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Abstract—The Hybrid Memory Cube (HMC) is an innovative
DRAM architecture that adopts 3D-stacking to improve band-
width and save energy. An HMC module adopts separate receive
and transmit lanes and thus may achieve the maximal memory
bandwidth only if data can be driven at full speed in both direc-
tions. However, due to the natural read and write imbalance in
modern applications, the effective memory bandwidth utilization
is often low, leading to suboptimal system performance.

In this paper, we propose DLB (dynamic lane borrowing) that
dynamically tracks link utilization and partitions the lanes in
one link between receive and transmit directions. DLB allocates
more lanes to transmit if servicing read-intensive applications.
With more lanes allocated to either direction, DLB reduces the
lane contention along that direction and thus the average memory
access latency. Our experimental results show that DLB improves
the bandwidth utilization by 10.4% on average, reduces the
average utilization gap in two directions from 35.6% to 12.8%,
and saves execution time by as much as 22.3%.
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I. INTRODUCTION

Modern applications exhibit large demands for high memory

bandwidth, i.e., more memory channels and larger bandwidth

per channel [1], [2]. The parallel link design in conventional

DDRx has many pins per channel, which restricts the number

of channels and the total bandwidth. To alleviate this problem,

recent memory architectures, such as Fully-Buffer DIMM (FB-

DIMM) [3], Buffer-on-Board (BOB) [4] and Hybrid Memory

Cube (HMC) [5], [6], [8], adopt high speed serial links to

provide large memory bandwidth.

HMC is a memory architecture that leverages 3D stacking

for latency, power, and energy reduction. One HMC module

supports up to four high-speed serial links while each link

consists of 16 receive (Rx) lanes and 16 transmit (Tx) lanes.

Each lane can provide 12.5-30Gb/s data transfer speed, result-

ing in 200-480GB/s aggregated bandwidth [8]. As shown in

Figure 1. The maximum HMC bandwidth is over 20 times the

memory bandwidth of DDR4 and exceeds the bandwidth of

high-end GPUs [7].

1This work was funded in part by the National Science Foundation under
grants CCF-1422331 and CNS-1012070.
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Fig. 1: Pin rate and device bandwidth comparison of different

DRAM-based technologies (data from JEDEC [7].

The HMC link design adopts uni-directional lanes, i.e., a

lane is dedicated to either transmit (Rx) or receive (Tx) data.

This is different from the bi-directional DDRx data bus whose

direction can be altered at runtime by the memory controller,

after paying turn-around penalty. For an HMC link, its maxi-

mal HMC bandwidth can only be achieved if data is driven at

full speed in both directions. However, modern applications

have natural imbalance on the number of read and write

requests. Figure 2 shows a set of applications with different

percentages of reads and writes. The experimental settings can

be found in Section IV. For the cases with unbalanced read

and write requests, Tx lanes can be overloaded while Rx lanes

are idle, and vice versa. This leads to low memory bandwidth

utilization and suboptimal system performance.
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Fig. 2: Applications exhibit different Read/Write ratios.

FB-DIMM [3] and BOB [4] accommodate this imbalance

by allocating more lanes for sending the data to CPU. Alterna-

tively, lanes/links may be turned off if they are mostly idle [9],

[10], which helps to reduce power consumption but not to
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improve bandwidth utilization. To summarize, even though

studies have shown that HMC is sensitive to read/write ratio

[5], [11], no existing scheme targets at maximizing memory

bandwidth utilization based on the skewed read/write ratio in

modern applications.

In this paper, we propose DLB, a dynamic lane borrow-

ing scheme to improve memory performance through better

HMC bandwidth utilization. DLB dynamically tracks lane

utilization and partitions the lanes between receive and trans-

mit directions. An HMC link has more lanes allocated as

transmit lanes if servicing read-intensive applications, and as

receive lanes if servicing write-intensive applications. With

more lanes allocated to either direction, DLB reduces the

lane contention along that direction and improves the system

performance. We evaluate two alternative designs, WideLink

and ExtraLink, and compare their hardware costs and

performance benefits. Our experimental results show that DLB

can improve the bandwidth utilization by 10.4% and reduces

the execution time by 11.3%, on average.

The rest of the paper is organized as follows: Section II

introduces the HMC background. Section III elaborates the

proposed designs. Section IV and V present the experimental

methodology and analyze the results, respectively. We discuss

the related work in Section VI and conclude the paper in

Section VII.

