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ABSTRACT

In the era of personalized medicine, high-throughput technologies have allowed 

the investigation of genetic variations underlying the inter-individual variability in drug 

pharmacokinetics/pharmacodynamics. Several studies have recently moved from a 

candidate gene-based pharmacogenetic approach to genome-wide pharmacogenomic 

analyses to identify biomarkers for selection of patient-tailored therapies. In this 

aim, the identification of genetic variants affecting the individual drug metabolism 
is relevant for the definition of more active and less toxic treatments. This review 
focuses on the potentiality, reliability and limitations of the DMETTM (Drug Metabolism 

Enzymes and Transporters) Plus as pharmacogenomic drug metabolism multi-gene 

panel platform for selecting biomarkers in the final aim to optimize drugs use and 
characterize the individual genetic background.

INTRODUCTION

The Human Genome [1, 2] and the International 

HapMap projects [3, 4] have provided a great opportunity 

for the understanding of the complex genomic architecture 

of disease susceptibility and inter-individual drug 

response variability. In clinical practice, the knowledge 

of genetic factors influencing drug efficacy and safety 
is of major relevance for a personalized therapy. In 

fact, it is well recognized that genetic polymorphisms 

can influence clinical outcome in response to drugs 
[5]. In a sizable percentage of cancer patients, together 

with tumor regression, often occur severe and life 

threatening toxicities, which are of major relevance at 

patient and health system levels. In the post-genomic 

era, Pharmacogenomics (PGx) has identified genetic 
variants that influence both Pharmacokinetics (PK) and 
Pharmacodinamics (PD) [6]: PK-PGx reveal differences 

in patient drug metabolism and bio-availability related to 

gene variants involved in drug metabolism or transport, 

while PD-PGx analyze differences in patient response 

due to genomic variants producing differences in drug 

molecular targets/pathways [7]. In fact, it is now common 

notion that polymorphic variants related to Adsorption, 

Distribution, Metabolism and Excretion (ADME) genes 

significantly contribute to individual patients’ drug 
sensitivity, resistance and toxicity. Single nucleotide 

polymorphisms (SNPs), genomic insertions and deletions, 

and genetic copy number variations (CNVs) represent the 

most common genetic alterations studied in PGx. SNPs are 

considered as common inherited variations (90%) among 

people, distributed throughout the genome. They represent 

a single nucleotide difference in the DNA sequence, 

which may play a functional role when occurs within a 

gene coding sequence or in a regulatory region. SNPs 

are stably inherited within haplotype blocks in linkage 

disequilibrium (LD) with a specific gene variant (LD; it 
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is the degree to which an allele of one SNP is inherited or 

correlated with an allele of another SNP or a gene variant, 

within a population) functioning as a marker of the gene 

variants coheredited within the haplotype. SNPs may be 

therefore used in genomic analyses as tags (tagSNPs) to 

identify an haplotype block which may contain few or 

many polymorphic variants associated with a disease or 

drug-response phenotype (Figure 1) [8]. The frequency 

of a SNP is expressed as minor allele frequency (MAF). 

The identification of relevant tagSNPs [9], has allowed 
the evolution from a candidate-gene based research 

approach to the genome-wide association study (GWAS), 

leading to the discovery of gene variants associated to 

the individual risk of Adverse Drug Reactions (ADRs) 

and to drug efficacy because in LD with SNPs acting as 
tags. Recently, technologic advances have led to more 

cost-effective and rapid genotyping microarray platforms. 

Among them, Affymetrix (Santa Clara, California, 

USA) developed the Drug Metabolizing Enzymes and 

Transporters (DMETTM) platform for the identification, 
in a single array, of all currently known polymorphisms 

in ADME-related enzymes, through genotyping of 

tagSNPs in LD [10]. The purpose of this review is to 

discuss the different approaches in PGx to identify 

predictive biomarkers on germline DNA SNPs associated 

to individual drug responses, with specific focus to the 
description of the characteristics and application of 

Affymetrix PGx microarray platform. We here describe 

the bioinformatic tools for the molecular analysis 

understanding and final translation into clinical practice 
of the information obtained by DMETTM genotyping. 

Moreover, we will underline advantages and weakness of 

statistics in PGx. Our goal is to make clear that DMETTM 

platform is a suitable and comprehensive PGx approach 

which addresses inter-individual variability in clinical 

response and leads to the discovery of biomarkers which, 

if validated, could help physician decision making for 

treatment personalization.

BIOMARKERS RELATED TO TUMOR 

OR DRUG METABOLISM

The chance to predict and avoid ADRs, especially 

in the case of drugs with a narrow therapeutic index, 

like antitumor agents, is of major relevance in the 

clinical practice. Although not-inherited acquired 

somatic mutations in tumor tissue can influence cancer 
progression and drug response, other genetic alterations 

in transcription factor activity, gene expression, gene 

silencing (epigenetics), and polymorphisms are the basis 

of individual genetic variability. So far, a variety of 

novel agents have been developed for targeting specific 
proteins and pathways, activated by somatic mutation, 

on the bases of genetic alterations identified in cancer 
cells, like mutations involving EGFR, RAS genes, B-RAF, 

and ALK [11]. Somatic mutations can define disease 
subtypes, influence the therapeutic strategies and the 
clinical outcome of different tumors [12]. In almost 60% 

metastatic colorectal cancer (mCRC) patients, K-RAS 

and N-RAS are mutated and mutations are considered a 

predictor of poor response to anti-EGFR monoclonal 

antibodies (mABs), such as cetuximab or panitumumab, 

while patients with wild-type RAS benefit from EGFR 
targeted treatment [13]. Also mutations in B-RAF and 

PIK3CA (exon 20) as well as PTEN deletions in mCRC 

patients with wild-type KRAS may predict anti-EGFR 
resistance, but are not validated for clinical decision 

[14]. Inherited germline DNA polymorphisms have 

been identified for many proteins implicated in clinical 
pharmacology, and may alter bio-availability, structure, 

binding, and/or function, with consequent impact on 

drug activity and disease outcome [15, 16]. Unlike other 

factors influencing drug response, germline determinants 
generally remain stable throughout lifetime and can confer 

high or moderate risk for cancer susceptibility controlling 

which somatic mutations will undergo positive and 

negative selection [11, 17]. For many drugs, including 

Figure 1: TagSNPs and recombination hotspots. Single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) are 

coheredited in haplotype blocks. TagSNPs are used to identify gene variants potentially correlated to phenotypes, withouth the need to 

genotpype all SNPs included in each haplotype block.
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anticonvulsant, anti-infective, anti-tumor, cardiovascular, 

opioid, proton-pump inhibitor and psychotropic drugs, a 

correlation has been identified between genetic variants in 
ADME genes and drug associations at level of cytochrome 

P450 (CYP) enzymes, receptors, transporters, targets 

and, more recently, human-leukocytes antigens (HLAs) 

[5]. For example, genetic polymorphism in genes coding 

for membrane transporters (ABCG2) and metabolism 

enzymes (CYP3A4, and CYP3A5, CYP1A1, CYP27B1) 

were correlated with the occurrence of erlotinib toxicity 

[18-20]. Recently, in a whole-genome sequencing of 

high-grade serous ovarian cancer (HGSC) tissue and 

germline DNA samples from 92 patients in different 

platinum-sensitivity status, the acquired drug resistance 

was associated to up-regulation of the ABCB1/MDR1 

gene. The possibility to prior identify patients carriers 

of this drug resistant factor may allow a tailored 

treatment with anticancer drugs that are not a substrate 

of MDR1[21]. In cancer treatment, the onset of drug 

resistance represents an unsolved problem [22-25]. Thus, 

the identification of SNPs correlated to individual drug 
response has implemented PGx studies [26] and will offer 

the opportunity to select new predictive biomarkers not 

only for targeted therapies but also to avoid side effects 

associated to multi-drug regimens. Important examples 

of tagging SNPs in genes influencing the metabolism of 
antineoplastic drugs are the thiopurine methyltransferase 

