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DNA-assisted swarm control in a biomolecular
motor system
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Henry Hess 4, Akinori Kuzuya 5 & Akira Kakugo1,2,4

In nature, swarming behavior has evolved repeatedly among motile organisms because it

confers a variety of beneficial emergent properties. These include improved information

gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts,

switch between solitary and swarm behavior in response to external stimuli. Aspects of

swarming behavior have been demonstrated for motile supramolecular systems composed of

biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale

organization. The capabilities of such supramolecular systems may be further extended if the

swarming behavior can be programmed and controlled. Here, we demonstrate that the

swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin

motors can be programmed and reversibly regulated by DNA signals. Emergent swarm

behavior, such as translational and circular motion, can be selected by tuning the MT stiff-

ness. Photoresponsive DNA containing azobenzene groups enables switching between

solitary and swarm behavior in response to stimulation with visible or ultraviolet light.
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N
ature assembles its wide variety of structures through self-
assembly and self-organization where local interactions
among the individual components play pivotal roles1. A

striking example is the swarming of living organisms in which
fascinating, large scale and complex structures emerge from local
interactions among the individuals rather than through control
by a leader2. Fish schools, ant colonies, and bird flocks are typical
examples of swarming observed in nature. Swarming grants
several advantages to the organism, including parallelism,
robustness, and flexibility; all of these are unachievable by a single
entity3,4. Inspired by the attractive features of swarming organ-
isms, researchers working in the fields of robotics and nano-
technology have been investigating the swarming of self-propelled
mechanical devices5–7 and chemically powered self-propelled
particles8–10, respectively. A major challenge in swarm robotics is
the construction of large numbers of individual robots capable of
programmable self-assembly11.

This challenge may be addressed by the creation of molecular
robots. Molecular robots are molecular systems composed of all
of the three essential components of robots: sensors, information
processors, and actuators12–14. The systems integrating biomo-
lecular motors and their corresponding cytoskeletal filaments,
such as myosin–actin, dynein-MT, or kinesin-MT systems, can
provide a large number of self-propelled molecular entities15,16.
Recent studies have demonstrated some aspects of swarming
behavior by controlling the mutual interactions of the propelled
filaments using associated proteins17, depletion agents18, crowding
effects19–21, or ligand–receptor-based crosslinking22–25. These
interactions lead to the emergence of fascinating swarm patterns,
such as bundles, spools, vortex lattices26,27, as well as circular or
polar patterns28. However, programmability of the interactions,
critical to the exploration of swarm behavior at the macroscale11,
has not yet been achieved in these systems. Therefore, the scien-
tific questions are if a linker exists that combines sufficient
interaction strength, selectivity, reversibility, and controllability to
enable these systems to respond with distinct behaviors, and if that
linker can provide sensing and information processing capabilities
to these systems composed of cytoskeletal filaments propelled by
biomolecular motors.

We demonstrate, in this study, that DNA can be employed as a
universal interface to control the swarming of MTs in a
programmable manner. The unique features of DNA as a storage
device of genetic information, i.e., strict sequence-selectivity
managed by complementary base-pairing and uniform right-
handed double helical structure, together with recent progress in
chemical DNA synthesis, have made DNA a versatile tool for
molecular computing29,30, and a building block for the con-
struction of nanostructures31,32. DNA has already been used in
combination with biomolecular motor systems, either acting as a
highly specific glue to assemble motors into multimers33,34, or to
connect motors to DNA origami scaffolds35,36, or being con-
jugated to MTs for the purpose of cargo loading/unloading37–45.
Here, we report the control of swarming of kinesin-propelled MTs
(actuators) by tethering single-stranded DNA to the MTs and
programming the interactions among MTs using DNA cross-
linkers as input signals (information processing). We also regulated
the swarming mode of the MTs, such as swarming with transla-
tional or circular motion, by tuning the physical properties of the
MTs. By introducing a photoresponsive residue, azobenzene, into
the DNA strands as a sensor, the swarming of the MTs was further
controlled by photoirradiation in a reversible fashion.

