

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 921

DLAU: A Scalable Deep Learning Accelerator Unit on FPGA
R. Sindhu Reddy , B. Manasa Reddy , B. Jhansi Reddy

1 Assistant Professor, Dept of ECE, TKR College Of Engineering And Technology, Meerpet, Ranga Reddy,

Telangana, India

Abstract: As the emerging field of machine learning,

deep learning shows excellent ability in solving

complex learning problems. However, the size of the

networks becomes increasingly large scale due to the

demands of the practical applications, which poses

significant challenge to construct high performance

implementations of deep learning neural networks. In

order to improve the performance as well as to

maintain the low power cost, in this paper we design

deep learning accelerator unit (DLAU), which is a

scalable accelerator architecture for large-scale deep

learning networks using field-programmable gate

array (FPGA) as the hardware prototype. The DLAU

accelerator employs three pipelined processing units to

improve the throughput and utilizes tile techniques to

explore locality for deep learning applications.

Experimental results on the state-of-the-art Xilinx

FPGA board demonstrate that the DLAU accelerator is

able to achieve up to 36.1× speedup comparing to the

Intel Core2 processors, with the power consumption at

234 mW.

Keywords: Deep learning, field-programmable gate

array (FPGA), hardware accelerator, neural network.

I.INTRODUCTION

In the past few years, machine learning has

become pervasive in various research fields and

commercial applications, and achieved satisfactory

products. The emergence of deep learning speeded up

the development of machine learning and artificial

intelligence. Consequently, deep learning has become a

research hot spot in research organizations [1]. In

general, deep learning uses a multilayer neural network

model to extract high-level features which are a

combination of low-level abstractions to find the

distributed data features, in order to solve complex

problems in machine learning. Currently, the most

widely used neural models of deep learning are deep

neural networks (DNNs) [2] and convolution neural

networks (CNNs) [3], which have been proved to have

excellent capability in solving picture recognition,

voice recognition, and other complex machine learning

tasks.

However, with the increasing accuracy

requirements and complexity for the practical

applications, the size of the neural networks becomes

explosively large scale, such as the Baidu Brain with

100 billion neuronal connections, and the Google cat-

recognizing system with one billion neuronal

connections. The explosive volume of data makes the

data centers quite power consuming. In particular, the

electricity consumption of data centers in U.S. are

projected to increase to roughly 140 billion kilowatt-

hours annually by 2020 [4]. Therefore, it poses

significant challenges to implement high performance

deep learning networks with low power cost, especially

for large-scale deep learning neural network models.

So far, the state-of-the-art means for accelerating deep

learning algorithms are field-programmable gate array

(FPGA), application specific integrated circuit (ASIC),

and graphic processing unit (GPU). Compared with

GPU acceleration, hardware accelerators like FPGA

and ASIC can achieve at least moderate performance

with lower power consumption.

However, both FPGA and ASIC have

relatively limited computing resources, memory, and

I/O bandwidths, therefore it is challenging to develop

complex and massive DNNs using hardware

accelerators. For ASIC, it has a longer development

cycle and the flexibility is not satisfying. Chen et al. [6]

presented a ubiquitous machine-learning hardware

accelerator called DianNao, which initiated the field of

deep learning processor. It opens a new paradigm to

machine learning hardware accelerators focusing on

neural networks. But DianNao is not implemented

using reconfigurable hardware like FPGA, therefore it

cannot adapt to different application demands.

Currently, around FPGA acceleration

researches, Ly and Chow [5] designed FPGA-based

solutions to accelerate the restricted Boltzmann

machine (RBM). They created dedicated hardware

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 922

processing cores which are optimized for the RBM

algorithm. Similarly, Kim et al. [7] also developed an

FPGA-based accelerator for the RBM. They use

multiple RBM processing modules in parallel, with

each module responsible for a relatively small number

of nodes. Other similar works also present FPGA-

based neural network accelerators [9]. Yu et al. [8]

presented an FPGA-based accelerator, but it cannot

accommodate changing network size and network

topologies. To sum up, these studies focus on

implementing a particular deep learning algorithm

efficiently, but how to increase the size of the neural

networks with scalable and flexible hardware

architecture has not been properly solved.

To tackle these problems, we present a

scalable deep learning accelerator unit named DLAU to

speed up the kernel computational parts of deep

learning algorithms. In particular, we utilize the tile

techniques, FIFO buffers, and pipelines to minimize

memory transfer operations, and reuse the computing

units to implement the large size neural networks. This

approach distinguishes itself from previous literatures

with following contributions.

