
DLBench: a comprehensive experimental evaluation of deep learning
frameworks

Radwa Elshawi
1

• Abdul Wahab
1

• Ahmed Barnawi
2

• Sherif Sakr
1

Received: 17 January 2020 / Revised: 7 January 2021 / Accepted: 13 January 2021 / Published online: 7 February 2021

� The Author(s) 2021

Abstract

Deep Learning (DL) has achieved remarkable progress over the last decade on various tasks such as image recognition,

speech recognition, and natural language processing. In general, three main crucial aspects fueled this progress: the

increasing availability of large amount of digitized data, the increasing availability of affordable parallel and powerful

computing resources (e.g., GPU) and the growing number of open source deep learning frameworks that facilitate and ease

the development process of deep learning architectures. In practice, the increasing popularity of deep learning frameworks

calls for benchmarking studies that can effectively evaluate and understand the performance characteristics of these

systems. In this paper, we conduct an extensive experimental evaluation and analysis of six popular deep learning

frameworks, namely, TensorFlow, MXNet, PyTorch, Theano, Chainer, and Keras, using three types of DL architectures

Convolutional Neural Networks (CNN), Faster Region-based Convolutional Neural Networks (Faster R-CNN), and Long

Short Term Memory (LSTM). Our experimental evaluation considers different aspects for its comparison including

accuracy, training time, convergence and resource consumption patterns. Our experiments have been conducted on both

CPU and GPU environments using different datasets. We report and analyze the performance characteristics of the studied

frameworks. In addition, we report a set of insights and important lessons that we have learned from conducting our

experiments.

Keywords Deep learning � Experimental evaluation � CNN � LSTM

1 Introduction

Nowadays, we are witnessing an explosion of interest in

Artificial Intelligence (AI)-based systems across govern-

ments, industries and research communities with a yearly

spending figure of around 12.5 billion US dollars [47]. A

central driver for this explosion is the advent and

increasing popularity of Deep Learning (DL) techniques

that are capable of learning task-specific representation of

the input data, automating what used to be the most tedious

development task which is that of feature engineering. In

general, deep learning techniques represent a subset of

artificial intelligence methodologies that are based on

artificial neural networks (ANN) which are mainly inspired

by the neuron structure of the human brain [6]. It is

described as deep because it has more than one layer of

nonlinear feature transformation. In practice, the main

advantage of deep learning over the traditional machine

learning techniques is their ability for automatic feature

extraction which allows learning complex functions to be

mapped from the input space to the output space without

much human intervention. In particular, it consists of

multiple layers, nodes, weights and optimization algo-

rithms. Due to the increasing availability of labeled data,

computing power, better optimization algorithms, and

better neural net models and architectures, deep learning

& Sherif Sakr

sherif.sakr@ut.ee

Radwa Elshawi

radwa.elshawi@ut.ee

Abdul Wahab

abdul.wahab@ut.ee

Ahmed Barnawi

ambarnawi@kau.edu.sa

1 University of Tartu, Tartu, Estonia

2 King Abdulaziz University, Jeddah, Saudi Arabia

123

Cluster Computing (2021) 24:2017–2038

https://doi.org/10.1007/s10586-021-03240-4 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2503-523X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03240-4&domain=pdf
https://doi.org/10.1007/s10586-021-03240-4

techniques have started to outperform humans in some

domains such as image recognition and classification.

Therefore, deep learning applications on big data are

gaining increasing popularity in various domains including

natural language processing, medical diagnosis, speech

recognition and computer vision [2, 11, 19, 23, 26].

Recently, we have been witnessing an increasing growth in

the number of open source deep learning frameworks.

Examples include TensorFlow [1], MXNet [8], Chai-

ner [45], Torch [12], PyTorch [34], Theano [5],

CNTK [39], Caffe [22], and Keras [9] (Fig. 1). In practice,

different frameworks focus on different aspects and use

different techniques to facilitate, parallelize and optimize

the training and deployment of the deep learning models.

Convolutional Neural Networks (CNNs) is a popular

deep learning technique that has shown significant perfor-

mance gains in several domains such as object detection,

disease diagnosis and autonomous driving [20, 41], how-

ever such networks are computationally expensive due to

the model complexity and the huge amount of hyperpa-

rameters used that need to be trained over large datasets.

When the size of the dataset is relatively small, most of the

classification algorithms such as decision trees, random

forests and logistic regression have been shown to achieve

comparable performance. However when the size of the

data is huge, AlexNet [26] shows that training CNNs on

millions of images from ImageNet outperforms all the

previous work done in image classification and hence

concluded that using large size training dataset improves

the performance of classification tasks.

Faster Region-based convolutional Neural Networks

(Fatser R-CNN) is considered the state-of-the-art object

detection algorithm which was introduced by Ren

et al. [37]. Faster R-CNNs are the main driven behind

advances in object detection [48]. Fatser R-CNN consists

of two main modules which are Regional Proposal Net-

work (RPN) and Fast R-CNN detector. The RPN is a fully

convolutional network for generating object proposals that

will be fed into the second module. The second module is

the Fast R-CNN detector whose purpose is to refine the

proposals. The key idea is to share the same convolutional

layers for the RPN and Fast R-CNN detector up to their

own fully connected layers. Thus, the image only passes

through the CNN once to produce and then refine object

proposals.

Long Short Term Memory (LSTM) is another popular

deep learning technique which represents a special type of

Recurrent Neural Network (RNN) that is capable of

learning long-term dependencies [38]. An LSTM cell

contains a memory that enables the storage of previous

sequences. Each cell has three types of gates to control and

protect the state of the cells: input gate, output gate and

forget gate. The forget gate is to decide what information to

discard from each LSTM cell. The input gate decides the

update of the memory state based on the input values and

the output gate decides what to output based on the input

and the memory of the LSTM cell.

Graphics Processing Units (GPUs) were originally

designed for rendering graphics in real time. However,

recently, GPUs have been increasingly used for general

purpose computation that requires a high data parallel

architecture, such as deep learning computation. In prin-

ciple, each GPU is composed of thousands of cores. Thus,

GPUs can process a large number of data points in parallel

which leads to higher computational throughput. Training

deep learning models is computationally expensive and

time consuming process due to the need for a tremendous

volume of data, and leveraging scalable computation

resources can speed up the training process signifi-

cantly [15, 24]. Recently, research effort has been focused

on speeding up the training process. One popular way for

speeding up this process is to use specialized graphical

processors such as GPU and Tensor Processing Unit

(TPU). As per Amdahl’s law, in a particular computation

task, the non-parallelizable portion may limit the compu-

tation speedup [18]. For example, if the non-parallelizable

portion of a task is equal to 50% then reducing the com-

putation time to almost zero will result only in the increase

of speed by a factor of two. Hence to speed up the training

time, the non-parallelizable computation portions should be

seriously addressed.

In general, choosing a DL framework for a particular

task is a challenging problem for domain experts. We argue

that benchmarking DL frameworks should consider per-

formance comparison from three main dimensions: (1) how

computational environment (CPU, GPU) may impact the

performance; (2) how different types and variety of data-

sets may impact on performance; and (3) how different

deep learning architectures may impact the performance.

Most of current benchmarking efforts for DL frameworks

have been focused mainly on studying the effect of dif-

ferent CPU-GPU configurations on the performance ofFig. 1 Timeline of deep learning frameworks

2018 Cluster Computing (2021) 24:2017–2038

123

different deep learning frameworks on standard data-

sets [3, 10, 40, 42]. Very few of existing efforts, to the best

of our knowledge, have been devoted to study the effec-

tiveness of default configurations recommended by each

DL framework with respect to different datasets and dif-

ferent DL architectures. We argue that effective bench-

marking of DL frameworks requires an in-depth

understanding of all of the above three dimensions.

In this paper, we present design considerations, metrics

and insights towards benchmarking DL software frame-

works through a comparative study of six popular deep

learning frameworks. This work is an extension of our

initial work [29] that mainly focused on comparing the

performance of DL frameworks for CNN architectures. In

particular, in this work, we follow a holistic approach to

design and conduct a comparative study of six DL frame-

works, namely TensorFlow, MXNet, PyTorch, Theano,

Chainer, and Keras, focusing on comparing their perfor-

mance in terms of training time, accuracy, convergence,

CPU and memory usages on both CPU and GPU envi-

ronments. In addition, we study the impact of different

deep learning architectures (CNN, Faster R-CNN, and

LSTM) on both the performance and system resource

consumption of DL frameworks using different datasets. In

particular, for evaluating the performance of CNN archi-

tecture, we use four datasets, namely, MNIST, CIFAR-10,

CIFAR-100 [25] and SVHN [33]. For evaluating the

performance of Faster R-CNN architecture, we use

VOC2012 [14]. For evaluating the performance of LSTM

architecture, we use three datasets, namely, IMDB

Reviews [28], Penn Treebank [30], and Many

things: English to Spanish
1. For ensuring

repeatability as one of the main targets of this work, we

provide access to the source codes and the detailed results

for the experiments of our study2.

The remainder of this paper is organized as follows. We

discuss the related work in Sect. 2. Section 3 provides an

overview of the different deep learning frameworks that

have been considered in this study. Section 4 describes the

details of our experimental setup in terms of used datasets,

hardware configurations and software configurations. Sec-

tion 5 provides the detailed results of our experiments and

lessons learned before we conclude the paper in Sect. 6.

2 Related work

Some research efforts have attempted to tackle the chal-

lenge of benchmarking deep learning frameworks and

comparing different neural network hardware and

libraries [53]. For example, the DeepBench project3

focuses on the benchmarking fundamental neural networks

operations such as dense matrix multiplications, convolu-

tions and communication on different hardware platforms

using different neural network libraries. DAWNBench [10]

is a benchmark that focuses on end-to-end training time of

deep learning model to achieve certain accuracy on dif-

ference deep learning platforms including TensorFlow

and PyTorch using image classification datasets includ-

ing CIFAR10, ImageNet and question answering on

SQuAD [36], showing differences across models, software

and hardware. Awan et al. [3] compare between CPU and

GPU for multi-node training using OSU-Caffe [44] and

Intel-Caffe [21]. Authors provide the following key

insights: (1) Convolutions account for the majority of time

consumed in DNN training, (2) GPU-based training con-

tinues to deliver excellent performance across generations

of GPU hardware and software, and (3) Recent CPU-based

optimizations like MKL-DNN [31] and OpenMP-based

thread parallelism leads to significant speed-ups over

under-optimized designs. Shams et al. [40] analyze the

performance of three different frameworks, Caffe, Ten-

sorFlow, and Apache SINGA, over several hardware

environments. More specifically, authors provide analysis

of the frameworks’ performance over different hardware

environments in terms of speed and scaling. Wang and

Guo [49] compare the accuracy of the same CNN model on

three different frameworks, TensorFlow, Caffe, and

PyTorch. Results show that the PyTorch based models tend

to obtain the best performance among these three frame-

works because of its better weight initialization methods

and data preprocessing steps, followed by TensorFlow and

then Caffe. In conclusion, using the same CPU-GPU con-

figurations, no single DL framework outperforms others on

all performance metrics on the different datasets.