Results
Design of swarming of MTs controlled by DNA. We prepared
the individual swarm units by conjugating MTs with single-

stranded DNA, at a labeling ratio of about one strand per tubulin
dimer, through a copper-free click reaction. Either the DNA or
the MTs were labeled with a fluorescent dye in order to allow
monitoring of the MTs under a fluorescence microscope (Fig. 1a).
The MTs are cylindrical objects with an outer diameter of 25 nm
and lengths between 2 and 10 μm. Based on the results of melting
temperature (Tm) simulation, the base number in a DNA strand
was fixed to 16 to obtain a Tm above the working temperature of
the biomolecular motor system (25 °C). The DNA-conjugated
MTs were propelled by surface-adhered kinesins using the che-
mical energy of adenosine triphosphate (ATP)46. Smooth gliding
of the DNA-conjugated MTs confirmed that the DNA conjuga-
tion does not hinder the interaction of MTs with kinesins (Sup-
plementary Figs. 1 and 2 and Supplementary Tables 1 and 2).

Demonstration of reversible swarming of MTs triggered by
DNA. Two DNA strands, T16 and (TTG)5, were labeled with the
fluorescent dyes TAMRA (red) and FAM (green), respectively.
These strands, termed receptor DNA (r-DNA), were conjugated
to MTs, yielding two types of MTs distinguishable by their
fluorescence (Fig. 1b and Supplementary Table 3). We placed
equal numbers of red (T16-labeled) and green ((TTG)5-labeled)
MTs on a kinesin-coated substrate (Fig. 1c) at a combined density
of 50,000 mm−2. In the presence of ATP, the MTs moved without
any interaction with each other (Fig. 1d and Supplementary
Movie 1). Linker DNA (l-DNA1) was designed to be partially
complementary to the r-DNAs, so that it can cross-link them
(Fig. 1e and Supplementary Table 3). Association of the MTs was
then initiated by the introduction of l-DNA1 as the input signal
(Fig. 1e–g). While gliding, the red and green MTs came close to
each other, associated into swarms (appearing yellow in the
merged images), and continued moving (Fig. 1g). The size of the
swarms of MTs increased by mergers of swarms, decreasing the
density of swarms over time (Fig. 1g and Supplementary
Movie 1). Despite the increase in size, the swarms of MTs
exhibited translational motion with a velocity (0.51± 0.02 µm s
−1) close to that of individual MTs (0.60± 0.05 µm s−1). We
counted the number of individual MTs at different time points
and characterized the swarming of MTs by calculating the
association ratio defined as the fraction of the number of initial
MTs incorporated into the swarms (see Supplementary Methods).
The association ratio increased with time and reached a
plateau (~90–95%) within 60 min after the addition of l-DNA1
(Fig. 1i). In the absence of kinesin, freely diffusing MTs
formed unstructured aggregates whereas immobile MTs did
not interact in the presence of kinesin and absence of ATP
(Supplementary Fig. 3).

Dissociation of the swarms into individual MTs was then
demonstrated by introducing dissociation DNA (d-DNA), which
was designed to extract l-DNA1 through a DNA strand
exchange reaction (Figs. 1e, f and Supplementary Table 3)47.
The yellow-colored swarms of MTs dissociated into red and green
MTs after the introduction of d-DNA (Figs. 1h, i). By counting
the individual MTs present after dissociation (Fig. 1i and
Supplementary Movie 1), it was estimated that a swarm is
composed of ~100 individual MTs.

DNA-based logic gates to control the swarming of MTs. Based
on the utility of DNA as an operator for molecular computing30,
we aimed to demonstrate different logic operations
where swarming was the output controlled by DNA inputs
(Supplementary Table 4). A YES logic gate was realized by using
l-DNA1 as input 1, and the swarming of red and green MTs as
the output 1 (Fig. 2). The AND logic gate was demonstrated by
designing two different linker DNA signals as l-DNA2 and
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l-DNA3, which are partially complementary to r-DNA1 and
r-DNA2, respectively, and also to each other. The OR logic gate
was implemented by conjugating pairs of r-DNA to the MTs (r-
DNA1 and r-DNA3 labeled with TAMRA; r-DNA2 and r-DNA4
labeled with FAM), and using l-DNA1 (complementary to r-
DNA1 and r-DNA2) and l-DNA4 (complementary to r-DNA3
and r-DNA4) as the two input signals. Association ratios of
85–100% were obtained for all of the systems expecting the
output representing 1 (Fig. 2), which are significantly higher than
those for the outputs representing 0 (<5%).

