
 International Journal of 

Molecular Sciences

Review

DMSO Reductase Family: Phylogenetics and
Applications of Extremophiles

Jose María Miralles-Robledillo , Javier Torregrosa-Crespo , Rosa María Martínez-Espinosa

and Carmen Pire *

Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias,
Universidad de Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, Alicante, Spain
* Correspondence: carmen.pire@ua.es

Received: 13 June 2019; Accepted: 5 July 2019; Published: 8 July 2019
����������
�������

Abstract: Dimethyl sulfoxide reductases (DMSO) are molybdoenzymes widespread in all domains of
life. They catalyse not only redox reactions, but also hydroxylation/hydration and oxygen transfer
processes. Although literature on DMSO is abundant, the biological significance of these enzymes
in anaerobic respiration and the molecular mechanisms beyond the expression of genes coding for
them are still scarce. In this review, a deep revision of the literature reported on DMSO as well as the
use of bioinformatics tools and free software has been developed in order to highlight the relevance
of DMSO reductases on anaerobic processes connected to different biogeochemical cycles. Special
emphasis has been addressed to DMSO from extremophilic organisms and their role in nitrogen
cycle. Besides, an updated overview of phylogeny of DMSOs as well as potential applications of
some DMSO reductases on bioremediation approaches are also described.

Keywords: dimethyl sulfoxide reductases; MoCo cofactor; redox reactions; biogeochemical cycles;
N-cycle; phylogeny; nitrate reductase; perchlorate reductase

1. Introduction

Molybdenum (Mo) is a transition metal that plays an essential role in metabolism in the
three domains of life. It is a trace element; consequently, living beings require it in small doses.
The biologically available form of Mo is the oxyanion molybdate (MoO2

−4) from which organisms
take up Mo along their daily life [1].

Mo can be found as a cofactor at the active sites of enzymes in many organisms [2]. They are called
molybdoenzymes and are involved in redox reactions of the global carbon, nitrogen, and sulfur cycles.
Molybdoenzymes can show two different types of molybdenum cofactors: The iron-molybdenum
cofactor (FeMoCo), which has only been identified in a bacterial nitrogenase, and the pterin-based
cofactors (MoCo), which are widespread in all domains of life (Figure 1) [2–4]. This last cofactor is
the one of interest in this review due to its relationship with dimethyl sulfoxide reductases (DMSO
reductases). Another different cofactor with a molybdenum/copper heterometallic cluster has been
identified in a protein called “orange protein” from Desulfovibrio gigas, but its function is still unknown
at the time of writing this work [5,6]. Therefore, information about it and the hypothetical family it
belongs to has not been included due to the lack of information.

The MoCo structure, as well as several genes participating in its biosynthesis, are conserved in
plants, animals, fungi, archaea, and bacteria suggesting an evolutionary conserved pathway. Thus, at
least the three first steps are shared by most organisms [1,7]: Synthesis of cPMP (cyclic pyranopterin
monophosphate) from 5′-GTP (guanosine triphosphate), conversion of cPMP in MPT (molybdopterin,
or also called metal-binding pterin, the metal-free form of the MoCo), and addition of molybdenum to
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form the MoCo (see Section 3 for more details). It is noteworthy that molybdenum is not active in cells
until it forms the MoCo [4].
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−

−

− −

Figure 1. Molybdenum cofactors. (a) The iron-molybdenum cofactor (FeMoCo) of bacterial nitrogenases
and (b) pyranopterin molecule from which the pterin-based cofactors (MoCo) are originated. Molecules
drawn with BioVIA Draw 2019 [8].

Apart from Mo, there are other transition metals with similar biological roles, tungsten (wolfram)
(W) and vanadium (V) [9,10]. On the one hand, vanadium is present alternatively to the FeMoCo in
some nitrogenases, as part of the iron-vanadium cofactor (FeVCo) [10]. On the other hand, tungsten
is present as cofactor in tungsten enzymes, sharing a lot of resemblances with the MoCo of DMSO
reductases [11].

Biochemically, Mo and W share several similarities, such as their analogous valence electron
configuration in all oxidation states in almost all compounds and their similar atomic radii [12].
Whereas W does not have any role in eukaryotic organisms, Mo and W are relevant in prokaryotes [13].
Tungstate (WO4

−2) is the biologically available form of W and is present in lower concentrations than
MoO2

−4 in oceans. Under euxinic conditions such as those characterizing hydrothermal vents (similar
conditions to the ancient Earth), Mo forms MoS2, which is insoluble, whilst W forms soluble salts
(WS−4

−2) available for microorganisms [11,13,14]. This fact could explain why, under these conditions,
we can find hyperthermophilic archaea, which are dependent on W instead of Mo [13]. Another
remarkable aspect about the relationship between Mo and W (and directly related to their chemical
similarity) is the fact that some enzymes, such as DMSO reductases, can use W instead of Mo in their
cofactors when Mo is at lower concentration. It is probably due to the similarity between W cofactor
(WCo, tungsten-enzymes) and Mo cofactor (MoCo, molybdoenzymes) [1,11,13,15]. However, some
enzymes (even in the same family) can only use one or the other despite their similarities, so the
discrimination mechanism in these enzymes would be very efficient [1,13].

This review is an attempt to compile the knowledge about the enzymes that contain Mo cofactors,
focusing on the DMSO reductases family for their biological role in anaerobic respiration. The types
of anaerobic respiration that they carry out, their position in the bacterial/archaeal phylogeny,
the phylogenetic relationship between different DMSO reductases, and their role in the nitrogen
cycle, as well as their potential applications in bioremediation, are reviewed.

2. Biosynthesis of the Bis-MGD Cofactor and Maturation of Molybdoenzymes

The coordination and structure of the MoCo in DMSO reductases differentiate them from the
rest of molybdoenzymes and tungsten-enzymes families and give to these enzymes their specific
functionalities. However, despite the existence of a wide range of cofactors in molybdoenzymes
and tungsto-enzymes, the first three reactions for the biosynthesis of the molybdenum cofactor are
shared among all families [1,3,16,17]. DMSO reductases experience further modifications in the
final steps after pyranopterin formation to achieve the formation of the bis-molybdopterin-guanine
dinucleotide (Bis-MGD). This is the characteristic cofactor of that family in which the molybdenum atom
is coordinated as we described in the section above [3]. A brief description of the biosynthesis process
of the MoCo-DMSO reductases in prokaryotes is summarized in Figure 2. Molecular mechanisms
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described in this section are based on studies carried out on the model microorganism Escherichia coli.
Almost all steps are conserved in the studied prokaryotes. However, this biosynthetic pathway may
present slightly differences among organisms.

 

Figure 2. Biosynthesis of the bis-molybdopterin-guanine dinucleotide (Bis-MGD) cofactor. 1 and 2:
Transference of the sulfur atom to the cPMP by active MPT synthase and dissociation of MoaD/MoaE.
3: Association of MoaD with MoeB. 4: Restoration of thiocarboxylate group and dissociation of
MoaD/MoeB. 5: Reassociation of MoaD/MoaE (with the thiocarboxylate group). Molecules drawn with
BioVIA Draw 2019.
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2.1. Synthesis of cPMP from 5′-GTP

Biosynthesis of molybdenum cofactor in all families initiates with the formation of the cyclic
pyranopterin monophosphate (cPMP) from guanosine-5′-triphosphate (5′-GTP) in a process involving
two enzymes: MoaA and MoaC (Figure 2) [3,17].