Bahrampour et al. [4] evaluated the training and inter-

face performance of different deep learning frameworks

including Caffe, Neon, TensorFlow, Theano, and

Torch on a single CPU/GPU environment using MNIST

and ImageNet datasets. Wu et al. [51] evaluated the per-

formance of four deep learning frameworks including

Caffe, Torch, TensorFlow and Theano on different

selection of CPU-GPU configurations on three popular

datasets: MNIST, CIFAR-10, and ImageNet. In addition,

authors conducted comparative measurement study on the

resource consumption patterns on the four frameworks and

their performance and accuracy implications, including

CPU and memory consumption, and their correlations to

varying settings of hyper-parameters under different con-

figuration combinations of hardware, parallel computing

libraries. Zou et al. [55] evaluated the performance of four
1 https://www.manythings.org/bilingual/.
2 https://github.com/DataSystemsGroupUT/DLBench. 3 https://github.com/baidu-research/DeepBench.

Cluster Computing (2021) 24:2017–2038 2019

123

https://www.manythings.org/bilingual/
https://github.com/DataSystemsGroupUT/DLBench
https://github.com/baidu-research/DeepBench

deep learning frameworks including Caffe, MXNet,

TensorFlow and Troch on the ILSVRC-2012 dataset

which is a subset of the ImageNet dataset, however, this

study lacks the empirical evaluation for the frameworks

used. Liu et al. [27] evaluated five deep learning frame-

works including Caffe2
4, Chainer, Microsoft

Cognitive Toolkit (CNTK), MXNet, and Ten-

sorflow across multiple GPUs and multiple nodes on two

datasets, CIFAR-10 and ImageNet. Shi et al. [42] bench-

marked several deep learning frameworks including

TensorFlow, Caffe, CNTK, and Torch on CPU and

GPU with the main focus on the running time performance

with three different types of neural networks including

feed-forward neural networks (FCNs), convolutional neural

networks (CNNs) and recurrent neural networks (RNNs).

Thus, to the best of our knowledge, our study is the first

study to benchmark six popular deep learning frameworks

(TensorFlow, MXNet, PyTorch, Theano, Chainer and

Keras) from different performance aspects including

accuracy, modeling time and resource consumption on both

of CPU- and GPU-based environments. Some recent

efforts [40, 54] provide end-to-end DL benchmarking by

considering only the training phase or a particular DL task,

however, no study considers a holistic approach to study

the impact of hardware configurations, and default hyper-

parameters on the performance of DL frameworks on dif-

ferent deep learning architectures with respect to both

accuracy, training time, and resource consumption.

3 Reference deep learning frameworks

As deep learning techniques have been gaining increasing

popularity, a lot of academic and industrial organizations

(e.g., Berkeley Vision and Learning Center, Facebook AI

Research, Google Brain) have focused on developing

frameworks to enable the experimentation of with deep-

neural networks in a user-friendly way. Most of the deep

learning frameworks such, as PyTorch, Torch, Caffe,

Keras, TensorFlow, Theano, and MXNet adopt a

similar software architecture and provide APIs to allow

users to easily configure deep neural network models. Most

of the current deep learning frameworks are implemented

on the top of widely used parallel computing libraries such

as OpenBlas [52], cuBLAS [32], NCCL [32] and

OpenMP [13]. Most of the deep learning frameworks offer

some of the well-known neural networks models such

AlexNet [26] and VGG [43] and Resnet [17] as user-con-

figurable options. In this section, we give an overview on

the frameworks considered in this study.

3.1 TensorFlow

TensorFlow
5 is an open source library for high-perfor-

mance computation and large-scale machine learning

across different platforms including CPU, GPU and dis-

tributed processing [1]. TensorFlow, developed by Google

Brain team in Google’s AI organization, was released as an

open source project in 2015. It provides a data flow model

that allows mutable state and cyclic computation graph.

TensorFlow supports different types of architectures due to

its auto differentiation and parameter sharing capabilities.

TensorFlow supports parallelism through the parallel exe-

cution of data flow graph model using multiple computa-

tional resources that collaborate to update shared

parameters. The computation in TensorFlow is modeled as

directed acyclic graph where nodes represent operations.

Values that flow along the edges of the graph are called

Tensors that are represented as a multi-dimensional array.

An operation can take zero or more tensors as input and

produce zero or more tensors as output. An operation is

valid as long the graph which the operation is part of is

valid.

3.2 MXNet

MXNet
6 is an open source deep learning framework

founded as a collaboration between Carnegie Mellon

University, Washington University and Microsoft. It is a

scalable framework that allows training deep neural net-

works using different programming languages including

C??, Python, MATLAB, JavaScript, R, Julia and, Scala.

MXNet supports data-parallelism on multiple CPUs or

GPUs and allows model-parallelism as well. MXNet sup-

ports two different modes of training; synchronous and

asynchronous training [8]. MXNet provides primitive fault

tolerance operations through save and load: save stores the

model’s parameters to a checkpoint file and load restores

the model’s parameters from a checkpoint file. MXNet

supports both declarative programming and imperative

programming.

3.3 Theano

Theano
7 is an open source Python library for fast large-

scale computations that can run on different computing

platforms including CPU and GPU [7]. Theano has been

developed by researchers and developers from Montreal

University. Theano is a fundamental mathematical

expression library that facilitates building deep learning

4 https://caffe2.ai/.

5 https://www.tensorflow.org/.
6 https://mxnet.apache.org/.
7 https://deeplearning.net/software/theano//.

2020 Cluster Computing (2021) 24:2017–2038

123

https://caffe2.ai/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://deeplearning.net/software/theano//

models. Different libraries have been developed on the top

of Theano such as Keras which is tailored for building deep

learning models and provides the building blocks for effi-

cient experimentation of deep learning models. Computa-

tions in Theano are expressed using Numpy-esque syntax.

Theano works by creating a symbolic representation of the

operations which are translated to C?? and then compil-

ing them into dynamically loaded Python molecules.

Theano supports both data parallelism and model

parallelism.

3.4 PyTorch

PyTorch
8 has been introduced by Facebook’s AI research

group in October 2016 [35]. PyTorch is a Python-based

deep learning framework which facilitates building deep

learning models through an easy to use API. Unlike most of

the other popular deep learning frameworks, which use

static computation graphs, PyTorch uses dynamic compu-

tation, which allows greater flexibility in building complex

architectures.

3.5 Chainer

Chainer
9 is an open-source deep learning framework,

implemented in Python. The development of Chainer is led

by researchers and developers from Tokyo University [46].

Chainer provides automatic differentiation APIs for

building and training neural networks. Chainer’s approach

is based on the ‘‘define-by-run’’ technique which enables

building the computational graph during training and

allows the user to change the graph at each iteration.

Chainer is a flexible framework as it provides an impera-

tive API in Python and NumPy. Both CPU and GPU

computations are supported by Chainer.

3.6 Keras

Keras
10 is an open source neural networks framework

developed by François Cholle, a member of the Google AI

team. Keras is considered as a meta-framework that

interacts with other frameworks. In particular, it can run on

the top of TensorFlow and Theano [7]. It is implemented in

Python and provides high-level neural networks APIs for

developing deep learning models. Instead of handling low-

level operations (differentiation and tensor manipulation),

Keras relies on a specialized library that serves as its back-

end engine. Keras minimizes the number of actions

required by a user for a specific action. An important

feature of Keras is its ease of use without sacrificing

flexibility. Keras enables the users to implement their

models as if they were implemented on the base frame-

works (such as TensorFlow, Theano, MXNet).

Table 1 summarizes the main features of the frame-

works under test in our study.

4 Experimental setup

In this section, we start by introducing the reference

models and datasets used for CNN, LSTM, and Faster

R-CNN. Next, we describe the hardware and software

resources used for conducting the experiments. Finally, we

introduce the metrics used to evaluate the performance of

the deep learning models.

4.1 Reference models and datasets for CNN

We selected the most popular datasets used in different

deep learning tasks. For CNNs, we selected four different

datasets: MNIST, CIFAR-10, CIFAR-100 and SVHN.

Figure 2 shows the architecture of the CNN associated with

each of MNIST, CIFAR-10, CIFAR-100 and SVHN. The

description of each dataset and the structure of its associ-

ated CNN model is detailed as follows.

MNIST The MNIST Dataset contains 70,000 images of

handwritten digits. The training set consists of 60,000

examples (86% of the original dataset) while the test set

consists of 10,000 examples (14% of the original dataset).

The dataset has 10 classes, the 10 numerical digits. The

CNN model structure of the MNIST dataset (Fig. 2a)

consists of two consecutive conv2D layers, having 32 and

64 filters respectively, with ReLU activation function.

Next, we added a max-pooling layer followed by

dropout layer (keep-prob ¼ 0:75). Then we used a layer

to flatten the data. In order to have a densely-connected NN

layer, we used a dense layer. In order to reduce the

overfitting, we used another dropout layer

(keep-prob ¼ 0:5). Finally, we used a dense layer with 10

outputs to represent labels with a softmax activation

function. The network is trained for 15 epochs.

CIFAR-10 The dataset consists of 60,000 colour images

in 10 classes, with 6000 images per class. The 10 different

classes represent airplanes, cars, birds, cats, deer, dogs,

frogs, horses, ships, and trucks. The training set consists of

50,000 examples (83% of the original dataset) while the

test set consists of 10,000 examples (17% of the original

dataset). The architecture of the chosen CNN model

(Fig. 2b) consists of two consecutive conv2D layers

having 32 filters with ReLU activation function followed

by a maxpooling layer and dropout layer

(keep-prob ¼ 0:75). In addition, another two consecutive

8 https://pytorch.org/.
9 https://chainer.org/.
10 https://keras.io/.