(TPMT), involved in 6-mercaptopurine metabolism and 

the dihydropyrimidine dehydrogenase (DPD), involved in 

5-fluorouracil (5-FU) therapy. The functional deficiency 
of TPMT (rs1800462 (G>C), rs1142345 (A>G) and 

rs1800460 (G>A)) increases the serum levels of 

6-mercaptopurine with consequent serious side effects, 

as myelosuppression [27], while reduced DPD activity 

leads to prolonged 5-FU half-life and increased risk 

of toxicity [28]. On these bases, DMETTM Affymetrix 

platform allows to investigate germline polymorphisms 

in a panel of ADME genes, approved by the Food and 

Drug Administration (FDA, USA) for their involvement 

in drugs metabolism and elimination, in order to shed light 

on the complex relationships between human genetics and 

drug response and identify new predictive biomarkers to 

enhance treatment efficacy and safety.

DIFFERENT PHARMACOGENETIC 

APPROACHES TO DISCOVER NEW 

BIOMARKERS

During the past decade the candidate gene approach 

has been the most widely used in the experimental design 

of PGx. This strategy has focused to identify genetic 

association between inherited variants in a single gene 

or a set of pathway-related genes with a clinical trait of 

interest, such as a drug response phenotype. Its hypothesis-

driven nature implicates the knowledge of the drug 

pathway, metabolism or disease pathogenesis. Putative 

candidate genes can be drug-metabolism genes, or genes 

encoding drug receptors, drug transporters or proteins with 

important functions in pathway targeted by drugs.

Studies using this approach have led to the discovery 

of clinically relevant phenotype-genotype correlations, 

such as CYP2D6 polymorphisms and tamoxifen activity 

on important clinical endpoints [29], polymorphisms 

in SLCO1B1 and irinotecan pharmacokinetics and 

toxicity correlation [30], DPD variants and fluorouracil 
toxicity correlation [31], or CYP27B1 and CYP24A1 

polymorphisms and non small cell lung cancer risk [32]. 

Although candidate gene studies can be performed with 

a small sample sizes to achieve the required statistical 

power, many associations have failed independent 

validation, with a high rate of false-positive, especially in 

cases where allelic variants are not highly penetrant [33]. 

Moreover, if we consider a complex disease phenotype, 

variations in outcome may not always be explained by one 

single genetic trait or one single pharmacological pathway. 

Thus, it is possible that multiple variants in genes involved 

in different processes may lead to similar phenotypic 

outcomes.

The development of new molecular genotyping 

technologies in addition to the technology advances in 

high-throughput analysis, have made GWAS a useful 

tool to simultaneously interrogate hundred to thousand 

of genetic variants, both SNPs and CNVs, across the 

entire human genome in a large number of samples. 

Unlike candidate gene approaches, GWAS are free of 

a priori assumption and demonstrated able not only to 

confirm previously-discovered PGx associations [34], but 
also to identify new unexpected biomarkers, associated 

with common disease or complex traits, for which the 

biological pathway was unknown [35]. Lee et al, recently, 

have identified by a GWAS study the correlation between 
a genomic variant in SLC15A2 and responsiveness to 

sorafenib in patients with unresectable hepatocellular 

carcinoma (HCC) [36]. The output produced by GWAS 

studies are too large to be analyzed by using common 

analytic packages and advanced software tools such as 

PLINK [37], GAINQC1, MERLIN and Mach 1.0 are 
required to analyze genotype-phenotype GWAS data. 

However, in addition to statistical association, GWAS 

results need further investigation to understand the 

mechanisms of functional effects and must be replicated 

in independent sample set in order to establish a causality 

link between a discovered gene variant and a specific trait 
of interest. 

There are other considerations on GWAS. 

Common GWAS platforms are designed on LD and use 

a set of tagSNPs to capture all the genetic variants of 

the genome. However, SNPs that are in low strength of 

association with a tagSNP would not be detectable even 

if an association may indeed be found, though at lower 

power. In addition, GWAS can identify only common 

variants, with a population prevalence >5%, excluding 
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rare alleles that, however, may have important effects on 

drug response. The identification of rare variants that are 
poorly tagged by existing genotyping platforms requires 

deep re-sequencing approaches for the genomic regions 

showing strong associations with complex traits [38]. 

Others important issues in GWAS are the effect size and 

the statistical correction for multiple testing. In discovery 

GWAS the expected effect sizes are unknown, and thus 

large study population are required to detect common 

variants with small effect. The sample sizes that are often 

used in PGx are inadequate, thus the effect sizes are often 

overestimated owing to the winner’s curse phenomenon. 

As GWAS test large number of SNP markers, the 

statistical threshold used to establish a significant genetic 
association is typically stringent in order to avoid false 

positives, reducing the study’s power to detect variants 
with small but potentially true effect. 

An intermediate approach between the candidate 

gene studies and the GWAS is the use of pre-defined SNP 
list panels including thousand of genetic variants in a set 

of pharmacogenes. These tools combine the advantage to 

interrogate variants in genes selected on the basis of their 

known relevance in drug PK and PD with the power of 
simultaneous genotyping analysis, limiting the statistical 

correction for multiple comparisons. Alternatively, it is 

possible to create custom panels including only candidate 

genes related to specific drug-phenotype associations.

SNPS RELATED TO DRUG METABOLISM

Many of the most relevant allelic variants involved 

in drug metabolism have been identified in the ADME 
genes encoding phase I-II enzymes and transporters. 

Phase I enzymes catalyze hydrolysis, reduction and 

oxidation reactions, and phase II enzymes catalyze 

conjugation reactions such as sulfation, acetylation and 

glucuronidation. The majority of phase I reactions are 

catalyzed by the CYP450 enzymes highly expressed in 

liver. There are 18 families of CYPs that can be further 

splitted into 44 subfamilies consisting of 57 total genes. 

However, only 3 of those families, CYP1, CYP2 and 

CYP3, catalyze most phase I reactions of drugs with 

Figure 2: DMET gene list. Genes included in DMET™ plus platform (231 total genes)  are: 76 phase I enzymes, 62 phase II enzymes, 

51 transporters and 41 other genes. * = translated to predicted phenotype/metabolizer status .
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close to 400 different unique alleles characterized 

to date (www.cypalleles.ki.se) [39]; over 75% of 
prescribed drugs are metabolized at least in part by 3 

subfamilies, CYP3A, CYP2D6 and CYP2C. Otherwise, 

phase II drug metabolizing enzymes typically enable 

the biotransformation of endogenous compounds and 

xenobiotics and their excretion by considerably increasing 

the hydrophilicity of the substrate or deactivate highly 

reactive species as well as inactivate pharmacologically 

active compounds. Polymorphic variants of phase II 

enzymes are responsible of a reduced metabolizing 

capacity, which account for drug toxic effects. Also 

xenobiotics and pro-carcinogens are converted by phase 

II enzymes into highly reactive intermediates with 

potential activity as chemical carcinogens and mutagens 

by covalent binding to DNA. Specific SNPs in phase I 
and II enzymes are linked to phenotypes characterized 

by a metabolic state of “ultra” (UM), “intermediate” 

(IM) and “poor” (PM) metabolizers as referenced to 

wild-type individuals identified as “extensive” (EM) 
metabolizers. The PM phenotype is associated with the 

presence of null genotypes, IM phenotype is associated 

with reduced metabolism genotypes, while UM phenotype 

relies on gene duplications [40]. Key phase II enzymes 
are mostly transferases and include N-acetyltransferases 

1 and 2 (NAT1 and NAT2), uridine disphosphate 

glucoronosyltransferase (UGTs), sulfotransferases 

(SULTs), glutathione S-transferases (GSTs), thiopurine 

S-methyltransferase (TPMT) and catechol O-methyl 

transferase (COMT). Also transporters are involved in 

the efflux and/or influx of drugs by active transport or 
facilitated diffusion and perform a critical role in ADME, 

affecting drug uptake, bioavailability, targeting, efficacy, 
toxicity and clearance. ATP-binding cassette (ABC) and 

solute-linked carrier (SLC) proteins are involved in the 

majority of drug and endogenous substrates transport. 

