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Abstract

Expression of the tumor suppressor deleted in liver cancer-1 (DLC-1) is lost in non-small cell lung

(NSCLC) and other human carcinomas, and ectopic DLC-1 expression dramatically reduces

proliferation and tumorigenicity. DLC-1 is a multidomain protein that includes a Rho GTPase

Activating Protein (RhoGAP) domain which has been hypothesized to be the basis of its tumor

suppressive actions. To address the importance of the RhoGAP function of DLC-1 in tumor

suppression, we performed biochemical and biological studies evaluating DLC-1 in NSCLC. Full

length DLC-1 exhibited strong GAP activity for RhoA as well as RhoB and RhoC, but only very

limited activity for Cdc42 in vitro. In contrast, the isolated RhoGAP domain showed 5- to 20-fold

enhanced activity for RhoA, RhoB, RhoC and Cdc42. DLC-1 protein expression was absent in six

of nine NSCLC cell lines. Restoration of DLC-1 expression in DLC-1-deficient NSCLC cell lines

reduced RhoA activity, and experiments with a RhoA biosensor demonstrated that DLC-1

dramatically reduces RhoA activity at the leading edge of cellular protrusions. Furthermore, DLC-1

expression in NSCLC cell lines impaired both anchorage-dependent and -independent growth, as

well as invasion in vitro. Surprisingly, we found that the anti-tumor activity of DLC-1 was due to

both RhoGAP-dependent and -independent activities. Unlike the rat homologue p122RhoGAP,

DLC-1 was not capable of activating the phospholipid hydrolysis activity of phospholipase C-δ1.

Combined, these studies provide information on the mechanism of DLC-1 function and regulation,

and further support the role of DLC-1 tumor suppression in NSCLC.
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INTRODUCTION

DLC-1 (deleted in liver cancer-1) was identified originally as a gene whose expression was

lost in hepatocellular carcinomas (HCC). Subsequent studies found loss of DLC-1 gene

expression in liver, breast, colon, gastric, prostate, cervical, esophageal and other cancers

[1-5]. The downregulation of DLC-1 expression is particularly dramatic in non-small cell lung
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carcinomas (NSCLC); DLC-1 transcription was significantly reduced or lost in 95% (20/21)

of primary tumors and 58% (11/19) of NSCLC cell lines [6]. Ectopic restoration of DLC-1

expression in DLC-1-deficient NSCLC, HCC, breast and esophageal cancer cell lines resulted

in reduced growth in vitro and tumorigenicity and metastasis in vivo, supporting the role of

DLC-1 as a tumor suppressor [2,6-10].

DLC-1 is a 122 kDa multidomain protein that consists of an N-terminal SAM domain, a C-

terminal START domain, and an internal RhoGAP domain (Fig. 1A). The RhoGAP domain

is a conserved catalytic domain found in GTPase activating proteins for members of the Rho

family of small GTPases (RhoGAPs) [11]. SAM domains (~70 amino acids) are putative

protein interaction modules [12] and START domains (~120 amino acids) are lipid-binding

domains found in proteins that transfer lipids between organelles [13]. The roles of the SAM

and START domains in DLC-1 function have not been determined.

Rho GTPases comprise a major branch of the Ras superfamily of small GTPases, with RhoA,

Rac1 and Cdc42 the most intensely studied [14,15]. Like Ras, Rho GTPases function as binary

switches that cycle between active, GTP-bound and inactive, GDP-bound forms. In normal

cells, the Rho GDP/GTP cycle is tightly regulated. Extracellular stimulus-mediated activation

of Rho GTPases is facilitated by guanine nucleotide exchange factors (RhoGEFs) that promote

formation of Rho-GTP. Rho-GTP preferentially binds and regulates multiple downstream

effectors that in turn regulate cytoplasmic signaling networks that control actin cytoskeletal

organization, cell cycle progression, gene expression, cell movement and polarity, and

intracellular vesicular transport [16]. RhoGAPs negatively regulate GTPase function by

accelerating the weak intrinsic GTP hydrolysis activity of the GTPase, promoting formation

of the inactive, GDP-bound form. Whereas a variety of mechanisms that regulate RhoGEFs

have been identified [17], the regulation of RhoGAPs remains poorly understood.

In vitro analyses of rat (p122-RhoGAP) and human DLC-1 demonstrated that DLC-1 exhibits

robust GAP activity for RhoA [18,19]. Similarly, in vivo analyses showed that ectopic

expression of rat DLC-1 caused cell rounding and disruption of actin stress fibers, activities

consistent with inhibition of RhoA [20]. While DLC-1 [19] and the related DLC-2 protein

[21,22] have been reported to have weak or no in vitro activity for Cdc42 and Rac1, it has not

been determined whether DLC-1 functions as a GAP for the structurally and biochemically-

related, yet biologically-divergent, RhoB and RhoC GTPases [23,24].