Cluster Computing (2021) 24:2017–2038 2021

123

https://pytorch.org/
https://chainer.org/
https://keras.io/

conv2D layers having 64 filters with RELU activation

function were added, followed by a maxpooling layer

and dropout layer (keep-prob ¼ 0:75). A flatten layer

followed by a dense layer having ReLU as the activation

function was used. The last layers used were a dropout

(keep-prob ¼ 0:5) layer followed by a dense layer having

a softmax activation function. The network is trained for

100 epochs.

CIFAR-100 This dataset is just like the CIFAR-10,

except that it consists of 60,000 colour images in 100

classes, with 600 images per class. The 100 classes in the

CIFAR-100 are grouped into 20 superclasses. For example,

the classes aquarium fish, flatfish, ray, shark, trout all

belong to the superclass fish. The training set consists of

50,000 examples (83% of the original dataset) while the

test set consists of 10,000 examples (17% of the original

dataset). The architecture of the chosen CNN model

(Fig. 2c) consists of two consecutive conv2D layers

having 128 filters with ReLU activation function, followed

by a maxpooling layer and dropout layer

Table 1 Summary of the main properties of the deep learning frameworks used our study as of 4/12/2019

TensorFlow Keras PyTorch MXNet Theano Chainer

Release date 2016 2015 2017 2015 2010 2015

Core language C?? Python, R C??, Python C?? C?? Python

API C??, Python Python Python C??, Python, R Scala, Clojure

Javascript, Web-UI

Python Python

Data parallelism U U U U U U

Model parallelism U U U U U U

Programming

paradigm

Imperative Imperative Imperative Imperative declarative Imperative Imperative

Fault tolerance Checkpoint-and

-recovery

Checkpoint-

and -resume

Checkpoint-

and -resume

Checkpoint-and -resume Checkpoint-

and -resume

Checkpoint-

and -resume

Multi GPU U U U U U U

Popularity (# stars

on Github)

138k 45.8k 34.2k 18.1k 9k 5.2k

Fig. 2 The architecture of the CNN used with each of MNIST, CIFAR-10, CIFAR-100 and SVHN

2022 Cluster Computing (2021) 24:2017–2038

123

(keep-prob ¼ 0:9). Next, another two consecutive conv2D

layers having 256 filters with RELU activation function

were used. Next, a maxpooling layer and dropout

layer (keep-prob ¼ 0:75) was added. Then, we add another

two consecutive conv2D layers having 512 filters with

RELU activation function, followed by a maxpooling

layer and dropout layer (keep-prob ¼ 0:5). After that,

we used a flatten layer followed by a dense layer

having ReLU as the activation function. The last layers

used were dropout (keep-prob ¼ 0:5) layer followed by

a dense layer having softmax activation function. The

network is trained for 200 epochs.

SVHN It is a dataset for Street View House Numbers.

The dataset contains 10 classes with a total of 99,289

images in which 73,257 digits (74% of the original dataset)

are used for training and 26,032 digits (26% of the original

dataset) are used for testing. The architecture of the model

for this dataset (Fig. 2d) consists of a conv2D layer,

having 48 filters with ReLU activation function, max-

pooling layer and dropout layer (keep-prob ¼ 0:8).

After that, there exists 7 blocks each of which consists of a

conv2D layer with filters (64,128,160,192,192,192,192)

followed by ReLU activation and a maxpooling layer

followed by a dropout layer (keep-prob ¼ 0:8). Finally,

we used a dense layer with ReLU, dropout

(keep-prob ¼ 0:5) and a dense layer having a softmax

activation function. The network is trained for 100 epochs.

4.2 Reference models and datasets for LSTM

Figure 3 shows the architecture of the LSTM model

associated with each of IMDB Reviews, Penn Tree-

bank, and Many things: English to Spanish.

The description of each dataset and the structure of its

associated LSTM model is detailed as follows.

IMDB Reviews This is a dataset for binary sentiment

classification. This dataset is intended to serve as a

benchmark for sentiment classification. The training data-

set contains 25,000 highly polar movie reviews (50% of the

original dataset), and the testing dataset contains 25,000

reviews (50% of the original dataset). A review is encoded

as a sequence of word indexes (integers) by overall fre-

quency in the dataset (Fig. 3a). All sequences are padded to

a length of 500 with a vocabulary size trimmed to 5000.

The network architecture used on this dataset consists of an

embedding of size 32, LSTM with hidden size 100 for

processing sentences and a dense layer to take in the last

hidden state of LSTM and produce a single sigmoid

activation. It is also important to supply actual lengths of

padded sequences into the LSTM, so that the last state is

not diminished by the paddings at the end of a sequence.

The network is trained for 50 epochs with the Adam

optimizer, learning rate 10�3 and a batch size 64.

Penn Treebank The dataset is large and diverse and

contains one million words from Wall Street Journal. The

words are annotated in Treebank II style which encodes

them to a tree based structure giving their syntactic and

semantic relevance. The dataset is commonly used for the

language modeling task, where the goal is to learn a

probabilistic model for generating text based on previous

words. The training dataset contains 1,088,220 examples

(92% of the original dataset), and the testing dataset con-

tains 59,118 examples (8% of the original dataset). The

architecture used on this dataset (Fig. 3b) consists of an

embedding of size 128, two LSTM layers with hidden

size of 1024, a Dropout layer with rate 0.5 and a Dense

Fig. 3 The architecture of the LSTM used with each of IMDB Reviews, Penn Treebank and Many things: English to Spanish

Cluster Computing (2021) 24:2017–2038 2023

123

layer with softmax activation over the vocabulary

dimensionality to predict the next word at each timestep.

The model is optimized for 50 epochs using the Ada-

delta optimizer and a batch size 20.

Many things: English to Spanish The dataset contains

100,000 sentence pairs in English and Spanish from the

Tatoeba Project. This project consist of a large database of

example sentences translated into many languages. Those

translations have been prepared by native speakers of their

respective languages, so most of the sentences are error-

free. The training dataset contains 80,000 examples (80%

of the original dataset), and the testing dataset contains

20,000 examples (20% of the original dataset). The

machine translation task is a sequence-to-sequence gener-

ation task, in which the encoder-decoder architecture is

used for the task. The architecture used (Fig. 3c) consists

of two Input layers, two embedding layers of size 256,

two LSTM layers with hidden size of 256, and dense layer

with softmax activation over the vocabulary dimen-

sionality to predict the next word at each time step. The

model is optimized for 100 epochs using the AdamDelta

optimizer and the batch size is 128.

4.3 Reference model and dataset for regional-
CNN

For the regional-CNN, we used Faster R-CNN [37] on

VOC2012 dataset.

VOC2012 This dataset contains the data from the

PASCAL Visual Object Classes Challenge 2012 corre-

sponding to the Classification and Detection competitions.

The dataset contains 11,540 images where each image

contains a set of objects, out of 20 different classes. In the

classification task, the goal is to predict the set of labels

contained in the image. The training dataset contains 5717

examples (50% of the original dataset), and the testing

dataset contains 5823 images (50% of the original dataset).

For this datset, we use Faster R-CNN which consists of two

stages. In the first stage, the input images are processed

using the feature extractor. The result of this process is a

map of features that is fed to the next stage in which it

consists of two main networks. The first one is the RPN,

which is mainly responsible for generating regions (called

a region proposal), on the basis of which the second net-

work performs structure detection. This is directed at those

regions that most likely contain objects. The ReLU acti-

vation function was used in order to train Faster R-CNN.

The network is trained for 100 epochs with Adam opti-

mizer and learning rate of 10�4. We also use a weight

decay parameter of 5� 10�4. We use ResNet-50 [17] as a

feature extractor.

4.4 Hardware and Software Resources

We conducted our experiments on two hardware environ-

ments: a CPU environment and a GPU environment. The

CPU environment runs on CentOS release 7.5.1804 with a

total of 64 cores of Intel Xeon Processor (Skylake, IBRS)

@ 2.00GHz;240 GB DIMM memory; and 240 GB SSD

data storage. The GPU experiments are performed on a

single machine running on Debian GNU/Linux 9 (stretch)

with an 8 core Intel(R) Xeon(R) CPU @ 2.00GHz; NVI-

DIA Tesla P4;36 GB DIMM memory; and 300 GB SSD

data storage. ’psutil’ library of Python along with ’sub-

process’ and ’memory-profiler’ python modules were used

for monitoring and logging the system resource utilization

values of the experiments. For all DL frameworks, we used

CUDA 10.0, and cuDNN 7.3. All the frameworks have been

used with their default configuration settings. Table 2 lists

the versions of the deep learning frameworks considered in

this study on both the CPU and GPU environments.

4.5 Evaluation metrics

We introduce the metrics we used to evaluate the perfor-

mance of the different deep learning models.

• Training time It is the time spent on building a DNN

model over the training dataset through an iterative

process.

• Prediction accuracy The accuracy metric measures the

utility of the trained DNN model at testing phase.

• CPU utilization This metric quantifies how frequently

CPU is utilized during the training of the deep learning

models. This utilization is measured as the average

utilization of all CPU cores as shown in Eq. (1). The

higher the value of the average utilization, the higher

CPU utilization is during the training of a deep learning

model.

CPUAvgUtilization ¼

Pn
i ðCPUCoreUtilization

iÞ

n
ð1Þ

where n is the total number of CPU cores for training a

deep learning model, i is the index of the CPU core, and

CPUCoreUtilization is the utilization of a single CPU core

and is defined in Eq. (2).

CPUCoreUtilization ¼
TC
active � 100

Ttotal
% ð2Þ

In Eq. (2), Ttotal denotes the total training time, and

TC
active indicates the active time of the CPU core.

• GPU utilization This metric quantifies how frequently

GPU is utilized during the training of deep learning

models. This metric is defined in Eq. (3).

2024 Cluster Computing (2021) 24:2017–2038

123

GPUUtilization ¼
TG
active � 100

Ttotal
% ð3Þ

where TG
active indicates the active time of the GPU.

• Memory usage This metric is defined as the average

memory usage during the training process.

