

Newcastle University ePrints - eprint.ncl.ac.uk

Puthal D, Nepal S, Ranjan R, Chen J. DLSeF: A Dynamic Key-Length-based

Efficient Real-Time Security Verification Model for Big Data Stream. ACM

Transactions on Embedded Computing Systems (TECS) 2017, 16(2), 51.

Copyright:

© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions on

Embedded Computing Systems (TECS), 16(2) (2017), https://doi.org/10.1145/2937755

DOI link to article:

https://doi.org/10.1145/2937755

Date deposited:

22/08/2017

http://eprint.ncl.ac.uk/
javascript:ViewPublication(225970);
javascript:ViewPublication(225970);
https://doi.org/10.1145/2937755
https://doi.org/10.1145/2937755

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

DLSeF: A Dynamic Key Length Based Efficient Real-Time Security

Verification Model for Big Data Stream

DEEPAK PUTHAL, University of Technology Sydney, Australia

SURYA NEPAL, CSIRO Data61, Australia

RAJIV RANJAN, Newcastle University, UK and CSIRO Data61, Australia

JINJUN CHEN, University of Technology Sydney, Australia

Applications in risk-critical domains such as emergency management and industrial control systems need

near real-time stream data processing in large scale sensing networks. The key problem is how to ensure

online end-to-end security (e.g. confidentiality, integrity, and authenticity) of data streams for such

applications. We refer to this as an online security verification problem. Existing data security solutions

cannot be applied in such applications as they cannot deal with data streams with high volume and velocity

data in real-time. They introduce a significant buffering delay during security verification, resulting in a

requirement for a large buffer size for the stream processing server. To address this problem, we propose a

Dynamic Key Length Based Security Framework (DLSeF) based on a shared key derived from synchronized

prime numbers; the key is dynamically updated at short intervals to thwart potential attacks to ensure end-

to-end security. Theoretical analyses and experimental results of the DLSeF framework show that it can

significantly improve the efficiency of processing stream data by reducing the security verification time and

buffer usage without compromising security.

• Information systems➝Data model extensions➝Data Streams • Security and privacy➝Security services➝

Authentication➝Multi-factor authentication.

General Terms: Algorithms, Performance, Security

Additional Key Words and Phrases: sensor networks, big data stream, key exchange, efficient, security, time

synchronization

ACM Reference Format:

Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. 2016. DLSeF: A Dynamic Key Length Based

Efficient Real-Time Security Verification Model for Big Data Streams. ACM Trans. Embedd. Comput. Syst.
15, 4, Article 39 (Month YYYY), 25 pages.  
DOI:http://dx.doi.org/10.1145/0000000.0000000

 INTRODUCTION

A variety of applications, such as emergency management, SCADA (Supervisory

Control and Data Acquisition), remote health monitoring, telecommunication fraud

This research is funded by the Australia India Strategic Research Grant titled "Innovative Solutions for Big

Data and Disaster Management Applications on Clouds (AISRF - 08140)" from the Department of Industry,

Australia. The research in this paper is also partially supported by ARC LP140100816.

The preliminary version of this paper has published in 16th International Conference on Web Information

System Engineering (WISE 2015), Miami, Florida, USA, 2015.

Author’s addresses: D. Puthal and J. Chen, Faculty of Engineering and Information Technology, University

of Technology Sydney, Australia; S. Nepal, Commonwealth Scientific and Industrial Research Organization

(CSIRO), Australia; R. Ranjan, Newcastle University, Newcastle upon Tyne, UK and Commonwealth

Scientific and Industrial Research Organization (CSIRO), Australia; email: deepak.putahl@gmail.com.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with credits permitted.

To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this

work in other works requires prior specific permission and/or a fee. Permissions may be requested from

Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-

0481, or permissions@acm.org.

© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

39

39:2 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

detection and large scale sensing networks, require real-time processing of data

streams, where the traditional store-and-process method falls short of the challenge

[Stonebraker et al. 2005]. These applications have been characterized as producing

high speed, real-time, sensitive and large volume data input, and therefore require a

new paradigm of data processing. The data in these applications falls in the big data

category, as its size is beyond the ability of typical database software tools and

applications to capture, store, manage and analyze in real time [Manyika et al. 2011].

More formally, the characteristics of big data are defined by “4Vs” [Bahrami and

Singhal 2015; McAfee et al. 2012]: Volume, Velocity, Variety, and Veracity; the

streaming data from a sensing source meets these characteristics. Our focus in this

paper is thus on providing end-to-end security for real-time high volume, high velocity

data streams.

A big data stream is continuous in nature and it is critical to perform real-time

analysis as: (i) the lifetime of the data is often very short (i.e. the data can be accessed

only once) [Bifet 2013; Dayarathna and Suzumura 2013] and (ii) the data is utilized

for detecting events (e.g. flooding of highways, collapse of railway bridge) in real-time

in many risk-critical applications (e.g. emergency management). Since a big data

stream in risk-critical applications has high volume and velocity and the processing

has to be done in real-time, it is not economically viable and practically feasible to store

and then process (as done in the traditional batch computing model). Hence, stream

processing engines (e.g. Spark, Storm, S4) have emerged in the recent past that have

the capability to undertake real-time big data processing. Stream processing engines

offer two significant advantages. Firstly, they circumvent the need to store large

volumes of data and secondly, they enable real-time computation over data as needed

by emerging applications such as emergency management and industrial control

systems. Further, integration of stream processing engines with elastic cloud

computing resources has further revolutionized big data stream computation as

stream processing engines can now be easily scaled [Bifet 2013; Demirkan and Delen

2013; Tien 2013] in response to changing volume and velocity.

Although stream data processing has been studied in recent years within the

database research community, the focus has been on query processing [Deshpande et

al. 2007], distribution [Sutherland et al. 2005] and data integration. Data security

related issues, however, have been largely ignored. Many emerging risk-critical

applications, as discussed above, need to process big streaming data while ensuring

end-to-end security. For example, consider emergency management applications that

collect soil, weather, and water data through field sensing devices. Data from these

sensing devices are processed in real-time to detect emergency events such as sudden

flooding, and landslides on railways and highways. In these applications, compromised

data can lead to wrong decisions and in some cases even loss of lives and critical public

infrastructure. Hence, the problem is how to ensure end-to-end security (i.e.

confidentiality, integrity, and authenticity) of such data streams in near real-time

processing. We refer to this as an online security verification problem.

The problem in processing big data becomes extremely challenging when millions

of small sensors in self-organizing wireless networks are streaming data through

intermediaries to the data stream manager. In these cases, intermediaries as well as

the sensors are prone to different kinds of security attacks such as Man in the Middle

Attacks. In addition, these sensors have limited processing power, storage, and energy;

hence, there is a requirement to develop lightweight security verification schemes.

Furthermore, data streams need to be processed on-the-fly in the correct sequence. In

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream 39:3

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

this paper, we address these issues by designing an efficient model for online security

verification of big data streams.

The most common approach for ensuring data security is to apply cryptographic

methods. In the literature, the two most common types of cryptographic encryption

methods are asymmetric and symmetric key encryption. Asymmetric key encryption

(e.g. RSA, ElGamal, DSS, YAK, Rabin) performs a number of exponential operations

over a large finite field and is therefore 1000 times slower than symmetric key

cryptography [Burke et al. 2000; Cloudflare 2014]. Hence, efficiency becomes an issue

if an asymmetric key such as Public Key Infrastructure (PKI) [Park et al. 2008] is

applied to securing big data streams. Thus, symmetric key encryption is the most

efficient cryptographic solution for such applications. However, existing symmetric key

methods (e.g. DES, AES, IDEA, RC4) fail to meet the requirements of real-time security

verification of big data streams because the volume and velocity of a big data stream

is very high (refer to the performance evaluation section for the performance values).

Hence, there is a need to develop an efficient and scalable model for performing

security verification of big data streams. The main contributions of the paper can be

summarized as follows:

— We have designed and developed a Dynamic Key Length Based Secure Framework

(DLSeF) to provide end-to-end security for big data stream processing. Our model is

based on a common shared key that is generated by exploiting synchronized prime

numbers. The proposed method avoids excessive communication between data

sources and Data Stream Manager (DSM) for the rekey process. Hence, this leads

to reduction in the overall communication overhead. Due to this reduced

communication overhead, our model is able to do security verification on-the-fly

(with minimum delay) with minimal computational overhead.

— Our proposed model adopts a moving target approach, using a dynamic key length

from the set 128-bit, 64-bit, and 32-bit. This enables faster security verification at

DSM without compromising security. Hence, our model is suitable for processing

high volumes of data without any delay.

— We compare our proposed model with the standard symmetric key solution (AES)

in order to evaluate the relative computational efficiency. The results show that our

model performs better than the standard AES method.