Like Ras, the aberrant activation of Rho family GTPases has also been associated with cancer

progression and growth [25]. However, whereas mutational activation of Ras is prevalent in

human cancers, mutation of Rho GTPases has not been observed in human cancers. Instead,

aberrant Rho GTPase activity has been found in human cancers as a result of the altered

expression and/or function of Rho GTPases or their regulators. Of the diversity of mechanisms

that have been found, perhaps the most frequent and widespread involves the loss of DLC-1

expression in a variety of human cancers. By analogy to the loss of expression of the NF1 and

TSC2 tumor suppressors, that function as GAPs for Ras and the Ras-like GTPase Rheb [26],

the tumor suppressive functions of DLC-1 have been hypothesized to be due to its RhoGAP

activity. However, the significance of the RhoGAP activity to DLC-1-mediated tumor

suppression remains unclear. Since DLC-1 has been described to exhibit other functions, such

as the activation of phospholipase C delta (PLCδ) by the rat DLC-1 homologue, p122RhoGAP

[18], DLC-1 anti-tumor activity may be due to non-RhoGAP activities.

Because the importance of the RhoGAP function of DLC-1 in tumor suppression has not been

determined, we initiated studies to evaluate the biochemical and biological activity of DLC-1

in NSCLC. Our observations expand the Rho GTPase targets of DLC-1 and suggest that

intramolecular regulation may be limiting the activity of the full length protein. Furthermore,
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we demonstrate that, while DLC-1 expression reduces RhoA activity, the anti-tumor activity

of DLC-1 is reliant on both RhoGAP-dependent and - independent activities. Combined, our

observations expand our understanding of DLC-1 function and regulation, and further support

the role of DLC-1 as a tumor suppressor in NSCLC.

MATERIALS AND METHODS

DLC-1 Expression Plasmids

The cDNA sequence encoding human DLC-1 (nucleotides 321-3596 of accession #

NM_006094) was amplified through PCR of human embryonic kidney 293-T cDNA and

cloned into the pEGFP-N1 (Clontech) vector. Site directed mutagenesis was utilized to change

nucleotides 2472-2473 from GA to CG, creating the cDNA sequence encoding the DLC-1

(R718E) missense mutant. The following primer sequences were used: primer-1, 5'-

CATGCTGAAGCAGTATTTTGAAGATCTTCCTGAGCCACTA-3' and primer-2, 5'-

TAGTGGCTCAGGAAGATCTTCAAAATACTGCTTCAGCATG-3'. For NSCLC

expression experiments, the wild type and mutant DLC-1 cDNA sequences were subcloned

into the BamHI site of the pBabe-puro retroviral expression vector. Oligonucleotide-directed

PCR mutagenesis was utilized to restore the stop codon in the last triplet and add a 3' SalI site.

Parallel manipulations were performed with a pEGFP-N1 vector encoding DLC-1(R718E) to

generate the pBabe-puro DLC-1(R718E) expression construct. For transient assays, the open

reading frame of DLC-1 was excised from pBabe-puro DLC-1 with BamHI and Sal1, and

subcloned into the BamHI-Sal1 sites of pcDNA 3.1+ (Invitrogen). The pcDNA3.1+ vectors for

PLC-β2, Rac3 G12V, and PLC-δ1 were obtained from the Guthrie cDNA Resource Center.

For the RhoA biosensor experiments, the cDNA sequence encoding the mCherry fluorescent

protein tag was PCR-amplified and subcloned into the Kpn1-BamHI sites of pcDNA DLC-1

to create the coding sequence for the mCherry DLC-1 fusion protein.

For expression of recombinant protein, cDNA sequences for DLC-1, DLC-1(R718E), and the

isolated DLC-1 RhoGAP domain were subcloned into the pGEX-5X-3 (GE Healthcare)

bacterial expression vector for expression of glutathione S-transferase (GST)-DLC-1 fusion

proteins. All plasmid cDNA coding sequences were sequence verified before use. pGEX

plasmids for expression of GST fusions of wild type human RhoA, RhoB, RhoC, Rac1 and

Cdc42 have been described previously [27,28].

Bacterial Protein Expression and Purification

Plasmids encoding GST-fusion proteins of DLC-1 and Rho GTPases were transformed into

the BL-21 E. coli strain. GST-DLC-1 (full length DLC-1, DLC-1(R718E), and DLC-1 GAP

expression was induced with 100 μM isopropyl-B-D-1-thiogalactopyranoside (IPTG) for 16

h at room temperature. GST fusion proteins of human RhoA, RhoB, and RhoC were induced

with 250 μM IPTG for 16 h at room temperature. Rac1 and Cdc42 were induced with 1 mM

IPTG for 3 h at 37°C. GST-fusion proteins were purified by glutathione Sepharose 4B

chromatography, and the purity of soluble proteins was assessed by Coomassie staining.

Purified proteins were quantified by the method of Bradford [29].

Single Turnover GTP Hydrolysis Assay

The in vitro GAP activity of DLC-1 was measured with a fluorescence-based technique [30].

This assay utilizes a fluorophore-conjugated phosphate binding protein (MDCC-PBP) that

dramatically increases in fluorescence upon binding phosphate. Purified glutathione-agarose

bead bound-Rho GTPases were preloaded with GTP in an exchange buffer (20 mM Tris, 50

mM NaCl, 200 mM ammonium sulfate, 10 mM EDTA, and 0.5 mM GTP) for 1 min at 37°C.