MoaA is a member of the radical S-adenosyl-l-methionine (SAM) superfamily and possess
two [4Fe-4S] clusters (one in each monomer), which are oxygen sensitive [16]. MoaA is the first
enzyme to act and it is responsible for forming the unstable and oxygen-sensitive intermediate
3′,8-cyclo-7,8-dihydro-guanosine 5′-triphosphate (3′,8-cH2GTP) (not shown in Figure 2) through a
complex rearrangement of the 5′-GTP molecule [3,16–19]. MoaC acts in the conversion of 3′,8-cH2GTP
to cPMP (the pyranopterin backbone). The cPMP molecule is free of sulfur but it already has the
structure of three rings of MoCo [3].

2.2. Conversion of cPMP into MPT

The next step of the MoCo biosynthesis is the conversion of cPMP into molybdopterin/metal-
binding pterin (MPT). This step is carried out mainly by the MPT synthase, but other accessory
proteins are relevant too: MoeB, TusA, YnjE, and IscS. MPT synthase is an heterotetrametric enzyme
constituted by two MoaD/MoaE heterodimers [3,17]. The MPT synthase catalyzes the reaction of
incorporation of two sulfur atoms into the C1′ and C2′ positions of cPMP to generate diethylene groups
(Figure 2). MoaD and MoaE have different activities besides forming the MPT synthase. MoaD have a
thiocarboxylate group (-SH) at the C-terminus and is the sulfur donor, whereas MoaE have a binding
pocket in which one molecule of cPMP can bind [20].

Once the MPT-synthase transferred the sulfur atom to the cPMP and convert it to the MPT, the
MoaD/MoaE is inactive due to the loss of the thiocarboxylate group of MoaD [21]. This group must
be restored to regain the MPT-synthase activity and this restoration is carried out by the accessory
proteins. The restoration process starts with the separation of the MoaD without the thiocarboxylate
group from MoaE and proceeds with the association of MoaD with MoeB (MoaD/MoeB) where the
thiocarboxylate group is restored. Thus, when the thiocarboxylate group is restored, MoaD dissociates
from MoeB and re-associates with MoaE restoring the activity of the MPT synthase (MoaD/MoaE) [21].
The sulfur that receives MoaD comes from the IscS sulfur transferase [21,22]. However, IscS do not
directly interact with MoaD so, to transfer the sulfur atom to MoaD, it interacts with other proteins
such as TusA or YnjE [23,24]

2.3. Metal Insertion in MPT to Synthetize the Mo-MPT

In the third step of the biosynthesis, molybdenum is inserted in the molybdopterin/metal-binding
pterin molecule (MPT) as a molybdate ion (Figure 2). Two proteins are essential in this process to
synthetize the MoCo: MogA and MoeA [3,17,25].

The actuation of these two proteins is sequential. Firstly, MogA activates the MPT for the
molybdate insertion forming the adenylated intermediate MPT-AMP. Once the adenylated intermediate
is formed, MoeA can insert the molybdenum atom and the binding of MPT-AMP is hydrolyzed,
forming the Mo-molybdopterin (Mo-MPT). Mo-MPT is the last common intermediate of all families of
molybdoenzymes and tungsten-enzyme.

2.4. Formation of Bis-MGD

The formation of the bis-molybdopterin-guanine dinucleotide (Bis-MGD) is the last step and it is
exclusive of prokaryotes [3]. This step is carried out by two proteins whose genes (mobA and mobB) are
cotranscripted: MobA and MobB. MobA is an essential GTP: Molybdopterin guanylyl transferase with
a GTP binding site at the N-terminal and a putative Mo-MPT binding site at the C-Terminal. MobB is a
non-essential protein whose functions are still unclear (X-ray studies suggest that it acts as an adapter
in the formation of the Bis-MGD) [26–29].



Int. J. Mol. Sci. 2019, 20, 3349 5 of 22

The formation of Bis-MGD is a two-step process in which two molecules of molybdopterin
guanine dinucleotide are ligated to a common molybdenum atom [30]. Firstly, MobA forms the
bis-Mo-molybdopterin (Bis-Mo-MPT) intermediate from two Mo-MPT molecules [31]. These two
molecules are connected through a molybdenum atom of one of them and the other molybdenum
atom is released. The second and final step is the formation of Bis-MGD by the addition of GMP to
each molecule of Mo-MPT (Figure 2) [29]. Finally, after the Bis-MGD formation, the cofactor must be
inserted in the proteins by specific chaperones.

2.5. Maturation of DMSO Reductases

MoCo is a labile molecule easily oxidized. Due to its chemical nature, it is not common in nature
as a free cofactor. Specific chaperones protect MoCo from oxidation in cell and sustain its insertion
in the structure of the molybdoenzymes. The way in which chaperones identify and binds to their
target molybdoenzymes depend on the type of protein: For exported molybdoenzymes, it binds to
twin-arginine signal sequences (TAT system) and for cytoplasmic enzymes, the chaperones bind to
other target sequences at the N-terminal different to TAT sequences [32–34].

Since the beginning of research on molybdoenzymes, the presence of chaperones in the coding
operons from several molybdoenzymes has been highlighted, especially in the DMSO reductases
family [26]. These chaperones tend to be specific from the protein encoded in the operon [34,35].
Nevertheless, in some DMSO reductases operons, the gene coding for a chaperone is absent [36].
In these cases, it has been suggested that the MobA protein can insert MoCo in the apo-proteins
without modifications, or other chaperones from other molybdoenzymes can be shared for the
maturation [34,37].

3. Families of Enzymes Containing Molybdenum or Tungsten

Nowadays there are more than sixty molybdoenzymes identified (bacteria and archaea) which
are mainly divided into two groups according to their cofactors: MoCo and WCo (enzymes with WCo
are not really molybdoenzymes but classically they are classified as such). Apart from them, there are
FeMoCo-containing proteins including just one type of enzyme: The nitrogenases. They are present
in diazotrophic organisms and have an essential role in the nitrogen cycle (catalysis of the reaction
of biological dinitrogen (N2) fixation with the consequent reduction to ammonia (NH4

+)) [10,38].
The cofactor of these enzymes contains MoFe3-S3X and Fe4-S3X cuboidal subunits, which share an X
atom that can be H, C, or N [10].

Classically, molybdoenzymes with MoCo have been divided into three families based on its
arrangement: Dimethyl sulfoxide (DMSO) reductases, xanthine oxidases, and sulfite oxidases [39].
As for the tungsten-enzymes, due to their similarity with DMSO reductases, some authors group
them together. However, other more accurate classifications (based on the metal/cofactor structure),
as stated by Maia and co-workers, classify the tungsten-enzymes in a separate family from DMSO
reductases [11]. In this review, the classification presented is the following: Xanthine oxidases, sulfite
oxidases, tungsten-enzymes, and DMSO reductases (Table 1).

