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Abstract

v

Herbal medicines and botanicals have long been
used as sole or additional medical aids world-
wide. Currently, billions of dollars are spent on
botanicals and related products, but minimal reg-
ulation exists regarding their purity, integrity,
and efficacy. Cases of adulteration and contami-
nation have led to severe illness and even death
in some cases. Identifying the plant material in
botanicals and phytomedicines using organolep-
tic means or through microscopic observation of
plant parts is not trivial, and plants are often mis-
identified. Recently, DNA-based methods have
been applied to these products because DNA is
not changed by growth conditions unlike the
chemical constituents of many active pharmaceu-
tical agents. In recent years, DNA barcoding meth-
ods, which are used to identify species diversity in
the Tree of Life, have been also applied to botani-

cals and plant-derived dietary supplements. In
this review, we recount the history of DNA-based
methods for identification of botanicals and dis-
cuss some of the difficulties in defining a specific
bar code or codes to use. In addition, we describe
how next generation sequencing technologies
have enabled new techniques that can be applied
to identifying these products with greater author-
ity and resolution. Lastly, we present case histor-
ies where dietary supplements, decoctions, and
other products have been shown to contain mate-
rials other than the main ingredient stipulated on
the label. We conclude that there is a fundamental
need for greater quality control in this industry,
which if not self-imposed, that may result from
legislation.

Supporting information available online at
http://www.thieme-connect.de/products

Introduction

v

Plants have been used for their medicinal applica-
tions for millennia, and continue to be used. The
World Health Organization (WHO) and others
have reported that millions of people use medici-
nal plants worldwide in both developing and de-
veloped countries. In developing countries, about
80% of the population relies on plants for their
primary health care [1-3]. In China, 30-50% of
the medicines consumed are derived from plants.
In Germany, 90% of the people use natural medi-
cines at some time during their life, whereas in
other European countries, over 50% of the popu-
lation has done so [1-3]. More than half of all
adults in the US use dietary supplements, which
are used by healthy people to add to their diets

* Joint first authors.

[4,5]. The most recent data indicate that in 2012,
17.9% of all US adults used botanical supplements
|6] and that 70% of the Canadian population tried
them at least once [2,3].

The global herbal market has expanded even dur-
ing the recent economic recession. Furthermore,
people without medical insurance are more likely
than most people to use botanicals [4]. Billions of
dollars are being spent on products used as die-
tary supplements or phytomedicines, either in
capsules containing dried plant material or as ex-
tracts. The global market for these products was
approximately US$ 60 billion in 2000 [2] and is
expected to increase dramatically, reaching US
$ 107 billion by the year 2017 [7]. Phytomedicines
represent a major share of the pharmaceutical
market in the US and Europe. On a global basis,
Europe is the largest market for herbal supple-
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ments and remedies, and Asia-Pacific and Japan make up the oth-
er important markets for these products [7].

As the medicinal plant market has grown, incidents of contami-
nation (with insecticides, pesticides, synthetic drugs, heavy met-
als) or adulteration (substituting one plant for another either
purposefully or through misidentification) are continually re-
ported, resulting in increased concerns about the safety, effec-
tiveness, and quality of herbal products. In addition, the safety
and efficacy of these products are directly linked to quality con-
trol of the raw materials from which all herbal preparations start
[8-10] (© Fig. 1). To date, not all starting materials are routinely
tested for authenticity or adulteration.

Guidelines for the regulation and registration of herbal products
have been published by the WHO [3,9], and a number of coun-
tries have developed their own guidelines to ensure the quality
control of herbal medicines, including the importance of adher-
ing to good agricultural and collection practices (GACP), good
manufacturing practices (GMP), and good laboratory practices
(GLP) (see other WHO publications). According to the WHO [3],
of the 92 countries who responded to a survey on regulating
herbal medicine, 65% of them have laws and regulations. Sev-
enty-three percent of 103 responding countries allow herbal
medicines to be sold with claims; the most frequent are medical
and health claims [3]. Generally, countries in the WHO European
region have a high level of commitment to the quality, safety, and
effectiveness of herbal medicines. In the US, the Food and Drug
Administration (FDA) does not regulate these products because
they are exempt. In its place, Congress approved the Dietary Sup-
plement Health and Education Act (DSHEA) in 1994, which clas-
sified herbal products as dietary supplements [4,10] and stipu-
lated that supplements can be sold without prescription and do
not have to be proven efficacious. DSHEA also prohibits manufac-
turers and distributors from marketing products that are adulter-
ated or misbranded, and dietary supplements must be produced
according to GMP. In 2003, the FDA proposed the use of current
good manufacturing practices (CGMP) for further quality control
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Fig.1 Examples of the types of plant material
used for isolation of DNA and authentication.