They act as efflux pumps and as typically influx 
transporters, respectively [41]. Figure 2 shows the list of 

231 genes analyzed by DMETTM platform. 

GENOTYPING PLATFORMS

Platforms to analyze SNPs located in various 

ADME genes for pharmacological research and clinical 

applications have been developed [42]. Most of them are 

genotyping tools for the detection of polymorphisms in 

ADME genes of interest.

They include: i) UGT1A1, developed by Third Wave 

Technologies, Inc., which is involved in the elimination 

of irinotecan, ii) CYP2C9 and VKORC1 developed by 

Nanosphere, Inc., Pharagon Dx, LLC (AutoGenomics, 

Inc. and Luminex Corporation), which mediate warfarin 

metabolism and PD. The AmpliChip® P450 platform, 

developed by Roche Diagnostics Corporation, was 

approved for clinical use by the FDA in 2005 to test 

patients for polymorphisms in the genes encoding two 

enzymes - CYP2D6 and CYP2C19 - that may impact 

on drug treatment for psychiatric illnesses [43]. The 

AmpliChip detects 23 SNP variants within these 2 

genes, but does not identify the 39 less common SNP 

variants, and has already been used in the clinic and in 

PGx epidemiology applications and genetic research [44-

46]. GE Healthcare (formerly Amersham Biosciences) 

produces the CodeLinkTM Human P450 SNP Bioarray, 

which identifies 110 SNPs in nine CYP genes (Amersham 
Biosciences Corporation, Piscataway, NJ, USA). 

Recently, in 2010, Illumina, Inc. developed a platform 

suitable to investigate PGx variations associated with 

drug metabolism combining Golden Gate genotyping 

with VeraCode technology, that use beads probe arrays 

covering >95% of the PharmaADME Core list, with 184 

biomarkers in 34 genes in a high throughput assay format, 

for many samples processing each time.

Moreover, various life science companies, including 

Clingenix, Inc., Epidauros Biotechnologie AG, Clinical 

Data, Inc. (formerly Genaissance Pharmaceuticals), 

Gentris Clinical Genetics, Inc. and LGC Ltd, have begun 

to offer genotyping services in which customers determine 

the genes of interest in a patient or population cohort and 

the company generates the SNP profiles, typically using 
direct gene sequencing or similar approaches. In addition, 

companies, including Illumina, Inc., Applied Biosystems 

and Sequenom, Inc., can custom design whole or targeted 

genome SNP platforms [42, 47] (Table 1).

DMETTM PLATFORM

The number of known drug-metabolizing enzyme 

and transporter gene variants exceeds the capacity to 

assess comprehensively multiple polymorphisms by a 

single multiplexed assay based on current technologies 

such as real time-polymerase chain reaction (RT-PCR). In 

the last decade Affymentrix Inc. (Santa Clara, California, 

USA) developed the Targeted Genotyping System, 

which combines molecular inversion probe (MIP). This 

technology is an oligonucleotide-based method that can 

be used to analyze several thousand SNPs in a single 

assay developed by Hardenbol et al [48], and extensively 

used for the International HapMap project, that offers 

several advantages for multiplex genotyping [49]. It is 

based on ‘padlock probes’, which are oligonucleotide 
probes (connected by a linkage segment) that recognize 

two complementary genomic sequences [49]. Based on 

the MIP technology, Affymetrix developed a multiplex 

within the PharmaADME consortium. The consortium 

ranked over 9000 SNPs and many complex mutations 

within these genes (i.e., triallelic markers, small in/

del mutations, gene conversion and/or whole deletion 

alleles) according to clinical research utility. Currently, 

PharmaADME genes represent 95% (45/47) of the phase 

I enzymes, 93% (74/80) of the phase II enzymes, 98% 

(51/52) of the transporters, and 52% (24/46) of ‘other 
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genes’ on the DMETTM array. The DMETTM panel was 

modified to include 37 additional genes (i.e., 231 genes 
total), mostly comprising genes that regulate intracellular 

processes that facilitate ADME (i.e., scaffolding proteins, 

nuclear receptors, serum binding proteins etc). The genes 

presented in the DMETTM platform were selected by their 

‘VIP’ status on PharmGKB. Recently, Affymetrix has 
added additional content relevant to drug ADME, and a 

tool to identify haplotypes among 779 polymorphisms 

in a core set of 61 genes identified by the PharmaADME 
consortium of high-relevance in drug metabolism. 

Moreover, the platform identifies additional haplotypes 
that were not previously observed in populations, 

explored by the HapMap project. The DMETTM platform 

has been designed to capture several markers, including 

copy-number variations, insertions/deletions, biallelic 

and triallelic SNPs, but until now its use is intended for 

research only because it doesn’t hold FDA approval for in 

vitro diagnostic devices (IVD) marked assay. 

Analytical procedure

The DMETTM assay uses 1μg of genomic DNA 
samples diluted in Tris-EDTA buffer, extracted from 

peripheral blood or saliva [50]. The protocol start with 

an initial PCR amplification step to amplify 32 loci that 
either has a pseudo gene or do not generate sufficient 
signal using the routine “Targeted Genotyping” protocol. 

These pre-amplified products are then combined with 
genomic DNA then incubated with a multiplex anneal 

cocktail PCR included in the “Targeted Human DMETTM” 

assay probe panel. The remaining steps are carried out 

according to Affymetrix protocol, then arrays are scanned 

with 4-color detection using the Affymetrix GeneChip 

Scanner. Raw signal values are background subtracted 

and normalized, and genotypes are reported using the 

Affymetrix DMET® Console software as single-sample 

genotyping by comparing each individual marker’s data 
to the specific, predefined cluster boundaries (Figure 3). 
For a given marker in a particular sample, the collection 

of summary values is reduced to only two values, one for 

each allele for simple bi-allelic variants. Genotypes are 

determined for each SNP site and reported as homozygous 

wild-type, heterozygous, homozygous variant or ‘no call’. 
The DMETTM Plus Assay Panel has been evaluated across 

a minimum of 1200 individuals from multiple populations 

including 597 DNA samples from Caucasian, African, 

and Asian populations from the International HapMap 

Consortium to assess accuracy, imprecision, and dynamic 

range. Genotyping accuracy varies across the core set 

probes. Specifically, the reproducibility of genotyping 
results for the core set probes rates of approximately 98% 

for within- and between-day runs, globally about 98%, 

with the majority of failures resulting from lack of a call, 

defined as no-call (NC) or possible rare allele (PRA). This 
imprecision of the assay is acceptable for this complex 

assay. Moreover, the use of the PRA designation is helpful 

in this regard because, despite introduce a high false-

positive rate, is useful as a screening test to be confirmed 
as a definitive genotype call by alternative methods. This 
could be a conservative approach, since all discrepancies 

with direct sequencing data are counted as errors. 

