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ABSTRACT There are some problems in the photovoltaic microgrid system due to the solar irradiance-

change environment, such as power fluctuation, which leads to larger power imbalance and affects the

stable operation of the microgrid. Aiming at the problems of power mismatch loss under partial shading

in photovoltaic microgrid systems, this paper proposed a distributed maximum power point tracking

(DMPPT) approach based on an improved sparrow search algorithm (ISSA). First, used the center of gravity

reverse learning mechanism to initialize the population, so that the population has a better spatial solution

distribution; Secondly, the learning coefficient was introduced in the location update part of the discoverer

to improve the global search ability of the algorithm; Simultaneously used the mutation operator to improve

the position update of the joiner and avoid the algorithm falling into the local extreme value. The results

of the model in Matlab showed that the ISSA can track the maximum power point(MPP) more accurately

and quickly than the perturbation observation method (P&O) and the particle swarm optimization (PSO)

algorithm, and had good steady-state performance.

INDEX TERMS Distributed maximum power point tracking, photovoltaic microgrid, sparrow search

algorithm, spatial solution distribution, steady-state.

I. INTRODUCTION

Some research results have beenmade for the control strategy

of photovoltaic microgrid. In the literature [1], a distributed

digital controller architecture was developed for controlling

the duty ratio of each DPP dc–dc converter in real time. The

merits of the proposed algorithm were analyzed from the

aspects of communication protocol, control method, tracking

efficiency and tracking response time under varying operating

conditions. Literature [2] proposed an enhanced maximum

power point tracking (MPPT) algorithm, in the operating

range near the MPP, a small fixed step size was used to mini-

mize the oscillations at the MPP. In contrast, in the operating

range far from the MPP, a variable step size proportional

to the slope of the power-voltage curve of PV module was

used to achieve fast tracking speed under dynamic weather
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conditions. Literature [3] proposed a maximum power range

estimation method based on the DMPPT technique, which

can provide guidance for designing parameters. In the liter-

ature [4], a DMPPT method based on the forward converter

was proposed for small power module level and sub-module

level MPPT applications. The approach achieved a better

tracking effect. Literature [5] proposed an advanced search-

ing algorithm (TSPSOEM) for the DMPPT. This applied the

basic PSO procedure and incorporated the grouping concept

from shuffled frog leaping algorithm (SFLA). The algo-

rithm demonstrated superior results obtained when compared

with other conventional methods. This paper proposed a

DMMPT control method based on an ISSA. First, the cen-

troid opposition-based learning mechanism was introduced

to make the population have a better spatial distribution solu-

tion. Second, the learning coefficient and mutation operator

were introduced in the location update part to improve the

search range and accuracy, and made the photovoltaic power
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FIGURE 1. P-U characteristic curve under partial shading of photovoltaic
array of the photovoltaic microgrid system.

FIGURE 2. The structure of the photovoltaic DC microgrid system.

station work at the MPP. The simulation showed that the pro-

posed algorithm can track the global MPP quickly, accurately

and reliably under different environmental conditions.

II. THE OUTPUT CHARACTERISTICS OF PHOTOVOLTAIC

POWER SUPPLY UNDER PARTIAL SHADOW AND THE

STRUCTURE OF MICROGRID

Due to the influence of the weather, the photovoltaic array in

the photovoltaic power station will produce partial shading,

which causes the P-U output characteristic of the photovoltaic

array to be non-linear and produce multiple peaks [6], [7].

For example, sets the short-circuit current of the photovoltaic

array Isc = 9.2A, open circuit voltage Uoc = 43.7V, maxi-

mumworking voltageUm = 35V,maximumworking current

Im = 8.95A, under the condition that the light intensity is

1000W/m2, 800W/ m2 and 300W/ m2, the P-U characteristic

curve of the photovoltaic array in the photovoltaic power

station is shown in Fig. 1.

In order to optimize the power supply of photovoltaic

microgrid composed of more partially shaded photovoltaic

FIGURE 3. DMPPT control system in each photovoltaic power module.

power modules, a control strategy with global maximum

power tracking is required [8], [9]. Since photovoltaic cells

initially generate direct current, generally multiple photo-

voltaic power sources form a direct current photovoltaic

microgrid [10]. The global maximum power tracking control

strategy of DC photovoltaic microgrid is generally imple-

mented based on the DC-DC converter of each photovoltaic

power module [11]; Then configure the energy storage device

to adjust the power supply when the microgrid operates inde-

pendently, and connect to the main grid through the grid-

connected inverter on the PCC side [12], [13]. The structure

of the photovoltaic DC microgrid system is shown in Fig. 2.