1) In order to explore the locality of the deep

learning application, we employ tile techniques to

partition the large scale input data. The DLAU

architecture can be configured to operate different sizes

of tile data to leverage the tradeoffs between speedup

and hardware costs. Consequently, the FPGA-based

accelerator is more scalable to accommodate different

machine learning applications.

2) The DLAU accelerator is composed of

three fully pipelined processing units, including tiled

matrix multiplication unit (TMMU), part sum

accumulation unit (PSAU), and activation function

acceleration unit (AFAU). Different network

topologies such as CNN, DNN, or even emerging

neural networks can be composed from these basic

modules. Consequently, the scalability of FPGA-based

accelerator is higher than ASIC-based accelerator.

Deep learning:

Deep learning (also known as deep structured learning

or hierarchical learning) is part of a broader family of

machine learning methods based on learning data

representations, as opposed to task-specific algorithms.

Learning can be supervised, semi-supervised or

unsupervised.

Deep learning is a class of machine learning

algorithms that:

 Use a cascade of multiple layers of nonlinear

processing units for feature extraction and

transformation. Each successive layer uses the

output from the previous layer as input.

 Learn in supervised (e.g., classification)

and/or unsupervised (e.g., pattern analysis)

manners.

 Learn multiple levels of representations that

correspond to different levels of abstraction;

the levels form a hierarchy of concepts.

Deep neural network (DNN):

A deep neural network (DNN) is an artificial

neural network (ANN) with multiple hidden layers

between the input and output layers. DNNs can model

complex non-linear relationships. DNN architectures

generate compositional models where the object is

expressed as a layered composition of primitives. The

extra layers enable composition of features from lower

layers, potentially modeling complex data with fewer

units than a similarly performing shallow network. The

fig.1 shows deep learning neural network.

Fig. 1: Deep neural network (DNN) architecture

II. TILE TECHNIQUES AND HOT SPOT

PROFILING

RBMs have been widely used to efficiently

train each layer of a deep network. Normally, a DNN is

composed of one input layer, several hidden layers and

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 923

one classifier layer. The units in adjacent layers are all-

to-all weighted connected. The prediction process

contains feedforward computation from given input

neurons to the output neurons with the current network

configurations. Training process includes pretraining

which locally tune the connection weights between the

units in adjacent layers and global training which

globally tune the connection weights with back

propagation (BP) process.

The large-scale DNNs include iterative

computations which have few conditional branch

operations, therefore, they are suitable for parallel

optimization in hardware. In this paper, we first

explore the hot spot using the profiler. Results in Fig.2

illustrate the percentage of running time including

matrix multiplication (MM), activation, and vector

operations. For the representative three key operations:

1) feed forward; 2) RBM; and 3) BP, MM play a

significant role of the overall execution. In particular, it

takes 98.6%, 98.2%, and 99.1% of the feed forward,

RBM, and BP operations. In comparison, the activation

function only takes 1.40%, 1.48%, and 0.42% of the

three operations. Experimental results on profiling

demonstrate that the design and implementation of MM

accelerators is able to improve the overall speedup of

the system significantly.

However, considerable memory bandwidth

and computing resources are needed to support the

parallel processing, consequently it poses a significant

challenge to FPGA implementations compared with

GPU and CPU optimization measures. In order to

tackle the problem, in this paper we employ tile

techniques to partition the massive input data set into

tiled subsets. Each designed hardware accelerator is

able to buffer the tiled subset of data for processing. In

order to support the large-scale neural networks, the

accelerator architecture are reused. Moreover, the data

access for each tiled subset can run in parallel to the

computation of the hardware accelerators. In particular,

for each iteration, output neurons are reused as the

input neurons in next iteration. To generate the output

neurons for each iteration, we need to multiply the

input neurons by each column in weights matrix. As

illustrated in Algorithm 1, the input data are partitioned

into tiles and then multiplied by the corresponding

weights. Thereafter the calculated part sum are

accumulated to get the result. Besides the input/output

neurons, we also divided the weight matrix into tiles

corresponding to the tile size. As a consequence, the

hardware cost of the accelerator only depends on the

tile size, which saves significant number of hardware

resources.