5 Experimental results

Our experiments aim to examine the following: (1) the

impact of the default configuration on the time and accu-

racy of each DL framework using different DL architec-

tures on different datasets, (2) how well each DL

framework utilize resources using different deep learning

architectures on both GPU and CPU environments. The

Wilcoxon signed-rank test [50] was conducted to deter-

mine if a statistically significant difference in terms of

accuracy, training time and resource consumption exists

between the different DL frameworks. We present the

experimental results in two subsections; CPU results and

GPU results on different datasets using different deep

learning architectures. We mainly focus on accuracy, run-

ning time, convergence and resource consumptions. For the

CPU-based experiments on CNN, we use only three data-

sets: MNIST, CIFAR-10, and CIFAR-100. We excluded the

SVHN dataset from the CPU-based experiments as all

frameworks spent more than 24 h for processing its asso-

ciated model. For the GPU-based experiments on CNN, we

used the four datasets: MNIST, CIFAR-10, CIFAR-100,

and SVHN. For both CPU and GPU experiments on LSTM,

we used IMDB Reviews, Penn Treebank, and Many things:

English to Spanish datasets. For both CPU and GPU

experiments on Faster R-CNN, we used VOC2012. In

practice, the processing time and accuracy can be slightly

different from one run to another based on the random

initialization technique used by the DL framework. Thus,

we conducted 5 runs for each experiment where the

reported results represent the average of them. Due to

space limitation, we report here the most important results

of our experiments. For the detailed results, we refer the

readers to our project repository.

5.1 Accuracy

Figure 4 shows the testing accuracy of six deep learning

frameworks using their own default configuration on CNN

and LSTM architectures. Results show that there is no

single deep learning framework outperforms the accuracy

of all other frameworks across all datasets on different DL

architectures. For CNN on MNIST, all the deep learning

frameworks achieve comparable accuracy around 98%

except Chainer achieves 96.4%. For CNN on MNIST,

the differences in accuracy between all frameworks are not

statistically significant. For CIFAR-10 dataset, Ten-

sorFlow, Keras, MXNet and Theano come in the first

place achieving a comparable accuracy of 80%, followed

by Chainer (73%), while PyTorch comes in the last

place (72%), as shown in Fig. 4a. For CNN on CIFAR-10,

the differences in accuracy between Keras, Ten-

sorFlow, MXNet, and Theano are not statistically sig-

nificant, while the differences in accuracy between each of

PyTorch and Chainer and the rest of the frameworks

are statistically significant with more than 95% level of

confidence (p value \0:05). For CIFAR-100, Keras

achieves the highest accuracy of 53.8% for 200 epochs

with 24 h time limit, while Chainer achieves the lowest

accuracy of 28.3% on CNN architecture, as shown in

Fig. 4a. For CNN on CIFAR-100, the differences in accu-

racy between all frameworks except between Ten-

sorFlow and MxNet are statistically significant with

more than 95% level of confidence (p value \0:05). For

LSTM on IMDB Reviews, Keras, Pytorch, Ten-

sorFlow, Chainer and MXNet achieve comparable

accuracy (between 87 and 88%), while Theano achieves

the lowest accuracy of 50%, as shown in Fig. 4b. For

LSTM on IMDB Reviews, the differences in accuracy

between Theano and the rest of the frameworks are sta-

tistically significant with more than 95% level of confi-

dence (p value \0:05), while the differences in accuracy

between the rest of the frameworks are not statistically

significant. All frameworks on Penn Treebank dataset

achieve a comparable low performance between 17 and

21.7%, as shown in Fig. 4b. For Penn Treebank on LSTM,

the differences in accuracy between MXNet and the rest of

the frameworks are statistically significant with more than

Table 2 The versions of deep

learning frameworks included in

this study on CPU and GPU

environments

Framework CPU version GPU version

TensorFlow 1.11.0 1.11.0

Keras 2.2.4 on TensorFlow version 1.11.0 2.2.4 on TensorFlow version 1.11.0

PyTorch 0.4.1 0.4.1

MXNet 1.3.0 1.3.0

Theano 1.0.2 1.0.2

Chainer 4.5.0 4.5.2

Cluster Computing (2021) 24:2017–2038 2025

123

95% level of confidence (p value \0:05), while the dif-

ferences in accuracy between the rest of the frameworks

are not statistically significant. For Many things dataset,

Chainer achieves the highest accuracy of 99.7% while

Keras achieves the lowest accuracy of 73.3% on LSTM

architecture. For Many things on LSTM, the differences in

accuracy between all frameworks are statistically signifi-

cant with more than 95% level of confidence (p value

\0:05). For Faster R-CNN, TensorFlow, MXNet, and

Theano achieve comparable accuracy of 63%, while

Keras and Chainer achieve accuracy of 62% and 53%,

respectively. Pytorch achieves the lowest accuracy of

51%. For Faster R-CNN architecture on VOC2012, the

differences in accuracy between each of PyTorch and

Chainer and the rest of the frameworks are statistically

significant with more than 95% level of confidence (p value

\0:05). The differences in accuracy between Keras,

TensorFlow, MXNet, and Theano are not statistically

significant.

In summary, all deep learning frameworks achieve the

highest accuracy on the sparse gray-scale MNIST dataset

due to its low entropy that allows the deep learning

frameworks to be able to learn easier. On average, the

default setting of Keras on the CNN architecture achieves

relatively higher performance than the default setting of the

other frameworks. On average, such difference in accuracy

between Keras and other frameworks on the CNN

architecture is not statistically significant. On average, the

default configuration of Chainer on LSTM architecture

achieves better performance than the configuration of the

other frameworks. On average, the difference in accuracy

between Chainer and other frameworks on the LSTM

architecture is statistically significant with more than 95%

level of confidence (p value \0:05).

5.2 Training time

Figure 5 shows the training time of six deep learning

frameworks using their own default configuration on CNN

and LSTM architectures. Figure 5a shows that Chainer

has the highest training time across all the datasets on

CNN. Chainer takes 1 h and 30 min on MNIST, 13 h and

44 min on CIFAR-10 and more than 24 h on CIFAR-100.

The differences in training time between Chainer and all

other frameworks on the CNN architecture are statistically

significant with almost 100% level of confidence. Keras

has the smallest training time on MNIST (6 min), CIFAR-

10 (1 h and 12 min) and CIFAR-100 (5 h and 48 min) on

CNN architecture. Such difference in training time between

Keras and the rest of the frameworks on the CNN

architecture are statistically significant with almost 99%

level of confidence. TensorFlow spent the second

smallest running time on the CNN architecture across all

datasets. Such difference in training time between Ten-

sorFlow and the rest of the frameworks on the CNN

architecture are statistically significant with almost 99%

level of confidence. For the LSTM architecture, Ten-

sorFlow takes the smallest training time on Penn Tree-

bank and Many things. For the LSTM architecture, the

differences in training time between TensorFlow and the

rest of the frameworks on Penn Treebank and Many things

are statistically significant with almost 100% level of

confidence except for the differences between PyTorch

and the rest of the frameworks on Many things which are

not statistically significant. Both Pytorch and Ten-

sorflow show similar training time on IMDB Reviews

dataset (around 4 h) on the LSTM architecture. Theano

has the longest training time on LSTM across all the

datasets (11 h and 6 min on IMDB Reviews, more than 24 h

on both Penn Treebank and Many things). Such differences

in training time between Theano and the rest of the

frameworks on the LSTM architecture are statistically

significant with almost 100% level of confidence. For the

Faster R-CNN on VOC2012, the training time of Keras,

Chainer, and Pytorch takes more than 24 h. The

training time of MXNet is 21 h and 5 min while and

TensorFlow 19 h and 7 min. For the Faster R-CNN, the

differences in training time between all frameworks except

Fig. 4 Accuracy of deep learning frameworks across different datasets on CPU environment using CNN and LSTM architectures

2026 Cluster Computing (2021) 24:2017–2038

123

between TensorFlow are the rest of the frameworks are

not statistically significant.

In summary, we conclude that longer training time by

DL frameworks does not necessarily contribute to better

accuracy. For example, for both CNN and Faster R-CNN,

Chainer spent the longest training while achieves con-

siderable lower performance than other frameworks, such

as TensorFlow. Also, Keras spent the smallest training

time on CNN while on average achieves higher accuracy

than other framework on CNN.

5.3 Resource consumption

Figure 6 shows the mean CPU consumption for different

frameworks on CNN and LSTM architectures during

training at 1-s interval. For the CNN architecture, the

results show that MXNet has the lowest CPU usage across

all the datasets, while Pytorch has the highest CPU

usage on MNIST and CIFAR10 and Keras has the highest

CPU usage on CIFAR100. Theano has the second lowest

CPU consumption on MNIST and CIFAR10 while

Chainer has the second lowest on CIFAR100, as shown

in Fig. 6a. For CNN architecture, the differences in CPU

consumption between all frameworks on all datasets are

statistically significant with more than 95% level of con-

fidence (p value \0:05). For the LSTM architecture,

Theano has the lowest CPU usage on Many things and

IMDB Reviews datasets, while Keras has the lowest CPU

consumption on Penn Treebank. Pytorch has the highest

CPU consumption on Penn Treebank and IMDB Reviews,

while Keras has the highest CPU consumption on Many

things, as shown in Fig. 6b. For LSTM, the differences in

CPU consumption between all frameworks on all datasets

are statistically significant with more than 95% level of

confidence (p value \0:05) except the difference between

Chainer and MXNet on Penn Treebank which is not

significant. For Faster R-CNN, the mean CPU consumption

during training at 1-s for different frameworks is shown in

Fig. 7a. Pytorch has the highest memory consumption

while MXNet has the lowest memory consumption. For

Faster R-CNN, Keras, TensorFlow, and Theano have

comparable memory consumption as shown in Fig. 7a. For

Faster R-CNN, the differences in CPU consumption

between all frameworks are statistically significant with

more than 95% level of confidence (p value \0:05).

