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ABSTRACT

Motivation: The rapid development of high-throughput sequencing

technologies has enabled epigeneticists to quantify DNA methylation

on a massive scale. Progressive increase in sequencing capacity pre-

sent challenges in terms of processing analysis and the interpretation of

the large amount of data; investigating differential methylation between

genome-scale data from multiple samples highlights this challenge.

Results: We have developed a differential methylation analysis pack-

age (DMAP) to generate coverage-filtered reference methylomes and

to identify differentially methylated regions across multiple samples

from reduced representation bisulphite sequencing and whole

genome bisulphite sequencing experiments. We introduce a novel

fragment-based approach for investigating DNA methylation patterns

for reduced representation bisulphite sequencing data. Further, DMAP

provides the identity of gene and CpG features and distances to the

differentially methylated regions in a format that is easily analyzed with

limited bioinformatics knowledge.

Availability and implementation: The software has been imple-

mented in C and has been written to ensure portability between differ-

ent platforms. The source code and documentation is freely available

(DMAP: as compressed TAR archive folder) from http://biochem.otago.

ac.nz/research/databases-software/. Two test datasets are also avail-

able for download from the Web site. Test dataset 1 contains reads

from chromosome 1 of a patient and a control, which is used for com-

parative analysis in the current article. Test dataset 2 contains reads

from a part of chromosome 21 of three disease and three control sam-

ples for testing the operation of DMAP, especially for the analysis of

variance. Example commands for the analyses are included.

Contact: peter.stockwell@otago.ac.nz or aniruddha.chatterjee@otago

.ac.nz

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

DNA methylation is arguably the most stable epigenetic mark

that plays a key role in regulating development and disease

(Baylin and Bestor, 2002; Law and Jacobsen, 2010). One of the

most fundamental challenges for epigeneticists is to identify

DNA methylation differences between genomes. For instance,

differential methylation between diseased and normal samples,

interindividual variation within a population, differences be-

tween tissues or species and so on are of biological and clinical

relevance.
The rapid improvement in next-generation sequencing tech-

nologies now provides opportunities to interrogate DNA methy-

lation at single base resolution with high coverage across

multiple samples. Bisulphite treatment converts unmethylated

cytosines to uracils (and ultimately to thymine after amplifica-

tion), although leaving methylated cytosines unchanged.

Therefore, bisulphite treatment combined with next-generation

sequencing (BS-Seq) has become a preferred method to generate

base-resolution DNA methylation maps. Because whole-genome

bisulphite sequencing (WGBS) is still expensive and generates

challenging amounts of raw data, reduced representation bisul-

phite sequencing (RRBS) provides a cost-effective alternative for

whole-genome methylation sequencing. RRBS has been widely

used by several groups worldwide to interrogate functionally im-

portant genomic regions at high-sequencing coverage and sensi-

tivity (Baranzini et al., 2010; Bock et al., 2011; Chatterjee et al.,

2012; Gertz et al., 2011; Gu et al., 2010; Smallwood et al., 2011;

Steine et al., 2011; Xi et al., 2012).
During the past few years, several alignment tools have been

developed to cope with asymmetric mapping issues of bisulphite

converted sequenced reads and to map millions of reads with

reasonable speed to the reference genome. Some of these aligners

are RMAP (Smith et al., 2009), BS Seeker (Chen et al., 2010),

Bismark (Krueger and Andrews, 2011), RRBSMAP (Xi et al.,

2012), BatMeth (Lim et al., 2012) and PASS-bis (Campagna

et al., 2013). Recent comparative analyses have improved our

understanding of the efficiency, accuracy and algorithm of

these aligners (Chatterjee et al., 2012; Kunde-Ramamoorthy

et al., 2014). Additionally, tools have been developed for gener-

ating methylation calls and visualization. Integrated Genome

Viewer (Thorvaldsdottir et al., 2013) and MethVisual (Sun

et al., 2013) allow visualization of sequenced reads and regional

analysis. BiQ Analyzer HT allows site-specific DNA methylation

analysis (Schmieder and Edwards, 2011), and SAAP-RRBS can

perform alignment, methylation calls, annotation of CpG sites

and visualization (Ziller et al., 2013).
methylKit (Akalin et al., 2012a), an R package, enables detec-

tion of differentially methylated CpG sites (DMCs). methylKit
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applies a Fisher’s exact test or logistic regression to calculate