III. PHOTOVOLTAIC POWER MODULE HARDWARE

COMPOSITION AND OUTPUT CONTROL

The peak output of the photovoltaic power supply changes

with the change of light and temperature in the external envi-

ronment. The DC-DC converter that implements the maxi-

mum power tracking uses a Boost circuit [14], By adjusting

and controlling its duty cycle to change the equivalent output

impedance, the photovoltaic power supply can work at the

MPP [15]–[17]. The Boost circuit structure of DMPPT in

photovoltaic DC microgrid is shown in Fig. 3.

In the figure, Vpv is the output voltage of the photovoltaic

cell, Ipv is the output current of the photovoltaic cell, IL is the

current flowing through the inductor, Cdc is the equivalent

capacitance of the DC bus, and Udc is the voltage of the DC

bus.

IV. PHOTOVOLTAIC POWER OUTPUT CONTROL BASED

ON THE SPARROW SEARCH ALGORITHM

The sparrow search algorithm (SSA) obtains the optimal

solution by imitating the specific behavior of the sparrow

[18]. First, establish the discoverer-joiner sparrow population

model, and randomly select some sparrows as guards. The

discoverer is responsible for providing foraging directions

and areas for the sparrow population. Joiners will follow the

discoverer for food, monitor the discoverer and snatch food

from the discoverer. When the vigilant realizes the danger,

the sparrow population will immediately make anti-predation

behavior. Finally, through multiple iterations of the locations

of discoverers and joiners, the most adaptive location for the

entire population is found.

Introduce the SSA into the DMPPT control strategy, con-

sider the position of the discoverer based on the duty cycle
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of the DC/DC converter, the duty cycle is used to control the

output voltage. The output power P = UI in the photovoltaic

array is the objective function, and the foraging amount found

by the discoverer is regarded as the output power.

The sparrow population is in the space of N × D, N is the

total number of sparrows,D is the spatial dimension, Then the

position of the i-th sparrow in space is Xi = (xi1, xi2, · · ·, xid ),

i ∈ [1,N ], d ∈ [1,D], xid represents the position of the i-th

sparrow in the d-dimensional space.

Discoverer location update formula:

x t+1
id =







x tid · exp

(

−i

α · T

)

, R2 < ST

x tid + Q · L, R2 ≥ ST

(1)

Among them, t represents the current number of iterations; T

is the maximum number of iterations; α is a uniform random

number between (0, 1]; Q is a random number with normal

distribution; L is a matrix whose elements are all 1, and the

size is 1 × d ; R2 ∈ [0, 1] Represents the warning value;

ST ∈ [0.5, 1] represents the safety value.

When R2 < ST , it means that the population is not in

danger and the discoverer continues to search; When R2 ≥

ST , it means that the vigilant detected the predator and imme-

diately issued an alarm to other sparrows. The population

immediately made anti-predation behavior and flew to a safe

area for food.

Joiner location update formula:

x t+1
id

=















Q · exp

(

x tworst d − x tid

i2

)

, i>
N

2

x t+1
best d + 1

D

D
∑

d=1

(rand (−1, 1) ·

∣

∣

∣
x tid − x t+1

best d

∣

∣

∣
), i≤

N

2

(2)

Among them, x tworst d represents the global worst position at

the t-th iteration; x t+1
best d represents the global best position at

the t+1th iteration.

When i > N
2
, it means that the i-th joiner has not obtained

food and needs to fly to other places for food. When i ≤ N
2
,

it means that the i-th joiner is close to the global optimal

position and randomly foraging around.

The update formula of the vigilant position:

x t+1
id =







x tworst d + β
(

x tid − x tworst d
)

, fi 6= fg

x tid + K

(

x tid − x tworst d
|fi − fw| + e

)

, fi = fg
(3)

Among them, β represents the step length control parameter,

which is a random number subject to a normal distribution

with a mean value of 0 and a variance of 1; K represents the

moving direction of the sparrow, and the value is a random

number in the interval [−1, 1]; e is a constant with a very

small value; fi represents the fitness of the i-th sparrow; fg
represents the optimal fitness of the current sparrow popu-

lation; fw represents the worst fitness of the current sparrow

population.