II. BACKGROUND

HMC is an innovative DRAM architecture that adopts 3D

stacking to stack multiple memory dies and one logic die (at

the bottom), as shown in Figure 3(a). The logic die handles

controls such as DRAM sequencing, refresh, data routing and

error correction; and the DRAM dies process data only [6].

Within an HMC, the memory dies are segmented vertically

into vaults, and each vault has a memory controller in the

logic die that manages all memory reference operations within

that vault. Each vault contains partitions with several banks.

Taking a 4GB HMC as an example, the package has 4 memory

dies that are organized as 32 vaults while each vault has four

2-bank partitions, leading to 256 total banks.
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Fig. 3: The HMC architecture [8].

HMC v2.0 supports up to four links to the controller

interface, as illustrated by Figure 3(b). By default, each HMC

link consists of 16 Tx lanes and 16 Rx lanes. Commands

and data are transmitted over the lanes using a packet-based

protocol where the packets consists of 128-bit flow units called

”FLITs” [8]. The FLITs are transmitted through the links with

multiple functions and layers involved.

The data payloads to be transmitted over serial links can

be 16B, 32B, 46B, or 128B long. For each payload, the

transaction and link layer generate one packet by adding

16B overhead (i.e., 8B head and 8B tail for each packet). The

packet is then chopped into FLITS, saved in the buffer, and

sent in order to the physical layer; upon receiving the FLITS,

the physical layer serializes the FLIT and drives them across

the link interface in bit-serial on each lane, which is operated

by the striping logic. After receiving the data, the physical

layer deserializes each lane and recreates the FLITs, which

are then sent to the link layer; the transaction layer stores

the FLITs until the packet transmission is done, and then the

FLITs are parsed, evaluated and then forwarded internally.

Either the requester or the responder needs to handle both

Tx and Rx in each layer. Given that the components in the

requester and those in the responder are fully symmetric, we

only examine the responder in this paper. Since our proposed

designs do not affect transaction and link layers, we focus on

the enhancements to the physical layer.

III. THE DLB DETAILS

A. Motivation

The current HMC design adopts uni-directional lanes and

thus idle lanes cannot be used even if the opposite direction

is overloaded. To achieve higher memory bandwidth, a naive

design is to fabricate more lanes in both Rx and Tx directions.

This is not preferred as pins are precious resource whose count

is difficult to increase and whose area budget is difficult to

reduce [4]. In this paper, we exploit imbalanced lane utilization

to partition the lanes for better performance.

Figure 4 studies the relationship between read/write ratio

and memory bandwidth utilization. We used synthetic traffic

to stress the system (the setting details are in Section IV).

(a) Impact of request lanes (b) Impact of read portion

Fig. 4: The relationship between read/write ratio and achiev-

able memory bandwidth: (a) we vary lane partition with fixed

2/3 read requests; (b) we vary the percentage of read requests

with even lane partition.

(1) In Figure 4(a), 2/3 of the requents sent to the HMC are

reads while the rest are write requests. We vary the link

configuration by allocating different numbers of lanes for

Rx (x-axis). The rest are used for Tx. From the figure, we
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found that the even lane partition (i.e., Rx gets 16 lanes)

achieves sub-optimal result; the partition that allocates

12 Rx lanes and 20 Tx lanes (i.e., borrowing 4 Rx lanes)

achieves the best bandwidth; and borrowing more than

four Rx lanes degrades the performance due to increased

contention on Rx lanes.

(2) In Figure 4(b), we evenly partition the Rx and Tx lanes,

i.e., each has 16 lanes. We then vary the percentage

of read requests from 25% to 87.5%, which gradually

increases the load on Tx lanes. From the figure, the

achievable bandwidth peaks at 50% read percentage 2

, i.e., there are equal number of read and write requests.

The study illustrates that, to achieve higher bandwidth and

better performance, lanes should be partitioned according to

the read/write ratio at runtime.