Following elution, single turnover hydrolysis assays were performed with 15 μM MDCC-PBP

and 2 μM GTPase in a buffer containing 20 mM Tris, 50 mM NaCl, and 1 mM MgCl2. Assays
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were initiated with addition of 0.30 μM DLC-1, and a SpectraMAX Gemini (Molecular

Devices) spectrofluorimeter was used to measure increases in fluorescence (λex = 425 nm and

λem = 465 nm), reflecting increases in Pi production from GTP hydrolysis.

Cell Culture and Generation of Stable Cell Lines

293-T and Cos-7 cells were maintained in Dulbecco's modification of Eagle's medium

supplemented with 10% fetal bovine serum (FBS; Hyclone). NSCLC cells were obtained from

the ATCC (Rockville, MD) and grown in RPMI-1640 supplemented with 10% FBS. To

generate NSCLC cell lines stably-expressing ectopic DLC-1 proteins, infectious virus of the

pBabe-puro vectors encoding DLC-1 or DLC-1(R718E) was generated and used to infect the

NSCLC cell lines. After selection in growth medium containing 1.0 μg/mL puromycin,

multiple drug resistant colonies were pooled together to establish mass populations stably

expressing each DLC-1 protein. Multiple, independently established stable cell lines (<3

passages) were used for all analyses, to evaluate reproducibility and to minimize secondary

consequences of prolonged maintenance of cell lines ectopically expressing growth

suppressing proteins.

RhoA Activity Assay

A GST-fusion of the Rho-GTP binding domain (RBD) of Rhotekin (amino acids 7-89), an

effector of RhoA, RhoB, and RhoC, was used in pull down assays to detect expression of

activated RhoA-GTP as we have described previously [31]. Total and GST-RBD-precipitated

lysate samples were subjected to SDS-PAGE and analyzed by western blot analysis using anti-

RhoA antibody (Santa Cruz Biotechnology). Exogenous DLC-1 expression was confirmed by

probing the total lysate samples with the monoclonal anti-DLC-1 antibody (612020, BD

Biosciences).

RhoA Biosensor Experiments

The genetically encoded RhoA biosensor based on CFP/YFP intramolecular fluorescence

resonance energy transfer (FRET) was described previously [32]. Briefly, the sensor is

comprised of the Rhotekin-RBD which specifically binds to RhoA-GTP, followed by cyan

fluorescent protein, an unstructured linker of optimized length, a pH-insensitive variant of

yellow fluorescent protein Citrine YFP, and the full length RhoA. Upon GTP loading and

activation of RhoA, the binding domain within the biosensor binds to the activated RhoA and

changes the relative orientation of CFP and Citrine YFP to affect FRET. By monitoring the

ratio of donor and acceptor fluorescence emission, spatio-temporal dynamics of RhoA

activation can be studied.

MEF/3T3 cells stably expressing RhoA biosensor under tetracycline-off regulator [32] were

induced to express the RhoA biosensor by removal of doxycyclin and replating at 4 × 104 cells

in a 10 cm diameter tissue culture dish. Twenty four h after induction, cells were detached and

replated at 1 × 105 cells in a 10 cm tissue culture dish, and transfected with 1 μg of mCherry-

DLC-1 DNA using Fugene 6 (Roche Diagnostics, Indianapolis, IN). Twenty four h post

transfection, cells were replated on glass coverslips coated with fibronectin (10 μg/ml) (Sigma,

St. Louis, MO) at 4 × 104 cells per coverslip and allowed to adhere and spread for 5 h prior to

imaging experiments.

Cells were imaged in Ham's F-12K medium without phenol red (Biosource), with 2% FBS, 10

mM HEPES buffer and 10 μg/ml Oxy-Fluor reagent supplemented with 5mM dl-lactate

(Oxyrase Inc.), in a heated Atto-fluor chamber (Molecular Probes). Images were obtained using

a Zeiss 40× 1.3 NA EC-Plan NeoFluar DIC lens on a Zeiss Axiovert 100TV microscope, a

CoolsnapES charged coupled device camera (Roper Scientific), and Metamorph software

(Universal Imaging). For ratio imaging of the RhoA biosensor, the following filters were used
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(Chroma Technology): CFP: D436/20, D470/40; FRET: D436/20, HQ535/30; YFP:

HQ500/20, HQ535/30. mCherry-DLC-1 was imaged using HQ580/30, HQ630/40. A “Custom

Quad” dichroic mirror was custom manufactured by Chroma Company for compatibility with

all of these filters. Filterwheels were used to change the filters in the excitation and emission

light paths (Ludl Electronic Products, Hawthorne, NY). Cells were illuminated with a 200 W

Hg/Xe arc lamp (Optiquip, Highland Mills, NY) through a 36% neutral density filter. At each

time point, autofocus was performed in DIC followed by DIC image acquisition, the three

fluorescence images were recorded with the following exposure times: CFP (800ms), FRET

(400ms) and mCherry-DLC-1 (500ms) at binning 2×2.

