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Abstract

DMTCP (Distributed MultiThreaded CheckPointing) is a
transparent user-level checkpointing package for distributed
applications. Checkpointing and restart is demonstrated for
a wide range of over 20 well known applications, includ-
ing MATLAB, Python, TightVNC, MPICH2, OpenMPI, and
runCMS. RunCMS runs as a 680 MB image in memory
that includes 540 dynamic libraries, and is used for the
CMS experiment of the Large Hadron Collider at CERN.
DMTCP transparently checkpoints general cluster compu-
tations consisting of many nodes, processes, and threads;
as well as typical desktop applications. On 128 distributed
cores (32 nodes), checkpoint and restart times are typically
2 seconds, with negligible run-time overhead. Typical check-
point times are reduced to 0.2 seconds when using forked
checkpointing. Experimental results show that checkpoint
time remains nearly constant as the number of nodes in-
creases on a medium-size cluster.

DMTCP automatically accounts for fork, exec, ssh, mu-
texes/semaphores, TCP/IP sockets, UNIX domain sockets,
pipes, ptys (pseudo-terminals), terminal modes, ownership of
controlling terminals, signal handlers, open file descriptors,
shared open file descriptors, I/O (including the readline
library), shared memory (via mmap), parent-child process
relationships, pid virtualization, and other operating sys-
tem artifacts. By emphasizing an unprivileged, user-space
approach, compatibility is maintained across Linux kernels
from 2.6.9 through the current 2.6.28. Since DMTCP is
unprivileged and does not require special kernel modules or
kernel patches, DMTCP can be incorporated and distributed
as a checkpoint-restart module within some larger package.

1. Introduction

Checkpointing packages have been available for over
20 years. They are now often used in high performance com-
puting and batch environments. Yet, they have not widely
penetrated to ordinary applications on the desktop. There
is a need for a simple transparent checkpointing package

for commonly used desktop applications (including binary-
only commercial applications provided by a third-party),
that can at the same time handle distributed, multi-threaded
production computations on clusters. Unlike the most widely
used systems today, DMTCP is user-level, requiring no
system privileges to operate. This allows DMTCP to be
bundled with the application, thereby opening up entirely
new applications for checkpointing.

As one striking example, many programs have a CPU-
intensive first phase, followed by a second phase for inter-
active analysis. The approach described here immediately
enables one to run the CPU-intensive portion of a computa-
tion on a powerful computer or cluster, and then migrate the
computation to a single laptop for later interactive analysis
at home or on a plane.

Another application of checkpointing that has been well
received among users of DMTCP is the ability to easily
debug long-running jobs. When bugs in the middle of a long-
running job are discovered, one can repeatedly restart from a
checkpoint taken just before the bug occurred and examine
the bug in a debugger. This reduces the debug-recompile
cycle for such cases.

Distributed checkpointing is an inherently hard problem
to solve in a robust way. The most widely used distributed
checkpointing approaches today are based on custom kernel
modules. This approach limits the applications of check-
pointing because it can only be deployed in controlled envi-
ronments. Additionally, kernel modules are hard to maintain
because they directly access internals of the kernel that
change more rapidly than standard APIs. As evidence of
this, the web site checkpointing.org includes many earlier
attempts at checkpointing. Most of the attempts that were
based on modification of the kernel do not work on current
kernel versions.

Where checkpoint/restart has been successful to date, it
has been in batch systems for production use (but sometimes
with restrictions on distributed or multi-threaded applica-
tions). Here, it is reasonable to spend large amounts of man-
power to maintain kernel-specific checkpointing schemes.

This motivates why many batch queues make checkpoint-
ing available, but in contrast, “checkpointing on the desktop”



is not as widely available today. DMTCP tries to support
both traditional high performance applications and typical
desktop applications. With this in mind, DMTCP supports
the critical feature of transparency: no re-compilation and no
re-linking of user binaries. Because it supports a wide range
of recent Linux kernels (2.6.9 through the current 2.6.28), it
can be packaged as just one module in a larger application.
The application binary needs no root privilege and need not
be re-configured for new kernels. This also painlessly adds
a “save/restore workspace” capability to an application, or
even to a problem-solving environment with many threads
or processes.

Ultimately, the novelty of DMTCP rests on its par-
ticular combination of features: user-level, multi-threaded,
distributed processes, fast checkpoints of 0.2 seconds in the
case of forked checkpointing. Those features are designed to
support a broad range of use cases for checkpointing, which
go beyond the traditional use cases of today.

