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Abstract

Motion has shown to be useful for video understand-

ing, where motion is typically represented by optical flow.

However, computing flow from video frames is very time-

consuming. Recent works directly leverage the motion vec-

tors and residuals readily available in the compressed video

to represent motion at no cost. While this avoids flow com-

putation, it also hurts accuracy since the motion vector

is noisy and has substantially reduced resolution, which

makes it a less discriminative motion representation. To

remedy these issues, we propose a lightweight generator

network, which reduces noises in motion vectors and cap-

tures fine motion details, achieving a more Discriminative

Motion Cue (DMC) representation. Since optical flow is

a more accurate motion representation, we train the DMC

generator to approximate flow using a reconstruction loss

and an adversarial loss, jointly with the downstream action

classification task. Extensive evaluations on three action

recognition benchmarks (HMDB-51, UCF-101, and a sub-

set of Kinetics) confirm the effectiveness of our method. Our

full system, consisting of the generator and the classifier, is

coined as DMC-Net which obtains high accuracy close to

that of using flow and runs two orders of magnitude faster

than using optical flow at inference time.

1. Introduction

Video is a rich source of visual content as it not only con-

tains appearance information in individual frames, but also

temporal motion information across consecutive frames.

Previous work has shown that modeling motion is impor-

tant to various video analysis tasks, such as action recog-

nition [39, 47, 22], action localization [35, 34, 38, 5, 37,

24, 25] and video summarization [43, 28]. Currently, meth-

ods achieving state-of-the-art results usually follow the two-

stream network framework [39, 4, 46], which consists of
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Figure 1: Comparing inference time and accuracy for dif-

ferent methods on HMDB-51. (a) Compressed video based

method CoViAR [52] is very fast. (b) But in order to reach

high accuracy, CoViAR has to follow two-stream networks

to add the costly optical flow computation, either using TV-

L1 [55] or PWC-Net [42]. (c) The proposed DMC-Net not

only operates exclusively in the compressed domain, but

also is able to achieve high accuracy while being two or-

ders of magnitude faster than methods that use optical flow.

The blue box denotes the improvement room from CoViAR

to CoViAR + TV-L1 Flow; x-axis is in logarithmic scale.

two Convolutional Neural Networks (CNNs), one for the

decoded RGB images and one for optical flow, as shown

in Figure 2a. These networks can operate on either single

frames (2D inputs) or clips (3D inputs) and may utilize 3D

spatiotemporal convolutions [44, 46].

Extracting optical flow, however, is very slow and of-

ten dominates the overall processing time of video analysis

tasks. Recent work [52, 57, 56] avoids optical flow com-

putation by exploiting the motion information from com-

pressed videos encoded by standards like MPEG-4 [23].

Such methods utilize the motion vectors and residuals al-

ready present in the compressed video to model motion.

The recently proposed CoViAR [52] method, for exam-

ple, contains three independent CNNs operating over three

modalities in the compressed video, i.e. RGB image of I-

frame (I), low-resolution Motion Vector (MV) and Residual
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Figure 2: Illustrations of (a) the two-stream network [39],

(b) the recent CoViAR [52] method that achieves high ac-

curacy via fusing compressed video data and optical flow,

and (c) our proposed DMC-Net. Unlike CoViAR+Flow that

requires video decoding of RGB images and flow estima-

tion, our DMC-Net operates exclusively in the compressed

domain at inference time while using optical flow to learn

to capture discriminative motion cues at training time.

(R). The predictions from individual CNNs are combined

by late fusion. CoViAR runs extremely fast while mod-

eling motion features (see Figure 2b). However, in order

to achieve state-of-the-art accuracy, late fusion with optical

flow is further needed (see Figure 1).

This performance gap is due to the motion vector be-

ing less informative and discriminative than flow. First, the

spatial resolution of the motion vector is substantially re-

duced (i.e. 16x) during video encoding, and fine motion de-

tails, which are important to discriminate actions, are per-

manently lost. Second, employing two CNNs to process

motion vectors and residuals separately ignores the strong

interaction between them. Because the residual is computed

as the difference between the raw RGB image and its refer-

ence frame warped by the motion vector. The residual is of-

ten well-aligned with the boundary of moving object, which

is more important than the motion at other locations for ac-

tion recognition according to [32]. Jointly modeling motion

vectors and residuals, which can be viewed as coarse-scale

and fine-scale motion feature respectively, can exploit the

encoded motion information more effectively.