Moreover, the most frequent assay failure is the lack of a 

genotype call defined as NC/PRA, rather than a miscalled 
genotype, that is a critical point to make a distinction for 

clinics. In fact, an absence of data is less problematic than 

assignment of an incorrect genotype to a patient. 

Another weak point of genotyping done by this 

assay is that allele quantification is not possible in the 
current format: thus large-scale deletions or duplications 

like CYP2D6*5 [51] or *1XN [52] cannot be readily 

detected. Of course, homozygous deletions can be 

inferred if low signals across multiple probes for a gene 

are detected. As well as, particularize small tandem repeats 

Figure 3: DMET data analysis workflow.
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like TA repeats in UGT1A1*28 [53] is difficult with the 
current format of the assay. 

It must be taken into account that the multiplex 

nature of this assay maintains low the cost considering that 

it does not scale up by increasing the number of tested 

variants, allowing large-scale genotyping at a acceptable 

cost. Therefore, this approach may be useful to aid the 

comprehension of complex multigenic interactions that 

impact PK beyond the more simple monogenic models. 
In fact, it uses a single-microarray assay that allows for 

the comprehensive genetic analysis of genes involved in 

drug metabolism, transport, and excretion. Considering 

that a microarray-based approach permits that rare variants 

can be included in the assay with no appreciable increase 

in its complexity or cost, this assay results strongly 

powerful. The Affymetrix DMETTM platform includes an 

extensive list of genes involved in drug disposition, and 

may become an important tool for future PGx research. 

Nevertheless, certain limitations and caveats warrant 

attention. First and foremost, the DMETTM platform has 

not undergone, to our knowledge, evaluation to FDA as 

IVD, and cannot, therefore be used to inform clinical 

decisions. Thus DMETTM cannot, for example, be used 

to test patients prospectively to determine warfarin or 

irinotecan dose requirements, or for decision making 

on antiplatelet therapy. Whether Affymetrix intends to 

undergo FDA review for this device is not publicly known 

at the time of the current report. The implementation of 

this tool in the early stage of drug development may be of 

major relevance for the identification of patients at risk for 
ADRs providing a method to investigate better tailoring 

of drug regimens for individual patients. The platform 

could conceivably be applied to the study of other 

complex genetic interactions as the correlation between 

a PK/PD biomarker and the tumor phenotype. In fact, 
the understanding of the underlying relationship between 

drug exposure, biomarker and drug effect is crucial for 

the identification of clinically relevant outcome predictors 
and to assess their optimal evaluation timing. We believe 

that this tool will be critical for understanding the complex 

multigene interactions underlying drug metabolism and 

the integration with PK/PD tools can allow to analyze 
simultaneously both longitudinal biomarker and survival 

data, as in the current vision of precision medicine.

PGx analysis and interpretation: DMET® Console 

In order to extract biological relevant information 

embodied in the raw data produced using microarray, and 

stored as CEL files, it is necessary to translate CEL files 
in a format suitable to conduct statistical or data mining 

analysis. A typical workflow for analyzing microarray 
data involves four steps: i) preprocessing, that comprises 

background correction, summarization and normalization; 
ii) annotation and translation; iii) statistical/data mining 
analysis; and iv) biological interpretation. Three 

different tools: DMET® Console, apt-DMET-genotype, 

DMET Analyzer (see below) can be used to convert 

intensity value in actionable knowledge (Figure 4). 

Background correction adjusts probe intensities ensuring 

that background corrected signal is always positive. 

Summarization aims to recognize the position of different 

genes in raw images, associating different regions of pixels 

to the unique gene that generated them. Normalization 

corrects the variation of gene expression in the same array 

due to experimental bias, making results from different 

microarray experiments comparable. The summarization/

normalization of CEL files can be done only using DMET® 

Console and apt-DMET-genotype, because DMET-

Analyzer is not designed to treat directly CEL file format. 
Files produced into the summarization/normalization step 

can be annotated only using DMET® Console and apt-

DMET-genotype. Using DMET® Console, it is possible 

get tabular data, by means a step known as translation, 

where CHP file and ARR sample files are merged 
together, to translate intensity value using standardized 

nomenclature. The annotation process associates to each 

gene a set of functional information, for example the 

biological function related with the gene. Translation 

converts the genotype calls (reported in CHP files) of 
an important subset of marker, to functional allele calls 

using standardized nomenclature wherever possible. In 

terms of biological research it is very important to identify 

the small set of variation into the genes called SNP, 

comparing two experimental conditions (e.g. healthy cell 

vs cancer cell, wild type vs mutant). After the pre-process 

layer, tabular data provided by DMET® Console can be 

automatically analyzed by DMET-Analyzer. There are 

several univariate statistical methods used later to pinpoint 

mutated genes that may contribute to the development of a 

certain disease from normalized microarray data, including 

T-tests, Chi-Square, Fisher’s Test, and Bayesian models. 
DMET-Analyzer by Fisher’s exact Test extract knowledge 
hidden into the data in a format easily readable from the 

user. Data mining methodologies are very useful as well 

as statistical analysis, helping to discover interesting 

unknown relationships hidden into the data then converted 

in a understandable way to the user. Furthermore, to 

perform analysis in an efficient way, tabular data need 
further preprocessing. In the preprocess layer, DMET-

Analyzer arranges data in a format compatible for the 

statistical assay. In the annotation layer, preprocessed data 

are annotated with information provided by Affymetrix 

or using information coming from external databases 

i.e. dbSNP or Pharmacogenomics Knowledge Base 
(PharmGKB.) Finally, biological interpretation allows for 
each analyzed SNP, to obtain additional information stored 

in the Pharma-GKB [54] (Figure 4).
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Figure 4: Statistical analysis and interpretation. The picture describes necessary steps to convert intensity value in actionable 

knowledge. Each column represents the flow of information when using respectively DMET® Console, apt-DMET-genotype and DMET-

Analyzer.
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PHARMACOGENOMIC STUDIES USING 

THE DMETTM PLATFORM

Since the first DMETTM platform became available 

in the late 2007, several researchers have used the platform 

to conduct correlative PGx studies. The pioneeristic study 

was conducted by Caldwell et al. that investigated whether 

the consequences of genetic variants in addition to the 

previously identified effects of CYP2C9 and VKORC1 

may explain inter-patient variability in response to the 

anticoagulant drug warfarin (Coumadin) [55]. Warfarin 

is the oral anticoagulant, approved by the US FDA, 

commonly used in atrial fibrillation and thromboembolic 
disease. Even it has been introduced more than 50 years 

ago, the treatment can still be complicated by wide inter-

individual variations in the dose required to achieve the 

biological effect. Polymorphisms in the cytochrome 

P450 (CYP) 2C9 and in vitamin K 2,3 epoxide reductase 
complex 1 (VKORC1) genes were associated with the 
inter-individual variability in the dose-anticoagulant effect 

Figure 5: Biomarkers validation workflow.
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of warfarin [56-61]. Caldwell et al. using the DMET panel 

genotyped an initial discovery cohort of patients (n = 497) 

from the Marshfield Clinic and identified a single variant 
in the CYP4F2 gene (rs2108622) that correlated with 

warfarin dose requirements. Cohorts of patients from 2 

additional institutions were used to confirm these results 
using different genotyping methodologies. Aside from 

100% concordance rate with the DMET panel results, the 

authors evidenced again that the rs2108622 SNP correlated 

with warfarin dose requirements [55].