1.1. Use Cases

Next, we present some uses of checkpointing going be-
yond the traditional checkpointing of a long-running process.
Many of these additional uses are motivated by desktop
applications.

1) save/restore workspace: Interactive languages fre-
quently include their own “save/restore workspace”
commands. DMTCP eliminates that need.

2) “undump” capability: programs that would other-
wise have long startup times often create a cus-
tom “dump/undump” facility. The software is then
built, dumped after startup, and re-built to package
a “checkpoint” along with an undump routine. One of
the applications for which we are working with the
developers; cmsRun, has exactly this problem: initial-
ization of 10 minutes to half an hour due to obtaining
reasonably current data from a database, along with
issues of linking approximately 400 dynamic libraries:
unacceptable when many thousands of such runs are
required.

3) a substitute for PRELINK: PRELINK is a Linux
technology for prelinking an application, in order to
save startup time when many large dynamic libraries
are invoked. PRELINK must be maintained in sync
with the changing Linux architecture.

4) debugging long-running distributed processes: Use
gdb or another debugger to attach to a restarted
process.

5) debugging of distributed applications: all processes are
checkpointed just before a bug and then restarted on
a single host for debugging.

6) applications with CPU-intensive front-end and inter-
active analysis of results at back-end: Run on high

performance host or cluster, and restart all processes
on a single laptop

7) checkpointed image as the “ultimate bug report”
8) traditional checkpointing of long-running distributed

applications that may run under some dialect of MPI,
or under a custom sockets package (e.g. iPython, used
in SciPy/NumPy for parallel numerical applications.)

9) robustness: upon detecting distributed deadlock or
race, automatically revert to an earlier checkpoint
image and restart in slower, “safe mode”, until beyond
the danger point.

1.2. Outline

Section 2 covers related work. Section 3 describes
DMTCP as seen by an end-user. Section 4 describes the
software architecture. Section 5 presents experimental re-
sults. Finally, Section 6 presents the conclusions and future
work.

2. Related Work

There is a long history of checkpointing packages
(kernel- and user-level, coordinated and uncoordinated,
single-threaded vs. multi-threaded, etc.). Given the space
limitations, we highlight only the most significant of the
many other approaches.

DejaVu [29] (whose development overlapped that of
DMTCP) also provides transparent user-level checkpointing
of distributed process based on sockets. However, DejaVu
appears to be much slower than DMTCP. For example, in
the Chombo benchmark, Ruscio et al. report executing ten
checkpoints per hour with 45% overhead. In comparison,
on a benchmark of similar scale DMTCP typically check-
points in 2 seconds, with essentially zero overhead between
checkpoints. Nevertheless, DejaVu is also able to checkpoint
InfiniBand connections by using a customized version of
MVAPICH. DejaVu takes a more invasive approach than
DMTCP, by logging all communication and by using page
protection to detect modification of memory pages between
checkpoints. This accounts for additional overhead during
normal program execution that is not present in DMTCP.
Since DejaVu was not publicly available at the time of this
writing, a direct timing comparison on a common benchmark
was not possible.

The remaining work on distributed transparent check-
pointing can be divided into two categories:

1) User-level MPI libraries for checkpointing [4], [5],
[12], [14], [15], [33], [35], [37], [38]: works for
distributed processes, but only if they communicate
exclusively through MPI (Message Passing Interface).
Typically restricted to a particular dialect of MPI.

2) Kernel-level (system-level) checkpointing [13], [16],
[18], [19], [30], [32], [34]: modification of kernel;



requirements on matching package version to kernel
version.

A crossover between these two categories is the kernel
level checkpointer BLCR [13], [30]. BLCR is particularly
notable because of its widespread usage. BLCR itself can
only checkpoint processes on a single machine. However
some MPI libraries (including some versions of OpenMPI,
LAM/MPI, MVAPICH2, and MPICH-V) are able to inte-
grate with BLCR to provide distributed checkpointing.

Three notable distributed kernel-level solutions based on
the Linux kernel module Zap are provided by Laadan and
Nieh [18], [19] and Janakiraman et al. [16], and Chpox
by Sudakov et al. [34]. This approach leads to checkpoints
being more tightly coupled to kernel versions. It also makes
future ports to other operating systems more difficult.

Much MPI-specific work has been based on coordinated
checkpointing and the use of hooks into communication by
the MPI library [14], [15]. In contrast, our goal is to support
more general distributed scientific software.