To address those issues, we propose a novel approach

to learn to generate a Discriminative Motion Cue (DMC)

representation by refining the noisy and coarse motion vec-

tors. We develop a lightweight DMC generator network

that operates on stacked motion vectors and residuals. This

generator requires training signals from different sources to

capture discriminative motion cues and incorporate high-

level recognition knowledge. In particular, since flow con-

tains high resolution and accurate motion information, we

encourage the generated DMC to resemble optical flow by

using a pixel-level reconstruction loss. We also use an ad-

versarial loss [13] to approximate the distribution of optical

flow. Finally, the DMC generator is also supervised by the

downstream action recognition classifier in an end-to-end

manner, allowing it to learn motion cues that are discrimi-

native for recognition.

During inference, the DMC generator is extremely effi-

cient with merely 0.23 GFLOPs, and takes only 0.106 ms

per frame which is negligible compared with the time cost

of using flow. In Figure 2c, we call our full model DMC-

Net. Although optical flow is required during training, our

method operates exclusively in the compressed domain at

inference time and runs two orders of magnitude faster than

methods using optical flow, as shown in Figure 1. Our con-

tributions are summarized as follows:

• We propose DMC-Net, a novel and highly efficient

framework that operates exclusively in the compressed

video domain and is able to achieve high accuracy

without requiring optical flow estimation.

• We design a lightweight generator network that can

learn to predict discriminative motion cues by using

optical flow as supervision and being trained jointly

with action classifier. During inference, it runs two or-

ders of magnitude faster than estimating flow.

• We extensively evaluate DMC-Net on 3 action recog-

nition benchmarks, namely HMDB-51 [21], UCF-

101 [40] and a subset of Kinetics [20], and demon-

strate that it can significantly shorten the performance

gap between state-of-the-art compressed video based

methods with and without optical flow.
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2. Related Work

Video Action Recognition. Advances in action recognition

are largely driven by the success of 2D ConvNets in image

recognition. The original Two-Stream Network [39] em-

ploys separate 2D ConvNets to process RGB frames and

optical flow, and merges their predictions by late fusion.

Distinct from image, video possesses temporal structure and

motion information which are important for video analysis.

This motivates researchers to model them more effectively,

such as 3D ConvNets [44, 4], Temporal Segment Network

(TSN) [49], dynamic image networks [1], and Non-Local

Network [50]. Despite the enormous amount of effort on

modeling motion via temporal convolution, 3D ConvNets

can still achieve higher accuracy when fused with optical

flow [4, 46], which is unfortunately expensive to compute.

Compressed Video Action Recognition. Recently, a num-

ber of approaches that utilize the information present in the

compressed video domain have been proposed. In the pi-

oneering works [56, 57], Zhang et al. replaced the opti-

cal flow stream in two-stream methods by a motion vec-

tor stream, but it still needed to decode RGB image for

P-frame and ignored other motion-encoding modalities in

compressed videos such as the residual maps. More re-

cently, the CoViAR method [52] proposed to exploit all data

modalities in compressed videos, i.e. RGB I-frames, mo-

tion vectors and residuals to bypass RGB frame decoding.

However, CoViAR fails to achieve performance compara-

ble to that of two-stream methods, mainly due to the low-

resolution of the motion vectors and the fact that motion

vectors and residuals, although highly related, are processed

by independent networks. We argue that, when properly ex-

ploited, the compressed video modalities have enough sig-

nals to allow us to capture more discriminative motion rep-

resentation. We therefore explicitly learn such representa-

tion as opposed to relying on optical flow during inference.

Motion Representation and Optical Flow Estimation.