In 2006, molybdoenzymes called mitochondrial amidoxime-reducing components (mARC) were
described in the outer mitochondrial membrane in pig cells [40]. They are classified by some authors
as members of a subfamily of sulfite oxidases. However, the lack of sequence similarity with enzymes
of sulfite oxidase family as well as the biochemical and spectroscopic characterization of mARC,
suggest that these enzymes (together with others: YcbX and YiiM) would form a new family [39,41,42].
This topic is now under discussion and is not treated in the review. The main features characterizing
each family are described as follows, paying special attention to DMSO reductases.
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Table 1. Families of enzymes containing molybdenum or tungsten. Molecules drawn with BioVIA Draw 2019 [8].

Family Cofactor Structure Ligands for Coordination Example of Enzymes

Sulfite oxidase family

Cofactor Structure 

Cysteine
Sulfite oxidases

Eukaryotic assimilatory nitrate reductases
Sulfite dehydrogenase

Xanthine oxidase family X: Sulfur, Selenium, Oxygen
and S-Cu-S(Cys)

Xanthine oxidases
Aldehyde oxidases

4-hydroxybenzoyl-CoA reductases
Nicotine dehydrogenase

DMSO reductase family
X: Sulfur, Selenium, Oxygen, Y:

Aspartate, Serine, Cysteine,
and Selenocysteine

DMSO reductases
Arsenate reductases

Respiratory nitrate reductases
Assimilatory nitrate reductases

(Per)Chlorate reductases
Polysulfide reductases

Tungstoenzymes family
X: Sulfur, Selenium, Oxygen, Y:

Aspartate, Serine, Cysteine,
and Selenocysteine

Aldehyde oxidoreductases
Ferredoxin oxidoreductases

Formate dehydrogenses
Glyceraldehyde-3-phosphate oxidorreductase
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3.1. Sulfite Oxidase Family

The family of sulfite oxidases is present in three domains of life and its main feature is the
coordination of the MoCo by pyranopterin where Mo is covalently bound by a cysteine of the
polypeptide chain of the enzyme (Table 1). They have also two oxo groups and the sulfurs of the
cis-dithiolene group [11]. In the sulfite oxidases family, there are not only reductases, but also
oxidases. Members of this family are enzymes involved in sulfite oxidation and others such as sulfite
dehydrogenases and eukaryotic assimilatory nitrate reductases [43].

3.2. Xanthine Oxidase Family

Xanthine oxidases as well as sulfite oxidases are present in eukaryotes and prokaryotes. In this case,
the MoCo have only one pyranopterin, which coordinates Mo through the sulfurs of the cis-dithiolene
group, an oxo group, and a hydroxyl group, and depending on the enzyme, by a variety of groups: Sulfo,
selene, oxo groups or S-Cu-S(Cys) (Table 1) [11,44,45]. In prokaryotes, the MoCo could be modified
adding a CMP (cytidine monophosphate) group forming a molybdopterin cytosine dinucleotide.
The best known and characterized enzymes of this family are xanthine oxidoreductases, aldehyde
oxidases, and aldehyde oxidoreductases [11,44].

3.3. DMSO Reductase Family

In contrast to xanthine oxidases and sulfite oxidases, the DMSO reductase family is only found
in bacteria and archaea and their presence in these organisms is really high [9]. More than 90% of
Mo-utilizing organism possess enzymes of the DMSO reductase family. It suggests that is the most
extensive family of molybdoenzymes in prokaryotic organisms [46].

DMSO reductases family cofactor is the bis-molybdopterin-guanine dinucleotide (Bis-MGD) and
it is composed by two pyranopterin molecules (instead of one pyranopterin as in sulfite oxidases and
xanthine oxidases families), which are conjugated with nucleosides: Cytosine or guanosine. In this
family, the Mo atom in the MoCo is coordinated by four sulfur atoms of the pyranopterins rings and
by an inorganic ion that could be selenium, oxygen, or sulfur atoms. In almost all cases, another ligand
that has a role in coordination comes from an amino acid side chain that can be aspartate, serine,
cysteine, and selenocysteine (Table 1) [9,11]. Depending on this amino acid, the DMSO reductases can
be classified in three types: Cysteine or selenocysteine for type I, an aspartate for type II, and serine
residue for type III [47].

Enzymes belonging to this family catalyze different types of reactions: Oxidation/reduction,
hydroxylation/hydration, and oxygen transfer reactions [11]. Proteins such as assimilatory nitrate
reductases, respiratory DMSO reductases, chlorate reductases, or formate dehydrogenase belong to
this family.

3.4. Tungsten-Enzyme Family

The tungsten-enzyme family as well as DMSO reductases are only present in prokaryotic
organisms. Both have the same coordination of the MoCo but replace the molybdopterins with
tungstopterins (pyranopterins with W instead of Mo), probably due to the similarity between Mo and
W (Table 1) [1,11,13,15,48]. This family has proteins with a wide range of functions. Some examples
are acetylene hydratases, formylmethanofuran dehydrogenases, or formate dehydrogenases.

4. Connections between DMSO Reductases and N-Cycle

Among these enzymes, four of them are involved in anaerobic respiratory processes: Arsenate
reductases, nitrate reductases, (per)chlorate reductases, and polysulfide reductases. Although
respiratory nitrate reductases are the only enzymes directly connected to the nitrogen cycle (trough
denitrification), the other three could be significantly involved in it too. This feature is due to the
fact that some DMSO reductases are able to recognize more than one substrate under anaerobic
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conditions. Thus, some nitrate reductases can reduce not only nitrate, but also bromate, (per)chlorate,
selenate, etc. [49,50]. Taking these observations into account, the main features characterizing nitrate,
polysulfide, arsenate, and (per)chlorate reductions under anoxic conditions are described as follows.

4.1. Nitrate Reduction

Nitrate reduction to nitrite can occur under aerobic and anaerobic conditions as part of different
reactions involved in the nitrogen cycle: (i) Assimilatory nitrate reduction (aerobic process), in which
nitrate is used as nitrogen source for growth; (ii) dissimilatory nitrate reduction or nitrate detoxification
(microaerobic or anaerobic processes), where nitrate is used as final electron acceptor to dissipate
excess of reductant power; (iii) dissimilatory nitrate reduction to ammonium (DNRA) (microaerobic
or anaerobic processes), in which the nitrite produced is further reduced to ammonium; and (iv)
denitrification (anaerobic process), which uses nitrate is the final electron acceptor in a respiratory
process in absence of oxygen.

The enzymes catalyzing these reactions are generally called “nitrate reductases”. Based on
their function, structure, and location, three different types of nitrate reductases are distinguished:
Periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar: membrane enzyme), and
assimilatory nitrate reductase (Nas: cytoplasmic) [51–53]. Essentially, the three enzymes catalyze the
same reaction (Figure 3) with different purposes: Nas catalyze the first reaction in the assimilatory
nitrate reduction, Nap are usually involved in dissimilatory processes, and Nar catalyze the first
reaction in denitrification.

 

 

α

β
γ

Figure 3. Reaction catalyzed by nitrate reductases. This is the first reaction in assimilatory nitrate
reduction (catalyzed by Nas), Nitrate reductase (NR: eukNR, Nar, Nap, and Nas).