TABLE I

PROFILING OF HOT SPOTS OF DNN

The tiled technique is able to solve the

problem by implementing large networks with limited

hardware. Moreover, the pipelined hardware

implementation is another advantage of FPGA

technology compared to GPU architecture, which uses

massive parallel SIMD architectures to improve the

overall performance and throughput. According to the

profiling results depicted in Table I, during the

prediction process and the training process in deep

learning algorithms, the common but important

computational parts are MM and activation functions,

consequently in this paper we implement the

specialized accelerator to speed up the MM and

activation functions.

III. DLAU ARCHITECTURE AND EXECUTION

MODEL

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 924

Fig.2 describes the DLAU system architecture

which contains an embedded processor, a DDR3

memory controller, a DMA module, and the DLAU

accelerator. The embedded processor is responsible for

providing programming interface to the users and

communicating with DLAU via JTAG-UART. In

particular it transfers the input data and the weight

matrix to internal BRAM blocks, activates the DLAU

accelerator, and returns the results to the user after

execution. The DLAU is integrated as a standalone unit

which is flexible and adaptive to accommodate

different applications with configurations. The DLAU

consists of three processing units organized in a

pipeline manner: 1) TMMU; 2) PSAU; and 3) AFAU.

For execution, DLAU reads the tiled data from the

memory by DMA, computes with all the three

processing units in turn, and then writes the results

back to the memory. In particular, the DLAU

accelerator architecture has the following key features.

Fig. 2: DLAU accelerator architecture.

FIFO Buffer: Each processing unit in DLAU has an

input buffer and an output buffer to receive or send the

data in FIFO. These buffers are employed to prevent

the data loss caused by the inconsistent throughput

between each processing unit.

Tiled Techniques: Different machine learning

applications may require specific neural network sizes.

The tile technique is employed to divide the large

volume of data into small tiles that can be cached on

chip, therefore the accelerator can be adopted to

different neural network size. Consequently, the

FPGA-based accelerator is more scalable to

accommodate different machine learning applications.

 Pipeline Accelerator: We use stream-like data

passing mechanism (e.g., AXI-Stream for

demonstration) to transfer data between the adjacent

processing units, therefore, TMMU, PSAU, and AFAU

can compute in streaming-like manner. Of these three

computational modules, TMMU is the primary

computational unit, which reads the total weights and

tiled nodes data through DMA, performs the

calculations, and then transfers the intermediate part

sum results to PSAU. PSAU collects part sums and

performs accumulation. When the accumulation is

completed, results will be passed to AFAU. AFAU

performs the activation function using piecewise linear

interpolation methods. In the rest of this section, we

will detail the implementation of these three processing

units, respectively.

A. TMMU Architecture

TMMU is in charge of multiplication and

accumulation operations. TMMU is specially designed

to exploit the data locality of the weights and is

responsible for calculating the part sums. TMMU

employs an input FIFO buffer which receives the data

transferred from DMA and an output FIFO buffer to

send part sums to PSAU. Fig. 3 illustrates the TMMU

schematic diagram, in which we set tile size = 32 as an

example.

Fig. 3: TMMU schematic.

TMMU first reads the weight matrix data

from input buffer into different BRAMs in 32 by the

row number of the weight matrix (n = i%32 where n

refers to the number of BRAM, and i is the row

number of weight matrix). Then, TMMU begins to

buffer the tiled node data. In the first time, TMMU

reads the tiled 32 values to registers Reg_a and starts

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 925

execution. In parallel to the computation at every cycle,

TMMU reads the next node from input buffer and

saves to the registers Reg_b. Consequently, the

registers Reg_a and Reg_b can be used alternately. For

the calculation, we use pipelined binary adder tree

structure to optimize the performance. As depicted in

Fig. 3, the weight data and the node data are saved in

BRAMs and registers. The pipeline takes advantage of

time-sharing the coarse-grained accelerators. As a

consequence, this implementation enables the TMMU

unit to produce a part sum result every clock cycle.

B. PSAU Architecture

PSAU is responsible for the accumulation

operation. Fig.4 presents the PSAU architecture, which

accumulates the part sum produced by TMMU. If the

part sum is the final result, PSAU will write the value

to output buffer and send results to AFAU in a pipeline

manner. PSAU can accumulate one part sum every

clock cycle, therefore the throughput of PSAU

accumulation matches the generation of the part sum in

TMMU.

Fig. 4: PSAU schematic.