Metamorph version 7.1.2 (Universal Imaging) was used to perform the image processing and

data analysis. All images were flat-field corrected and background subtracted. FRET and CFP

images were then carefully aligned either manually or automatically [33] to ascertain correct

pixel-to-pixel registration. The FRET image, because it had the largest signal-to-noise ratio

and therefore provided the best distinction between the cell and the background, was intensity

thresholded to generate a binary mask with a value of zero outside the cell and a value of one

inside the cell. FRET and CFP images were multiplied by this binary mask to set areas outside

the cell uniformly to zero to minimize noise and other artefacts. The masked FRET image was

divided by the masked CFP image to yield a ratio reflecting RhoA activation throughout the

cell. A linear pseudocolor lookup table was applied and the ratio values were normalized to

the lower scale value. In every data set, CFP and FRET images were carefully inspected to

verify that all portions used to create the ratio image had a high enough signal/noise ratio. This

was especially important in thin parts of the cell where fluorescence was low. In time-lapse

experiments, CFP and YFP bleached at different rates. The ratio was corrected for bleaching

using a published method [34]. Because ruffles and cell edges can move rapidly, it was

important to exclude motion artefacts; we routinely reversed the order of FRET and CFP

acquisition to ascertain that motion artefacts were negligible, or used fixed cells (data not

shown).

Growth Transformation and Invasion Assays

Mass populations of drug-resistant NCI-H23 and A549 cells stably-infected with the empty

pBabe-puro vector, or encoding DLC-1 proteins, were analyzed in soft agar assays as we have

described previously [35,36]. In triplicate, 2 × 104 NCI-H23 or 104 A549 cells were trypsinized

and resuspended in growth medium containing 0.4% agar. Cultures were maintained at 37°C

for 21 days, at which point viable colonies were stained with the MTT (3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) viability stain and photographed. The

number of proliferating colonies (>10 cells) was quantified by counting the number of colonies

in five representative fields of view within each plate.

Invasion in vitro was measured by using the Matrigel transwell assay with 8.0 μm pore Growth

Factor Reduced Matrigel Invasion Chambers (BD Biosciences) according to the manufacturer's

protocol. NCI-H23 cells were dissociated with TrypLE Express (Invitrogen), and 7.5 × 103

cells resuspended in serum-free RPMI-1640 containing 1% bovine serum albumen were seeded

into the upper chamber. RPMI-1640 containing 3% FBS (chemoattractant) was added to the

well beneath the chamber. After 22 h at 37°C, non-invaders were removed, and invading cells

were fixed, stained, photographed, and quantified. Five fields were counted for each chamber,

and the total number of cells counted per chamber was used for calculating the average number

of invading cells. The relative number of invading cells was determined by arbitrarily assigning

the cells transfected with empty vector a value of 1.0. The two-tailed Student's t test was used

to quantify statistical differences between experimental groups for the soft agar and Matrigel

assays. Results are expressed as mean ± SD.
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PLC Activity Assays

The ability of DLC-1 to promote phoshoinositide hydrolysis activity of PLC-δ1 was quantified

by measuring the accumulation of 3[H]inositol phosphates as previously described [37].

Briefly, Cos-7 cells were plated in 12-well culture dishes transfected with the indicated DNA

expression vector using FuGENE 6 transfection reagent (Roche) according to the

manufacturer's protocol. Empty-vector DNA was used as necessary to maintain a constant total

amount of DNA per well. Twenty-four h after transfection, the medium was replaced with

inositol- and serum-free DMEM containing 1 uCi/well [myo-3H]inositol (American

Radiolabeled Chemicals, St. Louis, MO). Phospholipase activity was quantified 12 h after

labeling by incubation in inositol-free DMEM containing 10 mM LiCl. After approximately

60 min, ice-cold 50 mM formic acid was added to stop the reaction. 150 mM ammonium

hydroxide was used to neutralize the reaction, and the accumulation of [3H]inositol phosphates

was quantified by Dowex chromatography as described previously [37].

RESULTS

DLC-1 Stimulates RhoA, RhoB, and RhoC GTP Hydrolysis Activity In Vitro

Previous studies demonstrated clearly that DLC-1 has potent GAP activity for RhoA in vitro.

Whether DLC-1 is also a GAP for the biochemically-related, yet biologically-distinct, RhoB

and RhoC proteins is not known. In contrast to RhoA, conflicting observations have been made

for the ability of DLC-1 to serve as a GAP for Cdc42 and Rac1. Therefore, we evaluated the

ability of DLC-1 to accelerate the GTP hydrolysis of RhoA, RhoB, RhoC, Cdc42, and Rac1.

For these analyses we purified bacterially-expressed DLC-1 (Fig. 1A) and GST fusion proteins

of human RhoA, RhoB, RhoC, Cdc42 and Rac1. Using a fluorescence-based technique that

measures single turnover GTP hydrolysis [30], we measured the ability of full length DLC-1

to stimulate the intrinsic GTP hydrolysis activity of these GTPases. In agreement with previous

studies, we found that DLC-1 had robust activity on RhoA in vitro. Furthermore, DLC-1 also

had strong GAP activity on both RhoB and RhoC (Fig. 1B - D). To aid our studies on the

contribution of the RhoGAP function to DLC-1 tumor suppression, we introduced a missense

mutation in the conserved arginine-718 residue critical for RhoGAP catalytic activity [38]. We

found that DLC-1(R718E) was completely impaired in stimulating the intrinsic hydrolysis

activity of GTP-loaded RhoA, RhoB, and RhoC in vitro (Fig. 1B - D).