The rest of this paper is organized as follows. Section 2 gives the background and

defines the problem space. Related works is discussed in Section 3. Section 4 describes

our proposed solution, DLSeF. Section 5 presents the formal security analysis of our

model. Section 6 evaluates the performance and efficiency of the model through

extensive experiments. Section 7 concludes our work and points out potential future

directions.

 BACKGROUND AND THE PROBLEM DEFINITION

Fig. 1 shows the overall architecture for big data stream processing from source

sensing devices to the data processing center including our proposed security

framework. Refer to [Ranjan 2014] for further information on stream data processing

in datacenter clouds. In sensor networks, data packets from the sources are

transmitted to the sink (data collector) through multiple intermediary hops (e.g.

routers and gateways). Collected data at sink nodes are then forwarded to the DSM as

data streams may also pass through many untrusted intermediaries. The number of

hops and intermediaries depends on the network architecture designed for a particular

application. The intermediaries in the network may behave as a malicious attacker by

39:4 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

modifying and/or dropping the data packets. Hence, traditional communication

security techniques [Walters et al. 2007; Perrig et al. 2002; Chen et al. 2009] are not

sufficient to provide end-to-end security. In our framework, both queries and data

security related techniques are handled by DSM in coordination with the on-field

deployed sensing devices. It is important to note that the security verification of

streaming data has to be performed before the query processing phase and in near

real-time (with minimal delay) with a fixed (small) buffer size. The processed data are

stored in the big data storage system supported by cloud infrastructure [Puthal et al.

2015c]. Queries used in DSM are defined as “continuous” since they are continuously

applied to the streaming data. Results (e.g. significant events) are pushed to the

application/user each time the streaming data satisfies a predefined query predicate.

Fig. 1. High level of architecture from source sensing device to big data processing center.

Fig. 2. Pair of dynamic relative prime number generation, one at the DSM, and another in a distributed

sensing device are maintained with a standard time interval based on key length.

The discussion of the architecture above clearly identifies the following most

important requirements for security verification for big data stream processing. In

summary, they include: (a) the security verification needs to be performed in real time

(on-the-fly), (b) the framework has to deal with a high volume of data at high velocity,

(c) the data items should be read once in the prescribed sequence, and (d) the original

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream 39:5

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

data is not available for comparisons which are widely available in a store-and-process

batch processing paradigm. The above requirements need to be met by a big data

stream processing framework in addition to end-to-end data security.

Based on the above requirements of big data stream processing, we categorize

existing data security methods into two classes: communication security [Carman et

al. 2000; Eschenauer et al. 2002] and server side data security [Zissis and Lekkas 2012;

Liu et al. 2014]. Communication security deals with the data security between two

nodes when it is in motion, and does not deal with the end-to-end security, whereas

server side data security approaches focus on ensuring the security of data when it is

at rest in a repository [Kandukuri et al. 2009]. The above listed security solutions are

not suitable to use in the big data stream because of the four important features of big

data stream stated before. Furthermore, symmetric cryptographic-based security

solutions are either based on static shared key or centralized dynamic key [Daemen

and Rijmen 2002; Heron 2009]. In static shared key, we need to have a long key to

defend against potential attackers. It is well known that the length of the key is always

proportional to security verification time (see Table 2); hence, longer keys are not

suitable for applications that need to do real-time processing over high volume, high

velocity data. For the dynamic key, centralized processors rekey and distribute keys to

all the sources according to the standard symmetric key solution; this is a time

consuming process. Moreover, a big data stream is always continuous in nature and it

is impossible to halt data for a rekeying process. To address this problem, we propose

a distributed and scalable model for big data stream security verification.

Our proposed model works as follows: we use a common shared key for both sensing

devices and DSM. The key is updated dynamically by generating synchronized relative

prime numbers without further communication between them after handshaking. This

procedure reduces the communication overhead and increases the efficiency of the

solution, without compromising security. Due to the reduced communication overhead,

our model performs the security verification with minimum delay. Based on the shared

key properties, individual source sensing devices update their dynamic key and key

length independently.

The Data Encryption Standard (DES) has been a standard symmetric key

algorithm since 1977. However, it can be cracked quickly and inexpensively. In 2000,

the Advanced Encryption Standard (AES) [Pub, N. F. 2001] replaced the DES to meet

the ever increasing requirements of data security. The Rijndael algorithm, i.e.

Advanced Encryption Standard (AES), is a symmetric block cipher that encrypts data

blocks of 128 bits using different sizes of symmetric keys such as 128, 192 or 256 bits

[Pub, N. F. 2001; Simon 2009; Joan and Rijmen 2002]. AES was introduced to replace

the Triple DES (3DES) algorithm used for a significant time universally. Hence, we

have compared our proposed solution against AES.

 RELATED WORK

Stonebraker et al. [Stonebraker et al. 2005] outlined eight necessities that a framework

or system ought to meet to exceed expectations at a variety of real-time stream

processing applications. We found stream data processing and security issues in data

streams to be one recent research trend. We started working to address the security

verification in data streams and in this paper we are presenting a novel solution

towards this problem. In this section, we describe related works under the following

two areas: stream processing and security solutions for security verification.

39:6 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

 Stream Data Processing

Data streaming has turned into an important research topic for the stream processing

of continuous data flows in several areas such as finance, telecommunications, and

networking. The area has gained even more attention from researchers after the

emergence of big data. Big data is a term connected to data sets whose size is past the

capacity of accessible devices to attempt their securing, access, investigation or

application in a sensible timeframe. Recently, it has been estimated that around four

zettabytes of data are being generated per year from various sources [Tien 2013]. Many

stream data processing technologies are available in the market. For example,

StreamCloud is a large scalable elastic data streaming system for processing large data

streams [Gulisano et al. 2012]. StreamCloud utilizes a novel parallelization strategy

that splits queries into subqueries that are dispensed to independent sets of nodes in

a way that minimizes the distribution overhead.

Arasu et al. initially proposed a Data Stream Management System (DSMS); it is

called STanford stREam data Manager (STREAM) [Arasu et al. 2003]. It is intended

to deal with high velocity data rates and substantial numbers of continuous queries

through cautious resource allocation. Tatbul et al. [Tatbul et al. 2007] demonstrate the

distributed load shedding issue as a linear optimization problem and propose two

different solutions: a centralized approach and a distributed approach. The distributed

approach works in light of metadata aggregation and propagation, whose unified

execution is additionally accessible. Monitoring applications are those where floods of

data, triggers, continuous prerequisites, and loose information are pervasive. In

[Carney et al. 2002], a framework named Aurora is proposed towards observing data

processing applications. This framework provides existing parts of database

configuration and usage, additionally obliging creation of novel proactive information

storage and processing concepts and methods. Chandrasekaran et al.

[Chandrasekaran et al. 2003] proposed a dataflow system called TelegraphCQ for

processing continuous queries over data streams. This is a novel architecture to

support a dynamic query workload in unpredictable data stream situations. There are

several existing solutions related to data processing but these do not deal with security

issues.

 Cryptographic Based Data Security

There are several cryptographic based security solutions, which broadly speaking are

proposed to solve two different aspects of problems. These two different types of class

are to protect two different modes of data i.e. communication security and server

security. Communication security solutions are proposed to protect data when data is

in motion whereas server security is to protect data when data is at rest. There are

several security threats and security solutions exist in different communication layers

[Walters et al. 2007; Chen et al. 2009; Perrig et al. 2002; Eschenauer and Gligor 2002].

Data Confidentiality, Data Integrity, Data Freshness, Availability, and Authentication

are the major security threats and authors also give a clear list of security solutions

for data communications. Authors also classified the layer-wise security threats and

existing solutions (i.e. physical layer, data link layer, network layer, transport layer)

for wireless communication when data is in motion.

There are numerous possible attacks when data is at rest such as data interruption,

interception, impersonation, privacy breach, session hijacking, programming flaws,

software interruption, software modification, defacement, disrupting communications,

hardware interruption, and hardware modification, etc. Several existing solutions

have been proposed to overcome these types of attacks as follows: data protection from

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream 39:7

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

disclosure, privacy in multitenant environments, application security, access control,

software security, service availability, data security (data in transit, data at rest,

reminisce), virtual cloud protection, cloud management control security, hardware

security, and hardware reliability etc. [Zissis and Lekkas 2012; Liu et al. 2014;

Kandukuri et al. 2009]. Zissis et al. [Zissis and Lekkas 2012] describe the complete

architecture of cloud computing, features, services and security and trust related

issues. They initially evaluate cloud security and present a feasible solution that

disposes of these potential threats by identifying unique and novel security

requirements. They propose security features in a cloud environment by introducing a

third party and use PKI cryptography to certify the authentication, confidentiality and

integrity of involved data and communications. Liu et al. [Liu et al. 2014] proposed a

hierarchical KE scheme, i.e. HKE-BC, which gives more efficient secure scheduling in
cloud computing environments and also cloud data auditing. It is designed with a two-

phase layer iterative approach and proves the scheme by both theoretical analysis and

experimental results. It reduces the overall time consumption in AKE without

sacrificing the level of data security. There are several pieces of research available in

this area but we are not going into detail. The server side data security (i.e. data is at

rest) is mainly proposed for physical data center or cloud to access through applications.