P-values that are adjusted to q-values for multiple test correction

using a SLIM approach (Wang et al., 2011). For WGBS data,

BSmooth performs local averaging and sample-wise smoothing

of methylation values after alignment and methylation estimates

by read position (Hansen et al., 2012). BSmooth applies numer-

ous CpG-wise t-tests, and based on a t-test threshold, differen-

tially methylated regions (DMRs) are defined. BiSeq, an R

package, performs smoothing of methylation data within CpG

clusters considering spatial dependence (Hebestreit et al., 2013).

Differential methylation is then detected in CpG clusters, the

false discovery rate is controlled and finally DMR boundaries

are defined.

In contrast to alignment and visualization tools, the number of

software packages available to detect DMRs is small. Some tools

offer detection of DMCs and some DMRs and most of them are

hardwired, i.e. they provide little flexibility in the choice of ana-

lysis parameters such as coverage criteria, DMR length and the

type of statistical test. Further, most available tools do not pro-

vide options for further analysis of DMRs with respect to its

genomic position such as the transcription start sites, genes,

CpG features and so on.
Here, we describe differential methylation analysis package

(DMAP), a pipeline that can directly import the output from

any bisulphite aligner in Sequence Alignment/Map (SAM)

format and identify differential methylation. We have primarily

designed the package to handle data from RRBS experiments

(which uses 40–220bp MspI digested genomic fragments), but it

can be used effectively to investigate WGBS data for any eukary-

otic genome as well. A suite of statistical tests is included in

DMAP [Chi-square test, Fisher’s exact test and analysis of vari-

ance (ANOVA)] to identify methylation differences between dif-

ferent groups and conditions. For RRBS, we introduce a novel

approach of identifying differential methylation based on MspI

fragments [differentially methylated fragment (DMF)]. Further,

DMAP provides genomic relationship information (nearest gene,

exon, introns and CpG features) for each DMR or DMF.

2 METHODS AND ALGORITHMS

2.1 DMAP package and input data

DMAP contains two main programs. (i) diffmeth: The input files

to diffmeth are either SAM files from Bismark alignment

(Krueger and Andrews, 2011) or the older native format pro-

duced by the Bismark methylation_extractor program, compris-

ing a single line for each mapped CpG giving the chromosome,

the CpG position and the methylation status (þ/�).

Alternatively, if other aligners (such as BSMAP and

RMAPBS) are used, then the files (BED file or text files) can

be processed by the rmapbscpg2 ancillary program before ana-

lysis with diffmeth. By default, diffmeth does not impose any

P-value cutoff for identifying DMR; it returns a P-value for

each investigated region/fragment to allow user-specified thresh-

old P-values and independent application of multiple test

corrections.
(ii) The final output file from diffmeth program can then be

used in the second main program of DMAP, identgeneloc, to

identify proximal genes and features (transcription start sites,

exons/introns, etc.), relationship to CpG features (CpG island
core/shore/shelf) and distances from each feature (Fig. 1). This

operation is performed by a command-line program, which reads
genomic feature table information and relates candidate regions

from the previous step to annotated features. The application
uses code originally developed in another context (Jacobs

et al., 2009) and is capable of parsing feature table information
from GenBank, EMBL, GTF, GFF3 and SeqMonk feature files,

although the latter has been extensively tested. If SeqMonk fea-
ture table information is used (-Q switch), then it is possible to

specify biotype for a gene (e.g. protein coding, pseudo-gene,

miRNA). Supplementary Information 2 and the program docu-
ment contain a user guide to set up the software and a step-by-

step instruction manual for operation of the analysis pipeline.