In addition to distributed checkpointing, many packages
exist which perform single-process checkpointing [1], [2],
[6], [8], [20]–[22], [24]–[26].

For completeness, we also note the complementary tech-
nology of virtual machines. As one example, VMware offers
both snapshot and record/replay technology for its virtual
machines. The process-level checkpointing of DMTCP is
inherently a lighter weight solution. Further, process-level
checkpointing makes it easier to support distributed applica-
tions. VMware players require system privilege for installa-
tion, although snapshot and record/replay can thereafter be
used at user level.

Further discussion of checkpointing is found in the fol-
lowing surveys [10], [17], [28].

3. Usage and Features

The user will typically use three DMTCP commands:
dmtcp_checkpoint [options] <program>
dmtcp_command <command>
dmtcp_restart_script.sh

The restart script is generated at checkpoint time. Each
invocation of dmtcp_checkpoint by the end user causes
the corresponding process to be registered as one of the set
of processes that will be checkpointed. All local and remote
child processes are checkpointed recursively. As an example,
to run an MPICH-2 computation under DMTCP the user
would first run:

dmtcp_checkpoint mpdboot -n 32
dmtcp_checkpoint mpirun <mpi-program>

Note that the MPI resource management processes are
also checkpointed. The first call to dmtcp_checkpoint
will automatically spawn the checkpoint coordinator.
mpdboot will call ssh to spawn remote processes, these

calls are transparently intercepted and modified so the re-
mote processes are also run under DMTCP. To request a
checkpoint, the user would then run:

dmtcp_command --checkpoint

Checkpoints may also be automatically generated at regu-
lar intervals through via a timer by using the --interval
option or the DMTCP programming interface. The check-
point images for each process are written to unique filenames
in a user specified directory. Additionally, a shell script,
dmtcp_restart_script.sh, is created containing all
the commands needed to restart the distributed computation.
This script consists of many calls to dmtcp_restart, one
for each node.

A more detailed list of options and commands for control-
ling the behavior of DMTCP are described in the manpages
shipped with DMTCP.

3.1. Programming Interface

DMTCP is able to checkpoint unmodified Linux exe-
cutables. We envision the typical use case as having the
checkpointed application completely unaware of DMTCP.
(This is the configuration used in experimental results.)
However, for those wishing to have more control over the
checkpointing process, we provide a library for interacting
with DMTCP called dmtcpaware.a. This library allows
the application to: test if it is running under DMTCP; request
checkpoints; delay checkpoints during a critical section
of code; query DMTCP status; and insert hook functions
before/after checkpointing or restart.

4. Software Architecture

DMTCP consists of 17,000 lines of C and C++ code.
DMTCP is freely available as open source software and can
be downloaded from:

http://dmtcp.sourceforge.net/
DMTCP is built upon our previous work, MTCP (Multi-
Threaded CheckPointing) [27]. MTCP is assigned respon-
sibility for checkpointing of individual processes, while
DMTCP checkpoints and restores socket/file descriptors and
other artifacts of distributed software. This novel two-layer
design greatly aids in maintenance and portability.

4.1. Design of DMTCP

DMTCP refers both to the entire package, and to the
distributed layer of the package. The two layers of DMTCP,
known as DMTCP and MTCP, consist of:

1) DMTCP allows checkpointing of a network of pro-
cesses spread over many nodes. After DMTCP copies
all inter-process information to user space, it delegates



single-process checkpointing to a separate checkpoint
package.

2) We base single-process checkpointing on our previous
work, MTCP (Multi-Threaded CheckPointing) [27].

These two layers are separate, with a small API between
them. This two-layer user-level approach has a potential
advantage in non-Linux operating systems, where DMTCP
can be ported to run over other single-process checkpointing
packages that may already exist.

Checkpointing is added to arbitrary applications by inject-
ing a shared library at execution time. This library:
• Launches a checkpoint management thread in every

user process which coordinates checkpointing.
• Adds wrappers around a small number of libc func-

tions in order to record information about open sockets
at their creation time.

System calls and the proc filesystem are also used to probe
kernel state.

We use a coordinated checkpointing method, where all
processes and threads cluster-wide are simultaneously sus-
pended during checkpointing. Network data “on the wire”
and in kernel buffers is flushed into the recipient process’s
memory and saved in its checkpoint image. After a check-
point or restart, this network data is sent back to the original
sender and retransmitted prior to resuming user threads. A
more detailed account of our methodology can be found in
Section 4

The only global communication primitive used at check-
point time is a barrier. At restart time, we additionally
require a discovery service to discover the new addresses
for processes migrated to new hosts.