There are also several existing security solutions in streaming environments and

participatory sensing system [Nehme et al. 2013; Cao et al. 2013; Nehme et al. 2009;

Wang et al. 2013]. Nehme et al. initially proposed an architecture to address the needs

of data security and query security in streaming environments [Nehme et al. 2009].

They proposed a continuous access control architecture named StreamShield. They

also proposed another solution named FENCE to solve the problem of continuous

access control enforcement in data streams [Nehme et al. 2013]. They address security

for both data and query processing in their solution. ASSIST is a system based access

control framework to protect streaming data from unauthorized access [Cao et al. 2013].

Wang et al. [Wang et al. 2013] proposed a framework, named ARTSense, for

participatory sensing networks to solve the problem of trust without identity. The

above solutions are mainly designed for stream environments, and the security

verification of data streams is not dealt with. Therefore, we focus on security

verification of big data streams.

We would like to restate the four important requirements for security verification

of big data stream processing: (a) near real time security verification, (b) deal with high

volume and velocity of data, (c) the data items should only be accessed once, and (d)

the original data is not available for comparisons. Existing solutions for

communication security or server side security do not satisfy these requirements. Our

work focuses on addressing all these requirements and we propose a novel light weight

security model for big data streams. First, we proposed a Dynamic Prime Number

Based Security Verification (DPBSV) scheme for big data stream processing, which is

based on a common shared key that is updated dynamically by generating

synchronized pairs of prime numbers [Puthal et al. 2015a; Puthal et al. 2016]. We

proved our scheme is efficient by theoretical analyses and experimental results. The

preliminary version of this paper contains the stream data processing architecture

security requirements followed by proposal of a novel model to address the online

security verification by ensuring end-to-end security (e.g. integrity, and authenticity)

[Puthal et al. 2015b]. In this paper, we propose a new solution for real-time security

verification (i.e. confidentiality, integrity and authenticity) on big data streams. Our

model is efficient; we achieved efficiency by reducing the security computation time

and buffer utilization.

39:8 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

 PROPOSED MODEL

Our model is motivated by the concept of moving target defense. The basic idea is that

the keys are the targets of attacks by adversaries. If we keep on moving the keys in

spatial (dynamic key size) and temporal (same key size, but different key) dimensions,

we can achieve the required efficiency without compromising the security. Our

proposed model, Dynamic Key Length Based Security Framework (DLSeF), provides

a robust security solution by changing both key and key length dynamically. In our

model, if an intruder/attacker eventually hacks the key, the data and time period is

selected in such a way that he/she cannot predict the key or its length for the next

session. We argue that it is very difficult for an intruder to guess the appropriate key

and its length as our model dynamically changes both across the sessions. Though the

proposed model has weak confidentiality (eventually the intruder may able to detect

the keys if he/she has sufficient processing and storage capabilities), it provides

sufficient confidentiality for the duration of online real-time processing. Hence, such a

weak confidentiality model is sufficient for a disaster management application

scenario. It is important to note that no compromise is made on the authenticity and

integrity of the data, which are important for making decisions from the data.

Table I. Notations used in our model

Acronym Description 𝑆𝑖 ith source sensing device’s ID 𝐾𝑖 ith source sensing device’s secret key 𝐾𝑠𝑖 ith source sensing device’s session key 𝑘𝑙 Key length 𝐾1/𝐾2/𝐾3/𝐾4 Initial keys for authentication 𝐾𝑆𝐻 Secret shared key calculated by the sensing device and DSM 𝐾𝑆𝐻− Previous secret shared key maintain at DSM 𝑃1/𝑃2/𝑃3/𝑃4 Communicated format during authentication 𝑟 Random number generated by the sensing devices 𝑡 Interval time to generate the prime number

j Integrity checking interval 𝑇 Timestamp added with data blocks 𝑃𝑖 Random prime number 𝐾𝑑 Secret key of the DSM 𝐼𝐷 Encrypted data for integrity check 𝐴𝐷 Secret key for authenticity check 𝐸() Encryption function 𝐻() One-way hash function 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) Random prime number generation function

KeyGen Key generation procedure

Key-Length () Key length selection procedure ⊕ X-OR operation ∥ Concatenation operation 𝐷𝐴𝑇𝐴 Fresh data at sensing device before encryption

Similar to any secret key-based symmetric key cryptography, our DLSeF model

consists of four independent components and related processes: system setup,

handshaking, rekeying, and security verification. Stream processing is expected to be

performed in near real-time. The end-to-end delay is an important QoS parameter to

measure the performance of sensor networks [Akkaya and Younis 2003]. We are

collecting data from sensor nodes to process for any emergency situation, data need to

be collected at the DSM in real time. So we assume there should not be much delay on

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream 39:9

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

data arrival at the DSM for our model. Table 1 provides the notations used in our

model. We next describe the model.

 DLSeF System Setup

We have made a number of realistic and practical assumptions while designing and

modelling our model. We assume that the DSM has all deployed sensing devices’
identities (IDs) and respective secret keys because the network is untrusted. Sensing

devices and DSM implement some common primitives such as hash function (H()),

and common key (K1), which are executed during the initial identification and system

setup steps.

The proposed authentication process includes five different steps. The first three

steps are for the sensing device and DSM authentication process and the final two

steps are for the session key generation process as shown in Fig. 3. The shared key is

utilized during the handshaking process.

Step 1:

A sensing device (Si) generates a pseudorandom number (r) and encrypts it along

with its own secret key Ki. The encryption process uses the common shared key (K1),

which is initialized during the deployment. The output of encryption (EK1(r ∥ Ki)) is

denoted as P1. The output is then sent to the DSM: Si → DSM: P1

Step 2:

Upon receiving the message, the DSM decrypts P1 (i. e. DK1(P1)) and retrieves the

corresponding source ID from secret key (𝑆𝑖 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝐾𝑖)). If the source sensor’s
ID is found in the database, it accepts; otherwise it rejects. The DSM computes the

hash of the key to generate another key for encryption K2 ← H(K1). The DSM then

encrypts the pseudorandom number (r) with the newly generated key as P2 ← EK2(r)

and sends it to the source sensing device for DSM authentication: Si ← DSM: 𝑃2

Step 3:

The corresponding sensing device receives the encrypted pseudorandom number

and decrypts it to authenticate the DSM, i.e. r′ ← DK2(P2). It calculates the current

secret shared key using the hash of the existing shared key i.e.K2 ← H(K1). If the

received random number is the same as the sensor had before (i.e. r = r′), the sensing

device sends an acknowledgement (ACK) to the DSM. The ACK is encrypted with the

new key, which is computed using the hash of the current key (K3 ← H(K2)). The

encrypted ACK is denoted as P3 ← EK3(ACK), and sent to the DSM: Si → DSM: 𝑃3

Step 4:

The DSM decrypts the ACK (i.e. ACK ← DK3(P3)) to confirm that the sensor is now

ready to establish the session. The current secret key is updated using the hash of the

existing secret key i.e. K3 ← H(K2). After the confirmation of ACK, the DSM generates

a random session key i.e. Ksi ← randomKey() for handshaking. The generated session

key (Ksi) is encrypted with the hash of the current key e.g. (K4← H(K3)) and then sent

to individual sensors as Si → DSM: { 𝑃4}, where P4 ← EK4(Ksi).

Step 5:

The sensor decrypts P4 and extracts the session key for handshaking (Ksi ← DK4(P4)).

It follows the same procedure as before, i.e. the current shared key is updated with the

hash value of the existing shared key (K4← H(K3)). We update the shared key in every

transaction to ensure the strength of security for handshaking. The complete

authentication process works as shown in Fig. 3.

39:10 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 3. Secure authentication of Sensor and DSM.

 DLSeF Handshaking

In the handshaking process, the DSM sends the key generation and synchronization

properties to sensors based on their individual session key (Ksi) established earlier.

Generally, a larger prime number is used to strengthen the security process. However,

a larger prime number requires greater computation time. In order to make the

rekeying process efficient (lighter and faster), we recommend reducing the prime

number size. The challenge is how to maintain security while avoiding large prime

number sizes. We achieve this by dynamically changing the key size as described next.