As part of the processes discussed here, Nar and Nap proteins are the aim. These enzymes are
structurally similar but have different locations: Periplasm and membrane, respectively. The Nap
enzymes have been mainly described from mesophilic bacteria, and they are involved in different
processes depending on the organism in which they are found [53]. On the one hand, Nap enzymes
catalyze nitrate reduction to detoxify or to dissipate excess of reductant power. They have been
described as heterodimers composed by a catalytic subunit (NapA) and a cytochrome c (NapB), which
receive electrons from NapC, a membrane cytochrome c. Some authors describe the enzyme as a
heterotrimer including NapC in the structure [51]. On the other hand, Nar enzymes are the key to
reducing nitrate to nitrite under anoxic conditions. Not surprisingly, they are negatively regulated by
oxygen, induced by the presence of nitrate, and unaffected by ammonium. In general, Nar enzymes
are heterotrimers composed of a catalytic subunit (NarG or α subnunit) that binds a bismolybdopterin
guanine dinucleotide (Bis-MGD) cofactor for nitrate reduction, an electron transfer subunit with
four iron-sulphur centres (NarH or β subunit), as well as a di-b-haem integral membrane quinol
dehydrogenase subunit (NarI or γ subunit). The NarG and NarH are membrane-extrinsic domains,
whereas the NarI is a hydrophobic membrane protein, which anchors the NarGH complex to the
membrane [51,54].

Nar enzymes may be the best studied nitrate reductases in extremophiles up until now. Several
studies have described their isolation and characterization from halophilic or haloalkaliphilic archaea
and thermophilic bacteria [55–57], whilst other studies were focused on the regulation of gene
expression [55,58,59].

4.2. (Per)Chlorate Reduction

Perchlorate can be reduced to chlorate by perchlorate reductases and then to chlorite by chlorate
reductases. Perchlorate-respiring bacteria (PCRB) are ubiquitous in the environment, and are mainly
facultative anaerobes and denitrifiers [60,61]. Perchlorate reductases isolated from PCRB react with both
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perchlorate and chlorate, and consequently, they are commonly named (per)chlorate reductases [62].
Chlorate reductases expressed by chlorate-respiring bacteria (CRB) do not reduce perchlorate [63].
All these enzymes are involved in the metabolism of oxochlorates as part of the biogeochemical cycle
of chlorine. Thus, several microorganisms are able to carry out oxochlorates respiration under anoxic
conditions following the scheme displayed in Figure 4 [64,65].

 

 

α

γ β

−

Figure 4. General scheme of perchlorate and chlorate reduction due to microbial activities. The first
reaction is catalyzed by perchlorate reductases and the second one is catalyzed by chlorate reductases.
Enzymes able to show both activities have also been described ((per)chlorate reductases).

It has also been demonstrated that perchlorate and chlorate reductases isolated from some
PCRB recognize nitrate as substrate [66], as well as several nitrate reductases, including those from
extremophiles, are able to recognize perchorate and chlorate as substrates [50,67,68].

Structurally, perchlorate and chlorate reductases show several common features with respiratory
nitrate reductases, i.e., they are heterotrimeric enzymes showing a large subunit (α) as a catalytic
subunit, b subunit containing iron-sulfur clusters involved in electron transfer, and the smallest γ
subunit (only found in chlorate reductases), which is homologous to the e heme β-containing subunit
in selenate reductase, dimethyl sulfide dehydrogenase, ethylbenzene dehydrogenase, and archaeal
p-type nitrate reductases.

Although (per)chlorate reduction was first described in mesophilic bacteria, recent studies have
demonstrated that members of archaea domain as well as extremophilic bacteria are also able to carry
out this pathway [69,70].

4.3. Arsenate Reduction

Arsenates are salts or esters of arsenic acid (H3AsO4), consisting of the ion AsO4
3−. Whereas

both arsenate and arsenite are strongly toxic to life, some prokaryotes use these compounds as
electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase,
arsenite oxidase, and an alternative arsenite oxidase. Microbes dealing with these reactions usually
inhabit contaminated environments and are commonly named “arsenate-reducing” bacteria and
archaea [71–73]. Apparently, at least three families of arsenate reductase enzymes have arisen by
convergent evolution [74]. They could be both periplasmic and membrane associated. Although the
number of subunits and molecular masses differs, they all contain molybdenum and heterotrimeric
forms predominate [75]. The expression of genes coding for arsenates reductases is usually switched
on by parameters promoting detoxification mechanisms [72,76].

4.4. Polysulfide Reduction

At elemental sulfur reduction, the elemental sulfur (almost insoluble in water at ambient
temperatures) may first turn into polysulfide ions, which theoretically could be reduced to hydrogen
sulfide by sulfur-reducing bacteria. Thus, polysulfide (Sx (2-)) (soluble compound) could act as a
possible intermediate directly used by bacteria in sulfur respiration. Sulfur reduction has been explored
from a few sulfur reducers like Clostridium [77] or Wolinella succinogenes [78]. At the time of writing
this review, the number of sulfur-reducing reductases purified and characterized is scarce and most of
them have been isolated from hyperthermophilic bacteria or archaea [79].

It is interesting to note that all the enzymes described nowadays are heterotrimeric membrane-
bound proteins showing similar pattern than those described for respiratory nitrate reductases and
(per)chlorate reductases. For example, they are made of a large subunit (α) as a catalytic subunit,
a β subunit containing iron-sulphur clusters involved in electron transfer, and a γ subunit (heme
containing [80,81]. Polysulfide chemistry in natural environments is of high relevance due to a variety
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of relevant processes in which this compound is involved, including pyrite formation, organic matter
sulfidization, isotope exchange among reduced sulfur species, and metal chelation [82].

5. Phylogenetics of DMSO Reductases: An Updated Overview

In order to explore phylogenetic relationships between DMSO reductases, especially in extremophiles,
a total of 155 available sequences coding for the catalytic subunit of respiratory-related DMSO reductases
(including bacteria and archaea) have been selected and analyzed. Figure 5 displays the phylogenetic
tree including enzymes belonging to the three types of DMSO reductases. Alignments have been
done using Clustal Omega [83]. This software is based on the HHalgorithm described by Söding [84].
The alignments have been used to build a phylogenetic tree using the neighbour joining method from
Clustal Omega. Manipulation and annotation of the phylogenetic tree has been done with the online
tool “Interactive Tree Of Life (iTol) v4” [85]. Protein sequences were acquired from the protein database
of NCBI.

 

α β
γ

 

Figure 5. Phylogenetic tree built with 155 sequences of the catalytic subunit from 10 respiratory-related
enzymes belonging to the dimethyl sulfoxide reductases (DMSO) reductase family, together with a
brief description (legend) of the organism from which each sequence belongs. Phylogenetic tree was
built with Clustal Omega and iTol v4 software.

Polysulfide reductases (PsrA), respiratory arsenate reductases (ArrA), periplasmic nitrate
reductases (NapA), and formate dehydrogenases N (Fdh-N) represent the type I in the tree. Type II
is represented by respiratory nitrate reductases (NarG), perchlorate reductases (PcrA), respiratory
selenate reductases (SerA) and chlorate reductases (ClrA). Finally, type III includes DMSO reductases
(DmsA) and trimethylamine N-oxide (TMAO) reductases (TorA). All enzymes are grouped mainly by
this characteristic but type I enzymes PsrA and ArrA form a monophyletic group different from type I
NapA and Fdh-N, while PcrA enzymes are also divided in different clades.