4.2. Initialization of an application process under
DMTCP

At startup of a new process dmtcp_checkpoint in-
jects dmtcphijack.so, the DMTCP library responsible for
checkpointing, into the user program. Library injection is
currently done using LD_PRELOAD. Library injection can
also be done after program startup [36] and on other archi-
tectures [9].

Once injected into the user process, DMTCP loads
mtcp.so, our single process checkpointer, and calls the
MTCP setup routines to enable integration with DMTCP.
MTCP creates the checkpoint manager thread in this setup
routine. DMTCP also opens a TCP/IP connection to the
checkpoint coordinator at this time. This results in a copy of
our libraries and manager residing within each checkpointed
process.

DMTCP adds wrappers around a small number of libc
functions. This is done by overriding libc symbols with
our library. For efficiency reasons, we avoid wrapping any
frequently invoked system calls such as read and write.

The wrappers are necessary since DMTCP must be aware of
all forked child processes, of all attempts to create remote
processes (for example via an exec to an ssh process),
and of the parameters by which all sockets are created. In
the case of sockets, DMTCP needs to know whether the
sockets are TCP/IP sockets (and whether they are listener
or non-listener sockets), UNIX domain sockets, or pseudo-
terminals. DMTCP places wrappers around the following
functions: socket, connect, bind, listen, accept, setsockopt,
fexecve, execve, execv, execvp, fork, close, dup2, socketpair,
openlog, syslog, closelog, ptsname and ptsname r. The rest
of this section describes the purposes for these wrapper.

4.3. Checkpointing under DMTCP

Checkpointing proceeds through seven stages and six
global barriers. Global barriers could be implemented ef-
ficiently through peer-to-peer communication or broadcast
trees, but are currently centralized for simplicity of imple-
mentation.

The following is the DMTCP distributed algorithm
for checkpointing an entire cluster. It is executed asyn-
chronously in each user process. The only communication
primitive used is a cluster-wide barrier. The following steps
are depicted graphically in Figure 1.

1) Normal execution: The checkpoint manager thread in
each process waits until a new checkpoint is requested
by the coordinator. This is done by waiting at a special
barrier that is not released until checkpoint time.

2) Suspend user threads: MTCP suspends all user
threads, then DMTCP saves the owner of each file
descriptor. DMTCP then waits until all application
processes reach Barrier 2: “suspended”, then releases
the barrier.

3) Elect shard FD leaders: DMTCP executes an election
of a leader for each potentially shared file descrip-
tor. We trick the operating system into electing a
leader for us by misusing the F SETOWN flag
of fcntl. All processes set the owner, and the
last one wins the election. In Step 4, a process can
test if it is the election leader for a socket fd by
testing if fcntl(fd, F_GETOWN)==getpid().
The original value for F SETOWN is restored after
kernel buffers are refilled. DMTCP then waits until
all application processes reach Barrier 3: “election
completed”, then releases the barrier.

4) Drain kernel buffers and perform handshakes with
peers: For each socket, the corresponding election
leader flushes that socket by sending a special token.
It then drains that socket by receiving until there is
no more available data and the special token is seen.
DMTCP then performs handshakes with all socket
peers to discover the globally unique ID of the remote
side of all sockets. The connection information table
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Figure 1: Steps for checkpointing a simple system with 2 nodes, 3 processes, and 5 threads.

is then written to disk. DMTCP then waits until all
application processes reach Barrier 4: “drained”, then
releases the barrier.

5) Write checkpoint to disk: The contents of all socket
buffers is now in user space. MTCP writes all of user
space memory to the checkpoint file. DMTCP then
wait until all application processes reach Barrier 5:
“checkpointed”, then release the barrier.

6) Refill kernel buffers: DMTCP then sends the drained
socket buffer data back to the sender. The sender
refills the kernel socket buffers by resending the data.
DMTCP then waits until all application processes
reach Barrier 6: “refilled”, then releases the barrier.

7) Resume user threads: MTCP then resumes the appli-
cation threads and DMTCP returns to Step 1.

4.4. Restart under DMTCP

The restart process undergoes some complexity in order
to restore shared sockets. Under UNIX semantics multiple
processes may share a single socket connection. When
a process forks all open file descriptors become shared
between the child and parent. To handle this, we refer to
sockets by a globally unique ID (hostid, pid, timestamp, per-
process connection number) and thus can detect duplicates
at restart time. These globally unique socket IDs (and other
meta information), were recorded at checkpoint time in the
connection information table for each process. To recreated
shared sockets, a single DMTCP restart process is created
on each host. This single restart process will first restore all
sockets, and then fork to create each individual user process
on that host.

