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Abstract DNA-based self-assembly enables the programmable arrangement of mat-
ter on a molecular scale. It holds promise as a means with which to fabricate high tech-
nology products. DNA-based self-assembly has been used to arrange chromophores 
(dye molecules) covalently linked to DNA to form Förster resonant energy transfer 
and exciton-based devices. Here we explore the possibility of making coherent exci-
ton information processing devices, including quantum computers. The focus will 
be on describing the chromophore arrangements needed to implement a complete 
set of gates that would enable universal quantum computation. 

1 Introduction 

Already in the earliest days of DNA nanotechnology, Richardson and Seeman imag-
ined using DNA nanotechnology to fabricate electronic information storage and 
processing devices, such as three-dimensional memories in which the wires and 
switching elements were of molecular scale [ 1]. My own entry into this field, in the 
late 1990s, at Bell Laboratories, was motivated by this vision. The tools of DNA 
nanotechnology have undergone considerable development since those early days 
[ 2, 3], but its use in the construction of electronic or photonic information pro-
cessing systems is still in its infancy. One of the more developed areas is the use 
of DNA nanotechnology to arrange metallic nanoparticles, quantum dots and dyes 
in desired configurations [ 4– 9], (here referred to as aggregates) aimed at making 
photonic devices. A recent development is the use of DNA self-assembly to con-
struct dye aggregates in which the distance between the dyes is sufficiently close 
that excited-state energy can be transferred between neighboring dyes in a manner 
that maintains quantum coherence [ 10– 17]. The packet of energy that is transferred 
between dyes is referred to as an exciton and that exhibits quantum mechanical 
particle-like properties. The possibility of using such aggregates as quantum gates 
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and quantum computers was raised by Castellanos et al. [ 18, 19]. They exhibited 
dye aggregate configurations that implemented the function of a set of three types 
of gates that would enable universal quantum computation. As the authors point out, 
however, their embodiment of these gates does not allow one to exploit the full power 
of quantum computation. To to accomplish that, the authors note, use must be made 
of the interaction between two excitons. Here a set of gates is provided for which the 
interaction between two excitons is employed in the implementation of the controlled 
not (CNOT) gate. These gates do form a complete set enabling universal quantum 
computation. The quantum computation scheme employed is that of a many particle 
quantum walk, similar to the scheme proposed by Childs et al. [ 20]; however, here 
a dual-rail architecture is employed that greatly simplifies gate design. 

Random perturbations of excitons by molecular vibrations tend to wash out the 
delicate quantum interference effects on which quantum computing relies. Other 
would-be quantum computing technologies also must contend with random pro-
cesses by which quantum interference effects are washed out. This problem, how-
ever, is sufficiently severe for exciton-based quantum gates that it poses a significant 
challenge to exciton-based quantum computation’s capacity to win the race against 
all the other quantum computation technologies being developed [ 21– 23]. Whether 
dyes can be synthesized for which the interaction between excitons and molecular 
vibrations is sufficiently weak to enable more than the demonstration of rudimentary 
quantum computing circuits remains to be seen. The employment of devices based on 
molecular transitions at the energy scale of visible light photons does open, however, 
the prospect for quantum gate operation at room temperature and with femtosecond 
switching speeds. Quantum computation through the assembly of dye aggregates via 
DNA-based self-assembly thus provides a reach goal to drive the development of 
high technology photonic devices in which the gates are of molecular scale, have 
high switching speeds, and the circuits have high component density. 

Although the scope here is limited to dye aggregate architectures that can function 
as exciton-based quantum gates for universal quantum computation, with the implicit 
understanding that currently DNA self-assembly is the most promising means by 
which to assemble such aggregates, it worth noting that the study excitons in dye 
aggregates and molecular crystals has a long and extensive history [ 24]. This history 
predates the field of DNA assembly, beginning with theoretical work by Frenkel 
[ 25] in 1931 and the experimental work by Jelley [ 26] in 1936 and by Scheibe et al. 
[ 27– 29] in 1937. 

As indicated, here we explore the possibility of making information processing 
devices out of dye aggregates constructed by DNA self-assembly. Dye molecules 
exhibit color due to their ability to absorb light at specific wavelengths. The process 
occurs because the molecule has a transition from the ground state to an excited state 
that can be induced by the absorption of a visible light photon. Such a transition is 
said to be optically allowed in order to distinguish it from transitions that require a 
change in the total electron spin angular momentum, something that the absorption 
of a photon alone cannot do, or transitions that a photon cannot induce for symmetry 
or other reasons.
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The bundle of energy stored in the molecule upon absorption of a photon can be 
transferred from one dye molecule to a neighboring dye molecule. In this process one 
dye molecule returns to its ground state while simultaneously the other is promoted 
from its ground state to its optically allowed excited state. This bundle of energy that 
once was a photon can thus propagate from dye molecule to dye molecule throughout 
an aggregate of dye molecules. In this manner the bundle of energy behaves like a 
particle and could be used as a carrier of information much like an electron. 

This bundle of energy, which resides on one dye molecule at a time, is referred to 
as an exciton. Technically, this bundle of energy is referred to as a Frenkel exciton to 
distinguish it from a Wannier–Mott exciton which is an electron–hole pair residing 
in a semiconductor material. Either is simply referred to as an exciton, when it is 
clear from context which type of exciton is meant. 

When the spacing between dyes becomes 2 nm or less, the hopping occurs in a 
coherent manner, which enables the exciton to behave like a quantum mechanical 
particle exhibiting wave-like behavior. This is where quantum mechanical wave-
particle duality enters. Even though at any instant of time the exciton resides on only 
one dye, the exciton behaves as if it is a wave spread out over the entire dye aggregate. 

When a pair of neighboring dyes are both in their excited state, the electrostatic 
energy between the dyes will be different from that when only one dye is excited 
due to the change in a dye’s electron density distribution that occurs when the dye 
transitions from the ground state to the excited state. This gives rise to a two-body 
or exciton–exciton interaction in which excitons scatter off of each other. 

These two properties, the ability of an exciton to coherently hop from dye to dye 
and the ability of two excitons to scatter off of each other, in principle, enable suit-
ably structured dye aggregates to function as quantum gates, information processing 
systems and maybe even as quantum computers. 

In the following sections a set of dye configurations will be described that form 
a complete set of gates for universal quantum computation. Also described is how 
these gates can be assembled into functioning information processing systems and 
quantum computers. Nonidealities that must be overcome to realize such devices are 
also discussed. 

2 The Mathematical Structure of Reality 

Here a brief introduction to quantum mechanics is provided with the aim to give 
some indication of where the power of quantum computing resides. Quantum theory 
has survived 100 years of rigorous testing and, as near as can be discerned, pro-
vides the foundational description of all physical phenomena. This includes physical 
computation processes. In this sense all computers are quantum computers. But not 
all computers take advantage of the additional computing resources that quantum 
mechanics provides beyond those utilized by computers relying on classical physics. 

As an indication of how reality, by which we mean the state of a physical system, 
is represented in quantum mechanics, consider first a classical mechanical system.
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At any given instant of time, such a system will possess a number of attributes that 
can be measured such as its position, its momentum, angular momentum and energy. 
The list of numbers needed to specify the state of the system can be shorter than the 
complete list of attributes. For example, for a point particle the energy and angular 
momentum can be computed if the position and momentum are known. Thus, the 
particle’s position and momentum provide a complete specification of its state. In 
contrast to classical systems, in which the attributes can take on any real number 
value, in quantum mechanical systems, a measurement of an attribute often will 
only yield one of a discrete list of values: that is, the attribute is quantized. For 
example, for an electron in a hydrogen atom, the total angular momentum J and the 
z-component of the total angular momentum Jz , if measured, take on the discrete 
values h j ( j + 1) 

√
and hm j , respectively, where h is Planck’s constant, j is a half 

integer greater than zero, that is, j ∈ {1/2, 3/2, 5/2, . . .}, and m j is a half integer in 
the range − j ≤ m j ≤ j . Given  j and m j , the energy of the electron can be computed. 
Indeed, j and m j provide a complete specification of the state of the electron for 
which j and m j have been measured and this state is often denoted by | j, m j ⟩. Such 
states, however, do not exhaust the states that the electron can be in. The electron 
can be in any state |ψ⟩ of the form 

|ψ⟩ =  
∞∑

j=1/2 

j∑

m j=− j 

α j,m j | j, m j ⟩. (1) 

where the α j.m are complex numbers subject to the constraint 

∞∑

j=1/2 

j∑

m j=− j 

|α j,m j |2 = 1. (2) 

Note that the state |ψ⟩ can be represented as a column vector listing all the α j,m j : 

|ψ⟩ =  

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

α1/2,−1/2 

α1/2.1/2 

α3/2,−3/2 

α3/2,−1/2 

α3/2,1/2 

α3/2,3/2 

· 
· 
· 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. (3) 

If one performs a measurement of J and Jz on this state, the probability of obtaining 
the quantum numbers j and m j from the measurement is |α j,m j |2. The measure-
ment of J and Jz must yield some value for j and m j . Hence, Eq. (2) is simply  
the statement that the sum of the probabilities of measurement outcomes over all
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possible measurement outcomes must be 1. It is tempting to interpret |ψ⟩ of Eq. (1) 
as representing a statistical ensemble for which |α j,m j |2 is the fraction of systems 
in the state | j, m j ⟩; however, with more than one nonzero α j,m j , states having the 
from Eq. (1) can give rise to observable interference effects if the x-component Jx or 
y-component Jy of the angular momentum is measured, thereby making an ensemble 
interpretation untenable. 

Having introduced quantum mechanical state vectors via the example of an elec-
tron in a hydrogen atom, the discussion will now proceed on a more general and 
abstract level. The state |ψ⟩ of a quantum mechanical system consists of an N -
dimensional vector where N could be ∞. The state can be represented by a column 
vector 

|ψ⟩ =  

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

α1 

α2 

· 
· 
· 

αN 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
(4) 

where the αi are complex functions of time. The Hermitian adjoint (the matrix that 
results when one interchanges rows and columns of a matrix and takes the complex 
conjugate of the matrix elements) of |ψ⟩ is given by

⟨ψ | = [α∗ 
1 α

∗ 
2 · · ·  α∗ 

N ]. (5) 

To provide quantum mechanics with a probability interpretation, a norm of the state 
vector |ψ⟩ is introduced and denoted by ⟨ψ |ψ⟩ and defined by the matrix product

⟨ψ |ψ⟩ ≡ [
α∗ 
1 α

∗ 
2 · · ·  α∗ 

N

]

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

α1 

α2 

· 
· 
· 

αN 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
= 

N∑

m=1 

|αm |2 . (6) 

The probability interpretation is imposed by requiring the state vector to have unit 
norm ⟨ψ |ψ⟩ =  1. Then |αm |2 is the probability of finding the system in the state 
represented by the mth position of the state vector. 