When fi 6= fg, it means that the i-th sparrow is at the edge

of the population and is easily attacked by predators; when

fi = fg, it means that the i-th sparrow is in the center of the

population, and because it is aware of the threat, it needs to

be close to other sparrows to reduce the catch risk.

V. DMPPT OPTIMIZATION CONTROL BASED ON

IMPROVED SPARROW SEARCH ALGORITHM

A. IMPLEMENTATION OF POPULATION INITIALIZATION

BASED ON CENTROID OPPOSITION-BASED LEARNING

The standard SSA uses random initialization to generate the

initial sparrow population. For the intelligent algorithm of

population iteration, the quality of the initial population has

a certain impact on the final convergence accuracy. In this

paper, centroid opposition-based learning (COBL) is used to

generate the initial population of the SSA, which ensures

the uniformity and diversity of the initial population, and

improves the fitness of the initial population.

Define 1 Center of gravity. Let (X1, · · ·Xn) be n points with

unit mass in the D-dimensional space, the expression of the

overall center of gravity is:

M =
X1 + · · · + Xn

n
(4)

Then:

Mj =

D
∑

j=1

xi,j

n
, i = 1, 2, · · ·, n (5)

Define 2 reversal point of center of gravity. If the center of

gravity of a discrete uniform whole is M , the opposite point

of Xi at a certain point in the whole is defined as:

X̄i = 2 ×M − Xi, i = 1, 2, · · ·, n (6)

The reverse point is in a search space with a dynamic

boundary, denoted as xi,j ∈
[

aj, bj
]

. The change of the

dynamic boundary puts the reversal point in a shrinking space

that is constantly changing. The expression of the dynamic

boundary is:

aj = min
(

xi,j
)

, bj = max
(

xi,j
)

(7)

If the reverse point exceeds the range of the dynamic bound-

ary, the reverse point is recalculated, and its expression is:

x̄i,j =

{

aj + rand (0, 1) ×
(

Mj − aj
)

, if x̄i,j < aj

Mj + rand (0, 1) ×
(

bj −Mj

)

, if x̄i,j > bj
(8)

The steps of implementing population initialization based on

centroid opposition learning are as follows:

Step 1: Randomly generate the D-dimensional vector Xi =

(xi1, xi2, · · ·, xid ) of the numerical component in (0, 1),among

them, i ∈ [1,N ], d ∈ [1,D], according to the above five for-

mulas, 2N vectors are generated for population initialization.

Step 2: Map the j-th component to interval
[

minj,maxj
]

according to zij = minj +xij ×
(

maxj −minj
)

, among them,

i ∈ [1,N ] , j ∈ [1,D].
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Step 3: Evaluate the fitness of each sparrow, and select the

position of the sparrow with higher fitness as the position of

the initial population.

B. POSITION UPDATE BASED ON LEARNING COEFFICIENT

AND MUTATION OPERATOR

Aiming at the problem that the traditional SSA is easy to fall

into the local extremum, this paper uses learning coefficients

and mutation operators to improve the search ability of the

SSA.

The discoverer has a strong foraging ability. When the

discoverer falls into a local extreme, it will cause the entire

algorithm to fall into a local optimal solution. This paper

introduces learning coefficients into the discoverer’s location

update formula to improve the discoverer’s global search

ability. When the joiner is i > N
2
, it shows that these joiners

have weak foraging ability and easily fall into local extremes.

In this paper, mutation operator is introduced into the position

update formula of joiners to improve the ability of some

joiners to jump out of local extremes.

The formula for updating the location of the discoverer

after improvement:

x t+1
id =







v (t) x tid · exp

(

−i

α · T

)

, R2 < ST

v (t) x tid + Q · L, R2 ≥ ST

(9)

Among them, v (t) is the learning coefficient of the discov-

erer.

The expression of v (t) is:

v (t) = vmin + (vmax − vmin) × sin

(

t

T
π

)

(10)

Among them, vmax and vmin are the maximum and minimum

learning coefficients respectively.