The following algorithm restarts the checkpointed cluster
computation. It is executed asynchronously on each host
in the cluster. The steps of this algorithm are depicted
graphically in Figure 2.

1) Reopen files and recreate ptys: File descriptors, ex-
cluding sockets connected to a remote process, are
regenerated first. These include files, listen sockets,
uninitialized sockets, and pseudo-terminals.

2) Recreate and reconnect sockets: For each socket,
the restart program uses the cluster-wide discovery
service to find the new address of the corresponding
restart process. Once the new addresses are found the
connections are re-established. The discovery services
is needed since processes may be relocated between
checkpoint and restore.

3) Fork into user processes: The DMTCP restart program
now forks into N processes, where N is the number
of user processes it intends to restore.

4) Rearrange FDs for user process: Each of these pro-
cesses uses dup2 and close to re-arrange the file
descriptors to reflect the arrangement prior to check-
pointing. Unneeded file descriptors belonging to other
processes are closed. Shared file descriptors will now
exist in multiple processes.

5) Restore memory and threads: The MTCP restart rou-
tine is now called to restore the local process memory
and threads. Upon completion the user process will
resume at Barrier 5 of the checkpoint algorithm in
Section 4.3

6) Refill kernel buffers: The program resumes as if it had
just finished writing the checkpoint to disk, in Step 6
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Figure 2: Steps for restarting the system checkpointed in Figure 1. The unified restart process and subsequent fork are
required to recreate sockets and pipes shared between processes.

of checkpointing.
7) Resume user threads: The program continues execut-

ing Step 7 of checkpointing.
Step 2 above bears further explanation. Recall that prior

to checkpointing, whenever a new connection was accepted,
wrappers around the system calls connect and accept
had transferred information about the connector to the
acceptor. This information includes a globally unique
socket ID that remains constant even if processes are re-
located.

At restart time, the acceptor for each socket adver-
tises the address and port of its restart lister socket to
the discovery service. When the connector receives this
advertisement, it opens a new connection to the acceptor
who sent the advertisement. The two sides then perform a
handshake and agree on the socket being restored. Finally,
dup2 is used on each side to move the socket descriptor to
the correct location. This process continues asynchronously
until all sockets are restored. Our methodology supports
both sides of a socket migrating. It also supports loopback
sockets.

4.5. Implementation Strategies

In the implementation, some less obvious issues arise
in the support for pipes, shared memory (via mmap), and
virtual pids.

Pipes present an issue because they are unidirectional. As
seen in Sections 4.3 and 4.4, the strategy for checkpointing
network data in a socket connection is for the receiver to
drain the socket into user space, then write a checkpoint

image, and finally re-send the network data through the
same socket back to the sender. In order to support pipes,
a wrapper around the pipe system call promotes pipes into
sockets.

In the case of shared memory, if the backing file of a
shared memory segment is missing and we have directory
write permision, then we create a new backing file. Next,
assuming the backing file is present and we have write
access, we overwrite the shared memory segment with data
from the checkpoint image. If two processes share this
memory, they will both write to the same shared segment,
but with the same data, since the segment was also shared
at the time of checkpoint.

If we do not have write access (for example, read-
only access to certain system-wide data), then we map the
memory segment by the current data of the file, and not the
checkpoint image data.

In order to support virtual pids (process ids), one must
worry about pid conflicts. The original pid When a process
is first created through a call to fork, its pid also becomes
its virtual pid, and that virtual pid is maintained throughout
succeeding generations of restarts. Hence, a new process
may have pid A. After checkpoint and restart, a second
process may be created with the same pid A. Our wrapper
around fork detects this situation, terminates the child with
the conflicting virtual pid,, and forks once again.

5. Experimental Results

DMTCP is currently implemented for GNU/Linux. The
software has been verified to work on recent versions of
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Figure 3: Common shell-like languages and other applications. All are run on a single node with compression enabled.

Ubuntu, Debian, OpenSuse, and Red Hat Linux with Linux
kernels ranging from version 2.6.9 through version 2.6.28.
DMTCP runs on x86, x86 64 and mixed (32-bit processes
in 64-bit Linux) architectures.

