted to infer classes of each test

data using the pre-trained model and then evaluate the model.

As shown in Algorithm 3, if we consider the number of test

data to be ntest, the computational overhead in the testing

phase can be given by:

C(R) = O(ntest). (13)

Eq. 13 demonstrates that the model is able to pro-

duce results in linear time. This implies that our proposed

DL-CRC framework comprising DARI algorithm and the

customized CNN model can be deployed on clinical-grade

X-ray machines with image processing capability, computing

resources having access to digitized radiograph images from

analog X-ray machines, and even portable X-ray machines

in movable booths and trucks with adequate shielding and

power supply. Thus, our model is viable for automating the

radiograph image classification with fast turn-around time for

COVID-19 detection.

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed DL-CRC frame-

work, in this section, we describe the collected datasets used

to train our customized CNN model, followed by extensive

experimental results and discussion.

A. DATASET PREPARATION

The dataset employed for the supervised radiograph image

classification using our proposed DL-CRC framework con-

sists of three classes: COVID-19, pneumonia, and normal

chest X-ray images. We collected the dataset using four dif-

ferent existing datasets of Posteroanterior (PA) chest X-rays,

and combined those into a single dataset to utilize it for the

classification purpose.We developed the dataset fromGitHub

for COVID-19 X-rays [30], X-ray data collected in this study

for cases of pneumonia, and normal images [31], CheXpert
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TABLE 1. Brief description of the used dataset for X-ray image
classification.

dataset collected by Stanford ML group [32], and the rest of

the normal and pneumonia chest X-ray images were collected

from the dataset in [33]. Table 1 lists the initial class distri-

bution of the collected chest X-ray dataset. The number of

samples collected for COVID-19 is significantly lower than

the other two classes because this is a novel disease, and at this

moment, data regarding COVID-19 is challenging to obtain.

In other words, the number of COVID-19 class samples in

the merged dataset is lower than the threshold value for class

imbalance ratio, δ. Therefore, to overcome the effect of the

low amount of COVID-19 data, we employed our proposed

DARI algorithm to increase the number of samples. We then

applied our proposal along with contemporary CNN models

to verify which one yields the best COVID-19 detection

performance.

B. PERFORMANCE INDICATORS

To evaluate the classification results, we primarily adopted

the combination of three measurement indicators, accuracy,

weighted precision, and weighted F1 score. The accuracy of

a test is its ability to correctly differentiate the three cases.

Assume that C denotes the number of classes in the consid-

ered classification task, |yi| refers to the number of samples

in the ith class, and |Y | indicates the total number of samples

in all the classes. Then, the accuracy can be represented as

follows.

Accuracy =

∑C
i=1(TPi)

|Y |
. (14)

Next, we define the weighted precision. Our aim is to

measure how precise the model is in terms of the number of

samples actually present in the ith class out of those predicted

to be in that class. This number is multiplied by the weight of

the ith class to obtain the weight precision as follows.

Weighted precision =

C∑

i=1

(
|yi|

|Y |
×

TPi

TPi + FPi
). (15)

Next, the weighted F1 score is defined as the weighted

average of precision and recall. Although we did not use

recall directly as a performance measure, because of using

the F1 score, it is implicitly used. The weighted F1 score can

be obtained as follows,

Weighted F1 score =

C∑

i=1

(
|yi|

|Y |
× 2

Pi × Ri

Pi + Ri
). (16)

Here, Pi and Ri are the precision and recall of ith class,

respectively. Pi can be expressed as TPi/(TPi + FPi) and

Pi can be denoted as TPi/(TPi + FNi). TPi, FPi, and FNi

denotes True Positive, False Positive, and False Negative

for ith class respectively. TPi indicates the number of cases

correctly identified to be in the ith class; FPi represents the

number of cases incorrectly identified to be in the ith class,

and FNi denotes the number of cases incorrectly identified

as a class other than the ith class. In addition, for evaluating

our results more comprehensively we also employed class

specific classification accuracy (i.e., normal, COVID-19, and

pneumonia detection accuracy) for all three classes.

C. RESULTS AND DISCUSSION

We have followed a systematic approach by applying differ-

ent techniques to find the optimal model for the classification

task. All the experiments were conducted on a workstation

with Intel Core i7, 3.00GHz CPU, 16 GB RAM, powered

by Nvidia RTX 2060 Graphics Processing Unit (GPU). The

simulations were implemented employing Python’s Keras

and TensorFlow library. The visualization of the experimental

results was achieved by utilizing Python’s Matplotlib library.