C. AFAU Architecture

Finally, AFAU implements the activation

function using piecewise linear interpolation (y = ai ∗ x

+ bi, x ∈ [x1, xi+1]). This method has been widely

applied to implement activation functions with

negligible accuracy loss when the interval between xi

and xi+1 is insignificant. Equation (1) shows the

implementation of sigmoid function. For x > 8 and x ≤
−8, the results are sufficiently close to the bounds of 1

and 0, respectively. For the cases in −8 < x ≤ 0 and 0 <
x ≤ 8, different functions are configured. In total, we
divide the sigmoid function into four segments

Similar to PSAU, AFAU also has both input

buffer and output buffer to maintain the throughput

with other processing units. In particular, we use two

separate BRAMs to store the values of a and b. The

computation of AFAU is pipelined to operate sigmoid

function every clock cycle. As a consequence, all the

three processing units are fully pipelined to ensure the

peak throughput of the DLAU accelerator architecture.

IV. EXPERIMENTS AND DATA ANALYSIS

In order to evaluate the performance and cost

of the DLAU accelerator, we have implemented the

hardware prototype on the Xilinx Zynq Zedboard

development board, which equips ARM Cortex-A9

processors clocked at 667 MHz and programmable

fabrics. For benchmarks, we use the Mnist data set to

train the 784×M×N×10 DNNs in MATLAB, and use

M×N layers’ weights and nodes value for the input data

of DLAU. For comparison, we use Intel Core2

processor clocked at 2.3 GHz as the baseline. In the

experiment we use tile size = 32 considering the

hardware resources integrated in the Zedboard

development board. The DLAU computes 32 hardware

neurons with 32 weights every cycle. The clock of

DLAU is 200 MHz (one cycle takes 5 ns). Three

network sizes—64×64, 128×128, and 256×256 are

tested.

A. Speedup Analysis

We present the speedup of DLAU and some

other similar implementations of the deep learning

algorithms in Table II.

TABLE II

COMPARISONS BETWEEN SIMILAR

APPROACHES

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 926

Experimental results demonstrate that the

DLAU is able to achieve up to 36.1× speedup at

256×256 network size. In comparison, Ly and Chow

[5] and Kim et al. [7] presented the work only on RBM

algorithms, while the DLAU is much more scalable

and flexible. DianNao [6] reaches up to 117.87×

speedup due to its high working frequency at 0.98

GHz. Moreover, as DianNao is hardwired instead of

implemented on an FPGA platform, therefore it cannot

efficiently adapt to different neural network sizes.

Fig. 5 illustrates the speedup of DLAU at

different network sizes- 64×64, 128×128, and

256×256, respectively. Experimental results

demonstrate a reasonable ascendant speedup with the

growth of neural networks sizes. In particular, the

speedup increases from 19.2× in 64×64 network size to

36.1× at the 256×256 network size. The right part of

Fig. 4 illustrates how the tile size has an impact on the

performance of the DLAU. It can be acknowledged

that bigger tile size means more number of neurons to

be computed concurrently. At the network size of

128×128, the speedup is 9.2× when the tile size is 8.

When the tile size increases to 32, the speedup reaches

30.5×. Experimental results demonstrate that the

DLAU framework is configurable and scalable with

different tile sizes. The speedup can be leveraged with

hardware cost to achieve satisfying tradeoffs.

Fig. 5: Speedup at different network sizes and tile

sizes.

B. Resource Utilization and Power

Table III summarizes the resource utilization

of DLAU in 32×32 tile size including the BRAM

resources, DSPs, FFs, and LUTs.

TABLE III

RESOURCE UTILIZATION OF DLAU AT 32×32

TILE SIZE

TMMU is much more complex than the rest

two hardware modules therefore it consumes most

hardware resources. Taking the limited number of

hardware logic resources provided by Xilinx XC7Z020

FPGA chip, the overall utilization is reasonable. The

DLAU utilizes 167 DSP blocks due to the use of the

Floating-point addition and the Floating-point

multiplication operations.

Table IV compares the resource utilization of

DLAU with other two FPGA-based literatures.

Experimental results depict that our DLAU accelerator

occupies similar number of FFs and LUTs to Ly and

Chow’s work [5], while it only consumes 35/257 =
13.6% on the BRAMs. Comparing to the Kim et al.’s
work [7], the BRAM utilization of DLAU is

insignificant. This is due to the tile techniques so that

large scale neural networks can be divided into small

tiles, therefore, the scalability and flexibility of the

architecture is significantly improved.