Experiments were run on two broad classes of programs:
shell-like languages intended for a single computer (e.g.
MATLAB, Perl, Python, Octave, etc.); and distributed pro-
grams across the nodes of a cluster (e.g. ParGeant4, iPython,
MPICH2, OpenMPI, etc). Reported checkpoint images are
after gzip compression (unless otherwise indicated), since
DMTCP dynamically invokes gzip before saving, by default.

In Section 5.1, our goal was to demonstrate on 20 com-
mon real-world applications. An emphasis on shell-like lan-
guages were chosen for their widespread usage, and for their
tendency to invoke multiple processes and multiple threads
in their implementation. The languages were chosen from
the applications listed under “Interactive mode languages”
(shell-like languages) in the article “List of programming
languages by category” on Wikipedia.

Section 5.2 is concerned with testing for scalability.
The parallel tools and benchmarks were chosen for their
popularity in the computational science community. They
were augmented with some computational packages that had
already been configured and installed as tools used by our

own working group.

5.1. Common Shell-Like Languages

These tests were conducted on a dual-socket, quad-core
(8 total cores) Xeon E5320. This system was running 64-bit
Debian “sid” GNU/Linux with kernel version 2.6.28.

To show breadth, we present checkpoint times, restart
times, and checkpoint sizes on a wide variety of commonly
used applications. These results are shown in Figure 3. These
applications are: BC (1.06.94) – an arbitrary precision cal-
culator language; Emacs (2.22) – a well known text editor;
GHCi (6.8.2) – the Glasgow Haskell Compiler; Ghostscript
(8.62) – PostScript and PDF language interpreter; GNU-
Plot (4.2) – an interactive plotting program; GST (3.0.3)
– the GNU Smalltalk virtual machine; Lynx (2.8.7) – a
command line web browser; Macaulay2 (2-1.1) – a system
supporting research in algebraic geometry and commutative
algebra; MATLAB (7.4.0) – a high-level language and
interactive environment for technical computing; MZScheme
(4.0.1) – the PLT Scheme implementation; OCaml (3.10.2)
– the Objective Caml interactive shell; Octave (3.0.1) – a
high-level interactive language for numerical computations;
PERL (5.10.0) – Practical Extraction and Report Language



interpreter; PHP (5.2.6) – an HTML-embedded scripting
language; Python (2.5.2) – an interpreted, interactive, object-
oriented programming language; Ruby (1.8.7) – an inter-
preted object-oriented scripting language; SLSH (0.8.2) – an
interpreter for S-Lang scripts; SQLite (2.8.17) – a command
line interface for the SQLite database; tclsh (8.4.19) – a sim-
ple shell containing the Tcl interpreter; TightVNC+TWM
(1.3.9, 1.0.4) – a headless X11 server running Tab Window
Manager underneath it; and vim/cscope (15.6) – interactively
examine a C program.

Of particular interest is the checkpointing of TightVNC,
a headless X11 server. We checkpoint the vncserver, the
window manager, and all graphical applications. Between
checkpoints, clients can connect with (uncheckpointed)
vncviewers to interact with the graphical applications. Using
this technique, we can checkpoint graphical applications
without the need to checkpoint interactions with graphics
hardware.

Additionally (not included in the graphs, because of
differences in scale) we have demonstrated checkpointing
of RunCMS. RunCMS checkpoints in 25.2 seconds and
restarts in 18.4 seconds. RunCMS is of especially timely
interest, with the recent startup of the large hadron collider
at CERN. We are collaborating with the CMS experiment
at CERN to checkpoint and restart their CMS software of
up to two million lines of code and up to 700 dynamic
libraries. We test on a configuration which grows to 680 MB
of data after running for 12 minutes. At that time, it had
loaded 540 dynamic libraries, as measured by the maps file
of the proc filesystem. The checkpointed image file on disk
was 225 MB, after gzip compression. (DMTCP invokes gzip
compression by default.)

5.2. Distributed Applications

Distributed tests (Section 5.2) were conducted on a
32 node cluster with 4 cores per node (128 total cores). Each
node was configured with dual-socket,dual-core Xeon 5130
processors and 8 GB or 16 GB of RAM. Each node was
running 64-bit Red Hat Enterprise GNU/Linux release 4
with kernel version 2.6.9-34. The cluster was connected with
Gigabit Ethernet.

In Figure 5b, checkpoints were written to a centralized
EMC CX300 SAN storage device over a 4 Gbps Fibre
Channel Switch. (SAN stands for storage area network.) On
our cluster, only 8 of the 32 nodes were connected to the
SAN. The remaining 24 nodes wrote indirectly to the storage
device via NFS. In all other tests, checkpoints were written
to local disk of each node.