The dynamics of a quantum mechanical system is governed by the Schödinger 
equation 

ih
∂ 
∂t 

|ψ⟩ =  H |ψ⟩, (7) 

where t is the time and H is the Hamiltonian. The Hamiltonian is an N × N array. 
The values for the elements of this array depend on the system under consideration 
and are ultimately determined by experiment, though procedures, such as canoni-
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cal quantization, are available that enable one to generate the Hamiltonian from a 
classical mechanical description of the system. The Hamiltonian is required to be 
Hermitian, that is, if the rows and columns are interchanged and the complex con-
jugate of all the matrix elements is taken, one winds up with the same matrix. This 
ensures that the Hamiltonian only has real eigenvalues, which turn out to be the 
energy eigenvalues of the system. 

Equation (7) can be formally integrated to yield 

|ψ(t)⟩ =  U (t, t0)|ψ(t0)⟩ (8) 

where 

U (t, t0) = exp
(

− 
i

h

∫ t 

t0 

Hdt

)
. (9) 

Since H is Hermitian, the Hermitian conjugate of U (t, t0) is 

U † (t, t0) = exp
(
i

h

∫ t 

t0 

Hdt

)
. (10) 

It then follows that U †(t, t0) is unitary, that is 

U † (t, t0)U (t, t0) = U (t, t0)U (t, t0)† = 1. (11) 

Thus, governed by the Schrödinger equation a system undergoes unitary time evolu-
tion. An important consequence of this is that the norm of |ψ⟩ does not change with 
time, that is, probability is conserved in the sense that the sum of the probabilities of 
outcomes over all possible outcomes is 1, as required for a consistent probabilistic 
interpretation. 

3 Quantum Computers 

Having outlined the mathematical structure of reality, an indication is now provided 
of how the power of quantum computation arises. Apart from unitarity, quantum 
mechanics places no further restrictions on the unitary transformations that can be 
physically realized. Of course, the challenge is to find or engineer physical systems 
that can perform the unitary transformations that carry out the desired computation. 
Here we take for granted that for any desired unitary transformation a physical system 
can be engineered that carries out that unitary transformation. 

It is convenient to introduce some further notation. The state vector Eq. (4) can 
be written as 

|ψ⟩ =  
N∑

m=1 

αm |m⟩, (12)
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where the |m⟩ are time-independent unit basis vectors satisfying the orthonormality 
condition

⟨m|m '⟩ =  δm,m ' (13) 

where δm,m ' is the Kronecker delta function. The Kronecker delta function is zero 
when m /= m ' and one when m = m '. 

Consider now a two-state system where one basis state has been arbitrarily chosen 
to represent a logical 0, whereas the orthogonal basis state is chosen to represent a 
logical 1. Denoting these states by |0⟩ and |1⟩, respectively, an arbitrary state of the 
system is then given by 

|ψ⟩ =  α0|0⟩ +  α1|1⟩ =
[

α0 

α1

]
. (14) 

This |ψ⟩ could be the state of a binary memory register. A classical binary memory 
register can be in only one of two mutually exclusive states, a logical 0 or a logical 1. In 
contrast, a quantum mechanical binary memory register can be in any state of the form 
of Eq. (14). In the general case, the contents of the binary memory register must be 
specified by two complex numbers, α0 and α1 with the restriction |α0|2 + |α1|2 = 1. 
Although |α0|2 and |α1|2 are the probabilities of finding the register content to be a 
logical 0 or a logical 1 if one looks at the contents, this does not represent a statistical 
mixture in which the memory register is in one state or the other. Otherwise a single 
number, |α0|2, would be sufficient to describe the state of the system rather than 
two complex numbers with a constraint on the sum of their norms. The information 
encoded by the state Eq. (14) is referred to as a qubit. Its logical value is specified 
by the complex numbers α1 and α2. 

A general unitary transformation of the state Eq. (14) has the form

[
β0 

β1

]
= U

[
α0 

α1

]
(15) 

where 

U =
[
u11 u12 
u21 u22

]
. (16) 

In general, the um,n are complex numbers subject to the constraint that U be unitary, 
that is, U †U = UU † = 1. Here a quantum mechanical logic gate performing such 
a transformation is referred to as a basis change gate. Note that this gate is a one 
input and one output gate and consequently could be regarded as a generalization of 
a classical NOT gate. A special case of the basis change gate is the Hadamard gate, 
which is given by 

UH = 
1 

2
√

[
1 1  
1 −1

]
. (17)



132 B. Yurke

This gate frequently shows up in quantum computing circuits. Suppose that initially 
the memory register is in the logical 0 state |0⟩, then, subjected to a physical system 
that transforms the memory contents according to Eq. (17), the final state of the 
memory register will be |ψ⟩ =  (1/ 2

√
)(|0⟩ + |1⟩). A basis change gate thus provides 

a means for putting a memory element into a superposition state when initially it is 
in the logical 0 or logical 1 state. Another special case of the one input gate Eq. (15) 
is the phase gate: 

UP =
[
eiφ0 0 
0 eiφ1

]
. (18) 

This gate transforms the phases of the elements of a superposition state. For example, 
if the initial state of the memory element is given by |ψ(t0)⟩ =  (1/ 2

√
)(|0⟩ + |1⟩), a  

physical system performing the operation Eq. (15) on the memory element will put 
it in the state |ψ(t1)⟩ =  (1/ 2

√
)(eiφ0 |0⟩ +  ei φ1 |1⟩). 

3.1 The Controlled NOT Gate 

It is noted that the phenomenon of classical wave interference is sufficient to real-
ize any unitary transformation. For example, any unitary transformation on an N 
dimensional vector can be realized by an array of N (N − 1)/2 optical beam splitters 
[ 30]. However, for certain unitary transformations, quantum mechanics provides a 
means to greatly reduce the number of parts needed to implement the unitary trans-
formation. To indicate how this works the controlled not (CNOT) gate will now be 
considered. 

The CNOT gate is a two-input two-output gate that is a generalization of a classical 
exclusive or (XOR) operation. Since this is a two-input gate, two interacting two-
level systems are required to implement the gate, the control system and the target 
system. Let the Boolean bases states of the control system be denoted by |0⟩C and 
|1⟩C and the Boolean bases states of the target system be denoted by |0⟩T and |1⟩T . 
The state space for the complete system is the outer product of the state space for the 
two subsystems. Hence, the basis states for the complete system can be written as 

|1⟩ = |0⟩C |0⟩T = |0, 0⟩
|2⟩ = |0⟩C |1⟩T = |1, 0⟩
|3⟩ = |1⟩C |0⟩T = |0, 1⟩
|4⟩ = |1⟩C |1⟩T = |1, 1⟩. (19) 

In the rightmost equalities the states have been written in the form |x, y⟩ where x is 
the Boolean value of the control basis state and y is the Boolean value of the target 
basis state. In this basis, the unitary transformation performed by the CNOT gate has 
the matrix representation
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Fig. 1 Symbol for a CNOT gate. The input and output line labeled x is the control line. The target 
input is y. The target output is the XOR of x and y 

UCNOT = 

⎡ 

⎢⎢⎣ 

1 0 0 0  
0 1  0 0  
0 0 0 1  
0 0 1 0  

⎤ 

⎥⎥⎦ . (20) 

On the Boolean basis states this CNOT operation performs the following transfor-
mations: 

|0, 0⟩ → |0, 0⟩
|0, 1⟩ → |0, 1⟩
|1, 0⟩ → |1, 1⟩
|1, 1⟩ → |1, 0⟩ (21) 

From this it is apparent that the control state x remains unchanged, whereas the target 
state y is transformed to x ⊕ y, the XOR operation. The symbol for a CNOT gate in 
quantum computer diagrams is given in Fig. 1. 

In general, the initial state of our two two-state system has the form 

|ψ(t0)⟩ =  

⎡ 

⎢⎢⎣ 

α0,0 

α0,1 

α1,0 

α1,1 

⎤ 

⎥⎥⎦ = α0,0|0, 0⟩ +  α0,1|0, 1⟩ +  α1,0|1, 0⟩ +  α1,1|1, 1⟩, (22) 

where the state vector has been written in two different forms, that of a column vector 
and that in which basis vectors in ket notation are employed. The result of operation 
of the CNOT gate on this state is obtained by multiplying the column vector form of 
the state by the matrix Eq. (20) representing the unitary transformation performed 
by the CNOT gate, as Eq. (15) indicates. The resulting state is 

|ψ(t1)⟩ =  

⎡ 

⎢⎢⎣ 

1 0 0 0  
0 1  0 0  
0 0 0 1  
0 0 1 0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

α0,0 

α0,1 

α1,0 

α1,1 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

α0,0 

α0,1 

α1,1 

α1,0 

⎤ 

⎥⎥⎦ 

= α0,0|0, 0⟩ +  α0,1|0, 1⟩ +  α1,0|1, 1⟩ +  α1,1|1, 0⟩. (23)
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Comparing these last two equations one sees that the CNOT gate simultaneously 
performs the correct logical operation on each Boolean component of the input state. 
This is an example of quantum parallelism. 

3.2 Quantum Parallelism 

To generalize the discussion of CNOT gate operation, consider the case of a memory 
register consisting of N two-state systems. For a classical memory register, each bit 
element is either in a logical 0 or logical 1 state. As a consequence, the register can 
store only one N bit binary number at a time. Quantum mechanically the register 
can be in any state of the form 

|ψ(t0)⟩ =  
1∑

m1=0 

1∑

m2=0 

. . .  
1∑

mN=0 

αm1,m2,...,mN |m1, m2, . . . ,  mN ⟩, (24) 

where, as indicated by the subscripts and superscripts of the sums, mi ∈ {0, 1}. Each 
state label m1, m2, . . . ,  mN is, thus, a binary number and the sum is over all possible 
N bit binary numbers. Equation (24) is a generalization of Eq. (22). Thus, a quantum 
mechanical memory register consisting of N two-level systems behaves as if it is 
simultaneously storing 2N complex numbers subject to the constraint that the sum 
of the norm-squares of these complex numbers is 1. Singling out memory elements 
i and a j for operation on by a CNOT gate, Eq. (24) can be written as 

|ψ(t0)⟩ =
∑

{mn |n /∈{i, j}} 
αm1,m2,...0i ...0 j ...mN |m1, m2, . . .  0i . . .  0 j . . .  mN ⟩

+
∑

{mn |n /∈{i, j}} 
αm1,m2,...0i ...1 j ...mN |m1, m2, . . .  0i . . .  1 j . . .  mN ⟩

+
∑

{mn |n /∈{i, j}} 
αm1,m2,...1i ...0 j ...mN |m1, m2, . . .  1i . . .  0 j . . .  mN ⟩

+
∑

{mn |n /∈{i, j}} 
αm1,m2,...1i ...1 j ...mN |m1, m2, . . .  1i . . .  1 j . . .  mN ⟩, 

(25) 

where the subscript on the sums indicates summation over all mn as in Eq. (24), 
excluding the sum over mi and m j . Upon operation by the CNOT gate, the contents 
of the memory register, where i is the control qubit and j is the target qubit, are 
changed to
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|ψ(t1)⟩ =
∑

{mn |n /∈{i, j}} 
αm1,m2,...0i ...0 j ...mN |m1, m2, . . .  0i . . .  0 j . . .  mN ⟩

+
∑

{mn |n /∈{i, j}} 
αm1,m2,...0i ...1 j ...mN |m1, m2, . . .  0i . . .  1 j . . .  mN ⟩

+
∑

{mn |n /∈{i, j}} 
αm1,m2,...1i ...1 j ...mN |m1, m2, . . .  1i . . .  1 j . . .  mN ⟩

+
∑

{mn |n /∈{i, j}} 
αm1,m2,...1i ...1 j ...mN |m1, m2, . . .  1i . . .  0 j . . .  mN ⟩. 