Thereafter, the DMETTM platform was used to 

evaluate pharmacological variation in prostate cancer 

patients randomized to phase II clinical study with 

docetaxel and thalidomide versus docetaxel alone. Both 

anticancer agents showed inter-individual pharmacological 

variation and toxicity profile [62]. Past PGx studies 
explored factors mediating docetaxel PK and thalidomide 
toxicity have no led to consistent results due to the large 

variability observed. By the use of a more comprehensive 

analysis of genetic polymorphisms in multiple drug 

enzymes and transporters, improved the understanding of 

the PK of docetaxel and thalidomide. DMET genotyping, 
identified statistically significant correlations between 
SNP variants and drug response or toxicity highlighting 

a role of non-CYP450 enzymes in the pharmacology of 

docetaxel and thalidomide [62]. By DMETTM platform, 

Uchiyama T et al. identified one SNP in CYP39A1 

gene (rs7761731) significantly associated with grade 
4 neutropenia in Japanese patients with gynecological 

cancers that may be a useful biomarker for predicting the 

risk of docetaxel-induced neutropenia [63].

Mega et al. used the DMETTM platform to explore 

the PK and PD of clopidogrel, an anti-platelet agent used 
to treat patients with coronary disease [64]. Clopidogrel 

is a prodrug that requires activation by CYP enzymes, 

and has demonstrated significant inter-individual PD 
variability in inhibiting platelet aggregation [65]. Among 

patients who had experienced myocardial infarction and 

had been treated with clopidogrel in the TRITON-TIMI 

clinical trial (ClinicalTrials.gov identifier: NCT00357968), 
the authors identified individuals carrier of CYP2C19 

allele that produces a reduced-function of the enzyme, 

who had significantly lower levels of the active metabolite 
of clopidogrel, diminished platelet inhibition, and a higher 

rate of major adverse cardiovascular events, including 

stent thrombosis [64]. In a successive study, among acute 

coronary syndrome patients treated with clopidogrel, 

Mega et al. identified that ABCB1 C3435T genotype 

was significantly associated with risk for the primary 
endpoint of cardiovascular death, myocardial infarction 

or stroke. The authors described that ABCB1 C3435T 

and CYP2C19 genotypes were significant, independent 
predictors of the primary endpoint, and that the 47% 

of the population, who were either CYP2C19 reduced-

function allele carriers, ABCB1 3435 TT homozygotes, or 

both were at significantly increased risk of cardiovascular 
death, myocardial infarction, or stroke. Moreover, in 

healthy subjects, the presence of ABCB1 C3435T TT 

homozygotes had a reduction in platelet aggregation with 

clopidogrel respect to CT/CC individuals disclosing less 

platelet inhibition and were at significantly increased risk 
of recurrent ischemic events in the setting of clopidogrel 

treatment. Considering both ABCB1 and CYP2C19 genetic 

polymorphisms, nearly half of the population are carries 

Table 1: Genotyping platform

Manufacturer Product
Genes 
investigated

Total number
of variants

Registration 
status

Technology

Roche Molecular 
Diagnostics

AmpliChip 
CYP450 Test

CYP2C19 and 
CYP2D6

33 CYP2D6 alleles 
and 3 CYP2C19 
alleles; 
CYP2D6 gene 
duplication and 
deletions

CE-IVD 
Japan-IVD 
US-IVD

GeneChip 
microarray

GE Healthcare,
Amersham 
Biosciences

CodeLink
Human P450

CYP1A1, 
CYP1A2, 
CYP3A4, 
CYP3A5, 
CYP1B1, 
CYP2D6, 
CYP2C9, 
CYP2C19, 
CYP2E1

110 SNPs and small 
deletions/insertion

Patent 
US6986992 B2

Bioarray platform,
Multiplex PCR

Affymetrix, Inc DMETTM Plus
231 ADME genes 
FDA approved 
(see Fig. 1)

1936 SNPs and 5 
CNVs

For Research 
Use Only. 
Not for use 
in diagnostic 
procedures

GeneChip
Microarray

Illumina VeraCode® ADME Core Panel
184 biomarkers in 34 
genes

For Research 
Use Only

Beads microarray
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Table 2: Pharmacogenomics studies by Affymetrix DMETTM Plus 

Drug Disease Phenotype
Sample 
size

Gene SNP(s) Reference

Warfarin
Cardiovascular 
disease

Clinical response 497 CYP4F2 rs2108622 [50]

Docetaxel
and/or 
Thalidomide
Docetaxel

Prostate cancer
Gynecological 
cancer

Clinical response
Toxicity
Neutropenia

47
42

PPAR-γ
SULT1C2
CHST3
SPG7 
CYP2D6 
NAT2 ABCC6
ATP7
CYP4B1 
SLC10A2
CYP39A1

rs2016520a, rs1883322a

rs3734254a, rs7769719a

rs6922548
rs1402467
rs4148943, rs4148947,
rs12418, rs730720
rs2292954, rs12960
rs72549353
rs1799931
rs2238472
rs2227291
rs4646487
rs2301159
rs7761731

[57]
[58]

Clopidogrel
Cardiovascular 
disease

Clinical response
Clinical outcome

162
2932

CYP2C19
ABCB1

rs4244285
rs1045642

[59]
[61]

Irinotecan
Colorectal
cancer

Gastrointestinal 
toxicity

26
ABCC5 
ABCG1 
SCLO1B1

rs562
rs425215
rs2306283

[66]

Zoledronic 
acid

Multiple 
Myeloma

Osteonecrosis of 
the jaw

19
PPARG ABP1 
CHST11 
CROT

rs1152003
rs10983, rs4725373, 
rs1049793
rs2463437, rs903247, 
rs2468110
rs2097937

[68]

Erlotinib
Advanced Non 
Small Lung 
cancer

Skin rush 34

CYP27B1 
MAT1A 
CHST11 
ADH6 
CYP4B1

rs8176345
rs9285726
rs903247, rs2468110
rs6830685
rs2297809

[84]

5-Fluorouracil Colorectal cancer  Toxicity 24
CHST1 
GSTM3

rs9787901 
rs1799735

[85]

Telmisartan Hypertension Pharmacokinetics 33
UGT1A1 
UTG1A3

rs4148323, rs8175347
rs3806596, rs45625338

[86]
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of genotype and then associated with an increased risk for 

major adverse cardiovascular events while on standard 

doses of clopidogrel [66]. These results lead FDA’s 
approval of drug label for clopidogrel that contains a 

boxed warning, stating that clopidogrel has diminished 

effectiveness among CYP2C19 poor metabolizers. It 

advises that tests are available to identify a patient’s 
CYP2C19 genotype, which may be of help for determining 

therapeutic use, and that alternative treatment strategies 

should be considered in patients identified as CYP2C19 
poor metabolizers [67]. The Clinical Pharmacogenetics 

Implementation Consortium has released anti-platelet 

therapy recommendations based on CYP2C19 genotype 

for patients affected by acute coronary syndrome and 

undergoing percutaneous coronary interventions, such 

as the placement of a stent. Given the reduced efficacy 
reported for both CYP2C19 intermediate and poor 

metabolizers, recommends using an alternative antiplatelet 

Paclitaxel
Breast cancer
Solid tumors

Peripheral 
neuropathy
Clearance

209
412
270

CYP2C8 
CYP2C8
ABCG1 
SLC22A11 
GSTZ1 
SLC28A2 
VKORC1 
PGAP3 CDA 
EPHX1 
CYP20A1 
SLC6A6 
CRIP3
GSTA4 
AKAP9 
CYP51A1 
CYP2D7P1

rs10509681 
rs10509681
rs492338
rs1783811
rs7975 
rs1060896 
rs9923231 
rs2952151 
rs1048977 
rs1051740 
rs1048013 
rs2341970 
rs2242416 
rs13197674
rs7785971 
rs7797834 
rs28360521 