A Bottle of Atropa belladonna dried leaves, origi-
nally from the University of Southern California
Pharmacy School. Photo, A. M. Hirsch. B Specimen
of Baccharis articulata from the Missouri Botanical
Garden Herbarium. Photo, D.C.F. Moraes. C Pow-
der derived from Hoodia gordonii. Photo, M.R. Lum.
D Plant material of Baccharis genistoides prior to
DNA extraction. Photo, D. C. F. Moraes. (Color figure
available online only.)

of these products [4, 10]. Nevertheless, the potential for fraud and
contamination has not diminished over the years, and so other
means have had to be developed to analyze the starting plant
material, whether fresh or dry, and the products derived from
them. The products are assumed to be safe until proven other-
wise, and in the US, the burden of proof rests with the Federal
government, not with the manufacturers or distributors. Botani-
cals are part of a complementary and alternative medicine port-
folio used worldwide, but not without risk. For example, herbal
medicines are responsible for 9% of drug-induced liver injury,
and in Asian countries, this figure ranges from 19% to 63% [11].
Thus, manufacturers, distributors, and the Federal government
have a critical need to identify botanical adulterants efficiently
and confidently.

DNA Markers for Identifying Plant Species

v

Numerous articles and pharmacopeia have been published about
the methods for demonstrating the authenticity and purity of
herbal products or botanicals [12]. Most products are purchased
by consumers as powders in capsules or as extracts, but manufac-
turers often purchase the unprocessed plants from suppliers
(CFig. 1C,D). Adulterants may be detected at this point using
classical botanical methods based on morphological and anatom-
ical features of the plants [13]. For example, microscopic methods
can be used to examine the plants and plant powders for charac-
teristic structures such as stomata, hairs, scales, xylem cells, etc.
However, today few people have sufficient training in plant anat-
omy or classical plant taxonomy to perform these types of analy-
ses accurately, and so these more traditional methods have be-
come less frequently employed, although most pharmacopeias,
worldwide, include them. Moreover, for extracts or for herbal
products for which the active pharmaceutical ingredient (API) is
known, techniques such as GC/MS, HPLC, 2D-NMR, or LC/MS/MS
are not only used to verify the presence, but also the quantity of
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5" TCCGTAGGTGAACCTGCGG 3’
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— —_—
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— —

5 GCTGCGTTCTTCATCGATGC 3’

the API(s) [10]. Nevertheless, because many dietary supplements
and botanicals are composed of dried or powdered plant material
and the API may not be known, authentication in the last few
years has been mostly based on the analysis of DNA markers.
Since our earlier review on the topic of molecular methods for the
authentication of botanicals and detection of potential contami-
nants and adulterants [14], the number of review articles ad-
dressing this topic has markedly increased [15-18]. Many of the
techniques described earlier, which we referred to as the use of
DNA markers to validate and authenticate plant material [14],
have been superseded by DNA barcoding. Some of these earlier
described methods are summarized in Table 1S, Supporting In-
formation. Hebert et al. [19] were the first to use the term “DNA-
barcoding” for short, orthologous DNA sequences that discrimi-
nate organisms comprising the Tree of Life - plants, animals, fun-
gi, bacteria, and archaea - to the species level. The ideal locus for
barcoding should possess high universality yet discriminate
among taxa that are not only separated by hundreds of millions
of years of evolutionary divergence, but also taxa separated by a
few million years [20,21]. For animals, the universal animal DNA
barcode, a mitochondrial gene encoding cytochrome c oxidase 1
(CO1), is widely used to differentiate diverse animal species [22,
23]. Relative to nuclear genes, animal mtDNA exhibits rapid evo-
lution, limited recombination, lacks introns, and has a high copy
number, all of which makes it suitable as a single-locus barcode
for most animal groups.

The extent of species diversity in the Tree of Life monitored by
plant biologists is huge, spanning some 490 million years since
the divergence of vascular plants from mosses. However, no sin-
gle DNA sequence has so far been found to be ideal for plant spe-
cies identification. In plants, mitochondrial genes evolve at about
one-third of the rate of chloroplast genes [24] and consequently
exhibit very little variation [25], so other candidate genes have
been studied, especially those from the chloroplast [16]. Several
plastid loci, particularly the psbA-tnrH spacer, rpoC1, matK, rbcL,
and combinations such as matK + rbcL [17,20], have been widely
utilized to differentiate a broad range of species of angiosperms,
gymnosperms, and cryptograms [20,25]. Universal primers can
be used for the plastid DNA sequences described above, and
although many of these can discriminate down to the species lev-
el, they may not be able to do so for all phyla. For example, matK
is not useful for amplifying DNA from many gymnosperms and is
extremely ineffective for cryptogams. Also, at this time, the ex-
pense, expertise, and time required to analyze and differentiate
plants among so many phyla using multiple genes is greater than
what is needed for single-locus barcode analysis. Accordingly,
nuclear as well as plastid loci have also been considered bar-
codes, but again the requirement for universal primers to amplify
PCR products has restricted the choice to a limited number of

5'-GCATCGATGAAGAACGCAGC 3’
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Fig.2 Structure of the nuclear ribosomal DNA re-
gion. The primers indicated in the figure are the
ones most commonly employed for botanicals and
medicinal plants. The figure is modified from [94].
(Color figure available online only.)