B. DLB: Dynamic Lane Borrowing

1) Lane Grouping Strategy: We next elaborate DLB, the

dynamic lane borrowing scheme to maximize memory band-

width utilization. Given that the even lane partition in the

baseline HMC has supporting circuits for 16 Rx lanes and 16

Tx lanes, DLB needs to add additional hardware to enable data

transmission through more lanes in either direction. Depending

on the hardware overheads and the impact on timing and signal

integrity, we next evaluate two alternative design choices. In

the discussion, we focus on the responder side to simplify the

discussion, and only borrow Rx lanes for Tx use. The scheme

itself adopts symmetric link design and allows lane borrowing

in either direction.

Constructing a wide single link. The first design alter-

native is to combine borrowed lanes with existing lanes to

form one wide Tx link, e.g., borrowing 4 Rx lanes results

in a 12-lane Rx and 20-lane Tx link. Figure 5 illustrates the

hardware enhancement that connects borrowed lanes to the

existing striping logic. Given a wider Tx link, a 128-bit FLIT

can be transmitted using smaller number of UIs [8] (Unit

Interval, which is the time to transmit one bit over a single

lane, or m bits over a m-lane link).
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Fig. 5: Constructing a wide Tx link from borrowed lanes.

A major drawback of adopting wide link is lane-to-lane

signal skew, i.e., when transmitting m bits simultaneously

2Note, the strict maximum is achieved at some value slightly lower than
50% as request links transfer read/write requests as well as write data.

using m lanes, these bits may not be received at exactly the

same time. The difference is referred to as lane-to-lane skew

[12], [13]. The skew latency for 16-lane HMC link is 1066ps

for receivers [8] at the receiver side, which contributes directly

to the memory latency. As the skew latency depends mainly on

the number of lanes (denoted as L) [13], we approximate the

skew as L/2 UIs in this paper, which satisfies the constraints

defined in [8]. Therefore, the design tradeoff of a wide link

design is between increased skew latency and smaller number

of UIs per FLIT transmission.
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Fig. 6: Constructing an extra narrow Tx link.

Constructing an extra narrow link. The second design

alternative is to construct an extra Tx link using the borrowed

lanes. As shown in Figure 6, extra striping and un-striping

logics are added to enable the extra link. Given the extra link is

a narrow link, the lane-to-lane skew can be conservatively set

as the baseline. Given the two Tx-link design, DLB enhances

the link layer by adding simple arbiters such that packets may

be split to FLITs for either link. Since the arbiters directly

forward the received FLITs without buffering, its overhead is

negligible [14].

In this section, we discuss the hardware enhancement and

its overhead.

pkt1 pkt2 pkt3 pk4 pkt5 16-lane Baseline 

pkt1 pkt2 pkt3 pkt4 t4 
Saved time 16-lane 

pkt5 4-lane 

Narrow 

Link 

Design 

Fig. 7: Improve bandwidth utilization by using two links.

Figure 7 compares the transmission of narrow link design

against baseline. In the example, we assume that DLB borrows

four lanes from Rx to Tx; DLB has five packets to send; and

each packet is split into 5 FLITS. 4 of 5 packets are sent

through the existing Tx link while the other is sent using the

extra link. From the figure, the baseline needs 5×5×128b/16

= 200UIs while the extra link design needs 160UIs only,

showing 25% improvement. That is, the narrow link design

not only shortens the transmission latency but also alleviates

the contention along the response path, resulting in better

bandwidth utilization and improved performance.

2) Hardware Overheads:
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Area Overhead. To enable DLB, we add additional lane

supporting logics to support borrowed lanes operating in op-

posite directions; and add extra FLIT striping/un-striping logic.

DLB only affects the physical layer but not the transaction and

link layers, and Tx/Rx logics are directly added to the existing

lane macros and the extra small-size striping/unstriping is

shared by all lanes. The area for one Rx/Tx lane is 0.155-

0.24mm2 [17], [16], [15] such that a 16-lane link occupies less

than 10mm2. We estimated additional area overhead is about

15% of the baseline. Given that a CPU or HMC chip often

has several hundreds of mm2 [5], DLB introduces modest area

overhead.

Power Overhead. According to [15], Rx lane dissipates

5.1mW while Rx dissipates 6.6mW. They are negligible com-

pared to 11W power consumption of HMC [5]. Since we did

not add extra physical lanes, the power demand for pins stays

the same.

Signal Integrity. One important design factor for high

speed serial link is its signal integrity (SI), i.e., if the signal is

reliable at high rate [18]. Recent studies [19] analyzed the lane

SI for serial links. Likewise, PCIe bus can group up to 32 serial

link lanes for providing multiple bandwidth — JESD204 [13].