ALGORITHM 1. Dynamic Prime Number Generation

Prime (𝑃𝑖)
1: 𝑃𝑖−1 = 𝑃𝑖
2: Set 𝑘 ∶= ⌈𝑃𝑖−16 ⌉
3: Set 𝑚 ∶= 6𝑘 + 1

4: If 𝑚 ≥ 107 then

5: 𝑘 ∶= 𝑘 105⁄

6: GO TO: 3

7: If S(𝑚) = 1 then

8: GO TO: 14

9: Set 𝑚 ∶= 6𝑘 + 5

10: If S(𝑚) = 1 then

11: GO TO: 14

12: 𝑘 ∶= ⌊𝑘3 + √𝑘⌋ 𝑚𝑜𝑑 17 + 𝑘

13: GO TO: 3

14: 𝑃𝑖 = 𝑚

Return (𝑃𝑖) // calculated new prime number

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:11

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

ALGORITHM 2. Synchronization of Dynamic Key Length Generation

Key-Length (𝑥𝑛−1)

1: 𝑥𝑛−1← 64 (for first iteration)
2: 𝑥𝑛 ← 𝑥𝑛−1 + 𝑥𝑛−1 cos 𝑥𝑛−1

3: i←𝑥𝑛%3

4: If i = 0 then

5: Set kl ← 128
6: t ← 720 hours (1 month)
7: j ← no checking

8: Else If i = 1 then

9: Set kl ← 64

10: t ← 168 hours (1 week)
11: j ← Pi % 9

12: Else

13: Set kl ← 32

14: t ← 20 hours (1 day)
15: j ← Pi % 5

16: End If

17: End If

Return (𝑥𝑛) // use to initialize 𝑥𝑛−1for next iteration.

The dynamic prime number generation function is defined in Algorithm 1. This

algorithm computes the relative prime number, which always depends on the previous

prime number. This relation between the current and previous prime number process

helps to synchronize the newly generated prime number. We have given the

mathematical proofs of Algorithm 1, that the generated number will always be a prime

number and will synchronize between source device and DSM (refer to Theorem 2). We

calculate the prime number and shared key on both sensing sources and DSM ends to

reduce communication overhead and minimize the chances of disclosing the shared key.

The computed shared keys have multiple lengths (32 bit, 64 bit, and 128 bit) which are

varied across the sessions. Initial key length is set to 64 bit and is dynamically updated

as per the logic depicted in Algorithm 2. This algorithm selects the key length and the

associated time interval to generate the shared key. The key and key length selection

process follows based on the time taken to find all possible keys in the key domain by

following Table II. In Table II, we compute the key domain size and time required to

find all possible keys for different key lengths (i.e. 8, 16, 32, 64, and 128) by using the

most advanced Intel i7 processor. So Algorithm 2 follows the properties from Table II

to initialize the rekeying time interval according to the key length. After the time

interval, the next shared key is generated by applying Algorithm 1 where the size is

determined by Algorithm 2 as follows: 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) periodically computes the relative prime number at both the sensor and

DSM ends after a time interval t, which is updated based on function 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ().

The shared secret key (𝐾𝑆𝐻) generation process needs 𝐾𝑑 , and 𝑃𝑖. In the handshaking

process, the DSM transmits all properties required to generate a shared key to

sensors (𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒 (), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛) as follows: Si ← DSM:

{ 𝐸𝐾𝑠𝑖(𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒 (), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛)}

All of the transferred information outlined above is stored in the trusted part of the

source for future rekeying processes (e.g. TPM) [Nepal et al. 2011].

39:12 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

 DLSeF Rekeying

Our proposed model not only calculates the dynamic prime number to update the

shared key without further communication after handshaking, but also proposes a

novel way of dynamically changing key length at source and DSM according to steps

described in Algorithm 2. We change the key periodically in the DLSeF Rekeying

process to ensure that the protocol remains secured. If there are any types of key or

data compromise at a source, the corresponding sensor is desynchronized with DSM

instantly. Following that the source sensor needs to reinitialize and synchronize with

DSM as described above. We assume that the secret information is stored in the

trusted part of the sensor (e.g. TPM) and it is sent by the sensor to DSM for

synchronization. According to the properties of the TPM, no one has access to the

information stored inside the TPM. Only the sensor can access TPM properties. Even

if the sensor is destroyed, an adversary cannot get the information from the trusted

module of the sensor (i.e. TPM). In some cases, a data packet can arrive at DSM after

the shared key is updated. Such data packets are encrypted using the previous shared

key. We add a time stamp field to individual data packets to identify the encrypted

shared key. If the data is encrypted using the previous key then DSM uses 𝐾𝑆𝐻− key

for the security verification; otherwise, it follows the normal process.

The above defined DLSeF Handshaking process makes sensors aware of the Prime

(Pi), KeyLength, and KeyGen. We now describe the complete secure data transmission

and verification process using those functions and keys. As mentioned above, our

model uses the synchronized dynamic prime number generation Prime (Pi) on both

sides, i.e. sensors and DSM, as shown in Fig. 2. At the end of the handshaking process,

sensors have their own secret keys, initial prime number and initial shared key

generated by the DSM. The next prime generation process is based on the current

prime number and the time interval as described in Algorithm 1. The prime number

generation process (Algorithm 1) always calls Algorithm 2 to fetch the shared key

length information and associated time interval. Sensors generate the shared key 𝐾𝑆𝐻=(𝐸(𝑃𝑖,𝐾𝑑)) using the prime number 𝑃𝑖, and the DSM’s secret key 𝐸(P𝑖,𝐾𝑑). We use

the secret key of DSM to improve the robustness of the security verification process.

We fixed the initial key length at 64 bits and 168 hours as the initial time interval for

rekeying. Each data block is associated with the authentication and integration tag

and contains two different parts. One is encrypted DATA based on shared key 𝐾𝑆𝐻 for

integrity checking (i.e. 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻), and the other is for authenticity checking (i.e. 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻). The resulting data block ((DAT𝐴⊕𝐾𝑆𝐻) ∥ (𝑆𝑖⊕𝐾𝑆𝐻)) is sent to DSM as

follows: Si → DSM: {(𝐼𝐷∥(𝐴𝐷∥T))}. The time stamp which indicates the encrypted

shared keys is always associated with the authentication part. We prefer to add the

time stamp with the authentication part because the DSM can easily identify the data

block if it is encrypted with the previous shared key. More details about the time stamp

are described in the following subsection and the complete procedure of the key

generation (rekeying) process is shown in Algorithm 3. This algorithm takes

information from Algorithm 1 and Algorithm 2 to in order to perform the rekeying

process. From Algorithm 1, Algorithm 3 takes the dynamic prime number (𝑃𝑖) to

compute a shared key 𝐾𝑆𝐻 and from Algorithm 2, it takes the key size and time interval

for the rekeying process.

 DLSeF Key Synchronization

Synchronization is one of the major issues during the rekeying process between sensors

and the DSM. The shared key synchronization is based on the time interval set during

the key length selection and key generation process. In our model, we define the time

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:13

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

stamp as T, which is concatenated with encrypted data blocks that are sent to the DSM.

The time initialization or interval to generate the shared key always maintains local

time, i.e. t1, t2, t3 …, i.e. each site maintains its own time and increases it when the

new key is generated. That means the time slot associated with key generation changes

only when the key is changed.

 The time slot appended with encrypted data blocks is used to identify the shared

key by the DSM. When the DSM receives data blocks with the time stamp tn, and it

finds that the current time stamp is tn+1, then it decrypts the data blocks with the

previous shared key i.e. 𝐾𝑆𝐻− as stated earlier. This time is updated on both ends after

the interval of time, but DSM keeps the immediate previous time stamps with

associate shared keys to decrypt data blocks which arrive after the shared keys are

updated. The time duration to generate the key (rekeying) always depends on the key

length selected by both sensors and DSM as in Algorithm 2. The generated shared keys

are always synchronized because the key generation properties reside on both DSM

and sensor. The prime number plays a vital role in synchronizing the shared key

generation process, and the prime number will always be the same for both DSM and

sensors (see Theorem 2).

In some adverse or natural disaster situations, source sensing devices may be lost or

desynchronize with the shared key. In such situations, a source device starts the

process from the beginning by sending its identification details to the DSM. If the DSM

finds the received message is from an authenticated node, then it pass the current

shared key along with its properties to the source device. Source devices can use the

current key and time interval to encrypt the data blocks and perform the rekeying

process. The key generation/rekeying process cannot be disclosed to anyone in any

circumstances because we use the TPM at the source device to protect the rekey

process. A TPM is a dedicated security chip following the trust computing standard

specification for cryptographic microcontroller systems and provides hardware-based

trust, which contains cryptographic functionality like key generation, store, and

management in hardware.