During the simulations, we have resized the image samples by

setting both xir and xic to 100 to keep the images consistent in

terms of size. The number of channels of the samples (ϑi) was

set to 1 as the input images were grayscale in nature. The val-

ues of xir and xic were selected based onmanual tuning. Using

our proposedDARI algorithm, on-demand data augmentation

is performed by adaptively employing GAN, rotation (θ) of 5

degrees, and zooming (Z ) rate of 0.50. The value of δ was

set to 0.1. We systematically constructed three experimental

scenarios to conduct a comprehensive performance compari-

son of our proposed DL-CRC framework consisting of DARI

algorithm and our customized CNN models with the state-

of-the-art CNN models which have been recently reported to

provide reasonable accuracies for COVID-19 detection. The

three scenarios, constructed in an incremental fashion, are

described below.

1) In our first scenario, we designed our customized deep

CNNmodel architecture depicted in Fig. 3. The param-

eters of the model were selected based on the results of

the grid search technique.

2) In the second scenario, we implemented the proposed

DARI algorithm to analyze the effect of the generic and

GAN-based data augmentation to train the CNN-based

model in a robust fashion to significantly improve the

COVID-19 detection accuracy.

3) In the third and final scenario, we trained several state-

of-the-art CNN models using different deep learning

paradigms on our compiled dataset. The same test data

(unknown chest X-ray original images with normal,

COVID-19, and pneumonia cases) were presented to

the customized CNN model of our proposed DL-CRC

framework as well as the contemporary CNN models.

The results were used to compare the performances of

our proposal and these contemporary models in terms

of COVID-19 and pneumonia detection efficiency.
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FIGURE 4. Performance in terms of accuracy for different combinations of
activation functions and optimizers.

FIGURE 5. Performance in terms of precision for different combinations
of activation functions and optimizers.

FIGURE 6. Performance in terms of F1 score for different combinations of
activation functions and optimizers.

In the first scenario, we implemented the customized CNN

model of our proposed DL-CRC framework and carried out

a grid search to achieve the optimal model parameters (i.e.,

FIGURE 7. Performance comparison for diverse ratios of the
COVID-19 X-ray images generated by the GAN with respect to the existing
number of samples in the dataset.

the best activation functions and optimizer). It is worth not-

ing that other customized CNN models revealed a perfor-

mance bottleneck in terms of validation accuracy and we

found the model in Fig. 3 to be the most lightweight yet

efficient for automating the chest X-ray classification task.

Figs. 4, 5, and 6 demonstrate the results obtained from the

hyper-parameter tuning in terms of accuracy, precision, and

F1 score, respectively. These performances were extensively

evaluated across six optimizers (Stochastic Gradient Descent

(SGD), Adaptive Moment Estimation (Adam), Root Mean

Square Propagation (RMSProp), Adaptive Delta (AdaDelta),

Nesterov and Adam (Nadam), and Adaptive Gradient Algo-

rithm (Adagrad)) and five activation functions (tanh, sig-

moid, Scaled Exponential Linear Unit (SELU), Rectified

Linear Unit (ReLU), and Exponential Linear Unit (ELU)). As

depicted by the results in these figures, SELU demonstrated

better performances on average when compared with the

other activation functions. However, the best performance

was exhibited when ELU is adopted as the activation function

with the value of constant α = 1.0 and the optimizer set to

Adagrad with the learning rate of 0.001. For this first exper-

imental setting for selecting the optimal hyper-parameters

of the deep learning-based model, the mini-batch size (B)

was set to 8, and the number of epochs (ξ ) was set to 20.

With this configuration, the validation accuracy, precision,

and F1 score were found to be 97.25%, 97.24%, and 97.21%,

respectively. Therefore, for further analysis, we applied this

configuration in the customized CNN model of our DL-CRC

framework. Furthermore, in the max-pooling layer of our

proposed CNN architecture, we conducted manual parameter

tuning, and the pool size ki was assigned asµ, whereµ = 2%

of the initial size of the input xi.