[87]
[88]
[89]

Fludarabine-
Cytarabine-
Idarubicin

Acute Myeloid 
Leukemia

Clinical response
Toxicity

94

ADH1A
SULT2B1
SLC22A12
CYP2E1
SLCO1B1

rs6811453, rs1826909
rs2302948
rs11231825
rs2070673, rs2515641
rs4149056

[92]

Ara-C-
daunorobucin-
etoposide-
mitoxantrone

Acute Myeloid 
Leukemia

Overall survival 164 SLCO1B1 rs2291075 [93]

Daunorubicin
Hematological 
cancers

Clearance 107 FMO3 GSTP1
rs2266782
rs1695

[94]

Aspirin
Cerebrovascular 
disease

Small bowel 
bleeding

25
CYP2D6 
CYP4F11

rs28360521
rs1060463 

[95]

Aspirin
Cardiovascular 
disease

Peptic ulcer
Ulcer bleeding

593
SLCO1B1 
CHST2

rs4149056
rs6664

[97]

Busulfan
Hematological 
cancers

Clearance 65 GSTA5 rs4715354, rs7746993 [98]

aResults are from analyses restricted to docetaxel and thalidomide trial arm
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agent. Recently, Erlige et al. compared results obtained 

with the Nanosphere Verigene® System, a novel genetic 

test capable of analyzing 11 CYP2C19 variants within 3 

hours, to the established and validated DMET genotyping 

method for identifying extensive and reduced metabolizers 

of clopidogrel. Based on genotyping, statement from the 

Clinical Pharmacogenetics Implementation Consortium, 

patients with stable coronary artery disease on clopidogrel 

75 mg daily are defined as extensive metabolizers (*1/*1, 
*1/*17, *17/*17), reduced metabolizers (*1/*2, *1/*8, 

*2/*2, *2/*3), or of indeterminate metabolizer status 

(*2/*17). The Nanosphere Verigene® System identified 11 
CYP2C19 alleles in less than 3 hours with a high degree 

of accuracy when compared to conventional method, and 

was further validated against PK and PD phenotypes [68].
The role of UDP-glucuronosyltransferase 

(UGT)1A1 (UGT1A1*28) in determining the toxicity 

induced by irinotecan is well known [69, 70]. Recently, 

by DMET TM platform, Di Martino et al. identified 3 SNPs 
mapping in ABCG1, ABCC5 and OATP1B1/SLCO1B1 

transporter genes associated with gastrointestinal 

toxicity grade ≥3, induced by irinotecan in metastatic 
colorectal cancer in a case control study. The SNP rs562 

in ABCC5, the rs425215 in ABCG1 and the rs2306283 in 

OATP1B1/SLCO1B1 polymorphisms expand the available 

knowledge of irinogenomics [71]. Moreover, DMET 

polymorphisms have been associated with toxicity to a 

new nanopharmaceutical formulation of camptothecin, 

specifically designed for slowly release of the drug in 
tumors over an extended time [72]. Specifically, the 
authors performed genotyping of a small number of 

patients experiencing toxicity (15) and compared the 

allele frequencies with Affymetrix HapMap population 

(713). The study appears however unbalanced and 

the heterogeneous population did not allow sound 

comparisons. In a different case-control study, Di Martino 

et al. [73] identified a peroxisome proliferator-activated 
receptor gamma (PPARG) polymorphism (rs1152003) 

associated with zoledronic acid-related osteonecrosis of 

the jaw in multiple myeloma (MM) patients. This finding 
is of potential relevance in the treatment of MM-related 

bone disease. Osteolytic bone disease represents in fact 

a major hallmark of a paradigmatic evolving disease 

that represents a challenging field for novel therapeutics 
development [74-82]. In this context, bisphosphonates, 

which have deep biological effects within the bone 

microenvironment, remain the cornerstone of skeletal 

events management in this disease [83-88]. Identifying 

patients with increased susceptibility to osteonecrosis of 

the jaw might significantly impact in supporting strategies 
for this important malignancy. More recently, the same 

authors, with similar approach identified 7 SNPs in 6 
genes (CYP27B1, MAT1A1, CHST1, CYP4B1, ADH6, 

and SLC22A1) associated with the occurrence of skin 

rash in advanced non-small cell lung cancer treated 

with erlotinib [20]. In this study, the toxicity-associated 

gene set underwent to Ingenuity Pathway Analysis® 

highlighting the involvement of 1,25-dihydroxyvitamin 

D3 biosynthesis, S-adenosyl-L-methionine biosynthesis, 

and methionine degradation I (to homocysteine) canonical 

pathways in skin rush development. Although exploratory, 

this study suggests new mechanism mediated by vitamin 

D3 and inflammation at skin level, which appears highly 
relevant to shed new light in the erlotinib-related skin 

toxicity. 

5-FU is commonly used in the treatment of solid 

tumors. However, 5-FU activity and toxicity can be 

influenced by dihydropyrimidine dehydrogenase (DPYD) 
and thymidylate synthase (TYMS) gene polymorphisms. 

In colorectal cancer samples, Rumiato et al. found 

polymorphisms with the strongest association with 5-FU-

induced gastrointestinal toxicity, such as the rs9787901 in 

CHST1 and rs1799735 in GSTM3 genes that have not been 

previously related to 5-FU PK and PD [89].
More recently, different studies using an updated 

DMETTM platform led to the identification of new 
polymorphisms in various ADME genes, previously not 

investigated. For example, the contribution of SLCO1B3 

and UGT1A polymorphisms to the PK of telmisartan, 
commonly used to treat hypertension, was investigated 

at microdose (MD,100 μg) and at therapeutic dose (TD, 
80 mg). Authors observed strong LD between UGT1A1*6 

and UGT1A3*4a, and between UGT1A1*28 and 

UGT1A3*2a in terms of effect on the PK of telmisartan, 
while no obvious effect was observed for SLCO1B3 

polymorphisms. Specifically, following MD or TD 
injection, the mean area under the curve 0-24 (±standard 

deviation) of telmisartan was significantly higher in 
individuals with the UGT1A3*2a and *4a variants 

compared to those in individuals with UGT1A3*1/*1, and 

quantitatively correlated with population PK analysis. 
These findings led the authors to the conclusion that 

Table 3: Comparison of DMETTM and GWAS Data

DMETTM GWAS

Study design
Studies are usually tailored to 
the study of small populations.

Studies aim to discover hidden 
associations among allelic variants and 
phenotypic effect in a large population.

Dimension of data Around Kilo-bytes Up to 1Giga-byte

Data analysis
Data analysis mainly relies on 
the use of Fisher’s exact Test 
or association rules.

Data analysis is a broader field that 
involves both statistical and data-mining 
approaches.
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UGT1A3 haplotypes significantly influence PK of 
telmisartan, results that are potentially important for 

pharmacological and toxicological evaluation [90]..