ALGORITHM 3. Key Generation (Rekeying) Process at Sensor(Si) and DSM(D)

1. Session key (𝐾𝑆𝑖) from Fig. 3

2. Dynamic prime number (𝑃𝑖) computed from Algorithm 1.

3. Time interval (T) computed from algorithm 2.

3.1 T= {t1, t2, t3, …}
Here t1, t2, t3, … are the time intervals of key generation.

3.2 Sensor (𝑆𝑖) and DSM (D) update the key after the time interval from

Algorithm 2.

4. As stated before sensor and DSM have properties like H(), E. The new key generation 𝐾𝑆𝐻= 𝐸𝐾𝑆𝐻(H(𝑃𝑖, 𝐾𝑑)).

5. The encryption process at sensor happens in two steps

5.1 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻

5.2 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻

6. Si → DSM: {(ID∥(AD∥T))}

39:14 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Algorithm 4. Security Framework for Big Sensor Data Stream

Description Based on the prime number generation on both sensor and DSM ends,

the proposed dynamic key length based security framework of big data

stream works more efficiently than before without compromising

security.

Input the prime generation process 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖),
key length generation process Key-Length (𝑥𝑛−1),

key generation process 𝐾𝑒𝑦𝐺𝑒𝑛, and session key 𝐾𝑒𝑛𝑐.

Output Successful security verification without detecting any malicious attacks.

Step 1 DLSeF System setup

1.1 Si → DSM: {EK1(r ∥ Ki)}, ith sensor sends the random number with its identity which

is encrypted with common shared key i.e. K1.

1.2 Si ← DSM: { 𝐸𝐾2(𝑟)}, DSM identifies the sensor and generates a new key which is

the hash of current key for encryption K2 ← H(K1). Then DSM encrypts the random

number and sends back to the ith sensor

1.3 Si → DSM: { 𝐸𝐾3(𝐴𝐶𝐾)}, ith sensor identifies the DSM by decrypting the packet. If

sender is authenticated then it performs the hash of the current key (K3 ← H(K2))

to get a new key for encryption and sends back the acknowledgement.

1.4 Si ← DSM: { 𝐸𝐾4(𝐾𝑆𝑖)} DSM authenticates the last transaction and sends back to ith

sensor with this format. DSM generates a session key Ksi ← randomKey() and

encrypts with the newly generated key (k4) with the hash function of current key

(k3).

1.5 Sensor authenticates the packet and gets the session key for handshaking (Ksi ←
DK4(P4)).

Step 2 DLSeF Handshaking

DSM sends its properties to individual sensors based on their individual session

key. It includes the prime number generation and time interval to generation etc.

2.1 DSM ← Si: {𝐸𝐾𝑠𝑖(𝐾𝑑 , 𝑡, 𝑃𝑖 , 𝑃𝑟𝑖𝑚𝑒(𝑃𝑖), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ (), 𝐾𝑆𝐻, 𝐾𝑒𝑦𝐺𝑒𝑛)}

Step 3 DLSeF Rekeying

Key updates on both source sensor and DSM and both are aware about the Prime

(Pi) and KeyGen. Sensors generate the shared key 𝐾𝑆𝐻 = 𝐻(𝐸(𝑃𝑖 , 𝐾𝑑)) and each data

block is associated with two different parts. One is encrypted i.e. 𝐼𝐷 = 𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻

and the other is for authenticity checking i.e., 𝐴𝐷 = 𝑆𝑖 ⊕ 𝐾𝑆𝐻.

3.1 Si → DSM: { 𝐸𝑘(𝐼𝐷 ∥ (𝐴𝐷 ∥ 𝑇)) }, these blocks for Authentication, integration,

confidential check, and Time stamp for synchronization.

Step 4 DLSeF Security Verification

The DSM checks for authenticity in each data block 𝐴𝐷 and checks for the integrity

with random interval data blocks 𝐼𝐷 and random value is calculated based on the

corresponding prime number.

4.1 DSM checks the timestamp (T) at every packet to get the key for decryption. If the

timestamp is not the current one then it decrypts with 𝐾𝑆𝐻−.

4.2 𝑆𝑖 = 𝐴𝐷 ⊕ 𝐾𝑆𝐻

For the authenticity check, the DSM gets the source ID. Once Si is obtained, the DSM

checks the source database and extracts the corresponding secret key 𝐾𝑖 for the

integrity check according to the value of j.

4.3 𝐷𝐴𝑇𝐴 = 𝐼𝐷 ⊕ 𝐾𝑆𝐻

DSM calculates/decrypts data and checks MAC for integrity.

 DLSeF Security Verification

In this step, the DSM first checks the authenticity in each individual data block 𝐴𝐷 and

then the integrity with randomly selected data blocks 𝐼𝐷. The random value is

calculated based on the corresponding prime number i.e. 𝑗=𝑃𝑖% 5, when the key length

is 32; 𝑗=𝑃𝑖% 9 when the key length is 64; and there is no integrity verification when the

key length is 128. We differ the integrity verification interval randomly for individual

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:15

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

key lengths. We prefer to change the integrity verification interval more frequently

when the key length is shorter because key length is inversely proportional to

possibilities to read/modify the data. As the key length 128 is computationally hard

and can last for a long time, we do not check the integrity verification. We update the

shared key before there is a possibility of attack. The DSM also checks the time stamp

of each individual data block to find the shared key used for encryption. For the

authenticity check, the DSM decrypts 𝐴𝐷 with shared key 𝑆𝑖=𝐴𝐷⊕𝐾𝑆𝐻. Once Si is

obtained, the DSM checks its source database and extracts the corresponding secret

key 𝐾𝑖 (𝐾𝑖 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝑆𝑖)). In the integrity check process, the DSM decrypts the

selected data such as 𝐷𝐴𝑇𝐴=𝐼𝐷⊕𝐾𝑆𝐻 to get the original data and checks MAC for data

integrity.

The complete mechanism beginning from source and DSM authentication to

handshaking and security verification as mentioned in algorithmic format is shown in

Algorithm 4. Algorithm 4 represents the description of the proposed mechanism as a

stepwise process.

 SECURITY ANALYSIS OF DLSEF

In this section, we provide a theoretical analysis of our model. We made the following

assumptions: (a) any participant in our scheme cannot decrypt the data that was

encrypted by the DLSeF algorithm unless it has the shared key which was used to

encrypt the data; (b) as DSM is located at the big data processing system side, we

assume that DSM is fully trusted and no one can attack it; and (c) a sensors’ secret
key, Prime (Pi) and secret key calculation procedures reside inside the trusted part of

the sensor (such as the TPM) so that they are not accessible to intruders.

Similar to most security analyses of communication protocols, we now define the

attack models for the purpose of verifying confidentiality, authenticity and integrity.

 Security Proof

Definition 1 (attack on authentication). A malicious attacker Ma can attack the

authenticity if it is capable of monitoring, intercepting, and introducing itself as an

authenticated source node to send data in the data stream.

Definition 2 (attack on integrity). A malicious attacker Mi can attack the integrity if it

is an adversary capable of monitoring the data stream regularly and trying to access

and modify a data block before it reaches the DSM.

Definition 3 (attack on confidentiality): A malicious attacker Mc is an unauthorized

party which has ability to access or view the unauthorized data stream before it

reaches the DSM (within the time bound).

Theorem 1: The security is not compromised by changing the size of shared key (KSH).

Proof: The dynamic prime number generation generates and updates the key on both

sensor and DSM. The dynamic shared key length is 32 bit or 64 bit or 128 bit. The

ECRYPT II recommendations on key length say that a 128-bit symmetric key provides

the same strength of protection as a 3,248-bit asymmetric key [Cloudflare 2014]. An

even smaller symmetric key provides more security as it is never shared publicly. An

advanced processor (Intel i7 Processor) took about 1.7 nanoseconds to try out one key

from one block. With this speed it would take about 1.3 × 1012 × the age of the universe

to check all the keys from the possible key set [Cloudflare 2014]. By reducing the size

39:16 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

of the prime number, we vary the key length to confuse the adversary, but achieve

faster security verification at DSM using the data reported in Table 2. Further, Table

2 shows that a 128 bit symmetric key takes 3136e +19 nanoseconds (more than a

month), a 64 bit symmetric key takes 3136e +19 nanoseconds (more than a week), and

so on. We fixed the time interval (t) to generate prime numbers and updated the shared

key as follows: t=720 hours for 128-bit key length, t=168 hours for 64-bit length, and

t=20 hours for 32-bit length key (see Algorithm 2). The dynamic shared key is computed

based on the calculated prime number and associated properties initialized accordingly

(see Algorithm 1). Based on these calculation, we conclude that an attacker cannot

intercept within the interval time t. The key has already been changed four times

before an attacker knows the key and this fact is not known to the attackers. Data

blocks arriving after 20 hours are discarded as they might be compromised.