2.2 Units of DNA methylation analysis

2.2.1 DMC approach Differential methylation patterns can be
investigated in several ways. One of the approaches is to analyze

each CpG site (with adequate coverage) in each sample and then
to identify DMCs. DMAP permits the user to interrogate the

methylated (represented as þ sign) and unmethylated (repre-
sented as – sign) counts for single CpG sites (e.g. Table 4) in

the datasets, but does not have options for detecting DMCs.
methylKit, an R package, uses a single CpG approach and pro-

vides options for detecting DMCs in RRBS and BS-Seq data
(Akalin et al., 2012a). However, in WGBS or RRBS protocols,

millions of CpG sites are investigated (e.g. in humans, WGBS
covers �30 million and RRBS covers �4 million CpG sites). The

investigation of a large number of CpG sites greatly enhances the

false discovery rate. Variation at single sites is greater than that
of a contig of sites because the relatively lower coverage per site

increases the sampling variation (Ehrlich and Lacey, 2013). A
DMC approach is perhaps more useful when a small number

of CpG sites are analyzed.

2.2.2 DMR approach Use of a fixed or sliding window (typic-
ally 1000 bp length) as a unit of methylation analysis is another

common approach for detecting DMRs (Bock et al., 2012; Li
et al., 2010). DMAP includes options for investigating differen-

tial methylation on a user-specified tiled window of any length.
Although the tiled DMR approach is well-suited for WGBS, for

RRBS, where only 2.5% of the genome is sequenced, the major-

ity of the windows will be empty or have partial inclusion of
fragments. Further, if a small region is variably/differentially

methylated between individuals, use of a 1000 bp or longer
window might dilute this variation (Ehrlich and Lacey, 2013)

and therefore might be not be detected if large window size is
used.

2.3 Implementing MspI fragments as a unit of analysis for

RRBS (DMF approach)

For RRBS, we introduced a newMspI fragment-based approach
for investigating DNA methylation. This approach is conceptu-

ally similar to the DMR approach, but instead of fixed-length
windows, MspI-digested fragments of 40–220 bp lengths were

used as the unit of analysis. After Bismark alignment, the methy-
lation_extractor program returns information for each mapped

CpG site, its genomic position and methylation status. diffmeth
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scans the genomic sequence of each chromosome for MspI cleav-

age sites and CpGs, building a list of those conforming to the

required size range of 40–220bp. For each sample, the methy-

lated and unmethylated CpGs are checked to find the fragment

on the list (if any) to which the CpG positions match and the

methylated and unmethylated counts are incremented. This in-

formation was used to calculate coverage (þ and � counts,

where þ is a methylated CpG and � is an unmethylated CpG)

and quantify the methylation of each fragment. Then based on a

coverage cutoff (different cutoff criteria for filtering fragments

can be applied; see details in documentation), fragments with low

sequencing coverage were discarded, and a list of fragments and

their methylation status were produced for each sample.

Appropriate statistical tests and a P-value can then be applied

to identify DMFs. The sequenced reads in RRBS come from

MspI-digested fragments, and as one CpG site is included in

the recognition site (C’CGG) of the enzyme, each fragment

will contain at least one valid analyzable CpG, irrespective of

the CpG density of the region. DMAP provides flexibility in the

choice of coverage criteria to include fragments from both CpG-

poor and CpG-rich regions (see documentation for setting cover-

age threshold).
While implementing the fragment-based approach, adjacent

MspI fragments posed a computational challenge. If two

fragments are adjacent, then the methylation counts of the

mapped reads, which start from the junctional MspI site, could

be counted in either of the fragments, as in the genome they share

the same location. However, for an accurate coverage calculation

for the fragments, the methylation counts from the CpG at the

junction of two adjacent fragments are attributed to the fragment

from which they were derived (see Supplementary Information 1,

section 7, for detailed demonstration of this behavior).
To ensure correct attribution of junctional CpG methylation,

we added a feature to DMAP that uses the data from the SAM

files (with the –N switch) to retain the identity of the strand onto

which a sequenced read is mapped. Then for the reverse strand-

mapped reads, the program identifies the fragment to which

these reads were mapped and accumulates the CpG information

for that fragment, including the first CpG site of the read but not

for the succeeding adjacent fragment. In the reference genome,

the last CpG site of an MspI fragment and the first CpG site of

the adjacent fragment are the same, but after this correction,

CpG information from the overlapping reads was counted

under the fragment from which the reads were derived.
Non-specific activity of the MspI enzyme and partially

degraded DNA could result in sequenced reads without a

MspI start site. For RRBS, 29% non-MspI sequenced reads

has been reported (Akalin et al., 2012b). However, we observed

Fig. 1. Flow diagram of options and analysis units in DMAP
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a lower prevalence of non-MspI reads in our test RRBS libraries