Traditional optical flow estimation methods explicitly

model the displacement at each pixel between successive

frames [15, 54, 7, 2]. In the last few years CNNs have

successfully been trained to estimate the optical flow, in-

cluding FlowNet [8, 17], SpyNet [31] and PWC-Net [42],

and achieve low End-Point Error (EPE) on challenging

benchmarks, such as MPI Sintel [3] and KITTI 2015 [29].

Im2Flow work [12] also shows optical flow can be halluci-

nated from still images. Recent work however, shows that

accuracy of optical flow is not strongly correlated with ac-

curacy of video recognition [33]. Thus, motion represen-

tation learning methods focus more on generating discrim-

inative motion cues. Fan et al. [9] proposed to transform

TV-L1 optical flow algorithm into a trainable sub-network,

which can be jointly trained with downstream recognition

network. Ng et al. [30] employs fully convolutional ResNet

model to generate pixel-wise prediction of optical flow, and

can be jointly trained with recognition network. Unlike op-

tical flow estimation methods, our method does not aim to

reduce EPE error. Also different from all above methods

of motion representation learning which take decoded RGB

frames as input, our method refines motion vectors in the

compressed domain, and requires much less model capac-

ity to generate discriminative motion cues.

3. Approach

In this section, we present our approach for generat-

ing Discriminative Motion Cues (DMC) from compressed

video. The overall framework of our proposed DMC-Net

is illustrated in Figure 3. In Section 3.1, we introduce the

basics of compressed video and the notations we use. Then

we design the DMC generator network in Section 3.2. Fi-

nally we present the training objectives in Section 3.3 and

discuss inference in Section 3.4.

3.1. Basics and Notations of Compressed Video

We follow CoViAR [52] and use MPEG-4 Part2 [23] en-

coded videos where every I-frame is followed by 11 consec-

utive P-frames. Three data modalities are readily available

in MPEG-4 compressed video: (1) RGB image of I-frame

(I); (2) Motion Vector (MV) records the displacement of

each macroblock in a P-frame to its reference frame and

typically a frame is divided into 16x16 macroblocks during

video compression; (3) Residual (R) stores the RGB dif-

ference between a P-frame and its reference I-frame after

motion compensation based on MV. For a frame of height

H and width W , I and R have shape (3, H , W ) and MV has

shape (2, H , W ). But note that MV has much lower resolu-

tion in effect because its values within the same macroblock

are identical.

3.2. The Discriminative Motion Cue Generator

Input of the generator. Existing compressed video based

methods directly feed motion vectors into a classifier to

model motion information. This strategy is not effective

in modeling motion due to the characteristics of MV: (1)

MV is computed based on simple block matching, making

MV noisy and (2) MV has substantially lower resolution,

making MV lack fine motion details. In order to specifi-

cally handle these characteristics of MV, we aim to design a

lightweight generation network to reduce noise in MV and

capture more fine motion details, outputting DMC as a more

discriminative motion representation.

To accomplish this goal, MV alone may not be sufficient.

According to [32], the motion nearby object boundary is

more important than the motion at other locations for action

recognition. We also notice R is often well-aligned with the

boundary of moving objects. Moreover, R is strongly corre-

lated with MV as it is computed as the difference between

the original frame and its reference I-frame compensated
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Figure 3: The framework of our Discriminative Motion Cue Network (DMC-Net). Given the stacked residual and motion

vector as input, the DMC generator reduces noise in the motion vector and captures more fine motion details, outputting

a more discriminative motion cue representation which is used by a small classification network to classify actions. In the

training stage, we train the DMC generator and the action classifier jointly using three losses. In the test stage, only the

modules highlighted in pink are used.

Network Architecture GFLOPs

C3D [44] 38.5

Res3D-18 [45] 19.3

ResNet-152 [14] 11.3

ResNet-18 [14] 1.78

DMC generator (PWC-Net [42]) 36.15

DMC generator [ours] 0.23

Table 1: Computational complexity of different networks.

Input has height 224 and width 224.