Since DLB changes the direction but not the type of borrowed

lanes, the quality of SI stays high [20].

C. Dynamic Management

We next discuss the lane management policy at runtime.

There are two design choices: a semi-dynamic scheme may

statically profile each workload, find its best lane partition,

and reconfigure Rx/Tx lanes before program execution; a

dynamic scheme tracks link and lane utilization at runtime,

and dynamically reconfigures Rx/Tx lanes for achieving better

system performance .
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Fig. 8: Bandwidth change at runtime.

Figure 8 studies the dynamic memory bandwidth demands

of different benchmark programs. From the figure, some

programs, e.g., mcf , stay stable after the warm up phase, while

others, e.g., lib, periodically demand large memory bandwidth.

The figure also confirms that there does not exist one lane

partition fitting all types of programs. To maximize memory

bandwidth, it is preferable to devise a dynamic scheme that

reconfigures Rx/Tx lane partition during the program execu-

tion.

The dynamic partition management algorithm is presented

in Algorithm 1. The algorithm tracks link/lane utilization

within each time epoch, and triggers reconfiguration at the end

while true do
wait for tepoch;
sample bandwidth utilization on Tx/Rx links as Uprev Tx

and Uprev Rx;
calculate utilization gap between Tx and Rx links,
Ugap = |Uprev Tx − Uprev Rx|;

if (5 back and forth lane changes were detected) then

pause for 10 epochs;
end

if (Uprev Tx > Uhw and Ugap > Uw) then

calculate needed lanes on Rx link as
Uprev Rx ×#Rx lanes+ guard band;
estimate the borrowing lanes to Tx link with the
maximum limit of 8, and then floor to 2/4/8;
update the Tx/Rx link configurations;
return

end
if (Uprev Rx > Uhw) and Ugap > Uw) then

calculate needed lanes on Tx link as
Uprev Tx ×#Tx lanes+ guard band;
estimate the borrowing lanes to Rx link with the
maximum limit of 8, and then floor to 2/4/8;
update the Tx/Rx link configurations;
return

end
end

Algorithm 1: Utilization based Lane Partition

of each epoch if the imbalance between Rx and Tx reaches

a threshold. It then calculates the preferred number of lanes

and marks the rest as those that can be borrowed to service

the other direction.

When determining the number of available lanes, DLB saves

two extra lanes than necessary to the current direction. This is

referred to as guard band. By preventing borrowing too many

lanes to the other direction, DLB helps to gradually alleviate

the contention in one direction without stressing the contention

in the other direction.

Given that lending lanes increases contention and thus the

likeliness of borrowing lanes, a naive dynamic design may

introduce thrashing, i.e., the direction of a subset of lanes

may be switched back and forth in consecutive epochs. In our

design, we prevent thrashing by pausing DLB for ten epochs if

lanes changes direction differently in five consecutive epochs.

In this paper, we set epoch to be 10ms long, specify the

high watermark Uhw of the overloaded link as 80%, and the

gap watermark Uw as 20%. We study the performance impact

when varying the values of these parameters.

1) Runtime Overheads: The runtime overheads of DLB

come from the dynamic link reconfiguration and the lane

utilization profiling.

For dynamic link reconfiguration, recent prototypes showed

that the direction of high speed serial links can be turned

around in as fast as 10ns [21]. In this paper, we made a more

conservative assumption — the latency of link reconfiguration

is 100ns. Transmission on both directions are paused during

this period, and resumed with new link settings afterward.

Given that one reconfiguration epoch is 10ms, the link re-
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configuration latency is negligible.

For lane utilization profiling, similar to [11], DLB needs to

calculate the percentage of cycles that the lanes are used for

data transmission in either direction. In this paper, we consider

both the number of transmitted FLITS and the number of lanes

in each epoch. The more FLITs transmitted, the better link

utilization. On the other hand, since the length of a FLIT is

a multiple of 8-bit, using a 18-lane Tx link often is as fast as

using a 16-lane link, which results in low link utilization.

For HMC links with default 12.5Gb/s bandwidth, transmit-

ting a 16B FLIT needs 1.28ns link time. Within one 10ms

epoch, a link can transmit up to 7.82 millions FLITs in one

direction. We record the number of transmitted FLITs in four

32-bit counters for Rx, Tx, and the additional sub-links in both

directions (if using narrow link design).