(median percentage of non-MspI reads¼ 8.1; n¼ 11). Presence of

non-MspI reads might affect unique alignment but does not in-

fluence DMAP. DMAP calculates methylated and unmethylated

counts for each CpG site in a fragment; therefore, a fragment will

qualify for subsequent analysis if sufficient reads had uniquely

mapped to it, irrespective of the base composition of sequenced

reads (i.e. MspI or non-MspI start of a read).
In a MspI-fragment, the CpG sites are likely to show more

similarities in terms of read coverage and DNA methylation

levels compared with the CpG sites in a large DMR. Further,

as a fragment is a contig of sites, it will decrease the sampling and

technical variation to a greater extent. Therefore, we believe the

fragment-based approach is the intermediate approach to DMR/

DMC approaches and perhaps better suited for RRBS data.

2.4 Statistical tests to identify DMF and DMR

The Fisher’s exact test over a sliding window with a specified fold

difference is a widely used approach for assessing differential

methylation between two samples or groups of samples (Bock

et al., 2010; Glastad et al., 2013; Gu et al., 2010; Ivanov et al.,

2013; Li et al., 2010). For RRBS data analysis, for a given MspI

fragment, Fisher’s exact tests can be performed between multiple

samples by giving a continuous list of SAM files in the command

in diffmeth tool of DMAP package. In this case, the probability

of multiple pairwise tests will be given and the lowest probability

taken to indicate the extent of differential methylation, although

this may obscure a number of insignificant differences between

other samples.
To investigate the extent of interindividual variability in DNA

methylation across multiple samples, we have used a Chi-squared

test. To perform this test, a list of SAM files should be provided

as an input to diffmeth. Various thresholds can be applied to

restrict the tests to fragments and samples that meet criteria

for CpG number, density of CpG mapping and fold difference.

For WGBS data, instead of fragments, tiled windows of defined

length can be investigated in a similar way. Output from this part

of DMAP consists of a line for each qualifying fragment or

region giving the chromosome number, region start and end pos-

itions, length, CpG count, coverage, the probability and the type

of statistic applied (Fig. 1 and Table 3).
Classifying subjects into treatment or disease versus control

groups is a usual task in DNA methylation analysis. To compare

methylation between two different groups, one strategy is to

concatenate the CpG position files or SAM files for each

group and perform a pairwise comparison. However, this

might lead to significant data loss while comparing multiple sam-

ples. A better strategy is implemented in DMAP using ANOVA

and the F ratio test to determine the significance of methylation

differences between the groups in relation to the residual vari-

ation within each group. ANOVA runs allow SAM files to be

assigned to either of two groups, generating an F (1, n) value

where n depends on the number of qualifying individuals for

each region or fragment. The statistical significance of the F

statistic is estimated using a continued fraction iterative

method (Press et al., 1993).

3 RESULTS AND OUTPUTS

3.1 Reference methylome

DMAP can produce reference methylomes for individual sam-

ples after filtering regions with a specified coverage criterion [for

example, reference methylomes can be based on MspI fragments

(for RRBS) or user-specified tiled windows]. Table 1 shows the

diffmeth output from a fragment-based methylome for a human

RRBS library generated from peripheral blood. A similar output

based on 1000bp tiled windows is shown in Table 2 for a differ-

ent region of the same dataset. These outputs are produced as

text files, which can be easily subjected to further analysis.

3.2 Differential methylation analysis

While running differential methylation analysis, DMAP pro-

duces a list of analyzed regions showing corresponding P-

values and the details (such as name of the test, degrees of free-

dom if applicable) of the statistical test applied. By default,

DMAP does not impose any cutoff value to detect DMF or

DMR. Users can specify statistics and P-value cutoff to set a

threshold for calling DMF or DMR. This provides flexibility to

the users and options to apply multiple test corrections methods

(e.g. Bonferroni, false discovery rate or Holms methods) and set

stringent P-value cutoffs for detecting differential methylation.