Layer Input size Output size Filter config

conv0 5, 224, 224 8, 224, 224 8, 3x3, 1, 1

conv1 13, 224, 224 8, 224, 224 8, 3x3, 1, 1

conv2 21, 224, 224 6, 224, 224 6, 3x3, 1, 1

conv3 27, 224, 224 4, 224, 224 4, 3x3, 1, 1

conv4 31, 224, 224 2, 224, 224 2, 3x3, 1, 1

conv5 33, 224, 224 2, 224, 224 2, 3x3, 1, 1

Table 2: The architecture of our Discriminative Motion Cue

(DMC) generator network which takes stacked motion vec-

tor and residual as input. Input/output size follows the for-

mat of #channels, height, width. Filter configuration fol-

lows the format of #filters, kernel size, stride, padding.

using MV. Therefore, we propose to stack MV and R as

input into the DMC generator, as shown in Figure 3. This

allows utilizing the motion information in MV and R as well

as the correlation between them, which cannot be modeled

by separate CNNs as in the current compressed video works

[52, 57, 56].

Generator network architecture. Quite a few deep gen-

eration networks have been proposed for optical flow esti-

mation from RGB images. One of these works is PWC-

Net [42], which achieves SoTA performance in terms of

both End Point Error (EPE) and inference speed. We there-

fore choose to base our generator design principles on the

ones used by PWC-Net. It is worth noting that PWC-Net

takes decoded RGB frames as input unlike our proposed

method operating only in the compressed domain.

Directly adopting the network architecture of the flow es-

timator network in PWC-Net for our DMC generator leads

to high GFLOPs as indicated in Table 1. To achieve high

efficiency, we have conducted detailed architecture search

experimentally to reduce the number of filters in each con-

volutional layer of the flow estimator network in PWC-Net,

achieving the balance between accuracy and complexity.

Furthermore, since our goal is to refine MV, we propose

to add a shortcut connection between the input MV and the

output DMC, making the generator to directly predict the

refinements which are added on MV to obtain DMC.

Table 2 shows the network architecture of our DMC gen-

erator: 6 convolutional layers are stacked sequentially with

all convolutional layers densely connected [16]. Every con-

volutional filter has a 3x3 kernel with stride 1 and padding

1. Each convolutional layer except conv5 is followed by a

Leaky ReLU [26] layer, where the negative slope is 0.1.

As shown in Table 1, our DMC generator only requires

0.63% GFLOPs used by the flow estimator in PWC-Net if

it were adopted to implement our DMC generator. Also,

Table 1 compares our DMC generator with other popular

network architectures for video analysis including frame-

level models (ResNet-18 and ResNet-152 [14]) and clip-

level models (C3D [44] and Res3D [45]). We observe

that the complexity of DMC generator is orders of magni-

tude smaller compared to that of other architectures, which

makes it running much faster. In the supplementary mate-

rial, we explored a strategy of using two consecutive net-

works to respectively rectify errors in MV and capture fine

motion details while this did not achieve better accuracy.
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3.3. Flowguided, Discriminative Motion Cues

Compared to MV, optical flow exhibits more discrimina-

tive motion information because: (1) Unlike MV is com-

puted using simple block matching, nowadays dense flow

estimation is computed progressively from coarse scales to

fine scales [55]. (2) Unlike MV is blocky and thus misses

fine details, flow keeps the full resolution of the correspond-

ing frame. Therefore we propose to guide the training of our

DMC generator using optical flow. To this end, we have ex-

plored different ways and identify three effective training

losses as shown in Figure 3 to be presented in the follow-

ing: a flow reconstruction loss, an adversarial loss, and a

downstream classification loss.

3.3.1 Optical Flow Reconstruction Loss

First, we minimize the per-pixel difference between the

generated DMC and its corresponding optical flow. Follow-

ing Im2Flow [12] which approximates flow from a single

RGB image, we use the Mean Square Error (MSE) recon-

struction loss Lmse defined as:

Lmse = Ex∼p ‖GDMC(x)− GOF(x)‖
2

2
, (1)

where p denotes the set of P-frames in the training videos,

E stands for computing expectation, GDMC(x) and GOF(x)
respectively denote the DMC and optical flow for the corre-

sponding input frame x sampled from p. Since only some

regions of flow contain discriminative motion cues that are

important for action recognition, in the supplementary ma-

terial we have explored weighting the flow reconstruction

loss to encourage attending to the salient regions of flow.