Polysulfide and respiratory arsenate reductases appear related in the tree, belonging to the DMSO
type I. Their analogy has been reported in other studies, concluding that their catalytic subunits are
similar [86,87]. It is remarkable the fact that members of the DMSO reductases family can use (with
less effectivity) other alternative substrates, which are specific from other representatives. However, no
dual activity between PsrA and ArrA has been reported despite their similarity. It has been proposed



Int. J. Mol. Sci. 2019, 20, 3349 11 of 22

that arsenate reductase evolved from a Psr ancestor and the evolution modified an enzyme of the
sulfur respiration pathway, the ancestor of the Psr, to create the arsenate reductase [86].

Periplasmic nitrate reductases and formate dehydrogenases N [86,88] form a monophyletic group.
This relationship has already been reported and it is not only due to being part of the same type but
also because of the presence of a highly conserved lysine residue. It has a role in the electron flow
in redox reactions in both enzymes [89,90]. In NapA and Fdh-N clade, an early divergence between
extremophilic archaeal and mesophilic bacterial NapA and Fdh-N is observed but no comparative
research about it has been reported yet.

Type III enzymes are grouped in two clades constituted by DMSO reductases and TMAO reductases
from bacteria and archaea. Dual activity has been described in DMSO reductases, as in the case of
the Escherichia coli DMSO reductase that can reduce TMAO and other N-oxides [91,92]. In contrast,
no DMSO reductase activity has been found in biochemically characterized TMAO reductases [92].
The most remarkable aspect is the early divergence of DMSO reductases and TMAO reductases from
halophilic archaea, which are completely separated from the mesophilic bacterial enzymes. Studies in
the halophilic archaea Halobacterium salinarum proposed that the Mo amino acid ligand in the MoCo
of DmsA is an aspartate residue in all halophilic archaea instead of a serine residue as in mesophilic
bacteria [35,93]. Alignments presented here also suggest that halophilic TorA could have an aspartate
residue coordinating the Mo atom. Figure 6 shows the alignment of halophilic two NarG with all
the haloarchaeal DmsA and TorA in which the Mo-coordination aspartate from NarG and DmsA
is aligned with TorA. This could explain why haloarchaeal TorA and DmsA are in a different clade
from mesophilic TorA and DmsA. Taking this into account, haloarchaeal enzymes TorA and DmsA
should be classified as type II DMSO reductases due to their MoCo coordination. Despite the above,
experimental procedures are needed to confirm the functional implications of this feature.

 

 

NarG Halogeometricum borinquense            SGFT-PIPAMSPVSFASGSRLINLLGGVSHSFYDWYSDLPPGQPITWGT------QTDNA 277 

NarG Haloferax mediterranei                 SGFT-PIPAMSPVSFASGSRLVNLLGGVSHSFYDWYSDLPPGQPITWGT------QTDNA 265 

DmsA Halobacterium salinarum NRC-1          SLLWHSGSGDGGITG--YRRLKELVGGLQDDF-TYGIDTNVGQGFNRVTGEGGVFMPPTN 220 

TorA Natrinema gari                         SVFFHTGSGDNGMGTTIFGRLASMFGGTQQS---WSIDSNVGVGFNRITGH-GFFLPPTN 220 

TorA Natrinema sp. J7-2                     SVFFHTGSGDNGMGTTIFGRLASMFGGTQQS---WSIDSNVGVGFNRITGH-GFFLPPTN 220 

TorA Natrinema pallidum                     SVFFHTGSGDNGMGTTLFGRLASMFGGTQQS---WSIDSNVGVGFNRITGH-GFFLPPTN 220 

TorA Natrinema altunense                    SVFFHTGSGDNGMGTTIFGRLASMFGGTQQS---WSIDSNVGVGFNRITGH-GFFLPPTN 220 

TorA Natronobacterium gregoryi              SVFFHTGSGDNGMGTTIFGRLASMFGGTQQG---WSIDSNVGVGFSRVTGQ-GFFLPPTN 220 

TorA Halobiforma lacisalsi AJ5              SVFFHTGSGDNGMGTTIFGRLASMFGGTQQG---WSIDSNVGIGFNRVTGY-GYFLPPTN 195 

DmsA Haloferax volcanii DS2                 SVYFETGSGNNGISGTIQSRLSSLFGGTQKS---WSIDINVGLGFSRLAGA-GFFNVPTN 235 

DmsA Haloferax mediterranei ATCC 33500      SVLFHAGSGNYGINSTVESRLANLFGGSTPG---WSIDANVGRGFNRITGH-GYYLPQTN 222 

DmsA Haloarcula marismortui ATCC 43049      SVLFHEGSGNYGQTGKAFSRLASLFGSTQSA---WGIDANVGRGFNRVTGT-GFFLPPTN 222 

DmsA Haloarcula hispanica ATCC 33960        SVLFHVGFGNYGQSGTAFSRLASLFGSTQPA---STIDTNVGRGFNRVTGT-GFYLPSTN 222 

                                              *       .          ** .:.*.          *   *  :.  :         . 

Figure 6. Clustal Omega alignment of halophilic respiratory nitrate reductases (NarG), TMAO
reductases (TorA), and DMSO reductases (DmsA). In grey, aspartate which coordinates Mo atom in
haloarchaeal NarG and DmsA aligned with possible coordination aspartate from haloarchaeal TorA.

Type II DMSO reductases include enzymes with great versatility in the use of different non-specific
substrates [50,62]. Respiratory selenate reductases together with chlorate reductases constitute a clade,
which indicates a great homology between both enzymes. This relationship is not well studied but it is
reported that respiratory selenate reductase from the betaproteobacteria Thauera selenatis also have
chlorate reductase activity [94]. The distance between the perchlorate and chlorate reductases indicates
that they are different enzymes with less degree of homology, showing different specificity, since the
perchlorate reductase can reduce perchlorate and chlorate, while the chlorate reductase can reduce
only the latter [95,96].

NarG and PcrA clade is close to respiratory selenate and chlorate reductases. Archaeal and
bacterial NarG enzymes are separated into two groups. Archaeal nitrate reductases differ from bacterial
by the presence of the TAT exportation signal at the N-terminal. Due to that signal, archaeal NarG
is facing to periplasm, whereas bacterial NarGs are facing cytoplasm [49,97]. Nevertheless, what is
more surprising is that haloarchaeal NarG is closer to perchlorate reductases of a specific order of
betaproteobacteria (Rhodocyclales) than the thermophilic archaeal and bacterial NarGs. This relationship
has not been discussed yet, maybe because in other phylogenetic studies, PcrA sequences are scarce or
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are not present [86,88,98,99]. In the phylogenetic tree displayed in Figure 5, 29 PcrA sequences were
analyzed. Furthermore, apart from the perchlorate reductase clade related to NarG, there are two
more separated clades of perchlorate reductases: The closer clade constituted only by thermophilic
perchlorate reductases and other distant clade involving mesophilic perchlorate reductases.