IV. EXPERIMENTAL METHODOLOGY

We evaluated the proposed designs and compared them with

the baseline implementation using an in-house HMC simulator.

It was developed based on two existing popular memory

simulators — USIMM [22] and BOBSim [4]. USIMM is

a detailed DRAM simulator with a ROB front end, and

BOBSim encapsulates all aspects of the ”buffer-on-board”

(BOB) memory system, which works very similarly to HMC.

Our simulator is a detailed cycle-accurate one modeling HMC

behaviors.

System Configuration The parameters of system configura-

tions are shown in Table I. We modeled an 8-core [9] processor

running at 2.5 GHz. The memory system is configured as a

4GB HMC cube with 4 DRAM dies and 32 vaults [8]. For

the link, we used one for experiment purpose by manually

disabling others as [10]. The one-link test is a reasonable

setting for HMC study because: (1) nowadays applications can

hardly take full use of available bandwidth, and our workloads

here is close to the bandwidth of one single link; (2) multiple

HMC devices can be chained together as a cube network and

each link is configured as either a host link or a pass-through

link, leading to only one or two links are connected to the

processor [8], [23], which is similar to the case here.

TABLE I: System Configuration

Processor 8 cores, 2.5GHz, 10 stage pipeline,
128-entry ROB, fetch/retire width=4/4

Last Level Cache private, 512KB/core, 4MB in total [22]
cache line size: 64B

Link 1 full-duplex link, 12.5 Gb/s lane speed
default width: 16 Tx and 16 Rx lanes

Vault 32-entry command queue, 1024B read data queue
Controller scheduling: FRFCFS, closed-page[11], [6]

4GB, 32 vaults, 4 2-bank partitions/vault
page size: 256B [11], [6]

HMC TSV: 32 TSVs/partition [6], 2.5Gb/s
packet: 64B data payload, 16B overhead
timings: tCK=0.8ns, tRP=18, tRCD=18,
tCL=18, tRAS=35, tWR=19, tCCD=7

epoch:10ms, turnaround time: 100ns
Lane high watermark of link utilization: 80%

Management utilization gap: 20%, guard band: 2
number of allowed borrowing lanes: 2/4/8

For the controller part, we assume the vault throughput of

10GB/s [8] is evenly divided among the 32 TSV data lanes,

with each as 2.5Gb/s. If the transmission is double rate, then

TSV frequency is 1.25 GHz (tCK = 0.8ns). Here, we get the

equivalent timing constraints, partially shown in Table I, based

on the values used by [11], [23], where tCK = 1.25ns.

Workloads We used multiple benchmarks from SPEC CPU

2006, Biobench [24] and STREAM [25]. The memory char-

acteristics are summarized in Table II, and the workloads

used for simulation are as shown in Table III. The traces are

collected after skipping warmup phase. Each core executes

20M memory read and write requests, which translates into

several billions processor cycles and instructions for the 8-

core scenario. We executed these benchmarks in rate mode,

and computed the execution time as the time to finish all

benchmarks of a workload.

TABLE II: Benchmark Characteristics

Suite Benchmark Read MPKI Write MPKI

mcf 69.46 16.83
libquantum 25.90 3.91

SPEC bwaves 18.71 1.08
milc 3.81 1.32

sphinx 13.23 0.84

BIOBENCH mummer 26.43 5.72
tigr 33.87 4.34

MICRO-BENCH stream 35.07 11.69

TABLE III: Workloads

Description

mcf: mcf×8, lib: libq×8, bwa: bwaves×8, sph: sphinx×8,
mum: mummer×8, tig: tigr×8, str: stream×8

mix1: mcf×2, libq×2, mummer×2, tigr×2
mix2: bwaves×2, milc×2, sphinx×2, stream×2
mix3: mcf×2, libquantum×2, sphinx×2, stream×2
mix4: bwaves×2, milc×2, mummer×2, tigr×2

V. RESULTS

In the experiments, we evaluated the following schemes:

— Baseline. This is the baseline scheme. Each link is

composed of 16 Rx lanes and 16 Tx lanes.

— WideLink. This scheme enables Rx lanes to be bor-

rowed to Tx links. The borrowed lanes are used to widen the

Tx link.