But this strategy does not achieve better accuracy.

3.3.2 Adversarial Loss

As pointed out by previous works [27], the MSE loss im-

plicitly assumes that the target data is drawn from a Gaus-

sian distribution and therefore tends to generate smooth and

blurry outputs. This in effect results in less sharp motion

representations especially around boundaries, making the

generated DMC less discriminative. Generative Adversarial

Networks (GAN) [13] has been proposed to minimize the

Jensen−Shannon divergence between the generative model

and the true data distribution, making these two similar.

Thus in order to help our DMC generator learn to approx-

imate the distribution of optical flow data, we further in-

troduce an adversarial loss. Note that unlike GAN which

samples from random noise, adversarial loss samples from

the input dataset, which already has large variability [27].

We relax the notational rigor and use GOF (x) to refer to the optical

flow corresponding to the frame x, although for many optical flow algo-

rithms the input would be a pair of frames.

Let our DMC generator GDMC be the Generator in the

adversarial learning process. As shown in Figure 3, a Dis-

criminator D is introduced to compete with GDMC. D is

instantiated by a binary classification network that takes as

input either real optical flow or fake samples generated via

our DMC generator. Then D outputs a two-dimensional

vector that is passed through a softmax operation to obtain

the probability PD of the input being Real, i.e. flow versus

Fake, i.e. DMC. GDMC and D are trained in an alternating

manner: GDMC is fixed when D is being optimized, and

vice versa.

During training D, GDMC is fixed and is only used for in-

ference. D aims to classify the generated DMC as Fake and

classify flow as Real. Thus the adversarial loss for training

D is:

LD
adv =Ex∼p[− logPD(Fake|GDMC(x))

− logPD(Real|GOF(x))],
(2)

where p denotes the set of P-frames in the training set and

GDMC(x) and GOF(x) respectively represent the DMC and

optical flow for each input P-frame x.

During training GDMC, D is fixed. GDMC is encouraged

to generate DMC that is similar and indistinguishable with

flow. Thus the adversarial loss for training GDMC is:

LG
adv = Ex∼p[− logPD(Real|GDMC(x))], (3)

which can be trained jointly with the other losses designed

for training the DMC generator in an end-to-end fashion, as

presented in Section 3.3.3.

Through the adversarial training process, GDMC learns

to approximate the distribution of flow data, generating

DMC with more fine details and thus being more similar

to flow. Those fine details usually capture discriminative

motion cues and are thus important for action recognition.

We present details of the discriminator network architecture

in the supplementary material.

3.3.3 The Full Training Objective Function

Semantic classification loss. As our final goal is to create

motion representation that is discriminative with respect to

the downstream action recognition task, it is important to

train the generator jointly with the follow-up action classi-

fier. We employ the softmax loss as our action classification

loss, denoted as Lcls.

The full training objective. Our whole model is trained

with the aforementioned losses putting together in an end-

to-end manner. The training process follows the alternating

training procedure stated in Section 3.3.2. During training

the discriminator, D is trained while the DMC generator

GDMC and the downstream action classifier are fixed. The

full training objective is to minimize the adversarial loss
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Figure 4: Accuracy vs. speed on 3 benchmarks. Results on UCF-101 and HMDB-51 are averaged over 3 splits. (b1)

and (b2) use ResNet-18 to classify flow and (c) also uses ResNet-18 to classify DMC. The proposed DMC-Net not only

operates exclusively in the compressed domain, but also is able to achieve higher accuracy than (a) while being two orders of

magnitude faster than methods that use optical flow. The blue area indicates the improvement room from (a) to (b1).

LD
adv

in Equation 2. During training the generator GDMC,

D is fixed while the DMC generator GDMC and the down-

stream action classifier are trained jointly with the following

full training objective to be minimized:

Lcls + α · Lmse + λ · LG
adv, (4)

where Lmse is given by Equation 1, LG
adv

is given by Equa-

tion 3, and α, λ are balancing weights.

3.4. Inference

As shown in Figure 3, despite having three losses jointly

trained end-to-end, our DMC-Net is actually quite efficient

during inference: basically first the generator outputs DMC

and then the generated DMC is fed into the classification

network to make action class prediction. We compare our

inference speed with other methods in Section 4.4.