(26) 

This equation is a generalization of Eq. (23). Thus, the CNOT gate simultaneously 
performs the correct Boolean operation on each of the 2N Boolean basis states of the 
superposition. 

Not all computations can take advantage of this quantum parallelism. The iden-
tification of computational tasks of practical interest that can benefit from quantum 
speedup has been slow in coming but include important problems such as factoring 
large numbers and doing database searches. The quantum computing algorithms for 
these two problems were discovered by Shor [ 31] and Grover [ 32] respectively. 

The CNOT gate, the Hadamard gate, together with the phase gates, form a com-
plete set of gates for universal quantum computation [ 33]. Thus, this set of gates 
plays a role similar to that of the NAND gate of classical electronic circuit design, 
the gate with which any Boolean function can be implemented. 

4 The Frenkel Exciton Hamiltonian 

Having displayed a complete set of gates that enable universal quantum computation, 
we now work toward showing how these gates might be realized by dye aggregates. 
To this end, a Hamiltonian governing the dynamics of excitons is now introduced, the 
Frenkel exciton Hamiltonian. This is a phenomenological or reduced Hamiltonian, in 
that it contains parameters that must be determined by experiment or by calculation 
methods, such as time-dependent density functional theory, that are closer to first 
principles calculations. Here interaction of excitons with molecular vibrations is 
neglected. How these may be included is discussed in Sect. 16. 

The Frenkel exciton Hamiltonian is given by Abramavicius et al. [ 34], Renger et 
al. [ 35] 

H = 
N∑

m=1 

Ee 
m B

† 
m Bm +

∑

(m,n) 

J(m,n)(B
† 
m Bn + B† 

n Bm) 

+ 
1 

2 

N∑

m=1

Δm B
† 
m B

† 
m Bm Bm +

∑

(m,n) 

K(m,n) B
† 
m B

† 
n Bn Bm . (27)



136 B. Yurke

Here the summation index (m, n) denotes summation over all distinct pairs dye 
molecules, and N is the total number of dyes in the aggregate. 

Ee 
m is the transition energy from the ground state to the first optically allowed 

excited state of molecule m. J(m,n) is the exciton exchange energy, which arises from 
the Coulomb interaction between the transition charge densities [ 34] of dye pair m 
and n. Δm is the anharmonicity parameter [ 35] that quantifies the energy cost with 
having two excitons occupy the same dye. It can be understood as follows. Let S0 
denote the ground state of the dye. The lowest optically allowed excited state is 
denoted by S1 and is the one-exciton state of the dye. The transition energy between 
these two states is Ee 

m . Let  Sn denote the excited state of the dye having the allowed 
optical transition from the state S1 whose energy lies closest to 2Ee 

m . Its energy can 
be written as 2E2 

m + Δm , where Δm accounts for the energy mismatch. Because the 
energy of this state is approximately twice that of the state S1, it can be regarded 
as the state for which two excitons reside on the dye. The anharmonicity parameter 
thus provides a simple means to account for the existence of dye energy levels above 
the first excited state that play a role when more than one exciton is present in 
the aggregate. K(m,n) is the exciton–exciton interaction energy between an exciton 
residing on dye m and an exciton residing on dye n. This interaction results from 
the difference in the charge density of a dye molecule when it is in its excited state 
compared to when it is in its ground state [ 34]. This results in a difference in the total 
Coulomb energy of the aggregate when two excitons reside on neighboring dyes or 
are farther apart. 

These phenomenological parameters are amenable to engineering. The value of 
Ee 
m depends on the dye structure and can be varied by changing substituents on the 

dye. J(m,n) and K(m,n) depend on the structure of dyes m and n and how the dyes are 
positioned and oriented with respect to each other. As indicated in the Appendix, 
dye pairs exist for which J(m,n) and K(m,n) can be adjusted independently of each 
other by reorienting the dyes. In what follows it is assumed that dye aggregate 
systems can be engineered in which these phenomenological parameters, for nearest 
neighbor dyes pairs, can take on any desired value within the maximal limits of 
these quantities for available dyes. Values of Ee 

m are in the several electron volt (eV) 
range. For dye pairs in close proximity, J(m,n) can be in the 100 meV range [ 10]. 
On dimensional grounds, one expects that K(m,n) can achieve similar strength. As 
discussed in the Appendix, the strengths of J(m,n) and K(m,n) can be estimated from 
dipole approximations. In this approximation, J(m,n) is proportional to the product of 
the transition dipole moments μm and μn for the two dyes m and n, whereas K(m,n) is 
proportional to the product of the dipole momentsΔdm andΔdn . These latter dipoles 
are referred to as excess dipoles in reference [ 36] and represent the difference between 
the excited-state and ground-state charge densities for the two molecules. μm and
Δdm can both range as high as 16 debye [ 36– 38]. The values of J(m,n) and K(m,n) can 
be larger than the characteristic room-temperature thermal energy kbT = 26 meV, 
where kB is the Boltzmann constant and T is the absolute temperature of ∼300 K. 
This means that exciton-based quantum gates should function at room temperature, in 
contrast to superconducting device-based quantum computers that require millikelvin 
temperatures to operate.
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The B† 
m and Bm are not numerical quantities but operators referred to as exciton 

creation operators and exciton annihilation operators, respectively. These are best 
viewed as part of a clever and economical bookkeeping formalism that enables the 
construction of the exciton state space and aids in keeping track of how the state 
vector changes with time. 

At this point it is useful to introduce the notion of an energy eigenstate and an 
energy eigenvalue. By direct substitution it can be shown that states of the form 

|ψ⟩ =  e−i Ek t/h|Ek⟩, (28) 

where |Ek⟩ is time independent, are solutions to the Schrödinger equation Eq. (1) 
provided the equation 

Ek |Ek⟩ =  H |Ek⟩ (29) 

is satisfied. A state satisfying Eq. (29) is said to be an energy eigenstate and Ek is 
said to be its energy eigenvalue. If the state space is N dimensional N orthogonal 
energy eigenstates will exist, enumerated by the integer subscripts k. 

An aggregate system will have a lowest energy state in which all the dye molecules 
are in their ground state. This state is denoted by |0⟩ and is taken to have unit norm
⟨0|0⟩ =  1. The annihilation operator Bm has the property that 

Bm |0⟩ =  0. (30) 

Using this equation one immediately obtains 

H |0⟩ =  0. (31) 

It follows that |0⟩ is an energy eigenstate having energy eigenvalue 0. Hence, the 
Hamiltonian Eq. (27) has been constructed so that the zero of its energy scale matches 
the ground-state energy of the aggregate. 

It is now useful to introduce the notion of a commutator. Given any two operators 
A and B, their commutator is defined by 

[A, B] ≡  AB  − BA. (32) 

The exciton creation and annihilation operators satisfy the commutation relations 

[Bm, Bn] = [B† 
m, B† 

n ] =  0 (33) 

and 
[Bm, B† 

n ] =  δm,n (34) 

where δm,n is the Kronecker delta function. The Kronecker delta function has the 
value 0 when  m /= n and the value 1 when m = n.
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A complete set of orthonormal basis vectors can be constructed by applying 
products of creation operators to |0⟩. The general state will have the form 

|n1, n2, . . . ,  nN ⟩ =  
N∏

m=1 

(B† 
m)nm 

nm ! √ |0⟩. (35) 

The number nm is the number of excitons residing on dye m. 
As the notation for the creation and annihilation operators suggest, B† 

m is regarded 
as the Hermitian adjoint of Bm . In addition, the Hermitian adjoint of |0⟩ is denoted 
by ⟨0|. Hence, the Hermitian adjoint of the state vector Eq. (35) is given by

⟨n1, n2, . . . ,  nN | = ⟨0| 
N∏

m=1 

(Bm)nm 

nm !√ (36) 

where use has been made of the commutation relation Eq. (33), allowing reordering 
of annihilation operators among themselves. Using the commutation relations for 
the creation and annihilation operators, one can show that these states satisfy the 
orthonormality condition

⟨n1, n2, . . . ,  nN |n'
1, n

'
2, . . . ,  n'

N ⟩ =  
N∏

k=1 

δnk ,n'
k 
. (37) 

The Hamiltonian and the state space have now been described. This system 
belongs to a class of Hamiltonians referred to as Bose–Hubbard models [ 20]. It 
has been shown that universal quantum computation can be performed by a many-
particle quantum walk in such systems [ 20]. The proof consists of showing how a 
universal set of quantum gates can be implemented in such systems. A similar analy-
sis will be presented here by exhibiting a set of gates that may be easier to implement 
in dye aggregate systems. 

Before doing so, an analysis of a two-dye aggregate is performed to illustrate how 
computations are carried out with this formalism and to provide some insight into 
the quantum behavior of excitons. 

5 Energy Eigenvalues of a Homodimer Dye Aggregate 
and Davydov Splitting 

Here, as an example of how Frenkel exciton computations are carried out, the energy 
eigenvalues and eigenvectors of a dye aggregate consisting of two identical dyes 
(homodimer) are solved for the case when a dye aggregate contains one exciton. It 
will be shown that as a result of exciton exchange, the absorption spectrum of the 
dimer exhibits peak splitting, a phenomenon referred to as exciton splitting [ 39] or  
Davydov splitting [ 40].
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Consider the case when the dye aggregate consists of two identical dye molecules. 
The Hamiltonian Eq. (27) then reduces to [ 41] 

H = Ee
(
B† 
1 B1 + B† 

2 B2

)
+ J

(
B† 
1 B2 + B† 

2 B1

)

+ Δ

2

(
B† 
1 B

† 
1 B1 B1 + B† 

2 B
† 
2 B2 B2

)
+ K B† 

1 B
† 
2 B2 B1. (38) 

The Hamiltonian of Eq. (27) and, consequently, of Eq. (38) is exciton number con-
serving. That these cannot change the number of excitons follows from the fact that 
in each term of the Hamiltonian each creation operator is paired with an annihilation 
operator and from the commutation relations for the exciton creation and annihilation 
operators. As a consequence, the energy eigenvalues can be found by working with 
state spaces having a fixed number of excitons. The system ground state |0⟩ is the 
zero exciton example of this as it is an energy eigenstate. 