Table 3 shows an example of candidate fragments after a test has

been performed on five human peripheral blood RRBS samples

for differential methylation analysis using the �2 statistic. A simi-

lar analysis can be performed using tiled windows.

3.3 Single CpG investigation

DMAP does not allow detection of differential methylation at

single CpG sites; however, if investigation of each CpG is sought,

the diffmeth program of DMAP can produceþ (methylated) and

� (unmethylated) counts for each CpG site within a fragment or

tiled window for each sample. Table 4 provides an example of

single CpG counts of an MspI fragment in chromosome 1, which

contained eight CpG sites for five RRBS samples as produced by

diffmeth. Alternatively, single CpG site differential methylation

can be performed using methylKit (Akalin et al., 2012a).

Table 1. MspI fragment based methylome for RRBS

Chromosome

number

Start End Length CpGs þ and �

hits

%Methylation

1 863 942 864 129 188 7 60þ/10� 85.71

1 864 313 864 414 102 3 14þ/50� 21.88

1 875 309 875 363 55 3 10þ/96� 9.43

1 877 737 877 866 130 13 0þ/216� 0

1 879 180 879 369 190 8 72þ/8� 90

Note: The CpGs column indicates the number of unique CpGs in the fragment.

þ (methylated) and � (unmethylated) hits gives the total number of counts in the

fragment, and the % methylation was calculated from these counts by the diffmeth

program in the DMAP package.
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3.4 Gene and feature identification

The identgeneloc program of DMAP relates each DMF or DMR

(or any regions of interest from reference methylomes) to the

nearest gene by comparing the genomic coordinates of the

start and the end of the DMF or DMR with the coordinates

of the gene and gives relative distances from the transcription

start site. identgeneloc considers the sense of the gene (50 or 30)

and relates the DMF or DMR with respect to the upstream

region of the gene. The program includes options for users to

impose distance limits on how far valid genes can lie from the

fragment. identgeneloc can also provide CpG features (CpG

island, shore or core) for a DMF or DMR. Further, for a

region internal to a gene, an option is included to return infor-

mation on whether the fragment is located on an exon, intron or

spans over intron/exon or exon/intron boundaries. Table 5 pro-

vides an example of an identgeneloc output, showing candidate
DMFs, generated from a human RRBS library (annotation

source: SeqMonk feature table file). The output is a tab-

delimited text file.

3.5 Comparison with other tools

We performed a comparative performance analysis between

DMAP, methylKit and BiSeq using test dataset 1, which is avail-

able at http://biochem.otago.ac.nz/research/databases-software/.

Table 4. Single CpG counts for multiple individuals for a fragmenta

Sample CpG sites

10497 10525 10 542 10 563 10571 10577 10 579 10 589

1 88þ 275þ 271þ 237þ 278þ 180þ 155þ 166þ

18� 16� 21� 55� 11� 111� 137� 18�

2 38þ 69þ 70þ 66þ 72þ 48þ 48þ 22þ

3� 4� 4� 7� 1� 25� 25� 9�

3 129þ 463þ 467þ 448þ 474þ 264þ 242þ 285þ

26� 16� 15� 33� 7� 62� 83� 32�

4 95þ 276þ 277þ 268þ 283þ 225þ 196þ 174þ

5� 12� 11� 19� 6� 65� 94� 13�

5 95þ 276þ 277þ 268þ 283þ 225þ 196þ 174þ

5� 12� 11� 19� 6� 65� 94� 13�

Note: Fragment details: #Chr 1; Start 10497 bp; End 10 588 bp; Length 92bp; CpGs 8.

Table 3. Candidate regions after differential methylation analysisa

Chromosome

number

Start End Len CpGs Total hits Pr Test

1 10497 10 588 92 8 14 639 5.55E-16 Chi_188.83_9df

1 662657 662 705 49 5 1988 0.03161 Chi_18.32_9df

1 805467 805 521 55 10 9339 2.22E-16 Chi_151.46_10df

1 839516 839 591 76 4 2719 1.44E-15 Chi_226.68_10df

1 845847 845 934 88 5 1871 0.1048 Chi_15.82_10df

aChi-squared test was performed on RRBS outputs from 11 individuals taking MspI fragment as a unit of analysis. Note, degrees of freedom is not always 10 (n � 1), as some

samples had insufficient coverage for some fragments.