It has been reported that the ability to utilize perchlorate in perchlorate-reducing bacteria is
conferred by a horizontally transferred piece of DNA: The perchlorate reduction genomic island.
In a study of 13 genomes of perchlorate-reducing bacteria from four different classes of Proteobacteria,
the authors described how the island varies considerably in genetic content, among the different
phylogenetic classes, what gives rise to the phylogenetic classification of these enzymes [99].

The genomic context of the selected enzymes in this work has not be analyzed; consequently, the
content of the genomic island is unknown. Nevertheless, sequence alignments of the PcrA of three
groups have shown that in the region of conserved Asp residue for Mo coordination, the alignment
differs in each group. The sequences of polypeptides annotated has PcrA but phylogenetically closest
to type I DMSO reductases are very different to the other two groups, and indeed the Asp residue is
not clearly identified in the alignments (Figure 7). So, more research will be necessary to clarify the
classification of this group of enzymes.

 

 

PcrA  Rhodoplanes piscinae                       -------------AAWG------------------PVDFSFGSGQGVKCTHSEHLYGEFW 171 

PcrA  archaeon HR03                              -------------AAWG------------------PIDFSFGSGQGIKCYHTEHLFGEYW 166 

PcrA  bacterium BMS3Bbin02                       -------------KATGA----------------------TKLGHGAYCSDAGYRAAEYN 192 

PcrA  Photorhabdus namnaonensis                  -------------RNFGSPNVCN-GTEVC----NWHKDEAHKFTFG----------CSIP 160 

PcrA  Coriobacteriaceae bacterium CHKCI002       -------------ELFGTPNIIAA-YQVC----KGPRHFASRLDNV----------QAYS 205 

PcrA  Sporomusa acidovorans DSM 3132             -------------NVFGTPNWFEPGCAQC----YLPRTVAFGLMYGAYGLGGASQGSDTS 209 

PcrA  Clostridium luticellarii                   -------------NVFGTPNWFEPGCAQC----YLPRILANNLMYG---------GSDYS 198 

PcrA  Clostridium ljungdahlii DSM 13528          -------------NVFGTPNWFEPGCAQC----YLPRTLANDLMYG---------GSDYS 198 

PcrA  Clostridium autoethanogenum                -------------NVFGTPNWFEPGCAQC----YLPRTLANGLMYG---------GSDYS 198 

PcrA  Clostridium coskatii                       -------------NVFGTPNWFEPGCAQC----YLPRTLANGLMYG---------GSDYS 198 

PcrA  Syntrophaceae bacterium PtaB.Bin095        -------RSDQRTECFGTHYYINC-LTLTNPPNKFYSSCYTPSHHV-----CGYDYD--- 224 

PcrA  Nitrospirae bacterium                      ALLDTWIRKVSPDQAQGGRYWSNY---------TWHGDQNPAHPFW-----CGAQGS--- 290 

PcrA  bacterium HR11                             ALLDAHVRKVPPEEAKGARIWSNY---------TWHGDQAPGQPFV-----HGLQTS--- 289 

PcrA  bacterium HR29                             ALLDVYVRKVSPEEAKGGRNWSNY---------TWHGDQAPGFPFV-----HGLQTA--- 289 

PcrA  bacterium HR39                             ALLDSHIRGTDADTALGGRGWDNY---------AFHTDLAPGHPMV-----TGQQNT--- 160 

PcrA  bacterium HR13                             ALLDSHIRGVGPDKALGGRGWDNY---------AFHTDLAPGHPMV-----SGQQNV--- 289 

PcrA  bacterium HR30                             ALLDAYVRKVGPDQAKGAGLWDSY---------SWHTDLPPGHPMV-----HGDQTS--- 289 

PcrA  bacterium HR24                             ALLDAHVRGVGPEGAVGGRHWDSY---------SWHTDLPPGHPMV-----SGQQTL--- 302 

PcrA  bacterium HR10                             ALLDAQLRHVGPDRALGGRGWDSY---------SWHTDLPPGHPMV-----TGQQTV--- 302 

PcrA  bacterium HR08                             ALLDAKLRNVEPDKALGGRGWDSY---------SWHTDLPPGHPMV-----TGQQTV--- 302 

PcrA  Haloferax massiliensis                     -------------NLLGGVSHSFY---------DWYSDLPPGQPIT-----WGTQTD--- 262 

PcrA  Dechloromonas sp. JD15                     -------------HYIGAHTHTFF---------DWYSDHPTGQTQT-----CGVQGD--- 212 

PcrA  Dechloromonas agitata                      -------------HYIGAHTHTFF---------DWYSDHPTGQTQT-----CGVQGD--- 212 

PcrA  Azospira sp. JD125                         -------------HYIGAHTHTFF---------DWYSDHPTGQTQT-----CGVQGD--- 212 

PcrA  Dechloromonas aromatica                    -------------HYIGAHTHTFF---------DWYGDHPTGQTQT-----CGVQGD--- 212 

PcrA  Azospira sp. KJ                            -------------HYIGAHAHTFC---------DWYGDHPTGQTQT-----CGVQGD--- 212 

PcrA  Azospira oryzae                            -------------HYIGAHAHTFY---------DWYGDHPTGQTQT-----CGVQGD--- 184 

PcrA  bacterium HR16                             -------------ALLGMSFATAY---------DYNGDISMGFTQT-----LGIDSV--- 175 

PcrA  Peptococcaceae bacterium CEB3              -------------TLLGASYATGY---------DYNGDISMGYTET-----VGIDSL--- 175 

PcrA  bacterium HR12                             -------------AVLGMTHGTSF---------DFNGDLPMAMPIT-----FGVQNA--- 199 

PcrA  Moorella thermoacetica                     -------------TMAGWSLIHPY---------DQNGDLPMFWPQT-----FGVQTE--- 207 

Figure 7. Clustal Omega alignment of all PcrA proteins. Aspartate, which coordinates Mo atom, is in
grey. Grey box represents the separate clade of PcrA in which their aspartate is not aligned with the
aspartate from the two other groups of PcrA.

The sequences of thermophilic PcrA also differ from the other two groups, some of them have
longer chains (up to 1166 amino acids residues) and the aspartate ligated to Mo is clearly identified in
the alignments. This group of PcrA shows an ancestral origin with respect the other type III DMSO
reductases. Given that perchlorate probably existed on Earth in early geological times, it is possible to
conclude that the capacity of thermophilic bacteria to respire perchlorate may have developed very
early. The third cluster of PcrA corresponds to the Rhodocyclales betaproteobacteria. These chains form
a monophyletic clusterwith NarG, as has been previously described [95]. NarG from haloarchaea are
closer to this group of PcrA than to bacterial NarG. The reason for this could be because PcrA and
haloarchaeal NarG are periplasmic subunits and therefore both contains a TAT signal that is absent
in the NarG from bacteria (facing the cytoplasmatic side). Sequence homology is greater between
haloarchaea NarG and bacterial PcrA than with bacterial NarG, and their structures will also probably
be. This close relationship had been previously described with concatenated PcrAB sequences that
were aligned to three of Archaeal periplasmic nitrate reductases [99].
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PcrA and NarG can catalyze the reduction of different electron acceptors as bromate, chlorate,
perchlorate, nitrate, and iodate. The bacterial enzymes have been described as related enzymes that
have evolved from a common ancestor and diverged to adjust their activities to different environments.
A perchlorate reductase would have evolved to have high affinity for perchlorate, whereas a nitrate
reductase would have evolved to maintain low affinity for perchlorate [100]. When the structures of
Escherichia coli NarG and Azospira oryzae (Azospira suillum) PcrA were compared, some differences at
the substrate access hydrophobic tunnel were identified. Thus, in position 461, there is an aromatic Trp
residue in PcrA, whereas in NarG, there is a Glu residue. It is postulated that this difference could
explain the substrate preference of each enzyme [100]. The respiratory NarGH from the haloarchaeon
Haloferax mediterranei has been studied and its chlorate and perchlorate activity were determined.
In the genome of this haloarchaeon, no perchlorate or chlorate reduction system has been detected.
H. mediterranei is then unable to grow in anaerobic medium with (per)chlorate as unique electrons
acceptors. However, NarGH can catalyze the reduction of chlorate and perchlorate with an efficiency
comparable to nitrate reduction, even though it shows a higher specificity towards nitrate than chlorate
(Km values of 0.8 and 2.4 mM, respectively). Besides, cells previously grown anaerobically in the
presence of nitrate were able to use chlorate as final electron acceptor [49].