4. Experiments

In this section, we first detail our experimental setup,

present quantitative analysis of our model, and finally com-

pare with state-of-the-art methods.

4.1. Datasets and Evaluation

UCF-101 [41]. This dataset contains 13,320 videos from

101 action categories, along with 3 public train/test splits.

HMDB-51 [21]. This dataset contains 6,766 videos from

51 action categories, along with 3 public train/test splits.

Kinetics-n50. From the original Kinetics-400 dataset [4],

we construct a subset referred as Kinetics-n50 in this paper.

We keep all 400 categories. For each class, we randomly

sample 30 videos from the original training set as our train-

ing videos and randomly sample 20 videos from the original

validation set as our testing videos. We evaluate on the full

set in the supplementary material.

Evaluation protocol. All videos in the above datasets have

single action label out of multiple classes. Thus we evaluate

top-1 video-level class prediction accuracy.

4.2. Implementation Details

Training. For I, MV, and R, we follow the exactly same set-

ting as used in CoViAR [52]. Note that I employs ResNet-

152 classifier; MV and R use ResNet-18 classifier. To en-

sure efficiency, DMC-Net also uses ResNet-18 to classify

DMC in the whole paper unless we explicitly point out.

To allow apple-to-apple comparisons between DMC and

flow, we also choose frame-level ResNet-18 classifier as the

flow CNN shown in Figure 2b. TV-L1 [54] is used for ex-

tracting optical flow to guide the training of our DMC-Net.

All videos are resized to 340×256. Random cropping of

224×224 and random flipping are used for data augmenta-

tion. More details are in the supplementary material.

Testing. For I, MV, and R, we follow the exactly same set-

ting as in CoViAR [52]: 25 frames are uniformly sampled

for each video; each sampled frame has 5 crops augmented

with flipping; all 250 (25×2×5) score predictions are av-

eraged to obtain one video-level prediction. For DMC, we

following the same setting except that we do not use crop-

ping and flipping, which shows comparable accuracy but re-

quires less computations. Finally, we follow CoViAR [52]

to obtain the final prediction via fusing prediction scores

from all modalities (i.e. I, MV, R, and DMC).

4.3. Model Analysis

How much gain DMC-Net can improve over CoViAR?

Figure 4 reports accuracy on all three datasets. CoViAR +

TV-L1 and CoViAR + PWC-Net follow two-stream meth-

ods to include an optical flow stream computed by TV-L1

[55] and PWC-Net [42] respectively. CoViAR + TV-L1

can be regard as our upper bound for improving accuracy

because TV-L1 flow is used to guide the training of DMC-

Net. By only introducing a lightweight DMC generator, our

DMC-Net significantly improves the accuracy of CoViAR

to approach CoViAR + Flow. Figure 5 shows that the gen-

erated DMC has less noisy signals such as those in the back-

ground area and DMC captures fine and sharp details of mo-

tion boundary, leading to the accuracy gain over CoViAR.

How effectiveness is each proposed loss? On HMDB-

51, when only using the classification loss, the accuracy

of DMC-Net is 60.5%; when using the classification loss

and the flow reconstruction loss, the accuracy is improved

to 61.5%; when further including the adversarial training

loss, DMC-Net eventually achieves 61.8% accuracy. As in-
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Two-Stream Method

(RGB+Flow)

Compressed Video

Based Methods

BN-Inception ResNet152 CoViAR DMC-Net [ours]

Time

(ms)

Preprocess 75.0 75.0 0.46 0.46

CNN (S) 1.6 7.5 0.59 0.89

Total (S) 76.6 82.5 1.05 1.35

CNN (C) 0.9 4.0 0.22 0.30

Total (C) 75.9 79.0 0.68 0.76

FPS
CNN (C) 1111.1 250.0 4545.4 3333.3

Total (C) 13.1 12.6 1470.5 1315.7

(a) DMC-Net vs. Two-stream methods and CoViAR

Generator Generator + Cls.