From Eq. (35), the set of one-exciton states in the site basis is 

B1 =
{
B† 
1 |0⟩, B† 

2 |0⟩
}

. (39) 

These two states are the states in which the exciton occupies molecule 1 or molecule 
2, respectively. The set of two-exciton states in the site basis is 

B2 =
{
B† 
1 B

† 
1 

2 
√ |0⟩, B† 

1 B
† 
2 |0⟩, 

B† 
2 B

† 
2 

2 
√ |0⟩

}
. (40) 

The leftmost state of this set is that for which both excitons reside on molecule 1. 
The middle state is that for which one exciton resides on molecule 1 and the other on 
molecule 2. The rightmost state is that for which both excitons reside on molecule 
2. Note that due to the commutation relation Eq. (33), the state B† 

1 B
† 
2 |0⟩ and the 

state B† 
2 B

† 
1 |0⟩ are the same state. Thus, only one appears in the set. The formalism 

via the commutation relations Eqs. (33) and (34), thus, has the indistinguishability 
of excitons built into it. Indistinguishable particles for which these commutation 
relations apply satisfy Bose statistics and are referred to as Bosons. 

To determine the energy eigenstates and eigenvalues of Hamiltonian Eq. (38) it  
is useful to evaluate the expression B† 

r Bs B
† 
t |0⟩ and B† 

s B
† 
r Br Bs B

† 
t |0⟩, where r , s and 

t are integer site labels. From the commutation relation Eq. (34) one has 

Bs B
† 
t − B† 

t Bs = δs,t (41) 

or 
Bs B

† 
t = δs,t + B† 

t Bs . (42) 

One thus has 
B† 
r Bs B

† 
t |0⟩ =  B† 

r

[
δs,t + B† 

t Bs
] |0⟩ =  δs,t B† 

r |0⟩ (43)
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and 
B† 
s B

† 
r Br Bs B

† 
t |0⟩ =  B† 

s B
† 
r Br

[
δs,t + B† 

t Bs
] |0⟩ =  0 (44) 

where in each case the last equality follows from Eq. (30). A consequence of the 
last equation is that terms with the Δ and K coefficients of Eq. (38) are zero in the 
one-exciton sector of the state space, as one would expect given these terms account 
for exciton–exciton interactions. Using these last two equations one finds 

HB† 
1 |0⟩ =  Ee B† 

1 |0⟩ +  J B† 
2 |0⟩ (45) 

and 
HB† 

2 |0⟩ =  J B† 
1 |0⟩ +  Ee B† 

2 |0⟩. (46) 

The general one-exciton state vector has the form 

|ψ⟩ =  α1 B
† 
1 |0⟩ +  α2 B

† 
2 |0⟩. (47) 

See Eqs. (4) and (12). Hence, in matrix form one has 

H |ψ⟩ =
[
Ee J 
J Ee

] [
α1 

α2

]
. (48) 

Equation (29) becomes 

Ek

[
αk1 

αk2

]
=

[
Ee J 
J Ee

] [
αk1 

αk2

]
. (49) 

The solutions to this eigenvalue–eigenvector equation can be solved by brute force 
using general linear algebra techniques. The clever approach, however, is to note 
the Hamiltonian Eq. (38) remains unchanged (is symmetric) under the interchange 
of subscripts 1 and 2 on the creation and annihilation operators, a consequence 
of having chosen the two dyes to be identical. In this case it follows from group 
representation theory of the permutation group that the eigenstates must be symmetric 
or antisymmetric (changes sign) under the interchange of the site subscripts. Hence, 
the eigenstates can be immediately written down: 

|S⟩ =  
1 

2
√

(
B† 
1 |0⟩ +  B† 

2 |0⟩
)

= 
1 

2
√

[
1 
1

]
(50) 

and 

|A⟩ =  
1 

2
√

(
B† 
1 |0⟩ −  B† 

2 |0⟩
)

= 
1 

2
√

[
1 

−1

]
, (51)
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where the state labels S and A indicate whether the state is symmetric or antisym-
metric under interchange of the site labels. The corresponding energy eigenvalues 
are then immediately obtained by substitution of the eigenstates into Eq. (49). One 
finds 

ES = Ee + J (52) 

and 
EA = Ee − J. (53) 

When the exchange energy J is zero, such as when the dyes are far apart, the energies 
become degenerate with both eigenstates having the energy Ee. This is the energy 
of the photon that by absorption in a dye molecule induces a transition from the 
ground state to its lowest optically allowed excited state. When the exchange energy 
is nonzero, the energy of the two eigenstates differs by 2J. The transition from the 
ground state |0⟩ to the excited state |S⟩ is induced by a photon having the energy 
Ee + J . The transition from the ground state to the excited state |A⟩ is induced by 
a photon having the energy Ee − J . The absorption spectrum of the dimer will thus 
exhibit two peaks in the absorption spectrum, whereas a single dye molecule would 
exhibit a single absorption peak. This peak splitting is called Davydov splitting and is 
of size 2J . Figure 2 provides an experimental example of Davydov splitting observed 
for two “squaraine-rotaxane” dyes confined to the core of a DNA Holliday junction 
by covalent linkages [ 42]. One sees that the absorbance peak of this dimer aggregate 
is split into two peaks, one on either side of the monomer (single dye) absorbance 
peak. 

Note that for the energy eigenstates Eqs. (50) and (51), the probability amplitude 
is of equal magnitude for the exciton to reside on dye 1 and dye 2. The exciton 
acts as if it has a simultaneous existence on both dyes. This is referred to as exciton 
delocalization. A classical particle would not be able to do this because it can only 
have one position at a time. 

6 Coherent Exciton Hopping 

The energy eigenstates at any instant of time make a perfectly good basis set with 
which to express a quantum state. This basis set is particularly convenient to work 
with when considering the time evolution of a system. Any state |ψ(0)⟩ can be 
expressed in the form 

|ψ(0)⟩ =  
N∑

k=1 

αk |Ek⟩, (54) 

where |Ek⟩ are the energy eigenstates obtained by solving Eq. (29). Using this as the 
initial condition for the state |ψ⟩ appearing in the Schrödinger equation Eq. (7) the  
solution to the Schrödinger equation is given by
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Fig. 2 A dimer dye aggregate whose absorbance spectrum exhibits Davydov splitting. The aggre-
gate consists of two “squaraine-rotaxane” dyes (SeTau-670 from SETA BioMedicals) confined to 
the core of a DNA Holliday junction by covalent linkages, as shown schematically in the top panel. 
In the bottom panel, the absorbance spectrum of the monomer dye shows a single peak, whereas 
that of the dimer aggregate shows two peaks, one on either side of the monomer absorbance peak. 
Based on absorbance and circular dichroism data it was determined that the dyes make an angle of 
about 85◦ with respect to each other, a configuration referred to as oblique. Figure panels modified 
are from Barclay et al. [ 42] 

|ψ(t)⟩ =  
N∑

k=1 

αke
−i Ek t/h|Ek⟩. (55) 

As an example of the time dependence that a homodimer aggregate may exhibit, 
consider the case when at t = 0 the state vector is given by
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|ψ(0)⟩ =  
1 

2 
√ (|S⟩ + |A⟩). (56) 

Substituting Eqs. (50) and (51) into this equation yields 

|ψ(0)⟩ =  B† 
1 |0⟩. (57) 

The initial state Eq. (56) is the state in which the exciton resides only on dye 1. 
Such a state can be prepared for a dye aggregate in which the two dye molecules 
have a different orientation. In this case, the polarization of a femtosecond laser light 
pulse can be oriented so that it is orthogonal to the dipole component of the transition 
charge density of molecule 2 but not that of dye 1. In this manner, the laser light pulse 
can only induce an optical transition from the ground state to the lowest optically 
allowed excited state in dye 1 [ 18]. 

As indicated by Eq. (55), the time evolution of this state is given by 

|ψ(t)⟩ =  
1 

2
√ (

e−i ES t/h|S⟩ +  e−i EAt/h|A⟩) . (58) 

Substitution of Eqs. (50) through (53) into this equation yields 

|ψ(t)⟩ =  e−i Eet/h

[
cos

(
J t

h

)
B† 
1 |0⟩ −  2i sin

(
J t

h

)
B† 
2 |0⟩

]
. (59) 

From this, it is evident that the probability of finding the exciton on dye 1 as a function 
of time is 

P1(t) = cos2
(
J t

h

)
, (60) 

whereas the probability of finding the exciton on dye 2 is given by 

P2(t) = sin2
(
J t

h

)
. (61) 

Hence, at the instances of time t = nπh/J , where n is an integer, the exciton resides 
entirely on dye 1; at the instances of time (n + 1/2)πh/J , the exciton resides entirely 
on dye 2. The exciton thus hops back and forth between the two dyes with a frequency 
of πh/J . Optical experiments using femtosecond light pulses are able to reveal such 
coherent oscillations. This phenomenon is referred to as exciton coherence. 

Having discussed exciton delocalization and exciton coherence, we now move on 
to exciton devices.
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7 Exciton Transmission Lines 

For a many-particle quantum walk-based quantum computer, a means is required 
to transport particles from the output of one gate to the input of the next. Here it is 
shown that a dye aggregate consisting of a linear array of molecules can function as 
an exciton transmission line and thus can serve as a wire connecting gates [ 43]. 

For simplicity, consider an infinite array of identical dye molecules equally spaced 
and the case when only one exciton is present. One can then drop the exciton–exciton 
interaction terms of the Hamiltonian Eq. (27) and the Hamiltonian becomes 

H = Ee 
∞∑

r=−∞ 
B† 
r Br + J 

∞∑

m=−∞ 
(B† 

r+1 Br + B† 
r Br+1) (62) 

where, for simplicity, all but nearest neighbor interactions have also been neglected, 
an approximation that is generally satisfactory because Jm,n falls off as the reciprocal 
of the cube of the distance between dyes m and n. 

The system is invariant under translation by the lattice spacing. Group represen-
tation theory then indicates that the one-exciton energy eigenstates must have the 
Bloch form 

|k⟩ = 1 

2π 
√

∞∑

r=−∞ 
eikr  B† 

r |0⟩, (63) 

where k is a real number restricted to the range −π <  k ≤ π due to the periodic 
nature of the functions eikr  . Applying this state to the Hamiltonian Eq. (62) yields 

H |k⟩ = [
Ee + 2J cos(k)

] |k⟩, (64) 

demonstrating directly that |k⟩ is a eigenstate of the Hamiltonian Eq. (62) having the  
energy eigenvalue 

Ek = Ee + 2J cos(k). (65) 

The general one-exciton state for an exciton residing on the dye array has the form 

|ψ(t)⟩ = 1 

2π
√

∫ π 

−π 
dk f  (k)e−i Ek t/h|k⟩, (66) 

where f (k) is a complex function of k. This is a generalization of Eq. (55) for the  
case when the state label is a continuous variable rather than a member of a discrete 
set. Introducing the frequencies 

ωk = 
Ek

h
; ωe = 

Ee

h
; and ωJ = 

J

h
, (67)
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the dispersion relation Eq. (65) can be written as 

ωk = ωe + 2ωJ cos(k) (68) 

and Eq. (66), with the aid of Eq. (63), can be put into the form 

|ψ(t)⟩ =  
1 

2π 

∞∑

r=−∞

∫ π 

−π 
f (k)e−i(ωk t−kr) dkB† 

r |0⟩. (69) 

In this form, it is evident that the general one-exciton state consists of a wave packet 
of waves with an oscillatory function of time and position along the dye array given 
by e−i(ωk t−kr). Thus, the exciton propagates along the transmission line in a wave-like 
manner. 