Swarming modes regulated by the physical properties of MTs.
We have previously found that the swarming mode of MTs is
controlled by the rigidity and length of the MTs48,49. We pre-
pared MTs with lower rigidity by polymerizing MTs with gua-
nosine triphosphate (GTP) guanylyl-(α,β)-methylene-
disphosphonate (GMPCPP) used in the experiments described
above50. The flexible GTP-MTs were then conjugated with r-
DNA1 and r-DNA2. While gliding on kinesins, the flexible MTs
moved in more curved paths compared to the rigid MTs (Fig. 3a,
b, Supplementary Movie 2). The path persistence length, Lp, of
the flexible GTP-MTs was 245± 32 µm (Supplementary Fig. 4),
while that of the rigid GMPCPP-MTs was 582± 97 µm, reflecting
a more than two-fold difference in rigidity. Unlike the rigid MTs,
the flexible MTs exhibited swarming with circular motion upon
the input of l-DNA1 (Fig. 3c, d, and Supplementary Movie 2).
The swarms with circular motion can also be dissociated into
single MTs by introducing the input d-DNA signal (Fig. 3e, f, and

Supplementary Movie 2). Single MTs retained their gliding
motion on the kinesin-coated substrate.

Orthogonal control of swarming of MTs. The selective hybri-
dization property of DNA allowed us to design a system exhi-
biting controlled swarming of flexible and rigid MTs without any
crosstalk. We conjugated two types of MTs, which differed in
body length and rigidity, with two different DNA logic gates
(Fig. 4 and Supplementary Table 5). The flexible MTs associated
into swarms with a circular motion in the presence of l-DNA1,
while the swarms of the rigid MTs exhibited a translational
motion in the presence of l-DNA5 (Supplementary Movie 3). The
formation of these two types of swarms was completely ortho-
gonal, because l-DNA1 did not affect the rigid MTs while l-DNA5
did not interact with the flexible MTs (Fig. 4). The independent
addressability of the MTs based on multiple logic gates will allow
the design of more complex systems with diverse functionality.

Light-switched repeated swarming of MTs. To obtain a fast,
reversible, and non-invasive way of altering the DNA input, we
aimed to incorporate photoresponsive DNAs (p-DNAs)51. We
installed a photoresponsive molecule, azobenzene, into two DNA
strands which allowed the ON/OFF switching of the hybridiza-
tion between these two DNA strands. The switching arises from
melting temperature (Tm) changes of DNA hybridization trig-
gered by the cis–trans isomerization of the azobenzene moiety by
ultraviolet (UV) or visible light (Fig. 5a and Supplementary
Table 6)52. The two p-DNAs were designed such that the melting
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temperature is <20 °C in the cis state and 60 °C in the trans state
(Supplementary Fig. 5). The photoresponsive DNAs (p-DNA1
and p-DNA2) were conjugated to MTs already fluorescently
labeled with TAMRA and FAM (Fig. 5b). The functionalized MTs
moved on a kinesin-coated substrate without the loss of mobility
(Supplementary Fig. 6). We applied UV irradiation (λ = 365 nm)
to initialize the azobenzene groups to the cis form, in order to
start with the movement of isolated MTs (Fig. 5c). We then
irradiated the MTs with visible light (λ = 480 nm), which triggered
the cis to trans isomerisation of azobenzenes, permitted the
hybridization of p-DNA1 with p-DNA2, and caused the swarm-
ing of MTs (Fig. 5c, rigid MTs). Subsequent irradiation with UV
dissociated the swarms back into individual MTs. This light-
switched association/dissociation of MTs was repeated for three
cycles (Fig. 5d). We also changed the swarming mode of photo-
responsive MTs from translational to circular motion by reducing
the MT rigidity (Fig. 5c, flexible MTs). Repetitive and reversible
switching of the swarming of MTs with light was thus successfully
achieved by installing a photoresponsive component to the sys-
tem (Supplementary Movie 4).