Time (ms) / FPS Time (ms) / FPS

Deepflow [51] 1449.2 / 0.7 1449.5 / 0.7

Flownet2.0 [17] 220.8 / 4.5 221.0 / 4.5

TVNet [9] 83.3 / 12.0 83.5 / 12.0

PWC-Net [42] 28.6 / 35.0 28.8 / 34.8

DMC-Net [ours] 0.1 / 9433.9 0.3 / 3333.3

(b) DMC-Net vs. flow estimation methods

Table 3: Comparisons of per-frame inference speed. (a) Comparing our DMC-Net to the two-stream methods [18, 14] and the

CoViAR method [52]. We consider two scenarios of forwarding multiple CNNs sequentially and concurrently, denoted by

S and C respectively. We measure CoViAR’s CNN forwarding time using our own implementation as mentioned in Section

4.4 and numbers are comparable to those reported in [52]. (b) Comparing our DMC-Net to deep network based optical

flow estimation and motion representation learning methods, whose numbers are quoted from [9]. CNNs in DMC-Net are

forwarded concurrently. All networks have batch size set to 1. For the classifier (denoted as Cls.), all methods use ResNet-18.

(a) RGB image (b) Optical Flow (c) Motion Vector (d) Residual (e) Our DMC w/o adv.

(a) RGB image (b) Optical Flow (c) Motion Vector (d) Residual

(f) Our DMC

(e) Our DMC w/o adv. (f) Our DMC

Figure 5: A Cartwheel example (top) and a PlayingTabla (bottom) example. All images in one row correspond to the same

frame. For the Cartwheel example, these noisy blocks in the background (highlighted by two red circles) are reduced in

our DMC. For the PlayingTabla example, our DMC exhibits sharper and more discriminative motion cues around hands

(highlighted by the red circle) than our DMC w/o the adversarial loss during training. Better viewed in color.

dicated by previous literature [19], using an adversarial loss

without a reconstruction loss often introduces artifacts.

4.4. Inference Speed

Following [52], we measure the average per-frame run-

ning time, which consists of the time for data pre-processing

and the time for CNN forward pass. For the CNN forward

pass, both the scenarios of forwarding multiple CNNs se-

quentially and concurrently are considered. Detailed results

can be found in Table 3 (a). Results of two-stream methods

are quoted from [52]. Due to the need of decoding com-

pressed video into RGB frames and then computing opti-

cal flow, its pre-process takes much longer time than com-

pressed video based methods. DMC-Net accepts the same

inputs as CoViAR and thus CoViAR and DMC-Net have

the same pre-processing time. As for the CNN forward-

ing time of compressed video based methods, we measure

CoViAR and DMC-Net using the exactly same implemen-

tation as stated in Section 4.2 and the same experimental

setup: we use one NVIDIA GeForce GTX 1080 Ti and

set the batch size of each CNN to 1 while in practice the

speed can be further improved to utilize larger batch size.

Despite adding little computational overhead on CoViAR,

DMC-Net is still significantly faster than the conventional

two-stream methods.

Deepflow [51], Flownet [17] and PWC-Net [42] have

been proposed to accelerate optical flow estimation by us-

ing deep networks. TVNet [9] was proposed to generate

even better motion representation than flow with fast speed.

Those estimated flow or generated motion representation

can replace optical flow used in two-stream methods to go

through a CNN for classification. We combine these meth-
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HMDB-51 UCF-101

Compressed video based methods

EMV-CNN [56] 51.2 (split1) 86.4

DTMV-CNN [57] 55.3 87.5

CoViAR [52] 59.1 90.4

DMC-Net (ResNet-18) [ours] 62.8 90.9

DMC-Net (I3D) [ours] 71.8 92.3

Decoded video based methods (RGB only)

Frame-level classification

ResNet-50 [14] 48.9 82.3

ResNet-152 [14] 46.7 83.4

Motion representation learning

ActionFlowNet (2-frames) [30] 42.6 71.0

ActionFlowNet [30] 56.4 83.9

PWC-Net (ResNet-18) + CoViAR [42] 62.2 90.6

TVNet [9] 71.0 94.5

Spatio-temporal modeling

C3D [44] 51.6 82.3

Res3D [45] 54.9 85.8

ARTNet [48] 70.9 94.3

MF-Net [6] 74.6 96.0

S3D [53] 75.9 96.8

I3D RGB [4] 74.8 95.6

I3D RGB + DMC-Net (I3D) [ours] 77.8 96.5

Decoded video based methods (RGB + Flow)