When f (k) is strongly peaked with a narrow width about a particular k, the concept 
of wave packet velocity (known as group velocity) becomes meaningful and is given 
by 

vg ≡ a 
∂ωk 

∂k 
, (70) 

where a is the lattice spacing (the nearest neighbor distance between the dyes). From 
Eq. (68) one obtains 

vg = −2ωJ a sin(k). (71) 

The magnitude of the group velocity is greatest when 

k = ±  
π 
2 

(72) 

and has the value 2ωJ a. This is the speed limit for signals propagating along the 
transmission line. 

Because an exciton wave with definite k has the oscillatory form e−i(ωk t−kr), 
one sees that at the group velocity maximum the wavelength of the exciton is four 
lattice units long. A quarter wavelength or π/2 phase shift is present between two 
neighboring dyes at any instant of time. This observation will play a significant role 
in the discussion of exciton-based basis change gates. 

8 Representation of an Exciton Qubit 

In the design of quantum computers, a decision needs to be made on how information 
is to be encoded in the physical hardware. An obvious choice for excitons undergoing 
a many-particle quantum walk over a dye aggregate would be to let the absence of an 
exciton denote a logical 0 and the presence of an exciton denote a logical 1. Because
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the exciton can exist in a superposition of being present or absent, this is a qubit. 
This is the representation that Childs et al. [ 20] chose in their proof that universal 
quantum computation can be implemented in Bose–Hubbard systems. 

Here an alternative encoding will be employed where a qubit is carried by two 
transmission lines, say lines 1 and 2. If the exciton is on line 1 that is to be regarded 
as a logical 0. If it is on line 2 that is to be regarded as a logical 1. This is referred 
to as the “dual-rail” mode of operation. The exciton can be in a superposition state 
for which there is a probability amplitude α1 of its being on line 1 and a probability 
amplitude α2 of its being on line 2, so this coding indeed implements a qubit. This 
dual-rail representation of a qubit enables the simplification of gate design but at the 
cost of having twice as many wires (exciton transmission lines) connecting the gates. 

9 Basis Change Gates 

We now consider aggregates that function as quantum gates. These aggregates are 
connected to exciton transmission lines that supply the input signals and deliver the 
output. A general mathematical framework is developed before considering specific 
gates. 

Equation (63) suggests that one introduces the annihilation operator 

B(k) = 1 

2π 
√

∞∑

r=−∞ 
eikr  Br . (73) 

Its Hermitian conjugate is a creation operator which, when operating on |0⟩, produces 
a one-exciton state with wave vector k and frequency ωk . It is an energy eigenstate 
with the energy eigenvalue Ek = hωk given byEq.  (65). A consequence of the infinite 
sum in Eq. (73) and the continuous nature of the index k is that these creation and 
annihilation operators satisfy the commutation relations

[
B(k), B(k ')

] = 0 (74) 

and 
[B(k), B† (k ')] =  δ(k − k '), (75) 

where δ(k − k ') is a functional referred to as the Dirac delta function. 
The exciton of state B†(−k)|0⟩ propagates in the opposite direction from the 

exciton of state B†(k)|0⟩. 
We now consider the case of a one-qubit gate. In the dual-rail representation, this 

gate will have two transmission lines carrying the input qubit and two transmission 
lines carrying the output qubit. The situation is depicted in Fig. 3. Because signals 
can propagate both ways on each transmission line, we must consider eight annihila-
tion operators. We employ the labelings Bα 

β (k) where the superscript α ∈ {in, out}
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Fig. 3 A general one qubit gate G connected to four exciton transmission lines. The transmission 
lines consist of arrays of dyes that are here represented by circles placed along a line 

indicates whether the exciton is propagating “in” toward the gate G or “out” away 
from the gate. The subscript β ∈ {0, 1} indicates whether the exciton resides on the 
logical 0 or the logical 1 transmission line of the qubit, and the argument k indicates 
the value of the wave vector. 

Consider the case when all the transmission lines have the same Ee and J . The  
exciton associated with the exciton creation operator B in 

1 (k), after arriving at the 
gate G, will exit one of the four outputs Bout 

0 (k), Bout 
1 (k), Bout 

0 (−k) and Bout 
1 (−k). 

Because energy is conserved and the transmission lines are identical, if the incoming 
exciton has wave vector k, the outgoing exciton can only have the wave vector k 
or −k. Hence, one need only consider the annihilation operators shown in Fig. 3. 
One has a similar situation with excitons entering the other input ports. The relation 
between the input and output annihilation operators is given by 

⎡ 

⎢⎢⎣ 

Bout 
1 (k) 

Bout 
0 (k) 

Bout 
1 (−k) 

Bout 
0 (−k) 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

S11 S12 S13 S14 
S21 S22 S23 S24 
S31 S32 S33 S34 
S41 S42 S43 S44 

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

B in 
1 (k) 

B in 
0 (k) 

B in 
1 (−k) 

B in 
0 (−k) 

⎤ 

⎥⎥⎦ . (76) 

The matrix elements Sm,n are, in general, complex numbers. The square matrix 
containing the Sm,n is referred to as a scattering matrix. Let this matrix be denoted by 
S. Because the incoming signals are independent, the “in” creation and annihilation 
operators must satisfy commutation relations similar to those of Eqs. (71) and (72) 

[B in 
β (k), B

in 
β '(k ')] =  0 (77) 

and 
[B in 

β (k), B
in† 
β ' (k ')] =  δβ,β 'δ(k − k '). (78) 

Similarly the outgoing singles are linearly independent of each other and conse-
quently the “out” creation and annihilation operators also satisfy commutation rela-
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tions of the form Eqs. (77) and (78). For all these commutation relations to be satisfied, 
the matrix S must be unitary. That S be unitary is also required by the conservation 
of energy and is a manifestation of the unitary evolution imposed by the Schrödinger 
equation. 

When the device simply consists of two parallel transmission lines that are suf-
ficiently far apart that exciton hopping from one transmission line to the other does 
not occur there is no scattering and the S matrix is diagonal 

S = 

⎡ 

⎢⎢⎣ 

1 0 0 0  
0 1  0 0  
0 0 1 0  
0 0 0 1  

⎤ 

⎥⎥⎦ . (79) 

When two exciton transmission lines are brought sufficiently close so that the oscilla-
tory Coulomb interaction can occur between between dye pairs, with one dye located 
on each transmission line, an exciton can hop from one transmission line to the other. 
Thereby nondiagonal entries of the S array become nonzero. 

To make a specific quantum gate, such as a Hadamard gate, the challenge is to 
engineer a dye aggregate that produces the desired matrix elements Sm,n . For this, 
the electrical engineering literature on distributed element circuits serves as a useful 
guide. These radio frequency and microwave circuits are based on wave interference. 
In these circuits, transmission line segments a quarter of a wavelength long play a 
prominent role. One such device is shown in Fig. 4a. It is an example of a branch line 
coupler [ 44]. Signals entering port 1 of this coupler exit ports 2 and 3, and no signal 
exits port 4. For the case shown, the transmission line segments that are narrow have 
a transmission line impedance of Z0, whereas the two transmission line segments 
that are wide have a transmission line impedance of Z0/ 2

√
. With these impedance 

values, the signal entering port 1 is split evenly between ports 2 and 3, that is, the 
device functions as a 50/50 beam splitter. Because distributed element circuits rely on 
wave interference they generally function well over a limited range of wavelengths 
(or frequencies) centered about a midband wavelength (or frequency) determined by 
the length of the transmission line segments. 

The device shown in Fig. 4b is a direct translation of the device of Fig. 4a into  
an exciton device. Because there is a quarter wavelength shift in the phase between 
neighboring dyes at the band center k = π/2, the distance between the dyes in effect 
serves as a quarter wavelength section of transmission line. The energy parameter 
J plays the role of the reciprocal of impedance. Because the value of J depends on 
the spacing between dyes, the dye spacing can be adjusted to yield the desired value. 
In this case, the coupling between all nearest neighbor dyes is J except for the two 
having the value 2

√
J , as indicated in the figure by arrows. 

At band center, the scattering matrix Eq. (73) for this device is
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1 2 

34 

a 

b 

Fig. 4 A branch line coupler as implemented in radio and microwave frequency electronics (a) 
and as an exciton device implemented using dye molecules (b). For the values of the impedance 
or exciton exchange energies shown, these devices act as 50/50 power dividers. The exciton device 
(b) functions as a basis change gate 

S = 
1 

2 
√

⎡ 

⎢⎢⎣ 

i 1 0 0  
1 i 0 0  
0 0  i 1 
0 0 1  i 

⎤ 

⎥⎥⎦ . (80) 

From the zeros in this matrix, it is evident that signals entering ports B in 
1 and B

in 
0 

are only delivered to ports Bout 
1 and Bout 

0 . Hence, the device can be regarded as a 
one-qubit gate in which the input enters the left side of the device and the output 
exits the right side as shown in Fig. 4b, where the logical 1 and logical 0 lines have 
been indicated. The transformation performed on the annihilation operators is

[
Bout 
1 

Bout 
0

]
= 

1 

2
√

[
i 1 
1 i

] [
B in 
1 

B in 
0

]
. (81) 

This transformation can be inverted to express the annihilation operators of the incom-
ing signals in terms of the annihilation operators of the outgoing signals.
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[
B in 
1 

B in 
0

]
= 

1 

2
√

[−i 1 
1 −i

] [
Bout 
1 

Bout 
0

]
. (82) 

Consider the case when the state of the system |ψS⟩ is that for which the incoming 
signal is a logical 1: 

|ψS⟩ =  B in† 
1 |0⟩. (83) 

From Eq. (82), one has 

B in 
1 = 

1 

2
√ (

Bout 
1 − i Bout 

0

)
. (84) 

Substituting this into Eq. (83) and remembering that taking the Hermitian adjoint 
involves complex conjugation one obtains 

|ψS⟩ =  
1 

2
√

(
Bout† 
1 |0⟩ +  i Bout† 

0 |0⟩
)

. (85) 

Hence, this system state is one for which the exciton exits the gate as a superposition 
state in which the probability amplitude that the exciton is on the logical 1 line is 
1/ 2 

√
and the probability amplitude that the exciton is on the logical 0 line is i / 2

√
. 

The gate of Fig. 4b is capable of exhibiting the ideal performance of Eq. (81) at the  
transmission line band center k = ±π/2; however, its performance degrades away 
from band center. But the degradation is graceful in that there is a finite bandwidth 
over which the device functions satisfactorily for any specified tolerance level. A full 
analysis of this gate is presented in [ 43]. Greater bandwidth than that exhibited by 
the gates of Fig. 4 can be achieved with more complex gate designs, the theory of 
which is well developed for distributed element circuits. 