Figure 8 shows the memory consumption for different

frameworks on CNN and LSTM architectures. Tensor-

flow has the highest memory consumption across all

datatsets on CNN architecture, while MXNet has the lowest

memory consumption on CIFAR10 (403MB)and

CIFAR100 (751MB), as shown in Fig. 8a. For CNN

architecture, Keras, Chainer, and Theano have com-

parable memory consumption across all the datasets. For

LSTM architecture, Chainer has the lowest memory

consumption on Penn Treebank (396.2MB) and Many

things (1065.4MB), as shown in Fig. 8b. For LSTM

architecture, Pytorch and Chainer have comparable

memory consumption on IMDB Reviews and Penn

Fig. 5 Training time of deep

learning frameworks across

different datasets on CPU

environment using CNN and

LSTM architectures

Fig. 6 Mean CPU consumption

of the different deep learning

frameworks on CPU

environments using CNN and

LSTM architectures

Cluster Computing (2021) 24:2017–2038 2027

123

Treebank. TensorFlow has the highest memory con-

sumption on Penn Treebank (1831.2MB), while Pytorch

has the highest memory consumption on Many things

(8647.8MB). It is notable that Theano has the highest

memory consumption on IMDB Reviews dataset; more than

50x the consumption of the second highest DL framework.

The main reason behind such huge memory consumption is

that Theano suffers from a memory leak problem and

amount of memory consumed increases significantly over

time during training. For Faster R-CNN, the memory

consumption for different frameworks is shown in Fig. 7b.

TensorFlow has the lowest memory consumption

(215GB), followed by Theano (217GB), while Chainer

and MXNet have a comparable memory consumption.

PyTorch has the highest memory consumption of 247GB,

as shown in Fig. 7b. For CNN, LSTM, and Faster R-CNN,

the differences in memory consumption between all

frameworks on all datasets are statistically significant with

more than 95% level of confidence (p value \0:05).

In Summary, we conclude that higher resource con-

sumption(CPU and memory) may not result in shorter

training time and better accuracy. For example, Pytorch

has the highest CPU consumption while comes in the third

place in terms of training time across most of the datasets

on CNN, LSTM, and Faster R-CNN architectures.

5.4 Convergence

Figure 9 shows the impact of varying the number of epochs

on the performance of the deep learning frameworks on the

CNN architecture. The results show that the testing accu-

racy increases as the number of epochs increases. For the

CNN architecture on MNIST dataset, PyTorch, Ten-

sorFlow, Theano, MXNet and Keras reach their peak

accuracy at around 12 to 14 epochs, while Chainer takes

larger number of epochs to reach its peak accuracy. For the

CNN architecture on CIFAR-10 dataset, PyTorch and

Chainer reach their peak accuracy at around 60 epochs,

while the rest of the frameworks reach their peak accuracy

between the 80th of 90th epochs. For the CNN architecture

on CIFAR-100 dataset, Keras and TensorFlow reach

their peak accuracy at around 80 epochs. Figure 10 shows

the impact of varying the number of epochs on the per-

formance of the deep learning frameworks on the LSTM

architecture. Overall, for PyTorch, TensorFlow,

Chainer, MXNet and Keras on IMDB Reviews, the

accuracy first increases rapidly to reach the peak value at

around 10th epoch and then stays stable or slightly drops

especially in MXNet. Figure 10a) shows that Theano

experiences more accuracy fluctuations with the peak

accuracy of 90% at the 19th epoch, followed by a signifi-

cant drop in the accuracy at the 20th epoch. Figure 10b

shows that on Penn Treebank, Theano, TensorFlow,

Chainer, MXNet and Keras reach their peak accuracy

between the 10th and 20th epochs, while PyTorch

Fig. 7 CPU and memory

consumption of the different

deep learning frameworks on

CPU environments using Faster

R-CNN architecture on

VOC2012

Fig. 8 Memory consumption of

the different deep learning

frameworks on CPU

environments using CNN and

LSTM architectures

2028 Cluster Computing (2021) 24:2017–2038

123

reaches its peak accuracy of 20% at 37th epochs. Fig-

ure 10c shows that on Many things, PyTorch, Ten-

sorFlow and Theano reach their peak accuracy at early

epochs (30th epoch), while Keras, MXNet and Chainer

reach their peak accuracy between the 60th and 80th

epochs. Figure 11 shows the accuracy converging curves

of VOC2012 for different deep learning frameworks on

Faster R-CNN architecture on the CPU environment. Fig-

ure 11 shows that PyTorch, TensorFlow, MXNet, and

theano reach their peak accuracy at around the 40th

epochs, while Keras and Chainer reach their peak

accuracy of 62% at the 37th epochs and 53% at the 20th

epochs, respectively after 24 h time limit.

In summary, we conclude that the impact of the number

of epochs on the CNN architecture confirms that the

training time is proportional to the number of the epochs

independently of the dataset or DL framework choices.

Generally for LSTM, CNN, and Faster R-CNN architec-

tures, increasing the number of epochs is associated with an

increase in model accuracy for most frameworks. However,

we noticed that no single framework is able to reach its

peak accuracy in earlier epochs than other frameworks

across all datasets using different architectures.

5.5 Results of GPU-based experiments

5.5.1 Accuracy

Figure 12 shows the testing accuracy achieved by the dif-

ferent deep learning frameworks on CNN and LSTM

architectures using GPU environment. As shown in

Fig. 12a, for the MNIST and SVHN datasets on the CNN,

all the deep learning frameworks achieve a comparable

accuracy of around 98% and 97%, respectively. ForMNIST

and CIFAR-10 on CNN, there is no notable accuracy

change from running on a CPU or GPU environment. For

Fig. 9 Convergence of CNN on CIFAR-10, CIFAR-100 and MNIST for deep learning frameworks running on CPU

Fig. 10 Convergence of LSTM on IMDB Reviews, Penn Treebank and Many things for deep learning frameworks running on CPU

Fig. 11 Convergence of VOC2012 for deep learning frameworks

running on CPU

Cluster Computing (2021) 24:2017–2038 2029

123

CIFAR-100 on CNN, MXNet outperforms all DL frame-

works by achieving an accuracy of 62.2% while Ten-

sorFlow achieves the lowest accuracy of 40.7%. For

CIFAR-100 on CNN, the differences in accuracy between

each of MXNet and TensorFlow and the rest of the DL

frameworks are statistically significant with more than 95%

level of confidence (p value\0:05). Figure 12b shows that

PyTorch, TensorFlow, Chainer, MXNet and

Keras on IMDB Reviews achieve comparable perfor-

mance of between 87 and 88%, while Theano achieve the

lowest accuracy of 50%. For IMDB Reviews on LSTM, the

differences in accuracy between Theano and the rest of

the frameworks are statistically significant with more than

95% level of confidence (p value \0:05), while the dif-

ferences in accuracy between the rest of the frameworks

are not statistically significant. All the frameworks achieve

comparable performance of 17% and 22% on the Penn

Treebank dataset, as shown in Fig. 12b. Chainer

achieves the highest accuracy of 99.7% on Many things

dataset, followed by Theano (96.4%) and PyTorch

(94.4%). For Many things on LSTM, the differences in

accuracy between Chainer and each of Theano and

PyTorch are not statistically significant, while the dif-

ferences in accuracy between Chainer and the rest of the

frameworks are statistically significant with level of con-

fidence between 97 and 99% (p value \0:05). Tensor-

flow achieves the lowest accuracy of 74.7% on Many

things, as shown in Fig. 12b. For Faster R-CNN, Ten-

sorFlow, MXNet, and Theano achieve comparable

accuracy of 63.3% and there is no notable accuracy change

from running on a CPU or GPU environment. Keras and

Chainer achieve accuracy of 63% and 59%, respectively,

while Pytorch achieves the lowest accuracy of 51.4%.

In summary, we conclude that there is no notable accu-

racy change from running on CPU or GPU environments

using LSTM, CNN, and Faster R-CNN architectures across

all datasets except CIFAR-100 and VOC2012. For CIFAR-

100 on CNN, we witnessed significant performance boost

with Chainer, MXNet, and Theano. For VOC2012 on

Faster R-CNN, we witnessed significant performance boost

with Chainer and Keras.

5.5.2 Training time

Figure 13 shows the training time of the different DL

frameworks on both CNN and LSTM architectures. For

MNIST on CNN, Chainer, Tensorflow and Keras

have comparable running times (1 min and 3 s), followed

by Theano, while MXNet has the longest training time (6

min and 33 s). The differences in training time between

MXNet and all other frameworks on the CNN architecture

are statistically significant with more than 95% level of

confidence (p value \0:05Þ. For MNIST, Chainer has

the highest running time speedup using the GPU over its

CPU-based performance, while PyTorch achieves the

smallest speedup. For CIFAR-10 on CNN, Chainer takes

the shortest training time (7 min and 42 s) followed by

Keras (10 min and 38 s). For CIFAR-10 on CNN, the

differences in training time between Keras, Tensor-

flow, Chainer, and Theano are not statistically signif-

icant, while the differences between each of PyTorch and

MXNet and the rest of the frameworks are statistically

significant with more than 95% level of confidence (p value

\0:05Þ. TensorFlow comes in the third place (10 min

and 46 s) while PyTorch comes in the last place (43 min

and 48 s). For CIFAR-10, Chainer gains the most ben-

efits from GPU acceleration, while PyTorch gains the

least. For CIFAR-100, Keras achieves the shortest train-

ing time (1 h and 47 min) followed by TensorFlow (1 h

and 48 min) while Theano comes at the last place (4 h and

42 min). For CIFAR-100 on CNN, the differences in

training time between Keras, Pytorch, TensorFlow,

and Chainer are not statistically significant, while the

differences between each of Theano and MXNet and the

rest of the frameworks are statistically significant with

more than 95% level of confidence (p value \0:05Þ.

For the LSTM architecture, Theano has significantly

shortened training time on GPU compared to CPU.

Theano is 11 times faster and more than 15 times faster

on IMDB Reviews and Penn Treebank using the GPU over

its CPU-based performance. Keras benefits the least from

using a GPU compared to other frameworks, as shown in

Fig. 13b. It is notable that the CPU training time of Keras

on IMDB Reviews is shorter than that using CPU and GPU.

Fig. 12 Accuracy of deep

learning frameworks across

different datasets on single GPU

using CNN and LSTM

architectures

2030 Cluster Computing (2021) 24:2017–2038

123

We observe a slight improvement using GPU over CPU on

Chainer by a factor of 1.5 times, more than 1.5 times and

more than 11 times on IMDB Reviews, Penn Treebank and

Many things, respectively, on LSTM. For the Faster R-

CNN on VOC2012, both PyTorch and TensorFlow

achieve the shortest training time of 6 h and 12 min, fol-

lowed by MXNet (7 h and 18 min), while Chainer comes

in the last place (21 h and 36 min). The differences in

training time between each of Tensorflow, Pytorch

and Chainer and the rest of the frameworks are statisti-

cally significant with more than 95% level of confidence (p

value \0:05Þ. Both of Keras and Theano have a

comparable training time of 9 h and 36 min. PyTorch

gains the most benefits from the GPU acceleration while

Chainer gains the least.