— ExtraLink. This scheme groups borrowed lanes into

an extra narrow Tx link.

Next, we compare the schemes on execution time, memory

access latency, bandwidth utilization, and study their sensitiv-

ity to different configurations.

A. Impact on Execution Time

Figure 9 compares the execution time with different

schemes. All the results are normalized to Baseline and

the geometric mean (Gmean) of all evaluated workloads is

presented as well. Compared to Baseline, lane borrowing

schemes WideLink and ExtraLink widen the response

path, speedup read accesses, and thus shorten the program ex-

ecution. The figure shows that WideLink and ExtraLink
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Fig. 9: Comparing the execution time.

achieve better performance for almost all workloads. On

average, WideLink reduces the execution time by 5.1% while

ExtraLink achieves a much larger 11.3% reduction. For

memory intensive workload with more read requests, e.g.,

mcf , mum and tig, the improvement is more significant

— ExtraLink achieves 22.3% improvement for tig. For

non-memory intensive workloads or workloads with balanced

read/write requests, such as milc and str, the performance

gain is lower, e.g., only 2% for milc.
The giant gap between WideLink and ExtraLink is

attributed to two reasons: (1) WideLink introduces larger

skew delay which contributes directly to memory latency;

(2) as the FLIT size is kept at 128 bit, which may lead to

inefficient lane use in WideLink, e.g., the elapsed time to

transfer a FLIT is the same 8UIs using either 16 or 18 lanes.

Nevertheless, WideLink has the advantage of less added

logics and thus smaller overhead than ExtraLink.

B. Impact on Latency
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Fig. 10: The read latency comparison.

Figure 10 shows the average memory read latency for

different schemes. The read latency consists of HMC bank

access time and queuing time. While bank access time is

stable, queuing time strongly depends on the link contention.

From the figure, on average, WideLink brings the latency

from 208ns in Baseline down to 195ns, which is a 7%

reduction. As expected, ExtraLink shows a greater decrease

of 14%.

C. Impact on Bandwidth

The performance improvement is achieved through better

bandwidth utilization. In Baseline, the request link and

response link have equal theoretical bandwidth of 25GB/s (i.e.

12.5Gb/s/lane×16 lanes); in WideLink and ExtraLink,

while the total bandwidth is still 50GB/s, the division is

dynamically adjusted through lane borrowing reconfigurations.
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Fig. 11: Comparison of bandwidth utilization.

In the experiments, we found that, in Baseline, while

response (Tx) bandwidth achieves a high utilization of over

80% on average, request (Rx) bandwidth is less than 50% for

many workloads, which indicates a severe waste. The proposed

design efficiently migrates the excessive Rx bandwidth to

the Tx link by improving the utilization in Rx direction,

and mitigating the contention on Tx side. Figure 11 shows

the average bandwidth utilization, which is calculated by

averaging the utilization of all epochs during execution, of

Rx link, Tx link and the difference for all three schemes.

Overall, as shown in Figure 11, ExtraLink improves the

utilization by 10.4%, and the difference between Rx and Tx

link utilizations is reduced from 35.6% in Baseline to

18.4% in WideLink, and further to 12.8% in ExtraLink.

D. Runtime Reconfigurations

We then studied lane borrowing during the entire execution,

as shown in Figure 12. We reported the number of lanes

used as Rx lanes while the rest are used as Tx lanes. While

Baseline keeps the default lane setting, WideLink and

ExtraLink schemes dynamically adjust the lane configura-

tions from the initial even lane partition.

From the figure, the number of Rx lanes is relatively

stable because: (1) the workload phases have relatively stable

memory access patterns and the chosen 10ms period adapts

well to phase changes; (2) the conservative borrowing strategy

(e.g., maximum 8 borrowing lanes and a 2-lane guard band)

prevents over-reaction and thus helps to avoid thrashing.

E. Responsiveness Testing

It is well known that most applications have different

phases in the execution, and the exhibited memory access

behaviors are relatively stable within each phase. To further

test the responsiveness of our designs, we created a synthetic

workload using the representative ones covered in Figure 13,

and executed them in round robin fashion to expose changing

loads to the links. The selected workloads are lib, mcf , sph
and str, with each being executed for a period of 30ms (i.e.,

three times of reconfiguration epoch) in a round.