Paclitaxel is a cytotoxic drug frequently used 

in the treatment of a variety of cancers associated with 

different severe adverse events. The development of 

paclitaxel-induced peripheral neuropathy has been 

described from several groups to be primarily influenced 
by drug exposure and patient polymorphisms in CYP2C8 

gene [91]. Specifically the CYP2C8*3 polymorphism 

has been associated to peripheral neuropathy risk due 

to decreased metabolism and elimination, which leads 

to increased toxicity and efficacy mainly in African-
Americans. By DMET genotyping analysis, Hertz et al. 

described breast cancer patients with higher paclitaxel-

related neuropathy risk in the CYP2C8 low-metabolizer 

group, that carried the CYP2C8*2, *3, or *4 variant. 

However, the influences of the *2 and *4 SNPs were not 

independently significant in this study. In addition one 
intronic SNP, the rs492338 in ABCG1, showed strong 

association with neuropathy in the Caucasian cohort (p 

= 0.0008), but not in the non-Caucasian validation group 

(p = 0.54). Even if the PGx heterogeneity is present in 

the cohort of breast cancer patients, it does not directly 

influence the risk of neuropathy beyond the contribution 
of CYP2C8*3 [92]. Moreover, based on the DMETTM 

platform, by the application of the nonlinear mixed-

effect modeling software ( NONMEM ,version 7, Icon 

Development Solutions) for placlitaxel PK evaluation, it 
has been developed a genetic prediction model including 

14 SNPs with high sensitivity to identify patients with 

low paclitaxel clearance but which is not able to explain 

differences in paclitaxel clearance [93]. A similar 10-

SNP model was not able to reach statistical significance 
in order to predict paclitaxel-induced neutropenia 

[94]. Therapeutic activity of standard platinum-based 

neoadjuvant therapy in esophageal cancer patients 

is variable and unpredictable. At present, no reliable 

response predictors could discriminate between responder 

and non-responder patients. By DMETTM array platform 

Rumiato et al, identified 16 SNPs significantly associated 
with good or poor response while no association was 

found for 4 variants mapping in DNA repair machinery. 

The predictive power of ABCC2, ABCC3, CYP2A6, 

PPARG, and SLC7A8 gene variants was demonstrated 

and a predictive model for sentitivity to platinum-based 

neo-adjuvant chemotherapy was built combining clinical 

variables and the genetic signature [95]. The corrrelation 

of genetic variation analyzed by DMETTM Plus platform 

and response to treatment in acute myeloid leukemia 

(AML) has been investigated in CD33-positive AML 

patients enrolled in a phase III multicenter clinical 

trial combining Gemtuzumab-Ozogamicin (GO) with 

Fludarabine-Cytarabine-Idarubicin (FLAI) regimen, 

[96]. In this study authors showed significant differences 
in allele frequencies of two ADH1A variants between 

patients with therapeutic benefit and not responders. Two 
substitutions on CYP2E1 and one on SLCO1B1 were 

found to differentially influence hepatic toxicity, and two 
nucleotide changes on SULTB1 and SLC22A12 genes 

Figure 6: Genotyping platform for personalized therapy: genetic variants in pharmacodynamics and pharmacokinetics 

related genes determine inter-individual variability and therapeutical outcome. Patients predicted as non responder should 

undergo treatment with alternative drugs; patients predicted at risk of drug toxicity should undergo dose reduction.
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correlated with GO treatment benefit. All these variants 
are associated with differential response and toxicity in 

AML patients treated with a combination of GO-FLAI 

regimen [96]. A genetic variant in SLCO1B1 (rs2291075; 
c.597C>T), encoding the transporter OATP1B1, has been 

recently associated with event free and overall survival 

in children with de novo AML [97]. The results of this 

study lead the authors to argue that the lack of SLCO1B1 

expression in leukemic blasts might be due to inherited 

rather than somatic effect. In addition, the authors 

demonstrated by in vitro functional studies that 4 AML-

directed drugs (cytarabine, daunorubicin, etoposide, and 

mitoxantrone) are substrates for OATP1B1, underlining 

its important role in the PK of multiple anti-AML drugs 
and suggesting that inherited variability in host transporter 

function influences the efficacy of therapy [97].
Thompson et al. investigated the impact of obesity, 

body composition, and genetic polymorphisms on the 

PK of daunorubicin in children with cancer. Performing 
PGx profiling by DMETTM platform the authors identified 
association of FMO3 and GSTP1 haplotypes with 

daunorubicin PK, suggesting a potential role in the 
efficacy and toxicity of the drug [98].

The mechanisms of small intestine damage induced 

by aspirin is not well understood but is increasingly 

recognized as risk factor for bleeding. Shiotani et al by 

DMET analysis identified an association of GG genotype 
in CYP2D6 gene (rs28360521) with small bowel bleeding 

and SNPs in CYP4F11 and CYP2D6 were proposed as risk 

markers for aspirin toxicity [99]. Different studies have 

previously shown the association of the SLCO1B1 521TT 

genotype and the SLCO1B1*1b haplotype with the risk 

of aspirin induced peptic ulcer [100]. More recently, they 

performed PGx profile by DMETTM platform in a series 

of patients taking 100 mg of aspirin. They found that the 

frequencies of the SLCO1B1*1b haplotype and CHST2 

2082 T allele were higher in peptic ulcer patients [101].

DMETTM platform was also used in an exploratory 

PGx approach to investigate the inter-individual PK 
variability in busulfan, a drug used in conditioning 

regimens before stem cell transplantation. In this study 

SNPs in GSTA5 gene (rs4715354 and rs7746993) 

were significantly associated with busulfan clearance 
confirming a role of the glutathione-S-transferases and 
its relation to outcome in adult hematopoietic stem cell 

recipients [102].

All together, these studies indicate DMETTM 

microarray platform as highly efficient approach 
to discover new genetic determinants influencing 
chemotherapy-induced toxicity as well as to identify 

different metabolizing phenotypes. Moreover, the high 

concordance of DMET genotyping results with orthogonal 

technologies like real-time PCR and direct sequencing is 

of major relevance. These findings indicate that DMETTM 

platform is an excellent tool to incorporate PGx tests into 

prospective clinical research. We summarize the results 

obtained by DMETTM platform in the Table 2. 

DMETTM VERSUS GWAS

In a PGx study design, sample size is crucial 

in conditioning strength and statistical validation of 

biomarker discovery. As previously discussed, while 

GWAS has been the cornerstone of gene variant 

identification, several pitfalls have been identified in the 
last years if GWAS might be used as the unique approach 

for gene association PGx studies. 

It has to be underlined that GWAS studies are 

generally aimed to the discovery of hidden associations 

among allelic variants and phenotypic effect in a large 

population, while DMET studies are usually tailored 

to smaller populations. GWAS studies allow the 

identification of a haplotype by a tagSNP but do not allow 
to fully assess the contributions of a gene relevant to drugs 

due to a non-uniform coverage of all the chromosomes 

or chromosomal regions. DMETTM platform allows the 

haplotype association and in addition, is able to identify 

the single SNP diplotype validated for its involvement 

in drug metabolism and rarer variations increasing the 

power to identify association in PGx studies [103]. A 

further consideration regards the quality of DMET data 

and how they are reliable. As noted by Fernandez et al. 

[104], DMET genotypes are accurate and results are 

high reliable. Conversely, due to the high dimensionality 

of genome-wide arrays, GWAS studies have difficult 
application in the clinical context, while tailored arrays 

for PGx purposes, such as DMETTM, may achieve better 

results in clinical context as reported by Gamazon et al 

[103].