10 Phase Gates 

Phase shifts can be implemented as propagation delays. Figure 5 illustrates two trans-
mission lines along which a qubit in the dual-rail representation propagates. For the 
phase gate shown in Fig. 5, one line has been made one dye longer than the other. 
For signals propagating at the midband of the transmission line, this extra length 
induces a quarter wavelength propagation delay (a π/2 phase shift) with respect to 
the shorter transmission line. The transformation performed by this gate is given by

[
Bout 
1 

Bout 
0

]
=

[
eiπ/2 0 
0 1

] [
B in 
1 

B in 
0

]
. (86) 

Propagation delays can be induced by other means. From Eq. (63), it is evident 
that the phase factor between neighboring dyes is eik , that is, the phase shift is k. 
Taking the energy Ek of the exciton (or the carrier frequency ωk of the signal) to
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Fig. 5 A phase gate consisting of two transmission lines. The phase shift results from propagation 
a delay of the signal traveling over the longer transmission line. For the case shown, where one 
transmission line is one dye longer than the other, the phase shift is π/2 at the transmission line 
midband 

be the controlling variable, the value of k is obtained by solving Eq. (65). One sees 
that it depends on Ee and J . Hence, phase shifts can be induced by having Ee or J 
differ in sections of one transmission line by employing different dyes (changes Ee 

and J ) or by changing the spacing between neighboring dyes (changes J ). We thus 
posit that any phase gate of the form of Eq. (18) can be engineered. 

It is now shown how the basis change gate exhibited in Eq. (81), 

UB = 
1 

2
√

[
i 1 
1 i

]
, (87) 

can be converted into a Hadamard gate by sandwiching it between two phase gates 
of the form 

UP =
[
e−iπ/4 0 
0 eiπ/4

]
. (88) 

Carrying out the matrix multiplication 

UH = UPUBUP (89) 

one finds that UH is the Hadamard gate Eq. (17). 
An alternative means of implementing a Hadamard gate would be to translate a 

hybrid ring coupler, also called a rat-race coupler [ 44], (a distributed element circuit 
device) into an exciton device as was done for the branch line coupler of Fig. 4. 

11 An Exciton Interferometer 

As an illustration of how single qubit gates can be composed to produce new single 
qubit gates, exciton interferometers will now be discussed. This will also lay the 
foundation for a discussion of the CNOT gate. An exciton interferometer can be 
constructed as a phase gate sandwiched between two basis change gates. As an
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a 

b 

Fig. 6 An exciton interferometer. a A schematic representation of the device as a cascade of a 
branch line coupler gate, a phase gate and a second branch line coupler. b The physical layout of the 
dyes forming an interferometer. The upper transmission line of the phase gate has been shaded to 
indicate that its propagation delay (phase shift) may be different from that of the lower transmission 
line 

example, consider the phase gate of Eq. (18) sandwiched between two basis change 
gates given by Eq. (87). The configuration is illustrated schematically in Fig. 6a as a  
cascade of gates, and the physical layout of the dyes is shown in Fig. 6b. 

The overall transformation is given by 

UI = UBUPUB (90) 

Carrying out the matrix multiplication yields 

UI = iei(φ1+φ2)/2

[− sin[(φ1 − φ2)/2] cos[(φ1 − φ2)/2] 
cos[(φ1 − φ2)/2] sin[(φ1 − φ2)/2]

]
. (91) 

From this, it is evident that how an exciton entering one port of the interferometer 
is distributed among the output ports depends sinusoidally on the phase difference 
φ1 − φ2 of the phases of the phase gate. This composition of gates thus functions 
as an interferometer that is sensitive to the phase difference between the two arms 
(transmission lines) internal to the interferometer. 

To simplify the discussion, consider the case when φ2 has the fixed value π . Then 
Eq. (91) reduces to 

UI (φ) = −eiφ/2

[
cos(φ/2) sin(φ/2) 
sin(φ/2) − cos(φ/2)

]
, (92) 

where we have set φ1 = φ.
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When φ = 0, this matrix reduces to 

U (0) =
[−1 0  

0 1

]
. (93) 

In this case, an exciton entering on the logical 1 line exits on the logical 1 line 
and an exciton entering on the logical 0 line exits on the logical 0 line. Hence, for 
Boolean inputs, the Boolean value remains unchanged as the qubit passes through 
the interferometer with the setting φ = 0. 

When φ = π , Eq.  (92) reduces to 

U (π ) = −i

[
0 1  
1 0

]
. (94) 

Now a qubit entering as a logical 1 exits as a logical 0 and a qubit entering as a logical 
0 exits as a logical 1. Thus, with the phase φ set at π the interferometer acts as a 
NOT gate. Now, if one had a means to switch φ between 0 and π , one would have a 
controlled NOT gate. How such a switching element can be constructed is discussed 
next. 

12 A Controlled Phase Shift 

To convert the interferometer of Fig. 6 into a controlled gate, a controlled phase 
shifting element is needed in which one exciton controls the phase shift of another. 
This requires an exciton–exciton interaction. Here the changes in the static Coulomb 
interaction between dyes resulting from changes in the charge distribution, when a 
dye transitions from the ground state to the lowest optically allowed excited state, 
are utilized, that is, the Km,n interactions of Eq. (27) are employed. 

A means is required to enable two excitons to interact in a controlled manner. 
A way to accomplish this is shown in Fig. 7. Shown are two parallel transmission 
lines that differ such that the group velocity of the upper transmission line is less 
than that of the lower transmission line. The dyes of the two transmission lines are 
oriented such that the exchange energy between dyes on separate transmission lines 
is zero. This prevents the transitioning of an exciton from one transmission line 
to the other. As discussed in the Appendix, since the exciton–exciton interaction 
energy arises from a different mechanism than of the exchange energy, the inter-
transmission line exciton–exciton interaction energy need not be zero even though 
the exciton exchange energy is. By running the two transmission lines close to each 
other the inter-transmission line strength K of the exciton–exciton interaction can 
be made large. 

For operation, exciton wave packets are introduced on both transmission lines; 
however, the packet on the upper transmission line is introduced first to give it a head 
start as shown in Fig. 7a. The exciton wave packet on the lower transmission line
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b 

a 

c 

Fig. 7 A controlled phase shifting element. The device consists of two transmission lines which 
have no inter-transmission line J coupling, but inter-transmission line K coupling, enabling an 
exciton on one transmission line to change the phase of an exciton on the other transmission line. 
The dyes of the upper transmission line are shaded to indicate that the signal propagation speed is 
slower on that transmission line. That enables an exciton wave packet of the lower transmission 
line to overtake an exciton wave packet of the upper transmission line, as shown at successive time 
snapshots (a), (b) and  (c). Thereby, the two excitons are ensured to interact regardless of where 
each resides in its wave packet 

catches up with the wave packet of the upper transmission line as shown in Fig. 7b 
and then surpasses it as shown in Fig. 7c. Where the excitons are located in each wave 
packet is unknown, but, because one wave packet completely overtakes the other, the 
two excitons are guaranteed to interact. The interaction energy is short range but has 
the value K when the two excitons are directly across from each other. The phase 
winding induced by the interaction can be estimated using e−i K  tI /h, where tI is the 
time interval over which the excitons interact. Let J1 and J2 denote the strength of 
the hopping interaction for the upper and lower transmission line, respectively, then 
from the expression for the group velocity at midband Eq. (71) and from Eq. (67), 
the magnitude of the group velocity difference is

Δvg = 
2|J2 − J1|a

h
. (95) 

Because the excitons strongly interact only when they are within a lattice unit a of 
each other, an estimate of the interaction time is 

tI = a 

|Δvg| =
h

2|J2 − J1| . (96)
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Hence, the phase winding is e−i K  /2|J2−J1|, that is, the phase accumulated during the 
interaction is 

φI = − K 

2|J2 − J1| . (97) 

The value of φI can be engineered through choice of K , J1 or J2. Let  |ψin⟩ denote 
the state of the system before the interaction and |ψout⟩ the state of the system after 
the interaction. The relation between these two states is 

|ψout⟩ =  ei φI |ψin⟩. (98) 

Because the incoming and outgoing states are both two-exciton states and the exci-
tons cannot transition from one transmission line to the other, the exciton–exciton 
interaction can be expressed in terms of the incoming and outgoing annihilation 
operators by 

Bout 
1 Bout 

2 = ei φI B in 
1 B

in 
2 . (99) 

13 A CNOT Gate 

Here we consider the CNOT gate shown in Fig. 8. This device is implemented by 
adding to the interferometer circuit of Fig. 6 two more transmission lines that carry 
the control qubit. The lower of these two transmission lines comes in close proximity 
to the transmission line of the upper arm of the interferometer to form the controlled 
phase shifter discussed in Sect. 12. Here  Am , Bm , Cm and Dm denote the annihilation 
operators for the right propagating exciton modes at various points in the device. 
They also serve as position markers within the device. The input exciton modes are 
denoted by Ain 

m and the output exciton modes are denoted by Dout 
m . The controlled 

phase shifter consists of the parallel transmission line segments B2–C2 and B3– 
C3. 

The core of the CNOT gate is analyzed first. Because a dual-rail representation 
is employed, when the control qubit and target qubit enter the device, two excitons 
are present in device, one residing in the control transmission lines and the other 
residing in the interferometer. Hence, to analyze the performance of the core of 
this device, one can restrict the analysis to the state space spanned by the basis 
set: 

BCT  =
{
A† 
1 A

† 
3|0⟩, A† 

1 A
† 
4|0⟩, A† 

2 A
† 
3|0⟩, A† 

2 A
† 
4|0⟩

}
. (100) 

Expressed in terms of the B† 
m creation operators, the A

† 
m creation operators are 

given by
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Fig. 8 A controlled NOT gate (CNOT) consisting of an interferometer with one arm coupled to one 
transmission line of the control qubit transmission line pair to form a controlled phase shift element. 
The interferometer consists of a branch line coupler B, followed by the phase shifting elements 
P , followed in turn by a second branch line coupler. Note that the input and output transmission 
line 3 has been shortened by one dye relative to the other input and output transmission lines. This 
implements propagation delays that put the scattering matrix of the device in standard form for that 
of a CNOT gate 

A† 
1 = B† 

1 (101) 

A† 
2 = B† 

2 (102) 

A† 
3 = 

1 

2
√

(
−i B† 

3 + B† 
4

)
(103) 

A† 
4 = 

1 

2
√

(
B† 
3 − i B† 

4

)
. (104) 

The first two equations express propagation along the control qubit transmission 
lines. The second two equations express the basis change transformation performed 
by the first branch line coupler, see Eq. (82). With relationships Eq. (101) through 
(104), one obtains 

A† 
1 A

† 
3 = 

1 

2
√

(
−i B† 

1 B
† 
3 + B† 

1 B
† 
4

)