In the second experimental scenario, as the number of

COVID-19 samples in the collected dataset was lower than

the pre-defined threshold δ, we applied our proposed DARI

algorithm to increase the number of COVID-19 samples so

that the model can be trained with a robust training data
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FIGURE 8. Confusion matrix of testing phase employing 5-fold stratified cross-validation.

and eventually predict positive COVID-19 cases with high

accuracy. In Fig. 7, we altered the proportions for our cus-

tomized GAN model in the DARI algorithm with respect to

the original sample size of the COVID-19 class. The ratios

of GAN-generated samples of the proposed approach were

varied from 50% to 200% with respect to the number of

COVID-19 examples in the original dataset. The number of

iterations for producing the augmented samples using the

GAN-based method was set to 200. Among the proportions

mentioned earlier, the COVID-19 detection performance of

our customized CNN model was found to be the highest

(with an accuracy of 93.94%) when the number of newly

generated samples was 100% of the size of the original

COVID-19 samples. Therefore, we picked this configura-

tion to be used in our conducted experiments in the next

scenario.

After producing the augmented samples for the COVID-19

class, we analyzed the effect of combining the adaptive

generic data augmentation and GAN-based DARI algorithm

with the CNN architecture to fully implement and fine-tune

the DL-CRC framework, and compared the performance with

the base CNN model only (i.e., without adopting DARI

algorithm). The experiment was conducted utilizing a five-

fold stratified cross-validation. Using the stratification tech-

nique, the samples are rearranged so that each fold has a

stable representation of the whole dataset by maintaining

the percentage of samples for each class [34]. In our third

experimental setup, the number of epochs (ξ ) was set to

100, and the mini-batch size (B) was set to 8. The num-

ber of convolutional layers, nc, was set to five. The num-

ber of fully-connected/dense layers, nd , was also fixed to

five. Note that these hyperparameter values were manually

tuned. To analyze the results more critically in terms of

COVID-19 detection efficiency, in this experimental setting,

we also investigated the normalized and non-normalized val-

ues of the confusion matrices of our customized CNN model

TABLE 2. Performance comparison of the proposed DL-CRC and CNN
with generic and GAN-based data augmentation.

without (i.e., CNN-only model) and with the proposed DARI

algorithm (i.e., the complete DL-CRC framework). Fig. 8

represents the normalized confusion matrix where the pro-

posed CNN model is implemented without applying the data

augmentation, and Fig. 8 depicts the same for the combined

CNN and DARI algorithm. Despite similar performances of

both approaches, the normalized confusion matrix demon-

strates that our proposed DL-CRC framework is much more

robust for classifying positive COVID-19 and pneumonia

cases. The proposed DL-CRC exhibited 93.94% and 88.52%

accuracies while detecting positive COVID-19 and pneu-

monia cases, respectively. The encouraging classification

performance indicates that our proposed deep learning-

based DL-CRC framework is able to classify the radio-

graph imageswith high efficiency, specifically for COVID-19

detection.

Furthermore, we analyzed the impact of generic and GAN-

based data augmentation separately combined with our cus-

tomized CNN model and compared the COVID-19 detection

accuracy with the proposed DL-CRC framework. Table 2

exhibits the simulation results, which proves that both the

generic and GAN-based data augmentation had significant

influence in enhancing the COVID-19 detection efficiency.

The simulation results in the table show that our CNN-

only base model achieved 54.5%, CNN with generic data

augmentation obtained 63.4%, and CNN with the proposed
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TABLE 3. Performance comparison of our proposed DL-CRC architecture
with the existing CNN architectures for all three classes.

GAN-based data augmentation delivered 84.5% COVID-19

detection accuracy. On the other hand, the proposed DL-CRC

framework demonstrated the highest COVID-19 detection

accuracy (93.94%). This good performance is attributed to

the combination of our customized CNN model with the pro-

posed DARI algorithm where both generic and GAN-based

data augmentation are adaptively performed, Therefore, it is

evident from these results that our proposed DL-CRC frame-

work made the customized CNN model much more robust

with DARI algorithm.