Therefore, about the different goals and data 

analysis approaches by DMETTM and GWAS, some points 

must be made clear: (i) the specific aim of the analysis, 
(ii) the data dimensionality, and (iii) the statistical (or 

data mining) models. The second point is preponderant, 

from a computer science point of view, since it has direct 

relations with the choice of the analytical model for the 

study aim. For the first point, the goal of study design 
should be considered and consequently the sample size 

suitable: GWAS studies investigate associations among 

genetic variants and phenotypes on broad aspects, while 

DMET studies are tailored to the investigation of PGx. 

About the data dimensionality, it should be noted that 

DMET experiments consider 1936 allelic variants while a 

typical GWAS study may consider up to 906,600 variants 

(e.g. in Affymetrix SNP 6.0 array). Consequently, the 

analysis of GWAS data poses relevant challenges of data 

dimension. A single file containing data of a SNP 6.0 array 
has a typical dimension of some Giga Bytes, while a file 
containing DMET data has a size of some Kilo Bytes. This 
feature requires the introduction of ad hoc solutions (e.g. 

high performance data management) for the analysis of 

GWAS data. Considering the statistical models, it should 
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be noted that the analysis of GWAS data is a broader field 
that involves both statistical and data-mining approaches 

[104], while DMET data analysis mainly relies on the use 

of Fisher’s Test or association rules [105, 106]. We here 
summarize some main approaches (Table 3) and readers 

may refer to Fernandez et al. for a broader coverage of 

this relevant topic [104]. Association studies made by 

GWAS are usually performed using logistic regression 

for dichotomous studies or Fisher’s exact tests for simpler 
studies. For continuous traits, linear regression has been 

used for GWAS. Data mining has also been used to 

perform discriminant analysis among cases and controls 

using decision trees. Finally, statistical models of analysis 

present some common point and differ for dimension and 

aim of the analysis. It is important to note that for a GWAS 

study it is mandatory to evaluate the statistical power of 

the study before performing the experiments. In fact, the 

high number of variables may cause the poor statistical 

significance of the found associations [107]. There exist 
some statistical tools that evaluate the power of the studies 

and are able to predict the needed number of patients (or 

samples) to be enrolled in a study. The minimum number 

of samples is, in general, very high, limiting the use of 

GWAS in clinical context or in PGx context, since often 

meta analysis should be performed in order to have a 

significant number of samples.

BIOMARKER VALIDATION PROCESS

In a living organism, a biomarker is a characteristic 

hallmark precisely measured and objectively validated 

that describes a normal or abnormal biological state, 

pathogenic processes or predict pharmacologic responses 

to a therapeutic treatment [108]. The process for 

biomarker validation, after the discovery in basic studies 

implies multiple processes including the validation in an 

independent clinically relevant cohort of patients.

In the discovery studies, a set of patients is enrolled 

to identify a biomarker according to the study design and 

the primary endpoint (training set). Biomarker validation 

is usually carried out by testing the same set of samples by 

both the assay used in the discovery study and the clinical 

deployment platform, in order to assess the robustness 

and reproducibility of the measurements. According to 

study design, for determining the reliability and quality 

of biomarkers and in the aim to reduce the sources of bias 

the guidelines to be followed are REMARK for prognostic 
studies [109], STROBE for observational studies [110] 

and STARD for diagnostic studies [111]. The independent 

patient validation cohort enrollment is a crucial step to 

demonstrate that the biomarker are generalizable outside 

the learning cohort. Following validation the next step 

is candidate biomarker qualification achieved by the 
development and optimization of an assay platform for 

its measurement including sensitivity, specificity and 

reproducibility. This step is subjected to two types of 

validation: analytical and clinical validation. Analytical 

validity of an assay is the ability to detect accurately and 

reliably the selected biomarker in the laboratory and in 

samples representative of the clinical population under 

investigation while the clinical validation is the correlation 

of the candidate biomarker to a clinical endpoint [112]. 

The analytical validation is performed by testing the assay 

used in the initial discovery and the clinical deployment 

platform on the same set of samples to verify robustness 

and reproducibility of the measurements. According 

to FDA in this phase are identified as ‘probable’ valid 
biomarker process that don’t have the necessary scientific 
control, and ‘known’ valid biomarker process that 
achieved widespread agreement [113]. The final step will 
be the clinical implementation that must be compliant with 

different regulatory processes in the European Community 

(CE) and United States (US) and proceed from regulatory 

approval to incorporation in clinical practice guidelines 

[112] as FDA-cleared or CE-IVD marked clinical 

diagnostic tests. Commonly to other predictive biomarker 

assays their validation is intended for a specific use 
(specific tissue type, specific patient population, and 
specific collection method).

FUTURE APPLICATIONS

Genetically determined variations in ADME 

genes can affect inter-individual heterogeneity in 

drug response. The availability in clinical practice of 

predictive biomarkers for response to commonly used 

drugs could help physicians in daily practice and improve 

patient care with relevant benefits to health systems. At 
present, the chance to empower clinical practice by the 

application of PGx findings is not immediately feasible 
in the real world practice, and strong efforts are still 

required to translate scientific discoveries into therapeutic 
options. So far, several SNPs are potential predictive 

PK/PD biomarkers. Some of them are already included 
in the drug sheet as for the UGT1A1*28 in the case of 

irinotecan. In our vision, this innovative approach should 

be included in personalized medicine algorithm for cancer 

management. A similar approach in CRC might include 

mutation analysis of NRAS, KRAS, BRAF and immune 

microenvironment typing, which might allow treatment 

selection on the basis of an integrated view [114, 115]. 

In our opinion, the future goal for personalized cancer 

therapy will be in fact the knowledge of patient’s specific 
genetic background to pre-select patients not fit for a given 
treatment, at risk of severe and life-threatening toxicities. 

In this scenario, DMETTM platform may allow selection 

of candidate biomarkers to translate, after validation, on 

custom platform for different diseases requiring specific 
treatments in order to set up the companion diagnostic for 

clinical practice and to increase the safety and the efficacy 
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of the drug (Figure 5). Until now, clinically predictive 

biomarkers are included only in the last phases of drug 

validation process: the hope is that diagnostic tools and 

drug development might integrate their paths for a co-

development to allow an improvement of their clinical 

utility in terms of patients health outcomes. In this way, 

it will be possible to withheld treatment of patients 

genetically at risk for ADRs. The routine application 

of DMET driven genotyping should be included in 

prospective clinical trials (Figure 6). The identification of 
novel molecular targeted compounds, should include PK/
PD prevision by DMET analysis, in order to produce a 

development path in the era of precision medicine. In this 

view, algorithms will be required to integrate molecular 

data with drug mechanisms and/or disease knowledge 

[116, 117].

An additional emerging point is the impact of 

environmental factors such as lifestyle, diet and co-

medications on drugs PK/PD, and the profiling of CYP450 
enzymes involved in metabolic activation of several pro-

carcinogens [118]. PGx investigations on genome-disease, 

genome-drug interactions and drug disease interactions 

will allow to evaluate their potential role as biomarkers 

related to cancer risk and susceptibility in clinical studies 

designed to find novel ways to prevent cancer. Analysis 
of DMET data would allow the study of the molecular 

mechanisms underlying interaction between polymorphic 

variants in ADME genes and xenobiotics metabolism, 

improving PGx information on cancer susceptibility. 

The identification of the disease molecular basis and the 
understanding that germline DNA mutations can influence 
drugs response [119-121] and disease outcome have 

given a great impulse to PGx studies, and DMETTM PGx 

approach has the potential to improve the identification 
phase of new biomarkers for personalized medicine. The 

integration of DMET-driven biomarkers with the novel 

genetic information provided by high-throughput “omics” 

technologies might represent an innovative approach 

to open new scenarios towards precision medicine in 

oncology and for the design of new clinical investigations.
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