In order to evaluate the power consumption of

accelerator, we use Xilinx tool set to achieve power

cost of each processing unit in DLAU and the DMA

module. The results in Table V depict that the total

power of DLAU is only 234 mW, which is much lower

than that of DianNao (485 mW). The results

demonstrate that the DLAU is quite energy efficient as

well as highly scalable compared to other accelerating

techniques.

TABLE IV

RESOURCE COMPARISONS BETWEEN SIMILAR

APPROACHES

TABLE V

POWER CONSUMPTION OF THE UNITS

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 927

To compare the energy and power between

FPGA-based accelerator and GPU-based accelerators,

we also implement a prototype using the state-of-theart

NVIDIA Tesla K40c as the baseline. K40c has 2880

stream cores working at peak frequency 875 MHz, and

the max memory bandwidth is 288 (GB/s). In

comparison, we only employ one DLAU on the FPGA

board working at 100 MHz. In order to evaluate the

speedup of the accelerators in a real deep learning

applications, we use DNN to model three benchmarks,

including Caltech101, Cifar-10, and MNIST,

respectively.

Fig. 6: Power and energy comparison between

FPGA and GPU.

Fig.6 illustrates the comparison between

FPGA-based GPU+cuBLAS implementations. It

reveals that the power consumption of GPU-based

accelerator is 364 times higher than FPGA-based

accelerators. Regarding the total energy consumption,

the FPGA-based accelerator is 10× more energy

efficient than GPU, and 4.2× than GPU+cuBLAS

optimizations.

Fig. 7: Floorplan of the FPGA chip.

Finally, Fig.7 illustrates the floorplan of the

FPGA chip. The left corner depicts the ARM processor

which is hardwired in the FPGA chip. Other modules,

including different components of the DLAU

accelerator, the DMA, and memory interconnect, are

presented in different colors. Regarding the

programming logic devices, TMMU takes most of the

areas as it utilizes a significant number of LUTs and

FFs.

V. RESULTS

The composed Verilog HDL Modules have effectively

recreated and confirmed utilizing Isim Simulator and

orchestrated utilizing Xilinxise13.2.

Simulation results:

RTL schematic:

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 928

Technology Schematic:

Design summary:

Timing Report:

V. CONCLUSION

In this paper, we have presented DLAU,

which is a scalable and flexible deep learning

accelerator based on FPGA. The DLAU includes three

pipelined processing units, which can be reused for

large scale neural networks. DLAU uses tile techniques

to partition the input node data into smaller sets and

compute repeatedly by time-sharing the arithmetic

logic. Experimental results on Xilinx FPGA prototype

show that DLAU can achieve 36.1× speedup with

reasonable hardware cost and low power utilization.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, ―Deep
learning,‖ Nature, vol. 521, no. 7553, pp. 436–444,

2015.

[2] J. Hauswald et al., ―DjiNN and Tonic: DNN as a
service and its implications for future warehouse scale

computers,‖ in Proc. ISCA, Portland, OR, USA, 2015,

pp. 27–40.

[3] C. Zhang et al., ―Optimizing FPGA-based

accelerator design for deep convolutional neural

networks,‖ in Proc. FPGA, Monterey, CA, USA, 2015,
pp. 161–170.

[4] P. Thibodeau. Data Centers are the New Polluters.

Accessed on Apr. 4, 2016. [Online]. Available:

http://www.computerworld.com/ article/2598562/data-

center/data-centers-are-the-new-polluters.html

[5] D. L. Ly and P. Chow, ―A high-performance FPGA

architecture for restricted Boltzmann machines,‖ in
Proc. FPGA, Monterey, CA, USA, 2009, pp. 73–82.

[6] T. Chen et al., ―DianNao: A small-footprint high-

throughput accelerator for ubiquitous machine-

learning,‖ in Proc. ASPLOS, Salt Lake City, UT, USA,
2014, pp. 269–284.

[7] S. K. Kim, L. C. McAfee, P. L. McMahon, and K.

Olukotun, ―A highly scalable restricted Boltzmann

machine FPGA implementation,‖ in Proc. FPL, Prague,
Czech Republic, 2009, pp. 367–372.

[8] Q. Yu, C. Wang, X. Ma, X. Li, and X. Zhou, ―A
deep learning prediction process accelerator based

FPGA,‖ in Proc. CCGRID, Shenzhen, China, 2015, pp.

1159–1162.

[9] J. Qiu et al., ―Going deeper with embedded FPGA
platform for convolutional neural network,‖ in Proc.
FPGA, Monterey, CA, USA, 2016, pp. 26–
35.www.ac.usc.es/node/1607.