In summary, GPU acceleration shortens the training

time by an order of magnitude across most datasets on

CNN, Faster R-CNN, and LSTM architectures. However,

our empirical evaluation shows that in the case of Keras

on IMDB Reviews using LSTM, CPU without GPU out-

performs the CPU with GPU in terms of training time. This

observation shows the potential of better deep learning

frameworks for a specific hardware configuration platform

(CPU only or CPU with GPU).

5.5.3 Resource consumption

Figure 14 shows the mean GPU consumption for different

frameworks on CNN and LSTM architectures during

training at 1-s interval. The results show that Theano on

CNN has the highest GPU usage across all of the datasets

(Fig. 14a). The differences in GPU consumption between

Theano and the rest of the frameworks on CNN are sta-

tistically significant with more than 95% level of confi-

dence (p value \0:05Þ. PyTorch and MXNet on CNN

have comparable GPU usage on MNIST, CIFAR-10, and

SVHN. On CNN, PyTorch has the lowest GPU usage on

the MNIST dataset, followed by MXNet. For CIFAR-10

and CIFAR-100, MXNet has the lowest GPU usage. For

CIFAR-10 and CIFAR-100, the differences in GPU con-

sumption between MXNet and the rest of the frameworks

on CNN are statistically significant with more than 95%

level of confidence (p value \0:05Þ. For SVHN, Keras

has the lowest GPU usage, followed by TensorFlow. For

SVHN, the differences in GPU consumption between each

of Keras and TensorFlow and the rest of the frame-

works on CNN are statistically significant with more than

95% level of confidence (p value \0:05Þ. For the LSTM

architecture, Fig. 14b shows that Chainer has the lowest

GPU consumption on all datasets, while PyTorch has the

highest GPU consumption on Penn Treebank (91.6%) and

Many things (94.6%) and Theano has the highest con-

sumption on IMDB Reviews (66.6%). For LSTM on all

datasets, the differences in GPU consumption between

Chainer and the rest of the frameworks are statistically

significant with a level of confidence between 96 and 98%.

For LSTM, the differences in GPU consumption between

PyTorch and the rest of the frameworks on Penn Tree-

bank andMany things are statistically significant with more

than 95% level of confidence (p value \0:05Þ. For IMDB

Fig. 13 Training time of deep

learning frameworks included in

this study on different datasets

using CNN and LSTM

architectures on GPU

environment

Fig. 14 GPU consumption of

the different deep learning

frameworks on GPU

environment using CNN and

LSTM architectures

Cluster Computing (2021) 24:2017–2038 2031

123

Reviews on LSTM, the differences in GPU consumption

between Theano and the rest of the frameworks are sta-

tistically significant with more than 95% level of confi-

dence (p value\0:05Þ. Theano and TensorFlow have

comparable GPU consumption on the Penn Treebank

dataset of between 66 and 67%. Figure 16a shows the

mean GPU consumption for different frameworks on Faster

R-CNN architecture during training at 1-s interval. The

results show that PyTorch has the highest GPU con-

sumption (54%), followed by Chainer (52%), while

TensorFlow has the lowest GPU consumption (34%).

As shown in Fig. 16a, Keras and MXNet have compa-

rable GPU consumption of 47% and 46%, respectively.

The differences in GPU consumption between all frame-

works on Faster R-CNN are statistically significant with

more than 95% level of confidence (p value \0:05Þ.
Figure 15 illustrates the mean CPU consumption by the

different DL frameworks on the GPU environment. The

results show that on the CNN architecture, PyTorch has

the highest CPU usage across all the datasets on all the DL

frameworks, while TensorFlow has the lowest CPU

consumption, as shown in Fig. 15a. The differences in

CPU consumption between each of PyTorch and Ten-

sorFlow and the rest of the frameworks on CNN are

statistically significant with a level of confidence between

96 and 98%. For the LSTM architecture, MxNet has the

highest CPU consumption on the Penn Treebank and Many

things datasets, while TensorFlow has the highest CPU

consumption on IMDB Reviews (32.2%), as shown in

Fig. 15b. The differences in CPU consumption between

MxNet and the rest of the DL frameworks on Penn

Treebank and Many things and between TensorFlow

and the rest of the frameworks on IMDB Reviews are sta-

tistically significant with more than 95% level of confi-

dence (p value \0:05Þ. For the LSTM architecture,

Chainer has the lowest CPU consumption on IMDB

Reviews and Penn Treebank datasets, while PyTorch has

the lowest CPU consumption on Many things (1.5%), as

shown in Fig. 15b. For the LSTM architecture, the differ-

ences in CPU consumption between Chainer and the rest

of the DL frameworks on IMDB Reviews and Penn

Treebank and between PyTorch and the rest of the DL

frameworks on Many things are statistically significant

with more than 95% level of confidence (p value \0:05Þ.

Figure 16b shows the mean CPU consumption for different

frameworks on Faster R-CNN architecture during training

time at 1-s interval. The results show that the MXNet has

the highest CPU consumption (18%), followed by Keras

(14%) and TensorFlow (13%). PyTorch, Chainer,

and Theano achieve the lowest CPU consumption of

12%. For Faster R-CNN, the differences in the CPU con-

sumption between all frameworks are statistically signifi-

cant with more than 95% level of confidence (p value

\0:05Þ
Figure 17 shows the memory consumption of different

DL frameworks using both CNN and LSTM on GPU

environment. The results on CNN shows that Chainer

has the lowest memory consumption on MNIST, CIFAR-10

and CIFAR-100, while PyTorch has the lowest memory

consumption on SVHN (Fig. 17a). Such differences in

memory consumption between Chainer and the other DL

frameworks on MNIST, CIFAR-10, and CIFAR-100 and

between PyTorch and other DL frameworks on SVHN are

statistically significant with more than 95% level of con-

fidence (p value \0:05Þ. TensorFlow has the highest

memory consumption on MNIST, CIFAR-10, and CIFAR-

100, while TensorFlow and Keras have the highest

memory consumption on SVHN (Fig. 17a. For LSTM

architecture, Keras and TensorFlow have the highest

memory consumption across all the datasets, as shown in

Fig. 17b. The differences in the memory consumption

between each of Keras and TensorFlow and the rest of

the DL frameworks are statistically significant with more

than 95% level of confidence (p value \0:05Þ. Chainer

has the least memory consumption on IMDB Reviews,

while Theano has the least consumption on Penn Tree-

bank. The differences in memory consumption between

Chainer and the rest of the DL frameworks on IMDB

Reviews and between Theano and other DL frameworks

on Penn Treebank are statistically significant with more

than 95% level of confidence (p value \0:05Þ. Chainer
and MXNet have considerably low memory consumption

Fig. 15 Mean CPU

consumption of the different

deep learning frameworks on

GPU environment using CNN

and LSTM architectures

2032 Cluster Computing (2021) 24:2017–2038

123

on Many things (1.1GB). Figure 16c shows the memory

consumption of different DL frameworks using Faster R-

CNN on GPU environment. The results show that

Chainer has the lowest memory consumption of 729MB,

while Keras and TensorFlow have the highest memory

consumption of 7366MB and 7357MB, respectively. For

Faster R-CNN, the differences in the memory consumption

between all frameworks are statistically significant with

more than 95% level of confidence (p value \0:05Þ.

In summary, we conclude that the GPU utilization is

generally much higher than the CPU utilization. In most of

the times on the CNN architecture, the GPU utilization is

close to 100%, while each CPU core utilization ranges

from 9.3 to 23%. In addition, when the GPU utilization is

high, the CPU utilization tends to be low, and vice versa.

This indicates that the workload between the CPU and

GPU is not well balanced due to the lack of effective

coordination between them.

5.5.4 Convergence

Figure 18 shows the impact of increasing the number of

epochs on the performance of the DL frameworks on the

CNN architecture on the GPU environment. The results

show that the accuracy of PyTorch increases rapidly to

reach the optimal value earlier than other frameworks on

CNN. For MNIST, the results show that the accuracy of

Theano, MXNet, TensorFlow and Keras increase

gradually to achieve their peak accuracies at between the

12th and 14th epochs, as shown as shown in Fig. 18a. For

CIFAR-10, TensorFlow, Keras, Theano and MXNet

have comparable performance on achieving the peak

accuracy between the 80th and 90th epochs, as shown in

Fig. 18b. On CIFAR-100, all the frameworks achieve their

peak accuracy between the 60th and 75th epochs. For the

SVHN dataset, Keras, MXNet, Theano, TensorFlow

reaching their peak accuracy early between the 20th and

30th epochs, while PyTorch and Chainer experience

slight drops in the accuracy and reach their peak accuracy

between the 40th and 60th epochs. Figure 19 shows the

impact of increasing the number of epochs on the perfor-

mance of the DL frameworks on the LSTM architecture on

the GPU environment. The results show that the accuracy

of MXNet, Keras, TensorFlow, PyTorch, and

Chainer on the IMDB dataset increases rapidly and stays

stable or slightly drops, while Theano reaches a peak

accuracy of 85% and then experiences a significant drop in

the performance after the 20th epoch, as shown in Fig. 19a.

On the Penn Treebanks dataset, Theano, Chainer,

Keras, and TensorFlow achieve the comparable

accuracy of between 20 and 22% between the 10th and

20th epochs, while PyTorch takes longer epochs to reach

the peak accuracy of 20% between 35th and 40th epoch, as

shown in Fig. 19b. On the Many things dataset, PyTorch

Fig. 16 Mean CPU consumption, memory consumption, and GPU consumption of the different deep learning frameworks on GPU environment

using Faster R-CNN architecture

Fig. 17 Memory consumption

of the different deep learning

frameworks on GPU

environment using CNN and

LSTM architectures

Cluster Computing (2021) 24:2017–2038 2033

123

and Theano achieve the comparable peak accuracy of

between 94 and 96% at the 20th and 30th epochs, while

Keras and TensorFlow achieve the comparable accu-

racy of between 94 and 96%. Chainer get benefits from

the largest number of epochs to reach the highest accuracy

across all the frameworks of 99.7% at the 50th epochs, as

shown in Fig. 19c. Figure 20 shows the accuracy con-

verging curves for different deep learning frameworks on

Faster R-CNN architecture on GPU environment.