Intramolecular Regulation of DLC-1 Impairs its GAP Activity

Our previous observations with another RhoGAP (p190RhoGAP), which is also a GAP for

RhoA, RhoB, and RhoC, found that ectopic overexpression of p190RhoGAP caused significant

cell rounding [39]. In contrast, our initial observations found that ectopic overexpression of

DLC-1 did not cause significant cell rounding (data not shown). Therefore, we speculated that

full length DLC-1 may not be fully active. The RhoGAP domain of DLC-1 comprises only

146 residues (amino acids 655-801) of the full length, 1,091 residue protein. The presence of

significant N- and C-terminal flanking regions suggests that DLC-1 could be highly regulated,

possibly by intramolecular interactions with flanking sequences and domains. Therefore, we

expressed the isolated RhoGAP domain of DLC-1 (residues 609-878; designated DLC-1 GAP)

and compared the activity with full length DLC-1.

We determined that DLC-1 GAP was extremely robust on RhoA in vitro, accelerating the GTP

hydrolysis nearly 70-fold, or approximately 20-fold more than the activity seen with the full

length protein (Fig. 2A and B). DLC-1 GAP was also particularly robust on RhoB and RhoC,

accelerating the GTP hydrolysis 5- to 10-fold more than full-length DLC-1 (Fig. 2C - F). For

Cdc42, acceleration of intrinsic GTP hydrolysis increased from a modest 1.4-fold activity for

full length DLC-1 to 10-fold stimulation with DLC-1 GAP, corresponding to a 7-fold increase
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in RhoGAP activity (Fig. 2G and H). We also observed similar activities in cells, where

transient expression of DLC-1 RhoGAP, but not full length DLC-1, caused considerable cell

rounding (data not shown). Additionally, introduction of the R718E mutation into DLC-1

RhoGAP completely abolished this rounding activity, demonstrating that this mutation

abolished RhoGAP activity in vivo.

Interestingly, neither DLC-1 nor DLC-1 GAP displayed any activity towards Rac1 (Fig. 2I and

J). Our results contrast with observations made with the related DLC-2 protein [21]. The

isolated RhoGAP fragment of DLC-2 (80% identical) had altered substrate specificity, as it

was active on Cdc42 and Rac1, but not RhoA, whereas the full length DLC-2 was reported to

be robust towards RhoA and Cdc42, with mild activity on Rac1. Unlike DLC-2, the flanking

regions of the DLC-1 GAP domain do not affect Rho GTPase substrate specificity.

Dlc-1 Protein Expression is Lost in Non-Small Cell Lung Cancers

Yuan et al. employed RT-PCR analyses and demonstrated that the DLC-1 transcript is lost in

both primary tumors (20/21, 95%) and NSCLC cell lines (11/19, 58%) [6]. We utilized a

DLC-1-specific monoclonal antibody to evaluate DLC-1 protein expression in a panel of

NSCLC cell lines, and determined that expression of DLC-1 was lost in 6 of 9 (67%) NSCLC

cell lines (Fig. 3). This pattern of DLC-1 protein expression correlated with previous analyses

of DLC-1 transcription for 5 of the 6 lines that were evaluated in both studies [6]. The only

exception was the NCI-H2228 cell line, which was reported to be positive for DLC-1 mRNA

but we determined was negative for DLC-1 protein expression. However, we utilized RT-PCR

analyses and determined that our strain of NCI-H2228 cells was deficient for DLC-1 mRNA

expression (data not shown), suggesting that the discrepancy is due to variations in cell line

history. Hence, loss of DLC-1 protein expression correlated absolutely with the absence of

DLC-1 gene transcription. Three NSCLC cell lines (A549, NCI-H23, and NCI-358) that we

found to be DLC-1 negative for both the transcript and protein analysis were chosen for further

biological studies.

DLC-1 Expression Modulates Rho GTPase Activity In Vivo

Whether DLC-1 expression can modulate RhoA activity in vivo has not been demonstrated.

To address this question, we ectopically restored DLC-1 expression in two DLC-1-deficient

NSCLC cell lines (NCI-H23 and NCI-H358). For all of the ectopic DLC-1 expression studies,

the level of expression ranged from comparable to ~3-fold greater than endogenous DLC-1

(NCI-H1703 cells). Restoration of wild type, but not R718E, DLC-1 expression significantly

reduced the level of RhoA-GTP in both NCI-H23 and NCI-H358 cell lines (Fig. 3B). These

results suggest that loss of DLC-1 will cause increased Rho GTPase activity.

DLC-1 Expression Reduces Rho GTPase Activity at the Edge of Cellular Protrusions

In addition to using pull down analyses to demonstrate that DLC-1 can reduce total cellular

RhoA-GTP levels, we utilized a RhoA biosensor to quantify spatially distinct changes in RhoA

activity. MEFs stably expressing a RhoA biosensor were transfected with an mCherry DLC-1

vector, and fluorescence resonance energy transfer (FRET) analysis was performed to quantify

RhoA activity, as previously described [32]. Interestingly, DLC-1 expression resulted in a

preferential reduction of RhoA activity at the leading edge of cellular protrusions (Fig. 4). To

verify that the DLC-1 expression was not limited to this region in the cell, we analyzed

mCherry-DLC-1 expression and, consistent with published reports [40,41], DLC-1 was

localized to focal adhesions throughout the cells (Fig. 4C). These results indicate that there are

some DLC-1 localizations for which RhoGAP activity is more activated, and that the RhoGAP

activity of DLC-1 plays a role in leading edge dynamics.
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DLC-1 Displays both GAP-Dependent and -Independent Tumor Suppression