To analyze the putative binding substrate site, a structural model of the H. mediterranei respiratory
nitrate reductase has been constructed. The amino terminal sequence of NarG subunit (NCBI Protein
database ID: WP 004056332.1) was analyzed to detect the TAT signal, and the first 66 amino acids
were removed before modelling the structure. The 3D structure model was generated by I-TASSER
software [101,102]. Its algorithm consists of three consecutive steps of threading, fragment assembly,
and iteration. The server generates five models and, with a C- score of 0.76, the best predicted structure
model of NarG from H. mediterranei was selected. The overall model predictions were evaluated by
using TM-score and RMSD, whose estimated values were 0.82 ± 0.09 and 7.0 ± 4.1 Å, respectively.
I-TASSER results show that the protein structurally closer to NarG from H. mediterranei was PcrA from
A. oryzae.

Alignment between NarG from H. mediterranei and PcrA from A. oryzae shows that both enzymes
are very similar, with 44% identity (Figure 8). Inspection on residues that could constitute the substrate
access hydrophobic tunnel in H. mediterranei NarG model displayed that, as in E. coli NarG, the enzyme
from H. mediterranei has a Glu residue instead a Trp, which would determine its preference for nitrate
(Figures 8 and 9).

 

 

PcrA Azospira oryzae             HTFYDWYGDHPTGQTQTCGVQGDTCETADWFNSKYIILWGSNPTQTRIPDAHFLSEAQLN 221 

NarG Haloferax mediterranei      HSFYDWYSDLPPGQPITWGTQTDNAESADWYNADYIIAWGSNINVTRIPDAKYFLESGYN 300 

                                   *:*****.* * **  * *.* *..*:***:*:.*** **** . ******::: *:  * 

 

PcrA Azospira oryzae             GAKIVSISPDYNSSTIKVDKWIHPQPGTDGALAMAMAHVIIKEKLYDAHSLKEQTDLSYL 281 

NarG Haloferax mediterranei      GTKRVGVFTDYSQTAIHTDEWLSPDSGTDTALALGMAQTIVDEGLYDEAHLKEQTDMPLL 360 

                                   *:* *.:  **..::*:.*:*: *: *** ***:.**:.*:.* ***   ******:  * 

 

PcrA Azospira oryzae             VRSDTKRFLREADVVAGGSKDKFYFWNA----KTGKPVIPKGSWGDQPEKKGSPVGFLGR 337 

NarG Haloferax mediterranei      VRQDTGKFLRASDVPSVNTDADRPEWMLLMLDSNGRIREAPGSLGERDGQK--------- 411 

                                   **.** :*** :** : .:. .   *      ..*:     ** *::  :*          

 

PcrA Azospira oryzae             NTFAFPKGYIDLGDLDPALEGKFNMQLLDGKTVEVRPVFEILKSRLMADNTPEKAAKITG 397 

NarG Haloferax mediterranei      -DYS----KSIELDFDPQLDGETTVQTQSGR-VQVRTVWAELRDEL-ANWDPEMVHEETT 464 

                                     ::         *:** *:*: .:*  .*: *:** *:  *:..* *:  ** . : *  

 

PcrA Azospira oryzae             VTAKAITELAREFATAKPSMIICGGGTQHWYYSDVLLRAMHLLTALTGTEGTNGGGMNHY 457 

NarG Haloferax mediterranei      VGKETYQRIAREFAEADKAKIIQGKGVNDWYHNDLGNRALQLLVTLTGNLGEQGTGLDHY 524 

                                   *  ::  .:***** *. : ** * *.:.**:.*:  **::**.:***. * :* *::** 

 

PcrA Azospira oryzae             IGQWKPAFVAGLVALAFPEGVNKQRFCQTTIWTYIHAEVNDEIISSDIDTEKYLRDSITT 517 

NarG Haloferax mediterranei      VGQEKIWTFHGWKTLSFPTGKV--RGVPTTLWTYYHAGILDN---TDPDTAAKIRESIDK 579 

                                   :** *   . *  :*:** *    *   **:*** ** : *:   :* **   :*:** . 

Figure 8. EMBOSS Needle alignment of PcrA (A. aryzae) with NarG (H. mediterranei). In grey are the
residues of the hydrophobic tunnel of each enzyme. Trp461 from PcrA changes to Glutamate in NarG.
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Figure 9. (a) Structure of the closed tunnel in PcrA from A. oryzae (PDB ID:4YDD). The gate residues
F164, Y165, and W461 are shown in stick. (b) Model of NarG from H. mediterranei. The same positions
of the hydrophobic tunnel in PcrA are showing in NarG structural model. W461 is substituted by E462
in the halophilic NarG. Blue: Nitrogen; Cyan; hydrogen; Red: oxygen.

The inability of several denitrifiers to grow using (per)chlorate could be due to the failure to
induce nitrate reductase in the presence of chlorate alone and/or the toxicity chlorite produced by
nitrate reductase when chlorite dismutase is absent. In the genome of H. mediterranei, a putative
gene-encoded chlorite dismutase is present, but no activity has been detected in whole cells or protein
extracts. The hyperthermophilic archaeon Archaeoglobus fulgidus shows (per)chlorate reduction using a
molybdo-enzymes belonging to the type II of DMSO reductases, however chlorite is not enzymatically
split into chloride and oxygen [70]. The authors proposed that chlorite is eliminated by an interplay of
abiotic and biotic redox reactions involving sulfur compounds and these mechanisms would prevent
accumulation of perchlorate in early terrestrial environments. No similar mechanism has been explored
yet in haloarchaea.

6. DMSO Reductases: Bioremediation with Extremophiles

Bioremediation is the use of microbes for the removal of contaminants of interest or their conversion
into less harmful forms. The microbial processes involved in bioremediation are usually related to
respiration processes or adaptation strategies, often a component of carbon cycling or metal redox
cycling [103]. This section is focused on bioremediation processes that implies the action of DMSO
reductases in extreme environments.