Two-stream [39] 59.4 88.0

Two-Stream fusion [11] 65.4 92.5

I3D [4] 80.7 98.0

R(2+1)D [46] 78.7 97.3

Table 4: Accuracy averaged over all three splits on HMDB-

51 and UCF-101 for both state-of-the-art compressed video

based methods and decoded video based methods.

ods with a ResNet-18 classifier in Table 3 (b). We can see

that our DMC generator runs much faster than these state-

of-the-art motion representation learning methods.

4.5. Comparisons with Compressed Video Methods

As shown in the top section of Table 4, DMC-Net

outperforms all other methods that operate in the com-

pressed video domain, i.e. CoViAR [52], EMV-CNN [56]

and DTMV-CNN [57]. Our method outperforms methods

like [56, 57] that the output of the MV classifier is trained to

approximate the output of the optical flow classifier. We be-

lieve this is because of the fact that approximating the clas-

sification output directly is not ideal, as it does not explicitly

address the issues that MV is noisy and low-resolutional.

By generating a more discriminative motion representation

DMC, we are able to get features that are highly discrimina-

tive for the downstream recognition task. Furthermore, our

DMC-Net can be combined with these classification net-

works of high capacity and trained in an end-to-end man-

ner. DMC-Net (I3D) replaces the classifier from ResNet-18

to I3D, achieving significantly higher accuracy and outper-

forming a number of methods that require video decoding.

Our supplementary material discusses the speed of I3D.

4.6. Comparisons with Decoded Video Methods

In this section we compare DMC-Net to approaches that

require decoding all RGB images from compressed video.

Some only use the RGB images, while others adopt the two-

stream method [39] and further require computing flow.

RGB only. As shown in Table 4, decoded video methods

only based on RGB images can be further divided into three

categories. (1) Frame-level classification: 2D CNNs like

ResNet-50 and ResNet-152 [14] have been experimented

in [10] to classify each frame individually and then em-

ploy simple averaging to obtain the video-level prediction.

Due to lacking motion information, frame-level classifica-

tion underperforms DMC-Net. (2) Motion representation

learning: In Table 4, we evaluate PWC-Net (ResNet-18) +

CoViAR which feeds estimated optical flow into a ResNet-

18 classifier and then fuses the prediction with CoViAR.

The accuracy of PWC-Net (ResNet-18) + CoViAR is not

as good as DMC-Net because our generated DMC contains

more discriminative motion cues that are complementary to

MV. For TVNet [9], the authors used BN-Inception [18] to

classify the generated motion representation and then fuse

the prediction with a RGB CNN. The accuracy of TVNet is

better DMC-Net (ResNet-18) thanks to using a strong clas-

sifier but is worse than our DMC-Net (I3D). (3) Spatio-

temporal modeling: There are also a lot of works using

CNN to model the spatio-temporal patterns across multiple

RGB frames to implicitly capture motion patterns. It turns

out that our DMC-Net discovers motion cues that are com-

plementary to such spatio-temporal patterns: I3D RGB +

DMC-Net (I3D) improves I3D RGB via incorporating pre-

dictions from our DMC-Net (I3D).

RGB + Flow. As shown in Table 4, the state-of-the-art ac-

curacy is belonging to the two-stream methods [20, 46],

which combine predictions made from a RGB CNN and

an optical flow CNN. But as discussed in Section 4.4, ex-

tracting optical flow is quite time-consuming and thus these

two-stream methods are much slower than our DMC-Net.

5. Conclusion

In this paper, we introduce DMC-Net, a highly efficient

deep model for video action recognition in the compressed

video domain. Evaluations on 3 action recognition bench-

marks lead to substantial gains in accuracy over prior work,

without the assistance of computationally expensive flow.

The supplementary materials can be found in [36].
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