Table II. Time taken by symmetric key (AES) algorithm to get all possible keys using the most advanced Intel i7
Processor.

Key Length 8 16 32 64 128

Key domain size 256 65536 4.295e+09 1.845e +19 3.4028e+38

Time (in nanoseconds) 1435.2 1e+05 7.301e+09 3136e +19 5.7848e+35

Theorem 2: Relative prime number Pi as calculated in Algorithm 1 is always

synchronized between the source sensors (Si) and DSM.

Proof: The normal method to check the prime number is 6k+1, ∀k∈ N+ (an integer).

Here, we first initialize the value of k based on this primary test formula stated above.

Our prime number generation method is based on the nth prime number generation

concept and from the extended idea of [Kaddoura and Abdul-Nabi 2012]. In our model,

the input Pi is the currently used prime number (initialized by DSM) and the return

Pi is the calculated new prime number. Intially Pi is initialized by DSM at the DLSeF

Handshaking process and the interval time is t (see Algorithm 2).

By applying Algorithm 1, we calculate the new prime number 𝑃𝑖 based on the

previous one 𝑃𝑖−1 . The complete process of the prime number calculation and

generation is based on the value of m, where m is initialized from k. The value of k is

kept constant at source because it is calculated from the current prime number. This

is initialized during DLSeF Handshaking. Since k is constant, the procedure Prime (Pi)

returns identical values at both source sensors and DSM. In Algorithm 1, the value of

S(x) is computed as follows, if the computed value is 1 then x is a prime; otherwise it

is not a prime. S1(𝑥) = (−1)⌊⌊√𝑥⌋6 ⌋+1 ∑ ⌊⌊ 𝑥6𝑘+1⌋ − 𝑥6𝑘+1⌋⌊⌊√𝑥⌋6 ⌋+1𝑘=1 ,

S2(𝑥) = (−1)⌊⌊√𝑥⌋6 ⌋+1 ∑ ⌊⌊ 𝑥6𝑘−1⌋ − 𝑥6𝑘−1⌋⌊⌊√𝑥⌋6 ⌋+1𝑘=1 𝑆(𝑥) = S1(x)+S2(x)2

If 𝑆(𝑥) = 1 then x is prime, otherwise x is not a prime. 𝑥 ≢ 0 𝑚𝑜𝑑 𝑖 ∀ 1 ≤ i ≤ x − 1, if x is prime.

Put the value of x as a prime number, then derivations as follows: ⇒ ⌊⌊ x6k+1⌋ − x6k+1⌋ = −1 Same as ⌊⌊ x6k−1⌋ − x6k−1⌋ = −1

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:17

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

∀ k within the specified range i.e 107, then S1(𝑥) = (−1)⌊⌊√𝑥⌋6 ⌋+1 ∑ (−1)⌊⌊√𝑥⌋6 ⌋+1𝑘=1 = 1

Same S2(𝑥) is also 1 and then 𝑆(𝑥) = S1(x)+S2(x)2 = 1

Hence, the property of 𝑆(𝑥) is proved.

Theorem 3: An attacker Ma cannot read the secret information from a sensor node (Si)

or introduce itself as an authenticated node in DLSeF.

Proof: Following Definition 1 and considering the computational hardness of a secure

module (such as TPM), we know that Ma cannot get the secret information for Pi

generation, Ki and KeyGen. So there are no possibilities for the malicious node to trap

the sensor, but Ma can introduce him/herself as an authenticated node to send its

information. In our model, a sensor (Si) sends ((𝐼𝐷) ∥ (𝐴𝐷)), where the second part of

the data block (𝑆𝑖 ⊕ 𝐾𝑆𝐻) is used for an authentication check. The DSM decrypts this

part of the data block for the authentication check. The DSM retrieves Si after

decryption and matches corresponding Si within its database. If the calculated Si

matches with the DSM database, it accepts; otherwise it rejects the node as source and

it is not an authenticated sensor node. Hence, we conclude that an attacker Ma cannot

attack the big data stream.

Theorem 4: An attacker Mc cannot access or view the unauthorized data stream in our

proposed DLSeF within the time bound.

Proof: Following Algorithm 1, it is clear that the prime numbers 𝑃𝑟𝑖𝑚𝑒 (𝑃𝑖) are

generated at sensors and DSM dynamically without any further communication.

Shared secret key 𝐾𝑆𝐻 is calculated based on the generated prime number. Considering

the computational hardness of secure modules (such as TPM), we know that Mc cannot

get the secret information such as Pi generation, Ki and KeyGen within the time frame.

Following Definition 2, we know that an attacker Mc can gain access to the shared key 𝐾𝑆𝐻 but no other information. In our scheme, source sensor (Si) sends data blocks in

the format ((𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖) ∥ (𝑆𝑖 ⊕ 𝐾𝑆𝐻)), where the first part of the data block (𝐷𝐴𝑇𝐴 ⊕ 𝐾𝑆𝐻 ⊕ 𝐾𝑖) contains the original data. Getting the original data (𝐷𝐴𝑇𝐴) is

impossible from this because Mc does not have other information and at the same time

the shared key 𝐾𝑆𝐻 is updated dynamically in the interval of time (t). If Mc has

sufficient processing and storage capabilities, it may be able to get the shared key, but

in the meantime our shared key must be changed. In such a case, Mc can read the

message. This does not affect the application we are focusing on (e.g. disaster

management) by stream data processing. So our model DLSeF provides weak

confidentiality by not breaking the confidentiality in real time.

Theorem 5: An attacker Mi cannot read the shared key 𝐾𝑆𝐻 within the time interval t

in the DLSeF model.

Proof: Following Definition 2, we know that an attacker Mi has full access to the

network to read the shared key 𝐾𝑆𝐻, but Mi cannot get correct secret information such

as KSH. Considering the method described in Theorem 1, we know that Mi cannot get

the currently used KSH within the time interval t (see Table 2), because our proposed

model calculates Pi randomly after time t and then uses the value Pi to generate KSH as

described in Theorems 1 and 2.

39:18 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Theorem 6: The proposed DLSeF requires a comparatively smaller buffer size than

standard symmetric key solutions for security verification.

Proof: Following Algorithm 3, it is clear that the proposed DLSeF is a lightweight

security model for security verification. We are decrypting the identity of sensing

devices for authentication checks from every data block, whereas the selected data

block decrypts for integrity checks. Another important mechanism is the key length

used for encryption/decryption. As we are using the smaller key length to encrypt the

data blocks, it also makes the security verification faster. These above two processes

make the security verification much faster than other security mechanisms. As we all

know, the speed of the security verification is directly proportional to the required

buffer size. Finally, we conclude that the proposed DLSeF model for security

verification needs a comparatively smaller buffer size. The evaluation proof is in the

following section.

 Forward Secrecy

As with other symmetric key procedures, shared keys used for encrypting

communications are only used for a certain period of time (t) until the new prime

number is generated. Thus, a previously used shared key or secret keying material is

useless to a malicious attacker even if a secret key used in a previous session is known

to the attackers. This is one of the major advantages of frequent changing of the shared

key. In our model, we change the key with different key lengths. This is one of the

reasons we did not choose static symmetric key cryptography or an asymmetric-key

encryption algorithm.

 PERFORMANCE EVALUATION

The proposed DLSeF security model, though deployed in a big sensor data stream in

this paper, is a generic approach and can be used in other application domains. In

order to evaluate the efficiency and effectiveness of the proposed architecture and

protocol, even under adverse conditions, we experimented with different approaches

in multiple simulation environments. We first measure the performance of sensor

nodes by using a COOJA simulator in Contiki OS [Contiki 2015]; second, we verify the

proposed security approach using Scyther [Scyther 2015]; third, we measure the

performance of the approach using JCE (Java Cryptographic Environment) [Pistoia et

al. 2004]; finally, we compute the minimum buffer size required to process our proposed

approach by using MatLab [Matlab 2015] in-order to measure the efficiency of our

method.

 Sensor Node Performance

We tested the performance of sensors in a COOJA simulator in Contiki OS to measure

the performance of sensors while running the proposed security verification model. We

took the two most common types of sensor, i.e. Z1 and TmoteSky sensors, for our

experiment and performance checking as shown in Fig. 4. In this experiment, we

checked the performance of sensors while computing or updating the shared key and

the highest possible number of shared key generation with specified energy level.

Initially all sensor nodes have the same level of energy, 1.6 joule. [Kulik et al. 2002].

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:19

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

(a) (b)

Fig. 4. The sensors used for experiment (a) Z1 low power sensor. (b) TmoteSky ultra low power sensor.

(a) (b)

Fig. 5. Performance computation of two different sensors (a) Estimated power consumption during the

key generation process. (b) Possible number of key generation with initial 1.6 J power of sensors.