Figure 13 shows the dynamic lane change in the 1200ms ex-

ecution. As expected, ExtraLink experiences frequent lane

reconfigurations. Nevertheless, the inefficiency on wide link

makes WideLink stay at a relative stable state. Because of

the frequent changing workload patterns, the improvements are

diminishing to 8.4% for ExtraLink and 2% for WideLink.
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Fig. 13: Responsiveness testing with synthetic workload.

F. Sensitivity Studies

System performance largely depends on the request inten-

siveness, which is strongly related to the number of cores

and packet size. To study the performance sensitivity on

these two factors, we varied the number of cores from 4

to 16, and transaction size from 16B to 128B. In addition,

the dynamic policy settings were also considered. All the

performance values are normalized to the baseline of 8 cores,

64B transaction size, and default 16/16 lane setting.

1) Varying the Number of Cores: HMC links are expected

to transfer more requests and data with increasing number of

cores, which increases link contention and prolongs execution

time. As shown in Figure 14, compare to the 8-core baseline,

a 4-core system has better execution time for the execution

on each single core. This is because of shorter queuing delay

when the HMC module receives few requests.

The benefits of lane borrowing goes up with increasing

number of cores. For example, ExtraLink achieves 4.8%

improvement on a 4-core system but 18.4% improvement on

a 16-core system.

2) Varying Packet Size: HMC supports data payload of size

from 16B to 128B, with extra 16B overhead to compose the
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Fig. 14: Sensitivity on the number of cores (showing the

execution time of one single core).

packet. The data size determines the link occupation time. We

swept the data size from 16B to 128B to study its impact on

system performance. As Figure 15 shows, the execution time

is lengthened as the data size becomes larger. We observed

better performance improvement when using larger data size.

For the setting of 128B, WideLink reduces the execution

time by 8.6%, while ExtraLink reduces 18.6%.
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Fig. 15: Sensitivity on data payload size.

3) Varying Dynamic Epoch and Watermarks: We next

studied the impact of epoch size. Figure 16 compares the

performance of different schemes with epoch sizes ranging

from 1ms to 100ms. When increasing the epoch size from 1ms

to 15ms, we observed 2% performance difference, which indi-
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cates that performance is insensitive to epoch size. However,

when the epoch is further increased to 100ms, compared to

10ms setting, we observed performance reduction of 2.7% and

4% for WideLink and ExtraLink, respectively, indicating

that the 100ms-epoch responds too slow to the change of

memory access patterns.
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Fig. 16: Sensitivity on dynamic reconfiguration epoch.

In addition, we also performed sensitivity studies on high

watermark of bandwidth utilization Uhw, and utilization gap

watermark Uw, and found moderate impacts on performance.

VI. RELATED WORK

As HMC is an emerging DRAM architecture, limited work

has been done to study its benefits and issues on performance,

bandwidth or power. Khurshid et al. [26] proposed thermal

mitigation using data compression. Han et al. [27] exploits

data-pattern dependent cell retention to reduce refresh opera-

tions in HMC. Lu et al. [28] designed an efficient packet-based

memory system to solve the high packet overhead. Pugsley

et al. [10] presented a high-level Near Data Computing (NDC)

architecture using HMC devices. To better manage the link

power consumption, Ahn et al. [9] proposed a scheme to

dynamically put a subset of off-chip links into sleep mode.

Kim et al. [23] proposed an innovative distributed memory-

centric network architecture to efficiently utilize the processor

and HMC bandwidth. The network was later extended to

multi-GPU system [29].

Recent studies showed that HMC is sensitive to the

read/write ratio [5], [11]. However, to the best our knowledge,

no scheme has been proposed to improve the bandwidth

utilization based on memory access patterns. DLB works

similarly to reconfigurable switching path [30] in Network-on-

Chip (NoC), and the recently proposed DDRx pin-switching

scheme [14]. While the former is specially designed for

on-chip communication, the latter does not adapt read/write

imbalance of real applications.

VII. CONCLUSION

In this paper, we proposed DLB, a dynamic lane bor-

rowing scheme to improve bandwidth utilization and system

performance in HMC architecture. We studied two alternative

designs with different design costs and performance benefits,

and enabled dynamic partition by tracking link utilization at

runtime. Our experimental results showed that the proposed

scheme improves bandwidth utilization of HMC links by about

10.4%, with a performance improvement up to 22.3% (11.3%

on average).
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