We report checkpoint times, restart times, and checkpoint
file sizes for a suite of distributed applications. These results
are contained in Figures 4a, 4b and 4c, respectively. In each
case, we report the timings and file sizes both with and
without compression. The following applications are shown:
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(a) Checkpoints stored to local disk of each node.
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(b) Checkpoints stored to centralized RAID storage via SAN and
NFS.

Figure 5: Timings as the number of processes and nodes
changes. Application is ParGeant4 running under MPICH2.
Compression is enabled. Compute processes per core and
per node are held constant at 1 and 4, while the number of
nodes is varied. (Note: An additional 21 to 161 MPICH2
resource management processes are also checkpointed.)

• Based on sockets directly:
– iPython: [23] an enhanced Python shell with

support for parallel and distributed computa-
tions. Used in scientific computations such as
SciPy/NumPy [31]. iPython/Shell: is the in-
teractive iPython interpreter, idle at time of check-
point. iPython/Demo: is the “parallel comput-
ing” demo included with the iPython tutorial.

• Run using MPICH2 (1.0.5):
– Baseline is a “hello world” type application in-

cluded to show the cost of checkpointing MPICH2
and its resource manger, MPD.

– ParGeant4: Geant4 [11] is a million-line C++
toolkit for simulating particle-mattter interaction.
It is based at CERN, where the largest particle
collider in the world has been built. ParGeant4 [3]
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(a) Checkpoint timings.
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(b) Restart timings.
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(c) Aggregate (cluster-wide) checkpoint size.

Figure 4: Distributed Applications. Timings on 32 nodes. Applications marked [1] use sockets directly. Applications marked
[2] are run using MPICH2. Applications marked [3] are run using OpenMPI. Timing tests repeated 10 times, and the mean
value is shown. Error bars in timings indicate plus or minus one standard deviation.

is a parallelization based on TOP-C, that is dis-
tributed with the Geant4 distribution. TOP-C (Task
Oriented Parallel C/C++) was in turn built on top
of MPICH2 for this demonstration.

– NAS NPB2.4: CG (Conjugate Gradient, level C)
from the well-known benchmark suite NPB.
NPB 2.4-MPI was used.

• Run using OpenMPI (1.2.4):

– Baseline is a “hello world” type application in-
cluded to show the cost of checkpointing OpenMPI
and its resource manger, OpenRTE.

– NAS NPB2.4: a series of well-known MPI
benchmarks. NPB 2.4-MPI was used. The bench-
marks run under OpenMPI are: BT (Block Tridi-
agonal, level C: 36 processes since the software

requires a square number), SP (Scalar Pentadi-
agonal, level C: 36 processes since the software
requires a square number), EP (Embarrassingly
Parallel, level C), LU (Lower-Upper Symmetric
Gauss-Seidel, level C), MG (Multi Grid, level C),
and IS (Integer Sort, Level C).

In Figure 5a we use ParGeant4 as a test case to report
on scalability with respect to the number of nodes. When
resource management processes are included, we are check-
pointing a total of 289 processes in the largest example.
Figure 5b repeats this tests with checkpoints written to a
centralized storage device.

Figure 6 illustrates the time as memory usage grows,
while holding fixed the number of participating nodes at 32.
The implied bandwidth is well beyond the typical 100 MB/s



of disk, and is presumably indicating the use of secondary
storage cache in the Linux kernel. Restart times also indicate
the use of cache and page table optimizations in the kernel.

An optional feature in DMTCP is to issue a sync after
checkpointing to wait for kernel write buffers to empty
before resuming the user threads. Results shown do not issue
a call to sync. This is consistent with timing methodology
most prevalent in related work. The cost of issuing a sync
can be easily estimated based on checkpoint size and disk
speed. As an example, if a sync is issued for ParGeant4
(compression enabled) a mean additional cost of 0.79 sec-
onds (with a standard deviation of 0.24) is incurred. An
alternate strategy is to sync the previous checkpoint instead.
This has the benifits of still guaranteeing the consistency of
all except the last checkpoint without having to wait for disk
in most cases.
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Figure 6: Timings as memory usage grows. A synthetic
OpenMPI program allocating random data on 32 nodes.
Compression is disabled. Checkpoints written to local disk.