In the third experimental scenario, we compared the perfor-

mance of our customized CNN model with the performances

of the state-of-the-art CNN models such as Inception-Resnet

V2, Resnet, and DenseNet. The reason behind choosing these

contemporary models is their good performances reported

in the recent literature for COVID-19 detection. It is worth

noting that Inception-ResNet v2 and DenseNet belong to the

depth-based and multi-path-based CNN paradigms, respec-

tively. On the other hand, ResNet combines both depth-

based and multi-path-based CNN architectures. Table 3

demonstrates the comparative analysis, which indicates

the efficiency of our proposed DL-CRC framework in

terms of COVID-19 and pneumonia detection using chest

X-ray images. Our proposed model, outperformed ResNet,

Inception-ResNet v2, and DenseNet. Although Densenet

achieves 98.01% prediction performance for normal test

cases, its accuracy is only 72.42% for pneumonia detection

while it exhibits the poorest performance of 60.61% for

identifying COVID-19 cases. This implies that multi-path-

based structure, although reported in recent work, is not suit-

able for COVID-19 detection. On the other hand, Inception

ResNet v2, using the depth-based CNN modeling paradigm,

achieves improved COVID-19 detection accuracy (69.70%).

The combination of these two modeling paradigms is incor-

porated in ResNet, which is able to predict test cases having

COVID-19 samples slightly elevated accuracy of 72.72%.

On the other hand, our proposed DL-CRC framework, com-

bining our envisioned DARI algorithm and customized CNN

model, is able to detect the COVID-19 cases with a sig-

nificantly high accuracy of 93.94%. Note that the pneumo-

nia (the other abnormal case) present in the test dataset is

also detected with much higher accuracy (88.52%) compared

to the contemporary models. Even though the performance

slightly drops for normal case identification, the accuracy

is still close to 96% in case of our proposal. Furthermore,

in the final column of Table 3, the AUC (area under the ROC

(receiver operating characteristic) curve) values are also listed

for the proposed DL-CRC and contemporary models. The

AUC score of our proposed DL-CRC is 0.9525which demon-

strates the reasonable accuracy of identification across all

samples in the test data. Thus, the encouraging performance

of the proposed DL-CRC algorithm over prominent CNN

models clearly demonstrates that the proposed technique can

be useful for detecting COVID-19 and pneumonia cases with

a significantly high (i.e., reliable) accuracy.

Furthermore, we compare the performance of our proposal

with a recent custom model, referred to as DarkCovidNet

[19]. For multi-class classification, the accuracy of Dark-

CovidNet was reported to be 87.02%, which is considerably

lower than that of our proposed model’s performance

(93.94%), which we believe ensures the effectiveness of our

proposed model. In addition, we have conducted two-fold

experiments to validate and compare our proposed tech-

nique (DL-CRC) with DarkCovidNet. Table 4 demonstrates

the results obtained when our proposed model is tested on

both datasets, and the DarkCovidNet model is tested on

both datasets. Both models were trained by employing the

respective dataset used by the work in [19] and our cur-

rent work. These experimental results presented in Table 4

were produced after training the models for 25 epochs for

each case, and then the trained models were tested on both

datasets. Our proposed technique outperformed DarkCovid-

Net for detection accuracies for both normal and COVID-19

cases. In addition to the classification efficiency, our pro-

posed DL-CRC framework is more lightweight than that of

used in DarkCovidNet. Our customized CNN model of DL-

CRC consists of 5 convolutional layers while the DarkCovid-

Net model comprises 17 convolutional layers, making our

model’s training phase more lightweight and computationally

less expensive than the DarkCovidNet model.

Moreover, while some researches reported overall accu-

racy, they did not mention the COVID-19 detection accuracy.

On the other hand, most researches applying deep learning

techniques did not report the AUC score, which is a robust

representative performance metric for practically evaluating

the COVID-19 detection ability of the model. In summary,

by applying various contemporary CNN models (Inception

with Resenet V2, Resnet, Densenet) and a recent customized

model (DarkCovidNet) for COVID-19 detection on the latest

dataset compiled from four public repositories, we realized

that their reported performances are constrained by overfit-

ting and influenced by biased test data. Thus, the accuracy

bottleneck of those existing models justifies why we required

to build a customized CNN model in this research and com-

bine it with the DARI algorithm to perform robust training

and avoid overfitting to ensure high COVID-19 detection

accuracy and a significantly high AUC score.

VI. LIMITATIONS OF THE STUDY

In this section, we briefly discuss some limitations and pos-

sible future work that can be conducted to extend the study.
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TABLE 4. Comparison of the performance our proposed model with that of DarkCovidNet [19] on both datasets.