Figure 20 shows that Chainer reaches a peak accuracy of

59% at the 45th epochs and stays stable, while PyTorch

experiences significant performance jump after the 30th

epochs to reach a peak accuracy of 51.4% at the 48th

epochs. TensorFlow, Keras, MXNet, and Theano

achieve comparable peak accuracy of 63% at the 40th

epochs, as shown in Fig. 19..

In summary, the Pearson correlation coefficient [16]

between the number of epochs and the accuracy is 0.0005,

Fig. 18 Convergence of CNN on CIFAR-10, CIFAR-100 and MNIST for deep learning frameworks running on CPU

Fig. 19 Convergence of LSTM on IMDB Reviews, Penn Treebank and Many things for deep learning frameworks running on GPU

2034 Cluster Computing (2021) 24:2017–2038

123

which indicates that there is no linear relationship between

the number of epochs and the accuracy. The results on

CNN, Faster R-CNN, and LSTM indicate that the training

accuracy curve along the number of epochs is almost the

same on both CPU and GPU environments.

5.6 Lessons learned

In this section, we report some of the lessons that we have

learned during our benchmarking study.

TensorFlow provides the user with the ability to

structure every single detail about the neural network lay-

ers, TensorFlow is considered as a low-level library. It

provides more control over all the layers of the network. It

has many advanced operations compared to others. In order

to load a dataset, we have to do it by ourselves as it does

not have a data loader. Building a model using Ten-

sorFlow is complex and requires the user to go deep into

the details of the layers and to structure the dataset. In

addition, the user has to explicitly state the bias, weight and

input shape of each layer. One of the main limitations we

noticed is that we have to write many lines of code com-

pared to the other frameworks. On the other side, Ten-

sorFlow has a comprehensive documentation set.

Theano configuration is not straightforward. Manual

configurations need to be made separately for CPU and

GPU based experiments. These configurations range from

setting GPU flags, GPU id, path to g?? (C?? compiler)

etc. These configurations are specified in the ’.theanorc’

file. Besides Theano installation there is a compatible

version of Lasagne which is a dedicated wrapper library

for building and training neural networks on top of

Theano. In Lasagne, we used pickle to load the

datasets but there exists a library that is easier to get the

datasets, named sklearn. Theano has good documen-

tation that provides examples for using every function in

the library. Lasagne enables the user to create a custom

layer. Many steps needs to be manually managed during

the installation for Theano and Lasagne especially for

the GPU environment.

PyTorch is available through Conda and has a smooth

installation. PyTorch allows us to manipulate tensors,

exchange them easily withNumPy and perform efficient CPU

or GPU calculations and to calculate gradients to apply gra-

dient-based optimization algorithms. PyTorch is a com-

prehensive package containing many sub-packages and most

functionalities required in most Machine Learning tasks.

Hence, having PyTorch alone is sufficient for most Deep

Learning tasks and does not require supplementary packages.

PyTorch has a utils package that contains an effective

data loader to load the datasets. It also has a package called

torchvision which contains the popular datasets such as

MNIST, CIFAR10, SVHN, and others. We used a trans-

form parameter in the data loader which allows us to nor-

malize the datasets. Instead of building a model architecture,

PyTorch provides the definition for some models such as

Resnet, Densenet, Resnet among many others.

MXNet is easy to set-up and has separate installations for

CPU and GPU. The GPU versions comes bundled with

CUDA, cuDNN.MXNet alsomakes it easier to track, debug,

save checkpoints,modify hyper-parameters, such as learning

rate or perform early stopping.MXNet supports C?? for the

optimized backend to get the most of the GPU or CPU

available. For the building and training neural networks,

scripting options range from Python, R, Scala to JavaScript

for user convenience. MXNet has a simple API called

Gluon for deep learning that contains the most known deep

learning datasets as MNIST, CIFAR10, and CIFAR100. For

example, it provides the Mxnet.gluon.-

data.DataLoader method that has an interesting

parameter last batch, which handles the last batch.

Chainer is straight-forward to setup as it is available via

pip, however, running models on GPU requires the

installation of a separate package called CuPy. This

package enables CUDA support. In essence, Chainer is

written purely in Python on top of NumPy and CuPy

Python libraries. In our experience, Chainer has been a

convenient and easy to use tool in terms of building and

training neural networks. Chainer supports getting sev-

eral datasets including MNIST, CIFAR10, and SVHN.

Chainer has a dataset iterator to loop over the dataset

whether in an ordered index or using shuffled order.

Chainer has many examples of neural nets such as CNN,

RNN, DGGAN, and others.

Keras relies on the TensorFlow backend. Like

TensorFlow it needs to be installed separately for GPU

and CPU and is available from Conda as well. In our

experience it has been user friendly, modular, and exten-

sible. Keras is an all-inclusive tool and carries a vast

Fig. 20 Convergence of Faster R-CNN on VOC2012 for deep

learning frameworks running on GPU

Cluster Computing (2021) 24:2017–2038 2035

123

array of functionalities that makes it easy to develop

models via scripting. It requires relatively fewer lines of

code. Keras has a comprehensive and easy to follow

documentation. Keras has strong built-in functionalities

for monitoring training progress and implementing metrics

such as the accuracy metric. The layers provided by

Keras cover almost all requirements to build a specialized

neural network. In addition, Keras provides a variety of

layers to customize your own model. Furthermore, there

are many tutorials and resources that could help in

designing deep learning models. We used a sequential

model which is a linear stack of layers. We used RELU and

softmax activation layers that have already been imple-

mented. For Model optimization, which is one of the two

arguments that are required in order to be able to compile

any Keras model, we used the stochastic gradi-

ent descent optimizer which includes support for

momentum, learning rate decay, and Nesterov momentum.

The loss function is the second parameter that is used for

compilation. As we are targeting a model for categorical

classes, we used categorical crossentropy to

obtain the target for each image which should be a 10-di-

mensional vector that is all-zeros except for a one at the

index corresponding to the class of this image. Keras

supports MSE, hinge, logcosh, and many other loss

functions.

Recently, the DATA Lab at Texas A&M University

released Auto-Keras11 as an open source software library

that attempts to automatically search for the architecture

and hyperparameters of deep learning models. In order to

evaluate this library, we have conducted an experiment on

the GPU-based environment using the CIFAR100 dataset,

as it was achieving the lowest accuracy. We made 3 runs

using Auto-Keras with allocated time budgets of 30

min, 60 min and 24 h to automatically configure the model.

The accuracy of the returned models from the 3 runs were

48%, 52% and 54%, respectively. The results show the lack

of effectiveness of the auto-tuning technique of the library

as it could not outperform the manually designed model

executed by Keras (55%). In general, auto tuning of deep

learning models represents a significant research direction

with a big room for improvement.

6 Conclusion and future work

Although the concepts of Artificial Neural Network (ANN)

are not new as they originated around the late 1940s, they

were, however, difficult to be used because of the intensive

need for computational resources and the lack of the amounts

of data which is required to effectively train this type of

algorithms. Recently, the increasing availability of deep

learning frameworks and the ability to use GPUs for per-

forming parallel intensive calculations have paved theway to

effectively use the modern deep learning models. Thus,

currently, deep learning is revolutionizing the technology

industry. For example,modernmachine translation tools and

computer-based personal assistants (e.g., Alexa) are all

powered by deep learning techniques. In practice, it is

expected that the applications of deep learning techniques

will continue growing as they are increasingly reaching

various application domains such as robotics, pharmaceuti-

cals and energy among many others. To this end, we devel-

oped DLBench, an extensive experimental study for

evaluating the performance characteristics of six popular

deep learning frameworks on CNN, Fatser R-CNN, and

LSTM architectures. The results of our experiments have

shown some interesting characteristics of the performance of

the evaluated frameworks. In addition, our analysis for the

detailed results has provided a set of useful insights.

As a future work, we plan to extend our benchmark to

include more frameworks and test different parameter

settings for each framework. In addition, we plan to test the

influence of more architecture parameterizations sensitivi-

ties as we only focused on the influence of ranging epochs

in this work.

Acknowledgements The work of Sherif Sakr and Abdul Wahab is

funded by the European Regional Development Funds via the

Mobilitas Plus programme (Grant MOBTT75). The work of Radwa

Elshawi is funded by the European Regional Development Funds via

the Mobilitas Plus programme (MOBJD341). The authors would like

to thank the students Nesma Mahmoud, Yousef Essam, and Hassan

Eldeeb for their involvement on some of the experiments of this work.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine

learning. OSDI 16, 265–283 (2016)

2. Abugabah, A., AlZubi, A.A., Al-Obeidat, F.N., Alarifi, A.,

Alwadain, A.: Data mining techniques for analyzing healthcare

conditions of urban space-person lung using meta-heuristic

11 https://autokeras.com/.

2036 Cluster Computing (2021) 24:2017–2038

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://autokeras.com/

optimized neural networks. Clust. Comput. 23(3), 1781–1794

(2020)

3. Awan, A.A., Subramoni, H., Panda, D.K.: An in-depth perfor-

mance characterization of CPU-and GPU-based DNN training on

modern architectures. In: Proceedings of the Machine Learning

on HPC Environments, p. 8. ACM, (2017)

4. Bahrampour, S., Ramakrishnan, N., Schott, L., Shah, M.: Com-

parative study of caffe, neon, theano, and torch for deep learning

(2016)

5. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.,

Bergeron, A., Bouchard, N., Warde-Farley, D., Bengio, Y.:

Theano: new features and speed improvements. arXiv preprint

arXiv:1211.5590 (2012)

6. Bengio, Y., et al.: Learning deep architectures for AI. Found.

Trends Mach. Learn. 2(1), 1–127 (2009)

7. Bergstra, J., et al.: Theano: A CPU and GPU math compiler in

python. In: Proc. 9th Python in Science Conf, vol. 1 (2010)

8. Chen, T., et al.: Mxnet: A flexible and efficient machine learning

library for heterogeneous distributed systems. arXiv preprint

arXiv:1512.01274 (2015)

9. Chollet, F., et al.: Keras: The python deep learning library.

Astrophysics Source Code Library (2018)

10. Coleman, C., et al.: Dawnbench: an end-to-end deep learning

benchmark and competition. Training (2017)

11. Collobert, R., et al.: Natural language processing (almost) from

scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

12. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-

like environment for machine learning. In: BigLearn, NIPS

workshop, number EPFL-CONF-192376 (2011)

13. Dagum, L., Menon, R.: Openmp: an industry-standard API for

shared-memory programming. Comput. Sci. Eng. 1, 46–55 (1998)

14. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K.,

Winn, J., Zisserman, A.: The pascal visual object classes chal-

lenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

15. Geng, X., Zhang, H., Zhao, Z., Ma, H.: Interference-aware par-

allelization for deep learning workload in GPU cluster. Clust.