5.3. Breakdown of Checkpoint/Restart Times

Table 1 shows the times for the different stages of
checkpointing and restart. Checkpoint time is dominated by
writing the checkpoint image to disk. This timing breakdown
is typical for all other applications we examined. The time
for writing the checkpoint image to disk is almost entirely
eliminated by using the technique of forked checkpoint-
ing [20], [21]. In forked checkpointing, a child process is
forked, the child process writes the checkpoint image, and
the parent process continues to execute, taking advantage of
UNIX copy-on-write-semantics. Forked checkpointing has
the disadvantage that compression runs in parallel and may
slow down the user process and take longer. The forked
checkpointing times presented here are from an experimental
version of DMTCP. Forked checkpointing was also sup-
ported in a forerunner of the current work [7].

Stage Uncompressed Compressed Fork Compr.
Suspend user threads 0.0251 0.0217 0.0250
Elect FD leaders 0.0014 0.0013 0.0013
Drain kernel buffers 0.1019 0.1020 0.1017
Write checkpoint 0.6333 3.9403 0.0618
Refill kernel buffers 0.0006 0.0008 0.0016
Total 0.7630 4.0669 0.1922

(a) Checkpoint

Stage Uncompressed Compressed
Restore files and ptys 0.0056 0.0088
Reconnect sockets 0.0400 0.0214
Restore memory/threads 0.8139 2.1167
Refill kernel buffers 0.0009 0.0018
Total 0.8604 2.1487

(b) Restart

Table 1: Time (in seconds) for different stages of checkpoint
and restart for NAS/MG under OpenMPI, using 8 nodes.
Forked is the same as compressed, except that compression
and writing are delegated to a child process and allowed to
run in parallel.

The stages in Table 1a correspond to steps 2 through
6 in Figure 1. The stages in Table 1b correspond to steps
1 through 6 in Figure 2, except that steps 3 and 4, which
take negligible time, are lumped in with step 5. Since the
first 3 reported times for restart occur in parallel on each
node, the reported times are an average across all 8 nodes.
All other times are the durations between the global barriers.

5.4. Experimental Analysis

In principle, the time for checkpointing is dominated by:
(i) compression (when enabled); (ii) checkpointing memory
to disk; and (iii) (to a much lesser extent) flushing network
data in transit and re-sending. When compression is enabled,
that time dominates. The cost of flushing and re-sending
is bounded above by the size of the corresponding kernel
buffers and the capacity of the network switches, which tend
to be on the order of tens of kilobytes. Restart tends to
be faster than checkpoint, because gunzip operates more
quickly than gzip.

The graphs in Figure 4 show that the time to checkpoint
using compression tends to be slowest when the uncom-
pressed checkpoint image is largest. An exception occurs
for NAS/IS. NAS/IS is a parallel integer bucket-sort. The
bucket sort code has allocated large buckets to guard against
overflow. Presumably, the unwritten portion of the bucket is
likely to be mostly zeroes, and it compresses both quickly
and efficiently.

Figure 5 shows the time for checkpoint and restart to be
insensitive to the number of nodes being used. This is to
be expected since checkpointing on each node occurs asyn-
chronously. It also demonstrates that the single checkpoint
coordinator, which implements barriers, is not a bottleneck.



In the event that it were a bottleneck, we would replace it
by a distributed coordinator in our implementation.

6. Conclusions and Future Work

A scalable approach to transparent distributed checkpoint-
ing has been demonstrated that does not depend on a specific
message passing library. Nor does it depend on kernel mod-
ification. The approach achieves broad application coverage
across a wide array both of scientific and common desktop
applications. On 128 distributed cores (32 nodes), a typical
checkpoint time is 2 seconds, or 0.2 seconds by using forked
checkpointing, along with negligible run-time overhead. This
makes DMTCP attractive both for frequent checkpointing
and for minimal application interruptions during checkpoint-
ing of interactive applications. Experimental results have
shown that the approach is scalable and that timings remain
nearly constant as nodes are added to a computation within
a medium-size cluster. The centralized checkpoint coordi-
nator, which implements barriers, has minimal overhead
in these experiments. As the approach is scaled to ever
larger clusters, the single coordinator can be replaced by
a distributed coordinator using well-known algorithms for
distributed global barriers and distributed discovery services.

In the future, it is hoped to support new communication
models such as multicast and RDMA (remote direct memory
access) as used in networks such as InfiniBand. Future work
will fully support the ptrace system call, and therefore check-
pointing of gdb sessions. Future work will also extend the
ability to checkpoint X-Windows applications, as currently
demonstrated by the simple checkpointing of TightVNC.
This will further enhance the attractiveness of user-level
checkpointing.
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