Table 2. One thousand base pair tiled window-based reference methylome

Chromosome number Start End Length CpGs þ and � hits þ-hits/CpG %Methylation

1 1 100 001 1 101 000 1000 63 492þ/174� 10.57 73.87

1 1 115 001 1 116 000 1000 53 609þ/107� 13.51 85.06

1 1 146 001 1 147 000 1000 36 353þ/37� 10.83 90.51

1 1 243 001 1 244 000 1000 167 17þ/2066� 12.47 0.82

1 1 244 001 1 245 000 1000 115 68þ/1605� 14.55 4.06

Note: The CpGs column indicates the number of unique CpGs in each window of 1000bp. The þ (methylated) and � (unmethylated) hits gives the total number of counts in

the window. þ-hits/CpG represents the average coverage per CpG in each window. The % methylation was calculated from these counts by the diffmeth program in the

DMAP package.
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Test dataset 1 contains two SAM files with uniquely aligned

reads for chromosome 1 from a control (2 851855 reads) and a

disease sample (1 122 068 reads). A pairwise test was performed

on CpG sites or regions common between both samples. DMAP

completed the differential methylation analysis in 53.1min,

which was45 times faster than methylKit and410 times faster

than BiSeq (Table 6). The main reason for the faster operation of

DMAP is that after the alignment—using the SAM files—it is

possible to filter fragments (or tiled windows) by coverage, set

fold methylation difference criteria and perform a statistical test

in one step with a single command. Further, because DMAP is

written in C it runs as compiled machine code, and therefore, it

executes efficiently. After differential methylation analysis, a

second operation of DMAP (performed by identgeneloc) pro-

duces gene and CpG feature of the candidate regions. identgen-

eloc took 1.2min to complete the second operation for 9362

investigated fragments in chromosome 1 between the disease

and control from test dataset 1.
Analysis by methylKit (version 0.5.7) resulted in 935 DMCs

(filtered by CpG coverage of �10, DESTRAND¼TRUE,

q-value of 50.01 and percent methylation difference 425%).

BiSeq (version 1.2.4) investigated 165378 clusters and resulted

in 402 DMR entries (criteria of analysis was min.sites¼ 20,

quantile (totalReads (rrbs.clust.unlim) [ind.cov],0.9, minDiff¼

0.25, max.dist¼ 100). Of the BiSeq DMRs, 131 of them were

single CpGs. The other 271 regions varied in length; the

median length of the DMRs was 18.5 bp and the largest DMR

781 bp. Using the same dataset, DMAP was used to investigate

9362 common fragments (coverage filter: �2CpGs in a fragment

having coverage of �10; the F2 t10 switch in DMAP) containing

78 318 CpG sites. DMAP identified 367 significant DMFs (basic

cutoff¼ 0.05, adjusted P-value cutoff¼ 5.34� 10�6 after

Bonferroni correction). The 367 DMFs contained 3215 CpG

sites (Table 6).
When we compared the co-ordinates of the DMCs derived

from methylKit, we found that 318 of 935 DMCs from

methylKit overlapped with the CpGs contained within the 367

DMFs identified by DMAP. Similarly, 190 DMCs from

methylKit overlapped with CpGs within the 402 DMRs identi-

fied by BiSeq. Also, 439 of 1827 CpG sites in BiSeq-identified

DMRs overlapped with 3215 CpG sites in the DMAP-identified

DMFs. Overall, 157 CpG sites were identified by all three tools.