Z1 sensor nodes are produced by Zolertia and are a low-power WSN module,

designed as a universal purpose development platform for sensor network researchers.

Most of the WSN communities prefer this because it supports most employed open

source operating systems, like Contiki. COOJA is a network simulator for Contiki,

which provides real time sensor node features for simulation.

The Z1 sensor is equipped with the low power microcontroller MSP430F2617, which

has features like a powerful 16-bit RISC CPU @16MHz clock speed, 8KB RAM, built-

in clock factory calibration, and a 92KB Flash memory. Z1 hardware selection always

guarantees robustness and maximum efficiency with low energy cost. Similarly,

TmoteSky is an ultra-low power sensor. It is equipped with the low power

microcontroller MSP430F1611, which has built-in clock factory calibration, 10KB

RAM and a 48KB Flash memory.

From the features of the above two types of sensors, we successfully established in

the COOJA Simulator that our key generation process works successfully in both types

of sensors i.e. z1 sensor and TmoteSky sensor. These sensors can easily support our

security approach. The energy consumption during the key generation process is

shown in Fig. 5(a), and the maximum number of possible key generations in Fig. 5(b).

On average, the above sensors can generate the shared key around 280 times which

can support over a year to perform security mechanism. From this experiment, we

conclude that our proposed security verification approach DLSeF is supported by most

common types of sensors (tested with Z1 and TmoteSky sensors) and feasible for big

sensing data streams to work for longer times.

 Security Verification

The protocols in our proposed model are written in a Scyther simulation environment

using Security Protocol Description Language (.spdl). According to the features of

39:20 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Scyther, we define the roles of S and D, where S is the sender (i.e. sensor nodes) and D

is the recipient (i.e. DSM). In our scenario, S and D have all the required information

that is exchanged during the handshake process. This enables S and D to update their

own shared key. S sends the data packets to D and D performs the security verification.

In our simulation, we introduce three types of attack by adversaries. In the first type

of attack, a malicious attacker changes the data while it is being transmitted from S

to D through intermediaries (integrity attack). In the second type of attack

(authentication attack), an adversary acquires the property of S and sends the data

packets to D pretending that it is from S. In the third type of attack (attack on

confidentiality), an adversary gets the data block to analyze and tries to read the data

within the time bound. We experimented with 100 runs for each claim and found no

attacks at D as shown in Fig. 6.

Fig. 6. Scyther simulation environment with parameters and results page of successful security

verification at DSM

Experiment model: In practice, attacks may be more sophisticated and efficient than

brute force attacks. However, this does not affect the validity of the proposed DLSeF

model as we are interested in efficient security verification without periodic key

exchanges and successful attacks. Here, we model the process as described in the

previous section and vary the key size between 32 bits, 64 bits, and 128 bits (see Table

2). We used Scyther, an automatic security protocol verification tool, to verify our

proposed model.

Results: We did our simulation using a different number of data blocks in each run.

Our experiment ranged from 10 to 100 instances with 10 intervals. We checked

authentication for each data block, whereas the integrity check is performed on the

selected data blocks. As the key generation process is saved in the trusted part of the

sensors, no one can get access to that information except the corresponding sensor.

Hence, we did not find any authentication attacks. For integrity attacks, it is hard to

get the shared key (𝐾𝑆𝐻), as we frequently change the shared key (𝐾𝑆𝐻) and its length

based on the dynamic prime number 𝑃𝑖 on both source sensor (𝑆𝑖) and DSM. In the

experiment, we did not encounter any integrity attacks. Fig. 6 shows the result of

security verification experiments in the Scyther environment. This shows that our

model is secured from integrity and authentication attacks.

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:21

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

 Performance Comparison

Experiment model: It is clear that the actual efficiency improvement brought by our

model is highly dependent on the size of the key and rekeying without further

communication between sensor and DSM. We have performed experiments with

different sizes of data block. The results of our experiments are given below.

We compare the performance of our proposed model DLSeF with advanced encryption

standard (AES), and our previously proposed model for big sensing data stream

(DPBSV), the standard symmetric key encryption algorithm [Pub, N. F. 2001; Simon

2009]. Our model is efficient compared with DPBSV and two standard symmetric key

algorithms, 128-bit AES and 256-bit AES. This performance comparison experiment

was carried out in JCE (Java Cryptographic Environment). We compared the

processing time with different data block sizes. This comparison is based on the

features of JCE in Java virtual machine version 1.6 64 bit. JCE is the standard

extension to the Java platform which provides a framework implementation for

cryptographic methods. We experimented with many-to-one communication. All sensor

nodes communicate to the single node (DSM). All sensors have similar properties

whereas the destination node has more power to initialize the process (DSM). The

rekey process is executed at all the nodes without any intercommunication. The

processing time of data verification is measured at the DSM node. Our experimental

results are shown in Fig. 7.

Results: The performance of our model is better than the standard AES algorithm

when different sizes of data blocks are considered. Fig. 7 shows the processing time of

the DLSeF model in comparison with base 128-bit AES, and 256-bit AES for different

sizes of data blocks. The performance comparison shows that our proposed model is

efficient and faster than the baseline AES protocols.

From the above two experiments, we conclude that our proposed DLSeF model is

secured (from both authenticity and integrity attacks), and efficient (compared to

standard symmetric algorithms such as 128-bit AES and 256-bit AES).

Fig. 7. Performance comparison of our scheme with DPBSV and standard AES algorithm i.e. 128 bit AES

and 256 bit AES.

39:22 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

 Buffer size Utilization

Experiment model: We experimented with the features of the DSM buffer by using

MATLAB as the simulation tool [Matlab 2015]. This performance is based on the

processing time performance calculated in Fig. 8. Here we compared our scheme with

DPBSV and standard 128-bit AES and 256-bit AES, the same as the processing time

performance comparison. The minimum size of buffer required to process security

verification at DSM with various data rates starts from 50 to 250 MB/S with a 50 MB/S

interval. Here we compare the efficiency of our proposed scheme (DLSeF).

Fig. 8. Efficiency comparison of minimum buffer size required to process the security verification with

various data rates to DSM.

Results: The performance of our scheme is better than the standard AES algorithm

with different rates of data. Fig. 8 shows the minimum buffer size required to process

security at the DSM and proposed DLSeF scheme performance compared with DPBSV

and base symmetric key solutions such as 128-bit AES and 256-bit AES. The

performance comparison shows that our proposed scheme is efficient and requires less

buffer to process security than previous protocols.

From all the above experiments, we conclude that our proposed DLSeF model is

secured (from authenticity, confidentiality, and integrity attacks), and efficient

(compare to standard symmetric algorithms such as 128-bit AES and 256-bit AES and

DPBSV). We also show that the proposed model needs less buffer during the security

verification.

 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel authenticated key exchange protocol, namely

Dynamic Key Length Based Security Framework (DLSeF), which aims to provide a

real-time security verification model for big sensing data streams. Our model has been

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:23

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

designed based on symmetric key cryptography and dynamic key length to provide

more efficient security verification of big sensing data streams. Our proposed model is

designed by two dimensional security i.e. not only the dynamic key but also the dynamic length of

the key. By theoretical analyses and experimental evaluations, we showed that our

DLSeF model has provided significant improvement in the security processing time,

and prevented malicious attacks on authenticity, integrity and weak confidentiality.

In our model, we decrease the communication and computation overhead by

performing dynamic key initialization along with dynamic key size at both source

sensing devices and DSM, which in effect eliminates the need for rekeying and

decreases the communication overhead. The proposed security verification model is

implemented before stream data processing (i.e. DSM) as shown in our architecture

diagram. Several applications such as disaster management, event detection etc. need

to filter the modified and corrupted data before stream data processing. These types of

applications need only original and unmodified data for analysis to detect the event.

The proposed DLSeF model performs security verification in near real time to

synchronize with the performance speed of the stream processing engine. Our major

concern is not to degrade the performance of stream processing by performing security

verification near real time. Although the efficiency of big data stream security

verification benefits greatly from an efficient AES and DPBSV scheme such as DLSeF,

this is still not fast enough when verifying data blocks while maintaining as much data

security and privacy as possible.

In the future, we plan to pursue a number of research avenues to improve the

performance of the security verification on big data streams. In addition, we will

perform a comparative study of our work with other symmetric key techniques like

RC5 and RC6. We will further develop and investigate the technique for a moving target

defence strategy for the Internet of Things.

ACKNOWLEDGMENTS

This research is funded by the Australia India Strategic Research Grant titled

"Innovative Solutions for Big Data and Disaster Management Applications on Clouds

(AISRF - 08140)" from the Department of Industry, Australia. The research in this

paper is partially supported by Australian Research Council Linkage Project ARC

LP140100816.