6.1. (Per)chlorates and Nitrates

The oxyanions perchlorate (ClO4
−) and chlorate (ClO3

−) (collectively, (per)chlorates) are highly
soluble strong oxidants with important implications in human health due to their high toxicity [50].
They are deposited in the environment through both anthropogenic and natural processes [104]
perchlorate is mainly recognized as a groundwater pollutant derived from activities as pyrotechnics
and oil industry [100], contaminating drinking water and food [105]; anthropogenic chlorate is an
active component of herbicides among other compounds [104].

To date, the main application for (per)chlorates bioremediation has been related to their anaerobic
respiration or dissimilation by microorganisms through (per)chlorate reductases in contaminated waste
streams and groundwaters [100]. Due to the importance of (per)chlorates as toxic for human beings,
the main research has been focused on drinking water contamination, so most strains of (per)chlorate
reducers have been obtained from freshwater, mesophilic, and neutral pH environments [60]. However,
one of the most attractive treatments to remove perchlorate from water is the use of ion-exchange
techniques, which concentrate this oxyanion in brines [105]. Biological treatment can subsequently
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remove the perchlorate but using salt-adapted microorganisms. They can be used as a single treatment
process in saline wastes or can be applied in combination with ion exchange methods [104,106].

Therefore, in the last years, some halophiles have been described as good per(chlorates) reducers:
Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, and Haloarcula

vallismortis [107]. All strains grew in aerobic conditions with perchlorate up to 0.4 M. H. mediterranei

showed the best phenotypic parameters in these conditions: Its doubling time was less than 4 h and it
was the only strain able to growth with 0.6 M perchlorate (the highest concentration tested).

Likewise, many dissimilatory perchlorate-reducing bacteria and archaea can also respire NO3
−

producing N2 as a final product [100]. This feature increases the possibilities of using halophilic
organisms that can reduce, not only (per)chlorates, but also nitrates. In fact, ion exchange technologies
concentrate perchlorate and other ions as nitrates [104]. Nitrate is also present in environments where
(per)chlorate is faced as contaminants and its concentrations are increasing annually in such systems
due to the use of fertilizers in agriculture [50,108].

The interaction between nitrate and (per)chlorate reductions in bioremediation is complex: On the
one hand, some reports state that nitrate inhibits perchlorate reduction completely [109], while others
conclude that there is no inhibition when nitrate is present [110] in some cases, they lose the denitrifying
ability after cultivation on ClO3

−, while in others, they can recover it after repeat aerobic subculturing
in the presence of nitrate [100].

One of the best extremophiles studied in terms of its ability to reduce (per)chlorates and nitrates
in anaerobic conditions is H. mediterranei. It can reduce perchlorate, chlorate, nitrate as well as bromate
through the same enzyme: respiratory nitrate reductase [50]. Moreover, this enzyme permits the
reduction of nitrate to dinitrogen with low and transient accumulations of the main toxic intermediates
of denitrification, NO and N2O [108].

6.2. Arsenates and Sulphates

Arsenic (As) is one of the most abundant and ubiquitous toxic heavy metals, and it occurs
predominantly in the form of the inorganic oxyanions arsenate (H3AsO4) [As(V)] and arsenite
(H3AsO3) [As(III)] [111]. Several groundwaters, sediments, and minerals are enriched in As, which can
contaminate fluvial waters, affecting the quality of water resources thus limiting their use [112]. One of
the most widely used pathways for the bioremediation of arsenic is the reduction of arsenate to arsenite
through arsenate reductase. In these cases, As(V) acts as an electron acceptor and its reduction, coupled
with the oxidation of inorganic and organic substrates, leads to generation of energy [113]. Although
As(III) is 100 times more toxic than As(V) [114], it is more mobile and it can be removed by precipitation
or complexation with sulphide [115]. Extremophiles members of Bacteria and Archaea Domains can
reduce arsenate to arsenite as a bioenergetic substrate: examples of this metabolic capacity are some
thermophile archaea like Pyrobaculum aersenaticum and Pyrobaculum aerophilum [116] and bacteria like
Thermus sediminis [117]. More recently, 18 haloarchaea strains belonging to the Halorubrum genus able
to reduce arsenate have been discovered [73].

As mentioned before, sulfate-reducing bacteria/archaea (SRB) are combined with arsenate reducers
in bioremediation process. SRB use the sulphate as electron acceptor to produce sulfide [118], which
react with As to form a complex with low solubility that precipitates arsenic [115]. Microorganisms that
can couple the reduction of arsenate and sulfate are the best candidates for their use in bioremediation
processes. The main problem is that certain levels of As decline sulfate removal rates [119]. In this
sense, prokaryotic acidophiles have emerged as an interesting group for bioremediation of waters
contaminated with sulfates and arsenates with the advantage of their low pH resistance.

Serrano and co-workers demonstrated that a consortium of sulfate-reducing bacteria from Azufre
River (Chile) could reduce more than 60% of initial sulfate as well as near 80% of initial As starting
from an initial pH of 3.5 [112]. Thus, bioremediation systems that are based on acid/metal-tolerant
sulfate-reducing bacteria could be used as new tool for the treatment of these waters.
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7. Conclusions

DMSO reductases are quite versatile enzymes catalyzing key reactions belonging to several
biogeochemical cycles. Although several aspects, like the biosynthesis of the MoCo cofactor, have
been extensively described so far, other subjects like the basis of molecular biology related to DMSO
operons, phylogeny, and evolution or potential applications of these enzymes at industrial processes
remain undescribed. The lack of knowledge on these enzymes is particularly critical in the case of
extreme microbes. Bearing in mind that most of the extremophilic microorganisms show genuine
metabolisms able to deal with toxic compounds like arsenate, (per)chorate, etc., it seems a contradiction
that this type of enzyme has not been better explored from extremophiles to date. Within this context,
new questions arise: (i) How relevant are the reactions catalyzed by DMSOs in anoxic environments
containing significant concentrations of toxic compounds like arsenate? (ii) How the active sites of
DMSOs and MoCo cofactor discriminate between the substrates? (iii) Which are the main amino acidic
residues making possible dual activities in the case of NarGHs dealing with nitrate, (per)chlorate,
bromate, selenate? More research is required in this field of knowledge in the future, and the potential
applications of these enzymes on a large scale would be of high soundness.
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Abbreviations

FeMoCo iron-molybdenum Cofactor
MoCo molybdenum pterin-based Cofactor
cPMP cyclic pyranopterin monophosphate
5′-GTP guanosine triphosphate
MPT molybdopterin /metal-Binding Pterin
FeVCo iron-vanadium cofactor
WCo tungsten cofactor
DMSO dimethyl sulfoxide
mARC mitochondrial amidoxime reducing components
Bis-MGD bis-molybdopterin-guanine dinucleotide
3′,8-cH2GTP 3′,8-cyclo-7,8-dihydro-guanosine 5′-triphosphate
Bis-Mo-MPT bis-mo-molybdopterin
TMAO trimethylamine N-oxide
NapA periplasmic nitrate reductase
NarG respiratory nitrate reductase
Nas assimilatory nitrate reductase
PsrA polysulfide reductases
ArrA respiratory arsenate reductases
Fdh-N formate dehydrogenases N
PcrA perchlorate reductases
SerA respiratory selenate reductases
ClrA chlorate reductases
DmsA DMSO reductases
TorA TMAO reductases
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