To investigate if the tools performed better in identifying any

particular regions of the genome compared with the others, we

mapped the genomic locations of DMCs, DMFs and DMRs

identified by methylKit, DMAP and BiSeq respectively

(Fig. 2). Using SeqMonk feature table information (based on

Ensembl annotation), each region was related to its nearest pro-

tein coding gene and distances from the start of the gene was

calculated. DMAP identified higher proportion of promoter

associated regions and lower intronic regions compared to

methylKit and BiSeq. However, methylKit identified a higher

proportion of CpG sites that were 5 kb or further apart from

the transcription start site (TSS45 kb) compared to the regions

identified by DMAP and BiSeq. All three tools identified similar

levels of exonic differential methylation. Further, BiSeq and

DMAP identified similar proportion of exon-intron junction

DMRs. Exon-intron junction identification is not possible with

methylKit as it identifies DMCs. The CpGs that were common

between all the three tools were more prevalent in far upstream

of the genes (TSS45kb) and relatively lower in the promoter

and introns.

4 DISCUSSION

A higher number of DMCs is expected compared to the number

of DMFs/DMRs, because each DMF/DMR will contain several

differentially methylated CpGs. DMF/DMR will also contain

CpG sites that individually will not qualify as differentially

methylated. Further, there will be several independent DMCs

that will not form part of a DMF or DMR. This explains the

finding of higher DMCs identified by methylKit and lower

DMR/DMFs identified by BiSeq and DMAP. A frame-to-

frame comparison of differential methylation patterns between

these tools is not possible because each of them uses a different

unit of analysis to determine differential methylation. The

Table 5. Output from gene locating operation in DMAP

Chromosome

number

Start End Unique

CpG

P Chi value Gene

distance

Gene feature CpG feature Strand Gene

1 10497 10 588 8 5.55E-16 Chi_188.8381_9df 19779 — CpGI_shore 50 MIR1302-11

1 805467 805 521 10 2.22E-16 Chi_151.4682_10df �6815 on intron CpGI_shore 30 FAM41C

1 839516 839 591 4 1.44E-15 Chi_226.6835_10df 7225 — CpGI_shore 50 RP11-5407.1

1 870573 870 636 6 1.03E-09 Chi_62.8695_10df �10375 on intron — 50 SAMD11

1 896009 896 063 11 1.07E-08 Chi_55.2993_9df �95 on exon CpGI_core 50 KLHL17

1 909381 909 461 6 0 Chi_115.3572_8df �7583 exon intron boundary — 50 PLEKHN1

1 911470 911 539 7 2.21E-12 Chi_74.2590_9df �6026 on exon CpGI_shore 30 C1orf170

1 911540 911 600 4 0 Chi_109.2673_8df �5956 on exon CpGI_shore 30 C1orf170

1 911995 912 069 6 1.55E-15 Chi_597.1420_10df �5501 exon intron boundary CpGI_shore 30 C1orf170

Note: The identgenloc here provides data of chromosome, length of the region, number of CpG sites contained within the region, P-value, statistical test applied, distance in

relation to the gene (calculated from the start of the gene), relationship with the gene (e.g. upstream, exon, intron), CpG feature relation, strand and the name of the associated

gene. The � in the gene distance column indicates the region is inside the gene body. The output is a tab-delimited text file, suitable for importing into Microsoft Excel. Gene

distance is calculated from the start of the gene.

1819

DMAP: differential methylation analysis package

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/13/1814/2422202 by guest on 21 August 2022

less than 
 minutes
more than 
more than 
, 
, 
since
ute
 = 
78318
cut off = 
p
cut off = 
34x10-
to
ure


fragment-based approach is specific to DMAP whereas

methylKit detects DMCs and BiSeq detects DMRs of variable

length. Each program uses different statistical tests (see Table 7),

different parameters for defining the unit of DNA methylation

analysis (i.e., DMR boundaries or DMCs), and different criteria

for including CpGs based on coverage. methylKit and DMAP

investigate differential methylation in the 4 million CpG sites or

647626 MspI fragments (in a 40–220bp human RRBS genome),

respectively. However, BiSeq considers the spatial arrangement

of CpG sites in the genome and defines CpG clusters by specify-

ing a number of frequently covered CpG sites (option: min.sites)