The formula for updating the location of the joiner after

improvement:

Among them, δ is the degree of control of variation;

Cauchy (t) is a random variable subject to Cauchy distribu-

tion.

C. ALGORITHM CONTROL PROCESS

The specific steps are as follows:

Step 1: Initialize the sparrow population.

Step 2: Optimal population based on centroid opposition

learning.

Step 3: The generation of discoverers and joiners. Evaluate

the fitness of all sparrows to their current positions. Choose

pNum sparrows with the highest location adaptability as dis-

coverers, and other sparrows as joiners.

Step 4: Update the location of the discoverer according to

formula (9).

Step 5: Update the position of the joiner according to

formula (11), as shown at the bottom of the next page.

Step 5: Update the position of the vigilant according to

formula (3).

FIGURE 4. DMPPT control flow based on ISSA algorithm.

Step 6: Determining whether the termination condition

is satisfied. If the current optimal value is better than the

optimal value of the previous iteration, continue to update the

location, otherwise iterate until the conditions are met.

Step 7: Output the optimal solution.

VI. SIMULATION AND ANALYSIS

In order to verify the reliability of the method proposed in

this article, this paper builds a photovoltaic microgrid model

based on the Matlab simulation platform, uses the boost

circuit model shown in Figure 3, inductance L = 1µH,

capacitance C = 100µF, and sets the light intensity of

the photovoltaic module as shown in Figure 1. This article

uses the P&O in the traditional DMPPT control, the general

PSO algorithm and the ISSA algorithm shown in Fig. 4 of

this article to perform maximum power tracking. The total

simulation time is 3s.

It can be seen from Fig. 5 that when the photovoltaic

array produces local shadows, the traditional P&O cannot
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FIGURE 5. Output power curve of p&o.

FIGURE 6. The output power curve of the PSO and ISSA algorithms when
the illumination is constant.

accurately track the global MPP and falls into the local MPP,

and there is a large power fluctuation after reaching the steady

state.

It can be seen from Fig. 6 that in the case of partial

shadows, the DMPPT control based on the PSO algorithm

tracks the global MPP after 0.28s. The tracking speed is slow,

FIGURE 7. The output power curve of the PSO algorithm when the
illumination changes.

the tracking process is unstable, and there are large power

fluctuations in the steady state. The DMPPT control based

on the ISSA algorithm proposed in this article tracks to the

global MPP after 0.21s, has a higher tracking speed, and the

tracking process is more stable, and the power fluctuation is

smaller in the steady state.

This paper simulates the photovoltaic microgrid under

varying light intensity set the initial light intensity of the

photovoltaic module as shown in Fig 1. Change the light

intensity to 1000W/m2, 700W/m2 and 500 W/m2 at 1.5s,

the total simulation time is 3s.

It can be seen fromFig. 7 that in the case of partial shadows,

the DMPPT control based on the PSO algorithm restarts

slower than ISSA when the illumination changes, and the

global MPP is tracked after 0.51s. The DMPPT control based

on the ISSA algorithm proposed in this article quickly traced

the global MPP after 0.23s.

In summary, the DMPPT control method based on the

ISSA algorithm has faster tracking speed and higher accuracy.

It can respond and restart the DMPPT control quickly and

timely after the illumination changes, track the global MPP

quickly, and reduce the mismatch loss of the photovoltaic

microgrid.

VII. CONCLUSION

Aiming at the problem of system mismatch caused by power

loss in the photovoltaic microgrid under the change of

x t+1
id =















Q · exp

(

x tworst d − x tid

i2

)

+ δ × Cauchy (t) , i >
N

2

x t+1
best d +

1

D

D
∑

d=1

(rand (−1, 1) ·

∣

∣

∣
x tid − x t+1

best d

∣

∣

∣
), i ≤

N

2

(11)
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external environment, this paper introduced centroid oppo-

sition learning, learning coefficient and mutation operator

into the SSA, which increased the diversity of the population

and avoids falling into local extreme values. The Matlab

simulation showed that the ISSA algorithm proposed in this

article has better tracking effect than the traditional P&O

and general PSO algorithm. In the process of external light

changes, it has the characteristics of fast speed, high accuracy,

and stable reliability, which effectively solves the problem of

traditional DMPPT control that is easy to fall into local MPP

and cause power loss in photovoltaic microgrids.
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