Discussion
In response to the scientific questions, we demonstrated that
DNA can be employed to selectively and reversibly control the
behaviors of cytoskeletal filaments propelled by biomolecular
motors and to provide sensing and information processing cap-
abilities to these systems. Our approach complements the recently

described approach to information processing where a swarm of
cytoskeletal filaments propelled by biomolecular motors traverses
a maze of guiding structures and in the process, computes the
solution to a mathematical problem encoded in the maze53. Here,
the information is not encoded in the positions of the filaments
with respect to a guiding structure, but in their positions relative
to each other. This work should motivate further advancement
not only in chemistry, but also in bio- and DNA nanotechnology.
Potential future applications are: active DNA sensors controlled
by analyte oligonucleotides such as microRNA, biomimetic
displays where DNA computing produces patterns, adaptive
actuators designed to sense and respond to their chemical and/or
physical environment, analyte concentrators which integrate pre-
processing of molecular information, and sequential reactors with
programmable reaction pathways. At the same time, our work
capitalizes on the advantages of biomolecular motor systems,
such as high energy efficiency, high specific power, and cost
efficiency in handling millions of MTs, which are not yet available
in conventionally fabricated mechanical swarm robots. The
present work thus contributes to a new paradigm in robotics, i.e.,
molecular robotics.

Methods
Purification of tubulin and kinesin. Tubulin was purified from porcine brain
using a high-concentration PIPES buffer (1M PIPES, 20 mM EGTA, and 10 mM
MgCl2) and stored in BRB80 buffer (80 mM PIPES, 1 mM EGTA, 2 mM MgCl2,
pH adjusted to 6.8 using KOH)54. Recombinant kinesin-1 consisting of the first 573
amino-acid residues of human kinesin-1 was prepared as described in the
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literature55. Azide labeled tubulin was prepared using N3-PEG4-NHS following the
established protocol of labeling tubulin with a fluorescent dye56. The tubulin
concentration was determined by measuring the absorbance at 280 nm using a UV
spectrophotometer (Nanodrop 2000c).

Design and preparation of DNA sequences. r-DNA and l-DNA strands were
designed from Tm simulation using OligoAnalyzer 3.1 (https://sg.idtdna.com/calc/
analyzer) software with a Tm between 0 and 50 °C for experimental testing. A
further selection criterion was followed for logic gate experiments such that any
undesired interactions were avoided between DNA strands (Supplementary Fig. 7).
Dibenzocyclooctyne (DBCO) and fluorescent dye-labeled strands were chemically
synthesized using appropriate CPG columns and a phosphoramidite (Glen
Research, VA) on a ABI 3900 automatic DNA synthesizer, purified by reverse
phase HPLC and fully characterized by MALDI-TOF/MS (Bruker microflex LRF).
The r-DNA was modified at the 3′ end with either 5(6)-Carboxyte-
tramethylrhodamine (TAMRA) or 5-Carboxyfluorescein (FAM) and at the 5′ end
with DBCO. The p-DNA was synthesized in the laboratory according to an
established protocol57. l-DNA and d-DNA were purchased from Eurofins Geno-
mics LLC.

Preparation of MTs. MTs were prepared by adding azide tubulin to poly-
merization buffer (80 mM PIPES, 1 mM EGTA, 1 mM MgCl2, 1 mM polymerizing
agent, pH ~6.8) into a final concentration of 56 µM tubulin incubating at 37 °C for
30 min. The polymerizing agent for flexible MTs was GTP, and for rigid MTs was
GMPCPP, a slowly hydrolyzable analog of GTP. Dimethyl sulfoxide (DMSO) was
added to a final concentration of 5%, only for the polymerization of flexible MTs.
Copper free click reaction was initiated by adding 3.5 µL DBCO conjugated r-
DNAs (500 µM) to the 5 µL azide-MTs (56 µM) which allowed azide-alkyne
cycloaddition reaction and incubated at 37 °C for 6 h58. 100 µL of cushion buffer
(BRB80 buffer supplemented with 60% glycerol) was used to separate the MTs by
centrifugation at 201,000 × g (S55A2-0156 rotor, Hitachi) for 1 h at 37 °C. After
removing the supernatant, the pellet of r-DNA-conjugated MTs was washed once
with 100 µL BRB80P (BRB80 supplemented with 1 mM taxol) and dissolved in 15
µL BRB80P. p-DNA-conjugated MTs were prepared following the same procedure.