REFERENCES

Contiki operating system official website, http://www.contiki-os.org/

Matlab, [Online] http://au.mathworks.com/products/matlab/

Pub, N. F. 197. 2001. Advanced encryption standard (AES). Federal Information Processing Standards

Publication, 197, 441-0311.

Scyther, [Online] http://www.cs.ox.ac.uk/people/cas.cremers/scyther/

www.cloudflare.com (accessed on: 04.08.2014)

Kemal Akkaya, and Mohamed Younis. 2003. An energy-aware QoS routing protocol for wireless sensor

networks." In Proceedings Distributed Computing Systems Workshops, 23rd International Conference on,

IEEE, 710-715.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa, Justin Rosenstein,

and Jennifer Widom. 2003. STREAM: the stanford stream data manager (demonstration description).

In Proceedings of the ACM SIGMOD international conference on Management of data. ACM, 665-665.

Mehdi Bahrami, and Mukesh Singhal. 2015. The Role of Cloud Computing Architecture in Big Data.

In Information Granularity, Big Data, and Computational Intelligence, Springer International

Publishing, 275-295.

Albert Bifet. 2013. Mining big data in real time. In Informatica. 37, 1. 15-20.

Jerome Burke, John McDonald, and Todd Austin. 2000. Architectural support for fast symmetric-key

cryptography. In ACM SIGOPS Operating Systems Review, 34, 5,178-189.

http://www.contiki-os.org/
http://au.mathworks.com/products/matlab/

39:24 D.Puthal et al.

ACM Transactions on Embedded Computing Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Jianneng Cao, Thomas Kister, Shili Xiang, Baljeet Malhotra, Wee-Juan Tan, Kian-Lee Tan, and Stéphane

Bressan. 2013. Assist: Access controlled ship identification streams. In Transactions on Large-Scale

Data-and Knowledge-Centered Systems XI, Springer Berlin Heidelberg, 1-25.

David W. Carman, Peter S. Kruus, and Brian J. Matt. 2000. Constraints and approaches for distributed

sensor network security. Technical Report 00-010, NAI Labs, Network Associates, Inc., Glenwood, MD.

Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman, Michael

Stonebraker, Nesime Tatbul, and Stan Zdonik. 2002. Monitoring streams: a new class of data

management applications. InProceedings of the 28th international conference on Very Large Data Bases,

VLDB Endowment, 215-226.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei

Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A. Shah. 2003. TelegraphCQ:

continuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data. ACM, 668-668.

Xiangqian Chen, Kia Makki, Kang Yen, and Niki Pissinou. 2009. Sensor network security: a

survey. IEEE Communications Surveys & Tutorials. 11, 2, 52-73.

Joan Daemen, and Vincent Rijmen. 2002. AES the advanced encryption standard. InThe Design of Rijndael,

Springer.

Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive query processing." Foundations

and Trends in Databases, 1, 1, 1-140.

Miyuru Dayarathna and Toyotaro Suzumura. 2013. Automatic optimization of stream programs via source

program operator graph transformations. Distributed and Parallel Databases. 31, 4, 543-599.

Haluk Demirkan, and Dursun Delen. 2013. Leveraging the capabilities of service-oriented decision support

systems: Putting analytics and big data in cloud. In Decision Support Systems. 55, 1, 412-421.

Laurent Eschenauer, and Virgil D. Gligor. 2002. A key-management scheme for distributed sensor networks.

In Proceedings of the 9th ACM conference on Computer and communications security, ACM, 41-47.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, and Patrick Valduriez.

2012. Streamcloud: An elastic and scalable data streaming system." Parallel and Distributed Systems,

IEEE Transactions on. 23, 12, 2351-2365.

Simon Heron. 2009. Advanced Encryption Standard (AES). In Network Security, no. 12. 8-12.

Issam Kaddoura, and Samih Abdul-Nabi. 2012. On formula to compute primes and the nth prime." Applied

Mathematical science, 6, 76, 3751-3757.

Balachandra Reddy Kandukuri, V. Ramakrishna Paturi, and Atanu Rakshit. 2009. Cloud security issues.

In Services Computing, SCC'09. IEEE International Conference, IEEE, 517-520.

Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan. 2002. Negotiation-based protocols for

disseminating information in wireless sensor networks. In Wireless networks. 8. 2/3, 169-185.

Chang Liu, Nick Beaugeard, Chi Yang, Xuyun Zhang, and Jinjun Chen. 2014. HKE‐BC: hierarchical key

exchange for secure scheduling and auditing of big data in cloud computing. In Concurrency and

Computation: Practice and Experience, 28, 3, 646-660.

James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela

H. Byers. 2011. Big data: The next frontier for innovation, competition, and productivity.

Andrew McAfee, Erik Brynjolfsson, Thomas H. Davenport, D. J. Patil, and Dominic Barton. 2012. Big

data. The management revolution. Harvard Bus Rev, 90, 10, 61-67.

Rimma V. Nehme, Hyo-Sang Lim, Elisa Bertino, and Elke A. Rundensteiner. 2009. StreamShield: a stream-

centric approach towards security and privacy in data stream environments. In Proceedings of the 2009

ACM SIGMOD International Conference on Management of data, ACM, 1027-1030.

Rimma V. Nehme, Hyo-Sang Lim, and Elisa Bertino. 2013. FENCE: Continuous access control enforcement

in dynamic data stream environments. In Proceedings of the third ACM conference on Data and

application security and privacy, ACM, 243-254.

Surya Nepal, John Zic, Dongxi Liu, and Julian Jang. 2011. A mobile and portable trusted computing

platform. In EURASIP Journal on Wireless Communications and Networking. 1, 1-19.

Ki-Woong Park, Sang Seok Lim, and Kyu Ho Park. 2008. Computationally efficient pki-based single sign-on

protocol, PKASSO for mobile devices. In Computers, IEEE Transactions on, 57, 821-834.

Adrian Perrig, Robert Szewczyk, Justin Douglas Tygar, Victor Wen, and David E. Culler. 2002. SPINS:

Security protocols for sensor networks." Wireless networks, 8. 5, 521-534.

Marco Pistoia, Nataraj Nagaratnam, Larry Koved, and Anthony Nadalin. 2004. Enterprise Java security:

building secure J2EE applications. Addison Wesley Longman Publishing, Inc.

Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. 2015a. DPBSV--An Efficient and Secure

Scheme for Big Sensing Data Stream. In Trustcom/BigDataSE/ISPA, IEEE, vol. 1, 246-253.

Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. 2015b. A Dynamic Key Length based

Approach for Real-Time Security Verification of Big Sensing Data. In 16th International Conference on

Web Information System Engineering (WISE), Springer International Publishing, 93-108.

Deepak Puthal, B. P. S. Sahoo, Sambit Mishra, and Satyabrata Swain. 2015c. Cloud computing features,

issues, and challenges: a big picture. In International Conference on Computational Intelligence and

DLSeF: A Dynamic Key Length based Real-Time Security Verification Model for Big Data Stream
39:25

ACM Transactions on Embedded Computing Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Networks (CINE), 116-123.

Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. 2016. A dynamic prime number based efficient

security mechanism for big sensing data streams. Journal of Computer and System Sciences,

http://dx.doi.org/10.1016/j.jcss.2016.02.005

Rajiv Ranjan. 2014. Streaming Big Data Processing in Datacenter Clouds. In IEEE Cloud Computing. 1, 1,

78-83.

Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The 8 requirements of real-time stream

processing. In ACM SIGMOD Record. 34, 4, 42-47.

Timothy M. Sutherland, Bin Liu, Mariana Jbantova, and Elke A. Rundensteiner. 2005. D-cape: distributed

and self-tuned continuous query processing. In Proceedings of the 14th ACM international conference on

Information and knowledge management, ACM, 217-218.

Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. 2007. Staying fit: Efficient load shedding techniques for

distributed stream processing. In Proceedings of the 33rd international conference on Very large data

bases, VLDB Endowment, 159-170.

James M Tien. 2013. Big data: Unleashing information. Journal of Systems Science and Systems

Engineering, 22, 2, 127-151.

John Paul Walters, Zhengqiang Liang, Weisong Shi, and Vipin Chaudhary. 2007. Wireless sensor network

security: A survey.” Security in distributed, grid, mobile, and pervasive computing. 2007. 1, 367.

Xinlei Wang, Wei Cheng, Prasant Mohapatra, and Tarek Abdelzaher. 2013. Artsense: Anonymous

reputation and trust in participatory sensing." In INFOCOM, Proceedings IEEE, 2517-2525.

Dimitrios Zissis, and Dimitrios Lekkas. 2012. Addressing cloud computing security issues." In Future

Generation computer systems. 28, 3, 583-592.

Received xxxx; revised xxxx; accepted xxxx