A† 
1 A

† 
4 = 

1 

2
√

(
B† 
1 B

† 
3 − i B† 

1 B
† 
4

)

A† 
2 A

† 
3 = 

1 

2
√

(
−i B† 

2 B
† 
3 + B† 

2 B
† 
4

)

A† 
2 A

† 
4 = 

1 

2
√

(
B† 
2 B

† 
3 − i B† 

2 B
† 
4

)
. (105)
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The relationships between B† 
m and C

† 
m are now established. Because excitons on 

transmission lines 1 and 4 do not interact with excitons on the other transmission 
lines in the region P , one has 

B† 
1 = C† 

1 (106) 

and 
B† 
4 = eiφF C† 

4 (107) 

where, in writing the last equation, allowance has been made for a fixed propagation 
delay characterized by the fixed phase φF that can be engineered to have a desired 
value. When no exciton exists on transmission line 3, the exciton on transmission 
line 2 does not interact with excitons on the other transmission lines. In this case 

B† 
2 = C† 

2 . (108) 

One thus has the relations 

B† 
1 B

† 
3 = C† 

1C
† 
3 (109) 

B† 
1 B

† 
4 = eiφF C† 

1C
† 
4 (110) 

B† 
2 B

† 
4 = eiφF C† 

2C
† 
4 . (111) 

When an exciton exists on each of transmission lines 2 and 3, the two excitons 
interact, and from Eq. (99) one has 

B† 
2 B

† 
3 = ei φI C† 

2C
† 
3 . (112) 

The equations of (105) now yield 

A† 
1 A

† 
3 = 

1 

2
√

(
−iC† 

1C
† 
3 + eiφF C† 

1C
† 
4

)

A† 
1 A

† 
4 = 

1 

2
√

(
C† 
1C

† 
3 − iei φF C† 

1C
† 
4

)

A† 
2 A

† 
3 = 

1 

2
√

(
−ieiφI C† 

2C
† 
3 + eiφF C† 

2C
† 
4

)

A† 
2 A

† 
4 = 

1 

2
√

(
eiφI C† 

2C
† 
3 − ieiφF C† 

2C
† 
4

)
. (113) 

The mode transformations between C† 
m and D

† 
m are similar to those of Eqs. (101) 

through (104) and will not be presented here. One finds
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A† 
1 A

† 
3 = 

1 

2

[(
eiφF − 1

)
D† 

1 D
† 
3 − i

(
eiφF + 1

)
D† 

1 D
† 
4

]

A† 
1 A

† 
4 = 

1 

2

[
−i

(
eiφF + 1

)
D† 

1 D
† 
3 −

(
ei φF − 1

)
D† 

1 D
† 
4

]

A† 
2 A

† 
3 = 

1 

2

[(
eiφF − eiφI

)
D† 

2 D
† 
3 − i

(
eiφF + ei φI

)
D† 

2 D
† 
4

]

A† 
2 A

† 
4 = 

1 

2

[
−i

(
eiφF + eiφI

)
D† 

2 D
† 
3 −

(
eiφF − eiφI

)
D† 

2 D
† 
4

]
. (114) 

Now the fixed phase on transmission line 4 is chosen to be φF = π and the 
interaction-induced phase shift, Eq. (97), is chosen to be φI = π . The transformation 
(114) then becomes 

A† 
1 A

† 
3|0⟩ = −D† 

1 D
† 
3 |0⟩

A† 
1 A

† 
4|0⟩ =  D† 

1 D
† 
4 |0⟩

A† 
2 A

† 
3|0⟩ =  i D† 

2 D
† 
4 |0⟩

A† 
2 A

† 
4|0⟩ =  i D† 

2 D
† 
3 |0⟩. (115) 

By identifying an exciton on transmission lines 1 and 3 to correspond to a Boolean 
0 and an exciton on transmission lines 2 and 4 to correspond to a Boolean 1, the 
scattering matrix corresponding to the basis transformation Eq. (115) is given by 

⎡ 

⎢⎢⎣ 

−1 0  0  0  
0 1  0  0  
0 0  0  −i 
0 0  −i 0 

⎤ 

⎥⎥⎦ . (116) 

Comparing this with Eq. (20) one sees that this transformation is not quite the standard 
CNOT gate transformation, but it does exhibit CNOT functionality. 

The standard CNOT gate can be obtained from this core by introducing a phase 
shift of −π/2 at the transmission line 3 input port and the output port. This is 
implemented in Fig. 8 by making the transmission line segments for input and output 
ports 3 one dye shorter than the corresponding transmission line segments for the 
other input and output ports. That is, one implements the transformations 

Ain† 
3 = −i A† 

3 

D† 
3 = −i Dout† 

3 

Ain† 
m = A† 

m if m ∈ {1, 2, 4} 
D† 

m = Dout† 
m if m ∈ {1, 2, 4} . (117)
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With these equations, Eq. (115) yields 

Ain† 
1 A

in† 
3 |0⟩ =  Dout† 

1 Dout† 
3 |0⟩

Ain† 
1 A

in† 
4 |0⟩ =  Dout† 

1 Dout† 
4 |0⟩

Ain† 
2 A

in† 
3 |0⟩ =  Dout† 

2 Dout† 
4 |0⟩

Ain† 
2 A

in† 
4 |0⟩ =  Dout† 

2 Dout† 
3 |0⟩. (118) 

The scattering matrix corresponding to this transformation is 

⎡ 

⎢⎢⎣ 

1 0 0 0  
0 1  0 0  
0 0 0 1  
0 0 1 0  

⎤ 

⎥⎥⎦ , (119) 

which is the standard scattering matrix, Eq. (20), for the CNOT gate [ 33]. 
This completes the demonstration that a set of gates enabling universal quantum 

computation can be implemented as suitably constructed dye aggregates in which 
the exciton dynamics is governed by the Frenkel Hamiltonian Eq. (27). 

14 Exciton-Based Quantum Computer Architecture 

Having discussed individual gates, the overall architecture of an exciton-based quan-
tum computer is presented. Figure 9 indicates what the quantum computer might look 
like, how it is initialized and how the result of the computation is delivered as output. 

Between the two vertical dashed lines is the computer circuit itself. In this case, 
the circuit for a Fredkin gate was chosen as a stand-in for a general quantum computer 
circuit [ 45]. In this case, three qubit lines run parallel to each other from left to right. 
In the dual-rail representation each of these lines consists of two transmission lines. 
The boxes represent single qubit gates. The boxes labeled H are Hadamard gates 
that perform the transformation given by Eq. (17). The boxes labeled T are phase 
gates performing the transformation 

Fig. 9 A schematic indicating the architecture of an exciton-based many-body quantum walk 
quantum computer. See text for details
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[
1 0  
0 ei π/2

]
. 

Coupling between qubit wires are through the CNOT gates (Fig. 1). 
The input ports are represented by the antennas at the left end of each qubit line. 

Each of these antennas would couple to a separate electromagnetic field mode. On-
demand single photon sources would be coupled to these antennas to generate the 
exciton input state. In principle the conversion of a photon into an exciton can be done 
with unit quantum efficiency, but in practice the coupling optics and antenna design 
could be quite challenging. In addition, the single photon sources would need to 
emit short optical pulses all timed to simultaneously initiate each qubit. The excitons 
propagate ballistically (in sync) through the gate network to the output. Note that the 
number of output lines is the same as the number of input lines. This is a consequence 
of unitary evolution. The output can be delivered to photodetectors by antennas at the 
output side (right side of the circuit). These antennas would have the same structure 
as the input antennas and would, with unit quantum efficiency, convert an exciton to a 
photon that would then be detected with a unit quantum efficiency photodetector. The 
output qubit lines (to the right side of the right most vertical dashed line) have been 
draw to different lengths. Each qubit will thus arrive at its detector at a different time 
due to propagation delays. In this manner, the output of the quantum computer is time 
multiplexed so that the output can be read by noting the arrival time of each photon 
at the photodetector. This scheme has the advantage that only a single photodetector 
need be employed, which should simplify the optics that delivers the photons to the 
photodetector. 

The quantum computer, as described, is a special purpose device. For each problem 
to be addressed by quantum computation, a special purpose circuit would be assem-
bled to carry out that computation. In principle, a general purpose quantum computer 
could be implemented that uses classical switches to reconfigure the circuits. With 
DNA nanotechnology this might be done using strand displacement techniques to 
reconfigure the circuit [ 46]. 

15 But Isn’t a Quantum Computer Just an Analog 
Computer? 

The question posed in this section heading is often expressed. At first sight, con-
structing a quantum computer is simply a matter of assembling a physical system 
that implements a desired unitary transformation. Wave interference effects alone 
enable the implementation of an arbitrary unitary transformation, and this can be 
done at the classical level with a collection of optical beam splitters [ 30]. A quan-
tum computer differs in two crucial ways from a classical computer. First, quantum 
superposition, in effect, enables the same gate to carryout multiple operations simul-
taneously, which greatly reduces the parts count or the number of steps needed to 
carry out a computation for those tasks amenable to quantum speedup. Second, if the
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gate error rate is below a certain threshold value, quantum error correction can be 
implemented, enabling scalable quantum computation with imperfect gates [ 47, 48]. 
In contrast, the precision and accuracy of analog computers is generally limited by 
the precision and accuracy of their components. Error correcting quantum computing 
schemes have been devised for which the tolerance for errors is about 1% per gate 
operation, which is still quite demanding. Nevertheless, this is a good reach goal 
to drive technology and the resulting information processing technology is likely 
to have applications even if full-scale quantum computing is not achieved, particu-
larly because of the compact size (molecular scale) of the gates and the femtosecond 
switching time for gates employing optical transitions. 

16 Molecular Vibrations 

A number of imperfections that occur at the molecular level can give rise to gate 
errors or present challenges that must be overcome to construct viable gates. These 
include the dispersiveness inherent in exciton transmission lines consisting of an 
array of dyes, errors in DNA assembly, and Brownian motion that modulates the 
gate parameters as a function of time. The most serious “imperfections” result from 
the interaction of excitons with molecular vibrations. How this interaction is modeled 
is discussed here. 

A molecule in its ground state has a structural configuration characterized by 
the equilibrium position of the nucleus of each atom. Should the molecule absorb 
a photon and transition to its lowest optically allowed excited state, the position of 
the atomic nuclei at the instance of the transition will still be in the ground-state 
equilibrium configuration, as optical transitions occur on a shorter time scale than 
that required for the atomic nuclei to readjust their positions. As a consequence, the 
atomic nuclei are displaced from their excited state equilibrium position. The system 
responds by converting this potential energy into kinetic energy as the nuclei accel-
erate toward their excited state equilibrium positions. The result is that the molecule 
undergoes molecular vibrations. These vibrations couple to the environment thereby 
providing a means of energy exchange between the molecule and the environment. 
The result is a scrambling of phases that washes out interference effects. This process 
is referred to as decoherence. This process degrades quantum gate performance, as 
these gates rely on quantum interference effects. 