Demonstration of swarming of MTs. A flow cell with dimensions of 9 × 2.5 ×
0.45 mm3 (L ×W ×H) was assembled from two cover glasses (MATSUNAMI Inc.)
using a double-sided tape as a spacer. The flow cell was filled with 5 μL casein
buffer (BRB80 buffer supplemented with 0.5 mg mL−1 casein). After incubating for
3 min, 0.3 μM kinesin solution was introduced into the flow cell and incubated for
5 min resulting in a kinesin density of 4000 μm−2 on the substrate59. After washing
the flow cell with 5 µL of wash buffer (BRB80 buffer supplemented with 1 mM
DTT, 10 μM taxol), 5 µL of red MTs (TAMRA-labeled r-DNA MTs) solution was
introduced and incubated for 2 min, followed by washing with 10 µL of wash
buffer. Subsequently, 5 µL of green MTs (FAM-labeled r-DNA MTs) solution was
introduced and incubated for 2 min, followed by washing with 10 µL of motility
buffer. The green MTs were incubated with l-DNA for 15 min at room temperature
prior to addition to flow cell. The motility of MTs was initiated by applying 5 µL
ATP buffer (wash buffer supplemented with 5 mM ATP, 4.5 mg mL−1 D-glucose,
50 UmL−1 glucose oxidase, 50 UmL−1 catalase, and 0.2% methylcellulose (w/v)).
The time of ATP addition was set as 0 h. Soon after the addition of ATP buffer, the
flow cell was placed in an inert chamber system (ICS)60 and the MTs were
monitored using a microscope at room temperature (25 °C). The experiment was
performed at least 10 times for each condition.

Fluorescence microscopy. The samples were illuminated with a 100W mercury
lamp and visualized by an epifluorescence microscope (Eclipse Ti, Nikon) using an
oil-coupled Plan Apo 60× N.A.1.4 objective (Nikon). UV cut-off filter blocks
(TRITC: EX 540/25, DM565, BA605/55; GFP-B: EX460-500, DM505, BA510-560;
Nikon) were used in the optical path of the microscope. Images were captured
using a cooled-CMOS camera (NEO sCMOS, Andor) connected to a PC. Two ND
filters (ND4, 25% transmittance for TRITC and ND1, 100% transmittance for GFP-
B) were inserted into the illumination light path of the fluorescence microscope to
reduce photobleaching of the samples. In order to isomerize the azobenzene units,
the flow cell was irradiated with the light passed through a UV-1A filter block (UV-
1A: EX 365-410, DM400, BA400; Nikon).

Data availability. The data that support this study are available from the corre-
sponding author upon reasonable request.
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Fig. 5 Light-switched, repeated swarming of MTs. a Reversible hydrogen bonding of photoresponsive DNA (p-DNA) by light-induced cis–trans

isomerization of azobenzene. b Schematic of selective association and dissociation of p-DNA-conjugated MTs under UV and visible light irradiation,

respectively. c Visible light (λ= 480 nm, I= 1.3 mW cm−2) induced isomerization of azobenzene from the cis to the trans form, which resulted in

translational swarming of the p-DNA-conjugated rigid MTs with length of 4± 2 µm (average± s.d.). The swarms were then exposed to UV light

(λ= 365 nm, I= 0.4 mWcm−2) for 6 min that isomerized the azobenzene from the trans to the cis form. The swarms dissociated into single MTs within

12 min of the onset of photoirradiation. This cycle was repeated three times. Visible light irradiation to flexible MTs with length of 12± 1 µm (average± s.d.)

generated swarms with circular motion. d Changes in the association ratio upon repeated irradiation by visible and UV light. The concentration of

red and green MTs was 0.6 µM each, and the conjugation ratio of p-DNA1 or p-DNA2 to MTs was ~100%. The concentration of kinesin was 0.8 µM.

Scale bars: 20 µm. Error bar: s.e.m.
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