To assess the importance of GAP activity to DLC-1 mediated tumor suppression, we utilized

mass populations of NCI-H23 and A549 cells stably expressing ectopic wild type DLC-1 or

DLC-1(R718E). Interestingly, using a clonogenic growth assay to monitor the proliferation of

retrovirus-infected cells, we observed that cells infected with either the wild type or the R718E

mutant showed a much reduced frequency of drug-resistant colonies than was seen with the

empty pBabe-puro retrovirus-infected cells (data not shown). The DLC-1-mediated reduction

in clonogenic growth was similar to what had been reported previously [6], while the DLC-1

(R718E)-mediated reduction provided an initial suggestion that DLC-1 possesses RhoGAP-

independent growth inhibitory activity.

To extend previous biological studies, we analyzed the impact of DLC-1 expression on the

anchorage-independent growth of two DLC-1-deficient NSCLC cell lines that grow well in

soft agar. We observed that DLC-1 caused an approximately 60% reduction in colony forming

efficiency, as well as colony size, in soft agar for both NCI-H23 and A549 NSCLC cells (Fig.

5). Surprisingly, expression of the GAP-dead DLC-1(R718E) also significantly inhibited

anchorage-independent growth, though to a lesser extent (~40% colony reduction) than seen

with the wild type protein.

We also examined the impact of DLC-1 expression upon NSCLC cell migration and invasion.

In NCI-H23 and A549 NSCLC cells, expression of DLC-1 did not alter cellular motility in

wound healing assays (data not shown). However, DLC-1 expression did reduce invasion in

Matrigel assays by 50% in NCI-H23 cells (Fig. 6). The GAP-dead DLC-1(R718E) mutant

reduced invasion by approximately 25%, though this decrease was not statistically significant

(P = 0.18). Likewise, the DLC-1-mediated reduction in A549 invasiveness (~30%) was not

statistically significant (data not shown). These results, together with the anchorage-

independence assays, suggest that DLC-1 uses both GAP-dependent and -independent

mechanisms to suppress NSCLC growth and invasion.

DLC-1 does not stimulate the phospholipids hydrolysis activity of PLC-δ1

To investigate a possible mechanism of GAP-independent activity, we investigated the ability

of DLC-1 to activate PLC-δ1, as has been reported for the rat homologue p122RhoGAP.

Activation of PLC was quantified by measuring the accumulation of [3H]inositol phosphates,

as we have described previously [37]. Co-transfection of an activated Rac3 mutant (Rac3

G12V) along with the PLC-β2 isozyme resulted in a dramatic increase in [3H]inositol

phosphates (Fig. 7A), demonstrating the sensitivity of the cell-based system for detecting

changes in PLC activity. Surprisingly, co-transfection of DLC-1 with PLC-δ1 did not result in

an increase in [3H]inositol phosphate accumulation (Fig. 7B), suggesting that, unlike rat

DLC-1, human DLC-1 does not activate the phospholipid hydrolysis activity of PLC-δ1.

DISCUSSION

Expression DLC-1, a member of the RhoGAP family of negative regulators of Rho GTPases,

is lost in NSCLC and other human cancers [6]. Ectopic restoration of DLC-1 expression in

DLC-1-deficient tumor cell lines reduced growth in vitro and tumorigenicity and metastatic

growth in vivo, supporting a tumor suppressor function for DLC-1 [7-9]. By analogy to the

NF1 and TSC2 tumor suppressors, which function as GAPs for Ras and Rheb small GTPases

[26], respectively, the loss of DLC-1 is hypothesized to promote oncogenesis by causing

hyperactivation of Rho GTPases. However, the mechanistic basis of DLC-1's tumor

suppression has remained largely unknown. Unexpectedly, we found that DLC-1 growth

suppression may be mediated by both RhoGAP-dependent and -independent functions.
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Previous studies demonstrated that DLC-1 is a potent GAP for RhoA in vitro [19]. We have

verified and extended these observations, and showed that DLC-1 is a potent GAP for the

structurally and biochemically-related RhoB and RhoC proteins. Though RhoA, RhoB and

RhoC form a closely related subgroup (~90% amino acid identity) of the Rho GTPase family,

they have strikingly different biological functions [23,24]. For example, Hynes and colleagues

found that increased expression and activity of RhoC but not RhoA was important for

melanoma invasion and metastasis [42]. Mercurio and colleagues found that RhoA impeded

but RhoC stimulated breast cancer cell invasion [43]. However, unlike RhoA and RhoC, RhoB

is commonly under expressed in cancers, and this GTPase suppresses various aspects of cancer

progression [44]. Thus, it is not clear how the loss of DLC-1 GAP activity on this negative

regulator of cancer progression could contribute to tumor suppression. A recent report

demonstrated that RhoB is frequently lost in NSCLCs [45], and thus it is possible that the

potential effects of DLC-1 acting as a GAP on RhoB are limited by the reduced expression of

RhoB in DLC-1 positive tumors. Nonetheless, our finding of DLC-1 GAP activity on RhoB

and RhoC expands the known targets of DLC-1, increasing the potential mechanisms by which

DLC-1 functions.