that are close to each other (option: max.dist) and uses these

clusters for subsequent analysis. Imposing flexible criteria for

defining CpG clusters (i.e., lowering min.sites value) in analysis

would result in higher number analyzable CpG clusters and

higher number of DMRs but might enhance the chances of

false discovery. Further, for this analysis we did not specify

any DMR cut-off length in BiSeq. Therefore DMCs were also

detected in BiSeq as we wanted to include all the possible regions

for a fair comparison with methylKit. During the review process,

we found that BiSeq version 1.2.0 and 1.2.3 contained an erro-

neous readBismark function, which produced a very high

number of DMRs for our analysis (as a result of false methyla-

tion calls), the function was corrected in version 1.2.4. Therefore,

Fig. 2. Overlap and genomic locations of the regions or CpG sites identified by methylKit, DMAP and BiSeq. (A) Overlapping CpG sites between

methylKit, DMAP and BiSeq. *For DMAP, 3215 CpG sites are within the 367 DMFs, and z for BiSeq, 1867 CpG sites are within the 402 DMRs were

included. y indicates the overlap between the 3215 sites of DMAP versus 1867 sites of BiSeq. (B) Genomic locations of the 367 DMFs of DMAP. (C)

Genomic locations of the 935 DMCs identified by methylKit. (D) Genomic locations of the 402 DMRs identified by BiSeq. (E) Genomic locations of 157

CpG sites that were common to all three programs. Promoters were defined as regions 0–5kb upstream from the start of the gene

Table 6. Comparative differential methylation analysis between DMAP, methylKit and BiSeqa

Tool Number

of DMCs

Number

of DMRs

Number

of DMFs

Number of CpG

sites contained in the DMFs

Time taken to

perform analysisa

DMAP — 367 3215 3.1min

methylKit (version 0.5.7) 935 — 935 18minb

BiSeq (version 1.2.4) 131c 271 — 1827 25mind

aThis analysis was performed on a Mac Pro with 64bit duo quad core Intel Xeon processors and with 22GB RAM running MacOS 10.7.
bMethylKit produces a CpG.txt file from each SAM file and accepts that as an input to create R object; this step is relatively time-consuming.
cBiSeq produced a mix of 131 DMCs and 271 DMRs of variable length.
dThe predictMeth step was relatively time-consuming for BiSeq.
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it is advisable to use several tools in combination to ensure detec-

tion of sensible detection of differentially methylated regions for

biological interpretation.
In terms of coverage, methylKit called the CpG sites with 10

or more reads from the aligned SAM files. In DMAP, fragments

having two CpG sites with 10 or more reads were included for

analysis. In contrast, BiSeq uses a quantile approach for smooth-

ing methylation data where a higher weighting is given to CpG

sites with high coverage and sites with an unusually high cover-

age are excluded (for example, to the 90% quantile in this ana-

lysis). These differences could account for some of the variation

observed in the comparative differential methylation analysis

performed here.

We present DMAP, an analysis package that filters and pro-

cesses aligned bisulphite sequenced data to generate comprehen-

sive reference methylomes (tile based and fragment based) with

flexibility for users. From SAM files, DMAPprovides statistically

significant DMRs and relates them to genes and CpGs. Statistical

approaches for the analysis of genome-wide methylation data are

not yet well characterized.A caveat to the use of statistical tests for

fragment or window-based approaches is that methylation values

for CpGs within a sequenced read are likely to be correlated, and

thus statistical significance can be overestimated. Therefore, fur-

ther work is needed to devise better statistical methods for accur-

ate detection of differential methylation.

Aside from some awk scripts, DMAP is written in C and exe-

cutes efficiently. In our test runs, the diffmeth programwas able to

produce a list of candidate regions (while processing 11 human

RRBS samples) in 4 h. The output from this step was processed in

20min by identgeneloc to produce gene features of the candidate

regions. Although the package was initially developed for the

human genome, the code was modified to work with any eukary-

otic genome. Optionally, DMAP has no expectation of an X and

Y chromosome and can work with any number of autosomal

chromosomes. We tested the package with zebrafish genome

(Zv9 assembly), which has 25 chromosomes (and no X and Y

chromosome), and all the features described in this article

worked successfully (Chatterjee et al., 2013). To our knowledge,

DMAP is the first tool that accepts unsorted raw SAM alignment

files as an input, detectsDMRorDMF, provides information and

distances of nearest genes and CpG features in relation to each

DMF or DMR. The outputs (exported to text files) are relatively

easy for bench scientists without bioinformatics expertise to ana-

lyze and use with other tools.
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