Comput. 23(4), 2689–2702 (2020)

16. Hauke, J., Kossowski, T.: Comparison of values of pearson’s and

spearman’s correlation coefficients on the same sets of data.

Quaestiones Geographicae 30(2), 87–93 (2011)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770–778 (2016)

18. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era.

Computer 41(7), 33–38 (2008)

19. Hinton, G., et al.: Deep neural networks for acoustic modeling in

speech recognition: the shared views of four research groups.

IEEE Signal Process. Mag. 29(6), 82–97 (2012)

20. Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W.,

Pazhayampallil, J., Andriluka, M., Rajpurkar, P., Migimatsu, T.,

Cheng-Yue, R., et al.: An empirical evaluation of deep learning

on highway driving. arXiv preprint arXiv:1504.01716 (2015)

21. Intel caffe. (2017)

22. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-

shick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional

architecture for fast feature embedding. In: Proceedings of the

22nd ACM International Conference on Multimedia,

pp. 675–678. ACM (2014)

23. Jiang, Z., Gao, S.: An intelligent recommendation approach for

online advertising based on hybrid deep neural network and

parallel computing. Clust. Comput. 23(3), 1987–2000 (2020)

24. Kim, Y., Lee, J., Kim, J.-S., Jei, H., Roh, H.: Comprehensive

techniques of multi-GPU memory optimization for deep learning

acceleration. Clust. Comput. 23(3), 2193–2204 (2020)

25. Krizhevsky, A., Hinton, G.: Learning multiple layers of features

from tiny images. Technical report, Citeseer (2009)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. In: Advances in

Neural Information Processing Systems, pp. 1097–1105 (2012)

27. Liu, J., Dutta, J., Li, N., Kurup, U., Shah, M.: Usability study of

distributed deep learning frameworks for convolutional neural

networks (2018)

28. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts,

C.: Learning word vectors for sentiment analysis. In: Proceedings

of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologiesvol. 1, pp. 142–150.

Association for Computational Linguistics (2011)

29. Mahmoud, N., Essam, Y., Shawi, R.E., Sakr, S.: DLBench: an

experimental evaluation of deep learning frameworks. In: 2019

IEEE International Congress on Big Data, BigData Congress

2019, Milan, Italy, July 8–13, 2019, pp. 149–156 (2019)

30. Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large

annotated corpus of english: the penn treebank (1993)

31. Mkl-dnn for scalable deep learning. (2017)

32. N. Corporation. AI computing leadership from nvidia. In: https://

www.nvidia.com/en-us/ (2018)

33. Netzer, Y., et al.: Reading digits in natural images with unsu-

pervised feature learning. In: NIPS Workshop on Deep Learning

and Unsupervised Feature Learning (2011)

34. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Tensors and

dynamic neural networks in python with strong GPU acceleration

(2017)

35. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic

differentiation in pytorch (2017)

36. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad:

100,000? questions for machine comprehension of text. arXiv

preprint arXiv:1606.05250 (2016)

37. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-

time object detection with region proposal networks. In: Advances

in Neural Information Processing Systems, pp. 91–99 (2015)

38. Sak, H., Senior, A., Beaufays, F.: Long short-term memory

recurrent neural network architectures for large scale acoustic

modeling. In: Fifteenth Annual Conference of the International

Speech Communication Association (2014)

39. Seide, F., Agarwal, A.: Cntk: Microsoft’s open-source deep-

learning toolkit. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, pp. 2135. ACM (2016)

40. Shams, S., Platania, R., Lee, K., Park, S.-J.: Evaluation of deep

learning frameworks over different HPC architectures. In: 2017

IEEE 37th International Conference on Distributed Computing

Systems (ICDCS), pp. 1389–1396. IEEE (2017)

41. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image

analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

42. Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art

deep learning software tools. In: IEEE CCBD (2016)

43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556

(2014)

44. Team, H.: High performance deep learning project. Int. J. Com-

put. Vis. (2017)

45. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-gen-

eration open source framework for deep learning. In: Proceedings

of Workshop on Machine Learning Systems (LearningSys) in

The Twenty-ninth Annual Conference on Neural Information

Processing Systems (NIPS) (2015)

46. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-gen-

eration open source framework for deep learning. In: NIPS

Workshops (2015)

47. T. report. Worldwide semiannual cognitive/artificial intelligence

systems spending guide. In: International Data Corporation (2017)

Cluster Computing (2021) 24:2017–2038 2037

123

https://www.nvidia.com/en-us/
https://www.nvidia.com/en-us/

48. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.:

Selective search for object recognition. Int. J. Comput. Vis.

104(2), 154–171 (2013)

49. Wang, Q., Guo, G.: Benchmarking deep learning techniques for face

recognition. J. Vis. Commun. Image Represent. 65, 102663 (2019)

50. Woolson, R.: Wilcoxon signed-rank test. Wiley encyclopedia of

clinical trials, pp. 1–3 (2007)

51. Wu, Y., Liu, L., Pu, C., Cao, W., Sahin, S., Wei, W., Zhang, Q.:

A comparative measurement study of deep learning as a service

framework. IEEE Trans. Serv. Comput. (2019)

52. Xianyi, Z., Qian, W., Saar, W.: Openblas: An Optimized Blas

Library. Agosto, Accedido (2016)

53. Yang, C.-T., Liu, J.-C., Chan, Y.-W., Kristiani, E., Kuo, C.-F.:

Performance benchmarking of deep learning framework on intel

xeon phi. J. Supercomput. 1–25 (2020)

54. Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Phanishayee, A.,

Schroeder, B., Pekhimenko, G.: Tbd: Benchmarking and ana-

lyzing deep neural network training. arXiv preprint

arXiv:1803.06905 (2018)

55. Zou, S.-X., Chen, C.-Y., Wu, J.-L., Chou, C.-N., Tsao, C.-C.,

Tung, K.-C., Lin, T.-W., Sung, C.-L., Chang, E.Y.: Distributed

training large-scale deep architectures. In: International Confer-

ence on Advanced Data Mining and Applications, pp. 18–32.

Springer (2017)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Radwa Elshawi is a Senior

Research Fellow in Big Data at

Data Systems Group. Radwa

received her Ph.D. in Informa-

tion Technology from Sydney

University, Australia in 2013.

She received her B.Sc. and

M.Sc. degree in Computer

Engineering from the Computer

Engineering department at Arab

Academy for Science and Mar-

itime Transport, Egypt, in 2005

and 2008 respectively. Radwa

El Shawi’s research interest are

Computational Geometry, Big

Data and Machine Learning.

Abdul Wahab is an M.Sc. Soft-

ware Engineering student at the

University of Tartu. He gradu-

ated with Cum Laude (Şeref

Öğrencisi) standing from Bilk-

ent University, Ankara, Turkey

in 2018. Originally from Pak-

istan, he left his home for a

better education abroad. Since

High School, he has received

various scholarships for his

studies. Abdul majored in

Electrical and Electronics

Engineering with a concentra-

tion in Data Analytics, Statisti-

cal Learning, and Digital Signal Processing. He is passionate about

analyzing various Engineering techniques especially in the domain of

Data Analytics and Statistical Learning.

Ahmed Barnawi is currently a

professor of information and

communication technologies at

Faculty of Computing and IT

(FCIT) in King Abdulaziz

University (KAU). He is the

managing director of the KAU

Cloud computing and Big Data

Research group. He acquired his

Ph.D. from the University of

Bradford, UK, in 2005 and his

MSC from UMIST (University

of Manchester), UK, in 2001.

Prof. Barnawi acted as an asso-

ciate and Visiting Professors in

Canada and Germany. Prof. Barnawi is an active researcher with good

research fund awards track. His research interest include Big data,

cloud computing, future generation mobile systems, advanced mobile

robotic applications and IT infrastructure architecture. He published

near to 100 papers in peer reviewed journals.

Sherif Sakr is the Head of Data

Systems Group at the Institute

of Computer Science, Univer-

sity of Tartu. He received his

PhD degree in Computer and

Information Science from Kon-

stanz University, Germany in

2007. He received his B.Sc. and

M.Sc. degrees in Computer

Science from the Information

Systems department at the Fac-

ulty of Computers and Infor-

mation in Cairo University,

Egypt, in 2000 and 2003

respectively. Prof. Sakr’s

research interest is data and information management in general,

particularly in big data processing systems, big data analytics, data

science and big data management in cloud computing platforms. Prof.

Sakr has published more than 150 refereed research publications in

international journals and conferences. One of his papers has been

awarded the Outstanding Paper Excellence Award 2009 of Emerald

Literati Network. He is also a winner of CAiSE’19 best paper award.

In 2017, he has been appointed to serve as an ACM Distinguished

Speaker and as an IEEE Distinguished Speaker. Prof. Sakr is serving

as the Editor-in-Chief of the Springer Encyclopedia of Big Data

Technologies. He is also serving as a Co-Chair for the European Big

Data Value Association (BDVA) TF6-Data Technology Architectures

Group.

2038 Cluster Computing (2021) 24:2017–2038

123

	DLBench: a comprehensive experimental evaluation of deep learning frameworks
	Abstract
	Introduction
	Related work
	Reference deep learning frameworks
	TensorFlow
	MXNet
	Theano
	PyTorch
	Chainer
	Keras

	Experimental setup
	Reference models and datasets for CNN
	Reference models and datasets for LSTM
	Reference model and dataset for regional-CNN
	Hardware and Software Resources
	Evaluation metrics

	Experimental results
	Accuracy
	Training time
	Resource consumption
	Convergence
	Results of GPU-based experiments
	Accuracy
	Training time
	Resource consumption
	Convergence

	Lessons learned

	Conclusion and future work
	Acknowledgements
	References