The isolated DLC-1 GAP domain was 5- to 20-fold more active than the full length protein in
vitro, responsible for limiting its activity. We also found that the isolated RhoGAP domain,

but not full length DLC-1, caused potent cell rounding, indicating that the isolated RhoGAP

fragment is a constitutively activated DLC-1 in vivo. Our further analyses of N-terminally-

deleted variants of DLC-1 determined that deletion of the SAM domain alone increased GAP

activity in vitro and was sufficient for constitutive RhoGAP activity in vivo (manuscript in

preparation). Thus, our present studies are focused on determining a possible mechanism where

the SAM domain functions as an intramolecular negative regulator of DLC-1 RhoGAP

catalytic activity.

The impact of DLC-1 on Rho-GTP levels in vivo had not been addressed directly.

Microinjection of rat DLC-1 caused a reduction in actin stress fibers and inhibited

lysophosphatidic acid-stimulated stress fiber formation, phenotypes suggestive of reduced

RhoA-GTP levels [20]. Likewise, Wong et al. recently demonstrated that DLC-1 inhibited

stress fiber formation in HCC cells [46]. We addressed this directly and showed that ectopic

restoration of wild type, but not RhoGAP-deficient, DLC-1 expression in DLC-1-deficient

NSCLC cells reduced RhoA-GTP levels, demonstrating that DLC-1 functions as a GAP for

RhoA in vivo. Thus, loss of DLC-1 expression is expected to result in persistent activation of

Rho GTPases in NSCLCs. Our future studies will determine if elevated RhoA-GTP levels are

associated with DLC-1-deficiency in NSCLC cell lines and patient tumors.

We also utilized a RhoA biosensor to demonstrate that DLC-1 expression significantly reduces

RhoA activity, specifically at the edge of cellular protrusions. MEFs expressing DLC-1 had

reduced motility and formed fewer protrusions (data not shown). It is likely that the ability of

DLC-1 to reduce RhoA activity at the edge of cells contributes to the reduced migratory ability

of DLC-1 expressing cells, and may contribute to DLC-1's ability to suppress invasion and

metastasis [7].

Our studies determined that DLC-1 growth suppression is mediated by both RhoGAP-

dependent and -independent functions. We found that exogenous expression of DLC-1 in the

DLC-1 deficient NCI-H23 and A549 NSCLC cells resulted in an approximately 60% decrease

in anchorage-independent growth. Surprisingly, the GAP-deficient DLC-1(R718E) mutant still

suppressed anchorage-independent growth very significantly (~40% reduction). Similar trends

were observed in Matrigel invasion assays, in which DLC-1 suppressed invasion of H23 cells

~50%, whereas DLC-1(R718E) reduced invasion by about 25%. These results suggest that the

RhoGAP activity of DLC-1 is only partially responsible for its anti-tumor activity. Our results
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contrast with observations from a previous study investigating the significance of GAP activity

to DLC-1-mediated growth inhibition. In their clonogenic growth analyses, ectopic DLC-1

expression reduced the number of HCC colonies grown on culture dishes following transfection

and puromycin selection, whereas their putative GAP-deficient variant of DLC-1 (K714E) had

no effect on colony formation [46]. Our different observations are not entirely surprising since

Rho GTPases have been implicated in many facets of the tumorigenic and malignant

phenotype, but with cell type differences.

The ability of the rat homologue of DLC-1, p122RhoGAP, to activate PLC-δ is the only other

known catalytic activity associated with DLC-1. To investigate the RhoGAP-independent anti-

tumor functions of DLC-1, we conducted experiments to quantify the ability of DLC-1 to

activate PLC-δ1. Surprisingly, we found that DLC-1 did not activate the phospholipid

hydrolysis activity of PLC-δ1, suggesting that the protein has distinct functions from rat

DLC-1, p122RhoGAP. DLC-1 interaction with caveolin-1 [47] or tensin2 [41] remains

interesting possibilities for GAP-independent functions for tumor suppression, since there is

evidence for the function of both of these proteins in oncogenesis.

In summary, our studies provide information on the mechanisms by which DLC-1 functions

as a tumor suppressor in NSCLC. In particular, we determined that DLC-1 expression will alter

the level of Rho GTPase activity in NSCLCs and that DLC-1 growth suppression involves

both Rho-dependent and Rho-independent mechanisms. Lastly, our studies suggest that DLC-1

will be regulated by posttranslational mechanisms. Identifying the interacting partners of

DLC-1 is essential to developing a more comprehensive understanding of the mechanism of

regulation of DLC-1 function.
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Figure 1.

DLC-1 is a RhoGAP. (A) Schematic of the structure of wild type and mutant human DLC-1

proteins used in this study. (B) DLC-1 is a RhoGAP for RhoA, (C) RhoB, and (D) RhoC. The

GTP hydrolysis rate of recombinant GST fusion proteins of RhoA, RhoB, and RhoC was

measured in the presence and absence of 0.30 μM DLC-1. GAP activity of a missense mutant

of DLC-1, with substitution of a conserved arginine residue in the RhoGAP catalytic domain

(DLC-1(R718E)), was also determined. The small GTPases were preloaded with GTP, and

incubated with a fluorescently-labeled phosphate binding protein (PBP) which undergoes a

dramatic increase in fluorescence upon binding inorganic phosphate released from GTP

hydrolysis. Real time GTP hydrolysis was monitored by measuring the increases in

fluorescence, which directly correlated with GTP hydrolysis. Data shown are representative

of two independent experiments.
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Figure 2.