The exciton–vibration coupling is well modeled by what is often referred to as 
the Frenkel–Holstein Hamiltonian [ 49, 50]. This Hamiltonian can be written as the 
sum of the Frenkel Hamiltonian HF of Eq. (27) with a Hamiltonian HV (the Holstein 
part) characterizing the dynamics of the molecular vibrations and their coupling to 
the excitons 

H = HF + HV . (120) 

The Hamiltonian HV is given by
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HV = 
N∑

m=1

∑

α 
Ev 
m,αa

† 
m,αam,α + 

N∑

m=1

∑

α 
Ev 
m,αλm,α B

† 
m Bm

(
am,α + a† m,α

)
(121) 

where am,α is the annihilation operator for a quantum of vibration for the αth vibration 
mode on molecule m and the Hermitian adjoint a† m,α is the corresponding creation 
operator. These satisfy Bose commutation relations similar to those of the excitons 
Eqs. (33) and (34). Ev 

m,α is the energy of a quantum of vibration for the αth vibra-
tion mode on molecule m, and λm,α is the displacement between the equilibrium 
position of the ground and excited electronic state for the αth vibration mode on the 
mth molecule. The sums are over all vibration modes of the molecule and over all 
molecules. 

Some insight into the consequences of the exciton–vibration coupling can be 
obtained by considering the Heisenberg equation of motion for the exciton annihi-
lation operator B for a single molecule. For a single molecule the full Hamiltonian, 
neglecting two-exciton terms, becomes 

H = Ee B† B +
∑

α 
Ev 

αa
† 
αaα +

∑

α 
Ev 

αλα B
† B

(
aα + a† α

)
, (122) 

where, because we are dealing with only one molecule, the molecule index has been 
suppressed. The Heisenberg equation of motion for B is given by 

dB 

dt 
= 

i

h
[H, B]. (123) 

For the Hamiltonian Eq. (122) this yields 

dB 

dt 
= −i

[
ωe +

∑

α 
ωv 

αλα

(
aα + a† α

)
]
B, (124) 

where ωv 
α is the vibration frequency of the αth vibration mode and is related to the 

energy of a quantum of vibration by Ev 
α = hωv 

α . The operator aα + a† α is the position 
coordinate for the vibrational mode α. Treating this as a classical variable, Eq. (124) 
can be integrated to yield 

B(t) = B(0)e−i[ωet+φv(t)], (125) 

where φv(t) is a fluctuating phase arising from the motion of all the molecular 
vibration modes 

φv(t) =
∫ t 

0

∑

α 
ωv 

αλα

(
aα(t ') + a† α(t)

)
dt '. (126)
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Fig. 10 An example of a dye whose aggregate absorbance and circular dichroism spectra can 
be well modeled by including only one vibrational mode of the dye. Shown is the cyanine dye 
Cy5 structure (top panel) and the monomer absorbance spectrum (bottom panel). The shoulder at 
600 nm in the absorbance spectrum is due to the dominant vibrational mode. The absorbance units 
are 106 M−1cm−1 

This random phase causes the phase winding of B to deviate from that for pure 
sinusoidal oscillation eiω

et . This spoils interference effects and gives a width to the 
spectral lines of the dye absorption and emission spectra. 

It is often the case that a coupling between the exciton and vibration is particularly 
strong for a single or small group of vibration modes [ 51]. An example of this is 
the Cyanine dye Cy5 whose structure and absorbance spectrum [ 42] are shown in 
Fig. 10. The absorbance spectrum shows an absorbance maximum at about 650 nm. 
This corresponds to the optical transition from the ground electronic state with no 
vibrational quanta to the lowest excited electronic state with no vibrational quanta. 
The shoulder at 600 nm on the short wave-length side of the peak corresponds to the 
optical transition from the ground electronic state with no vibrational quanta to the 
lowest excited electronic state with one vibrational quantum for a dominant vibra-
tional mode. In the case when one dominant vibration mode occurs the absorbance 
spectrum can be well modeled by including only this one vibrational mode for each 
molecule. In this case the Hamiltonian Eq. (121) reduces to 

HV = 
N∑

m=1 

Ev 
ma

† 
mam + 

N∑

m=1 

Ev 
mλm B

† 
m Bm

(
am + a† m

)
. (127)
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This Hamiltonian is simple enough that the energy eigenstates and eigenvalues can 
be solved to a high degree of accuracy by numerical methods while still adequately 
accounting for the spectral features in optical absorption spectra of aggregates. 

When an exciton moves from one dye molecule to another, the dye it leaves 
undergoes a transition from the excited state to the ground state while the dye it 
moves to undergoes a transition from the ground state to the excited state. Both of 
these transitions induce molecular vibrations; however, due to conservation of energy 
the exciton cannot endlessly shed vibrations. As a result, the exciton carries a cloud of 
vibrations (or molecular distortions) with it [ 52]. The exciton becomes a composite 
particle, a bundle of electronic and vibrational energy. This modifies the dispersion 
relation for an exciton propagating along an exciton transmission line. Nevertheless, 
it should still be possible to engineer exciton quantum gates that work in spite of the 
composite nature of the exciton. 

It is also noted that molecular vibrations exhibit longer decoherence times than 
excitons [ 53]. The exciton hopping interaction provides a means of coupling vibra-
tions between dyes. It is thus an interesting question as to whether quantum comput-
ing with dye aggregates could be implemented using quanta of molecular vibrations 
in which the excitons simply provide a means to control the flow of quantum infor-
mation from dye molecule to dye molecule. 

17 Conclusion 

It has been shown that exciton-based quantum gates can be constructed from dye 
aggregates; and the aggregate configurations for a set of dyes sufficient to enable 
universal quantum computation have been presented. How these could be assembled 
into circuits with inputs and outputs has been discussed. In addition, nonidealities 
resulting from the coupling between excitons and molecular vibrations have been 
treated. 

The question arises: What are the prospects for realizing such devices in practice? 
Exciton delocalization extending over 30–100 dyes has been reported in the literature 
[ 24]. The transmission lines in the largest gate presented, Fig. 8, are 23 dyes long. This 
suggests that it should be possible to experimentally demonstrate the gates that have 
been presented, as well as small circuits assembled from such gates. Constructing 
quantum computers that would be competitive with conventional computers would 
require that workarounds be devised for a number of nonidealities that dye molecules 
exhibit. 

Although DNA nanotechnology currently offers the most promising means by 
which to assemble dye aggregates into functioning quantum gates and circuits, the 
technology still has limitations that make the construction of these gates challenging. 
It is desirable that the Jm,n and Km,n be as large as possible to enable the gate or 
circuit to complete its operation before coherence is lost. Ideally, the dyes would be 
stacked as closely as possible. That is, one would like the spacing between dyes to 
be comparable to the base stacking distance of DNA. The helical twist of DNA, for
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which a full turns occurs over roughly 3.4 nm, however, makes it difficult to take 
advantage of the base stacking to pack dyes closely together. One would like to 
lay out the gates in a two-dimensional or three-dimensional arrangement. Here the 
2 nm diameter of duplex DNA complicates the stacking of dyes close together in the 
direction orthogonal to the DNA helix direction. The size mismatches between the 
DNA structure and the desired spacing between dyes could be ameliorated if dyes 
were covalently linked into transmission-line lengths that could span the distance of a 
helical turn of DNA or the distance between neighboring duplex strands. Covalently 
linked aggregates forming gates would also help. DNA assembly would then be used 
to arrange these larger components into a desired circuit. 

Finally, the quantum computer architecture proposed here is not necessarily opti-
mum. Childs et al. [ 20] provide a different set of gates that could be implemented with 
dye aggregates in which the exciton–exciton interaction characterized by the anhar-
monicity parameter Δm rather than the exciton–exciton interaction characterized by 
Km,n provides the exciton–exciton interaction needed to implement controlled basis 
change gates. A search for alternative means with which to do information processing 
or quantum computing using dye aggregates could be productive. In this regard, it 
is noted that molecular vibrations exhibit coherence times that are longer than those 
of excitons. This suggests that it may be worth considering how molecular vibration 
quanta might be used to process and store quantum information. 
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Appendix 

Here expressions for Jm,n and Km,n are presented. Both of these quantities rep-
resent Coulomb interaction energies between pairs of dyes. The first results from 
the Coulomb interaction between the transition charge densities of a pair of dyes, 
whereas the latter arises from differences in the Coulomb interaction between a pair 
of dyes resulting from differences in the ground-state and excited-state charge den-
sities of the dyes [ 34]. Expressions for these energies greatly simplify when the 
distance between the dye molecules is much greater than the size of the molecule. 
In this case an approximation can be made in which the charge distribution on a dye 
is represented by a dipole moment. Even when the distance between the dyes is less 
than their lengths, the dipole approximation often provides a factor of two estimate 
for Jm,n and Km,n . 

Consider first Jm,n . The dipole component of the transition charge density is 
referred to as the transition dipole. It is a vector quantity whose magnitude for dye 
m is here denoted by μm . The dipole vector generally is parallel to the long axis of
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the dye molecule. In the dipole approximation Jm,n is given by 

Jm,n = μmμn 

4π∈∈0 R3 
m,n 

[cos(θ1) − 3 cos(θ2) cos(θ3)] , (128) 

where Rm,n is the distance between the centers of the two dyes, ∈0 is the permittivity 
of free space and ∈ is the relative dielectric constant of the medium in which the 
dyes reside. θ1 is the angle the two dyes make with respect to each other, θ2 is the 
angle between dye m and the line between the centers of the two dyes. Similarly, θ3 
is the angle between dye n and the line between the centers of the two dyes. Thus 
four quantities Rm,n , θ1, θ2 and θ3 that can be adjusted to fine-tune Jm,n to a desired 
value. 

Consider now Km,n . LetΔdm denote the magnitude of the dipole component of the 
difference between the excited-state and ground-state charge densities of molecule 
m. The direction of this dipole also generally lies along the long axis of the dye 
molecule. But if the dye molecule has a bent shape or has a width comparable to 
its length then it need not lie along the long axis of the molecule. It could even be 
perpendicular to the transition dipole. In general it will have some fixed angle with 
respect to the transition dipole. In the dipole–dipole approximation one has 

Km,n = ΔdmΔdn 
4π∈∈0 R3 

m,n 

[cos(φ1) − 3 cos(φ2) cos(φ3)] , (129) 

As in the case for Jm,n , four quantities can be varied by adjusting the position or 
orientation of the two dyes. These are Rm,n , φ1, φ2 and φ3. Because Rm,n is present 
in both Eqs. (128) and (129) and the transition dipole and the difference static dipole 
make a fixed angle with respect to each other, the degree to which Jm,n and Km,n 

can be adjusted independently is constrained. When the transition dipoles and dif-
ference static dipoles are not parallel, however, Jm,n and Km,n can still be adjusted 
independently of each other over a range of values. 

General expressions for Jm,n and Km,n are given in [ 34]; however, their evalua-
tion requires that one obtain the transition and ground-state and excited state-static 
charge densities for the molecules by an ab initio calculation, such as through density 
functional theory and time-dependent density functional theory. 
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