• Our study and experiments have been conducted at a

very critical stage and time-sensitive manner to com-

bat the COVID-19 pandemic with a proof-of-concept

COVID-19 using radiograph images. Despite compiling

datasets from multiple sources with X-ray images con-

taining COVID-19 samples, the used data was consid-

erably small in size. Therefore, synthetic images were

generated using our customized GAN-assisted data aug-

mentation technique that were used to train a robust

CNN model to perform binary (normal and COVID-19)

and three-way classification (normal, pneumonia, and

COVID-19) with significantly high accuracy. Due to

the lack of real datasets consisting of other diseases

(e.g., SARS, MERS, and so forth) which exhibit acute

respiratory distress syndrome (ARDS) and pneumonia-

like conditions in the lungs, more class labels were not

considered in our work.

• From a physician’s perspective, it is important to diag-

nose the severity of COVID-19. However, due to the lack

of labeled data, in this work, our model could not be

used to classify the various stages of COVID-19 such

as asymptomatic, mild, high and severe.

• The proposed technique performed efficiently when we

utilized it to analyze X-ray samples. However, the study

can be extended to evaluate the system’s performance

in COVID-19 detection while using other radiograph

techniques such as CT scan, lung ultrasound, and lung

PET (positron emission tomography) scan.

• The dataset used in this study is limited by only

one modality type, i.e., X-ray images containing

COVID-19 features. Further customization in our CNN

model will be required if we want to combine multiple

imaging modalities (e.g., lung CT scan, ultrasound, PET

along with X-ray images), other modalities (e.g., body

temperature, ECG, MCG, diabetes level, renal function,

and so forth), and patient parameters (e.g., age, gen-

der, ethnicity, travel history, and contact history) to per-

form an in-depth COVID-19 classification. Therefore,

a multi-modal input characterization and corresponding

AI model customization will be needed in the future for

interpreting and explaining the classification results.

VII. CONCLUSION

In this paper, we addressed the emerging challenges of

detecting COVID-19. Due to the shortage of efficient diag-

nosis equipment and personnel in many areas, particularly

in developing and/or rural zones, numerous people remain

non-diagnosed. This results in a substantial gap between the

number of confirmed and actual cases. Radiographs such as

chest X-ray images and CT scans have been demonstrated

to have the potential for detecting COVID-19 infection in

the lungs that can complement the time-consuming viral

and antibody testing. While CT scans have higher resolu-

tion or fine-grained details compared to X-ray images, X-ray

machines are pervasive in hospital emergency rooms, public

health facilities, and even rural health centers or clinics.

In addition, because X-ray is a much cheaper alternative

and an appealing solution for portability in mobile trucks

and COVID-19 screening booths with adequate shielding

and power supply, how to identify COVID-19 infection of

the lung by recognizing patterns such as glass opacities and

lung consolidations raised a formidable research problem,

that we addressed in this paper. Also, we discussed why

it is necessary to automate the X-ray image classification

to be well prepared for the next wave of COVID-19 pan-

demic, when radiologists and caregivers are expected to be

overwhelmed by patient influx as well as the need to self-

isolate in case they themselves become infected. This means

there is a pressing need to automate the classification of

radiographs, particularly X-ray images, to minimize the turn-

around time for COVID-19 detection. Therefore, to leverage

the availability and cost-efficiency of chest X-ray imaging,

in this paper, we proposed a framework called DL-CRC

(Deep learning-based chest radiograph classification) to auto-

mate COVID-19 detection that can complement existing viral

and antibody testing methods.

Our proposed DL-CRC framework consists of two parts:

the DARI algorithm (which adaptively employs a customized

generative adversarial network and generic data augmen-

tation techniques such as zoom and rotation) and a two-

dimensional convolutional neural network (CNN) model. We

employed a unique dataset for multiple publicly available

sources, containing radiograph images of COVID-19 and

pneumonia infected lungs, along with normal lung imaging.

The classification accuracy significantly increased to 94.61%

by adopting our proposed DL-CRC framework. Our pro-

posal was compared with existing deep learning models from

diverse categories such as depth-based CNN (e.g., Inception-

ResNet v2), multi-path-based CNN (DenseNet), and hybrid

CNN (ResNet) architectures. Extensive experimental results

demonstrated that our proposed combination of DARI and

custom CNN-based DL-CRC framework significantly out-

performed the existing architectures. Thus, incorporating our

proposed model with significantly high accuracy into the
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clinical-grade as well as portable X-ray equipment can allow

an automated and accurate detection of COVID-19 in the

scrutinized patients.
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