The isolated RhoGAP domain shows greatly enhanced catalytic activity for RhoA, RhoB,

RhoC and Cdc42. Recombinant full length and an isolated RhoGAP catalytic domain fragment

(amino acids 609-878) of DLC-1 were expressed and purified for analysis of in vitro GAP

activity. Real time GTP hydrolysis was measured with a fluorescently labeled PBP, as

described in Fig. 1, for GST fusion proteins of wild type (A, B) RhoA, (C, D) RhoB, (E, F)

RhoC, (G, H) Cdc42, and (I, J) Rac1. Data shown are representative of three independent

experiments.
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Figure 3.

DLC-1 protein expression is lost in NSCLC cell lines and associated with increased RhoA-

GTP formation. (A) DLC-1 protein expression is lost in some NSCLCs. Lysates from nine

NSCLC cell lines were resolved by SDS-PAGE and transferred to a PVDF membrane. A

monoclonal antibody was used for western blot analysis of DLC-1 expression (612020; BD

Biosciences). A parallel blot for β-actin was done to ensure equivalent loading of total cell

lysate protein. (B) Ectopic expression of wild type but not mutant DLC-1 is associated with a

reduction of RhoA-GTP activity in NSCLCs. Mass populations of two NSCLC cell lines,

deficient in endogenous DLC-1 protein expression, were established via infection with the

pBabe-puro retrovirus vector encoding wild type full length DLC-1 or the GAP-dead mutant,

DLC-1(R718E). RhoA-GTP levels were assessed by incubating lysates with GST-Rhotekin-

RBD that was precoupled to glutathione-sepharose beads. Precipitated and total lysates (4%

loading control) were analyzed by western blotting with anti-RhoA and -DLC-1 antibodies.

Data shown are representative of two independent experiments.
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Figure 4.

DLC-1 expression reduces RhoA activity at the leading edge of cellular protrusions. MEFs

stably expressing a RhoA biosensor were transiently-transfected with mCherry-tagged DLC-1

and plated on fibronectin. (A) Time-lapse images of RhoA activity during cellular protrusion.

Regions of intense RhoA activity are shown in red. Scale bar, 10 μm. (B) Quantification of

RhoA activity at varying distances from the edge of the cell. RhoA activity was quantified

along 120 line-scans drawn perpendicular to the edge of 8 mCherry control cells and 103 line-

scans perpendicular to the edge of 8 mCherry DLC-1 cells. Data points represent the average

± SD (C) mCherry DLC-1 is expressed at focal adhesions in the MEFs. Expression of the

mCherry fluorescence is shown for representative control and DLC-1 cells.
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Figure 5.

Ectopic re-expression of DLC-1 impairs NSCLC anchorage-independent growth. NCI-H23

and A549 NSCLC cells stably-infected with the pBabepuro vector encoding DLC-1 or DLC-1

(R718E) were evaluated for colony formation in soft agar and the number of proliferating viable

colonies was quantitated after 21 days. (A) Viable colonies were stained with MTT and

photographed. (B) The total number of colonies (> 10 cells) within five representative fields

of view was quantified. Data shown are the average ± SD of triplicate wells and are

representative of three independent experiments. *, significant at P ≤ 0.005 vs. vector; †,

significant at P < 0.01 vs. vector and vs. wild type DLC-1.
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Figure 6.

DLC-1 reduces NSCLC invasion in vitro. NCI-H23 cells stably-infected with the pBabe-puro

vector encoding DLC-1 or DLC-1(R718E) were assessed for invasion through Matrigel. Cells

were dissociated, resuspended in serum-free growth media containing 1% BSA, and incubated

for 22 h at 37°C in a Matrigel invasion chamber; the lower well contained growth medium

supplemented with 3% FCS. Non-invaders were removed, and the chambers were fixed and

stained. (A) Invading cells were photographed under 10X magnification. (B) Quantification

of invading cells. Data shown are the mean ± SD of triplicate wells and are representative of

two independent experiments. *, significant at P ≤; 0.01 vs. vector.
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Figure 7.

DLC-1 does not stimulate phosphoinositide hydrolysis activity of PLC-δ1. Cos-7 cells were

transiently transfected with vectors encoding various PLC isoforms and known or putative

activators. Intracellular inositol phosphate accumulation was quantified as described in

Methods. (A) PLC-β2 phospholipid hydrolysis activity is activated by constitutively activated

Rac3. To verify the assay conditions, we coexpressed PLC-β2 with Rac3 G12V, an established

activator of PLC-β2, and quantified [3H]inositol phosphate accumulation. (B) PLC-δ1 activity

is not stimulated by DLC-1. Zero toδ100 ng of expression vector encoding PLC-δ1 was co-

transfected with 0, 25, 50, 100, or 200 ng of DNA encoding human DLC-1, and the

accumulation of [3H]inositol phosphates was quantified. Data shown are the mean ± SD of

triplicate determinations and are representative of results obtained in two independent

experiments.
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