5" TCCTCCGCTTATTGATATGC

DNA sequences. The most commonly used barcodes are the inter-
nal transcribed spacer (ITS) of ribosomal DNA, parts of the ITS,
and the 5.8S region [26] (© Fig. 2). Nonetheless, the use of one or
two loci for which universal primers can be designed as barcodes
has resulted in incredible progress towards understanding plant
relationships.

The aim of systematics is to reconstruct the true phylogenetic or
evolutionary relationships among taxa. The fact that different
phylogenetic trees, all with strong support, can be constructed
using different single genes on the same taxa is a strong argu-
ment against the single-locus barcode method. Indeed, true phy-
logenetic relationships should be constructed using large data
sets comprised of multiple loci of independent genes, each evolv-
ing at different rates [27,28]. In vertebrates, either ultra-con-
served sequences [29,30] or highly conserved sequences [28]
were very effective in resolving clades across a diversity of evolu-
tionary timescales. The key to the success of this approach, called
anchored hybrid enrichment [28], is that probes are designed to
target conserved regions and their flanking variable regions,
which allows discrimination across diverse evolutionary scales.
Similarly, plant scientists are working toward the use of multiple
loci as employed for identifying bacterial species [multilocus se-
quence analysis (MLSA)], which is performed by concatenating
various housekeeping gene sequences. This is a very powerful
tool for distinguishing microbial species. Such an approach has
not been widely undertaken for plants, not only because of the
paucity of utilizable nuclear loci, but also because plastid gene
barcodes, which can be biparentally inherited, often show too
much interspecific variation. In any case, the use of multiple plas-
tid gene sequences yields results that are similar to MLSA for bac-
teria. Also, combinations of nuclear and plastid loci, e.g., ITS2 +
trnH-psbA, often discriminate species better than many plastid
barcodes used alone [25]. However, adding plastid DNA barcodes
to the analysis does not always significantly enhance the resolu-
tion given by ITS2 alone [20,21].

Targeted Enrichment Approaches

v

Next generation sequencing (NGS) platforms eliminate many of
the problems (lack of knowledge of genome size, genome se-
quence, etc.) faced by genetic/genomic plant community mem-
bers who work outside the major model and crop species and,
hence, have quickly become a powerful phylogenomic tool.
Target enrichment is an alternative approach to the restriction
enzyme sequencing approaches discussed below (i.e. RAD, GBS)
and could be easily applied to medicinal plants for which ge-
nomic resources are largely not available. This method requires
identification of primers that target conserved orthologous se-
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quences (COS), an approach similar to sequence enrichment of
ultraconserved elements in vertebrates [28,29]. Once COS are
identified, bait probes are designed and the source (sample)
DNA hybridized, pooled, and sequenced on an NGS platform. This
approach has been used effectively in plants in closely related
taxa as well as plants exhibiting wide evolutionary distances.
Target enrichment would be valuable in detecting adulterants
from the bona-fide product because herbal medicines often in-
clude plants derived from closely related taxa. Indeed, many bo-
tanicals have sister taxa whose geographic distributions overlap
and may be difficult to discriminate using classical botanical fea-
tures. Additionally, although some botanicals may consist of re-
lated species, only one or a few taxa have bioactivity. The Echina-
cea species complex is a good example where confusion over
taxonomy and differences in activity among the species exist
[31-33]. Similarly, Ganoderma lucidum, a popular mushroom
used in herbal medicine, is very difficult to distinguish from oth-
er Ganoderma species using morphological criteria, and mito-
chondrial data do not satisfactorily circumscribe the species com-
plex. However, it is important to distinguish among them be-
cause several Ganoderma species are cytotoxic to drug-sensitive
and drug-resistant cells of small cell lung cancer, whereas most
Ganoderma species are not [34].

Targeted enrichment approaches have focused on both chloro-
plast and nuclear genomes. The advantage of the chloroplast ge-
nome is that it has long been used in systematics and is a small
genome with highly conserved regions. NGS chloroplast enrich-
ment studies effectively resolved 107 Pinus species [35] and more
recently, it has been developed to work with a broad range of
taxa. By developing probes from conserved regions from a wide
diversity of taxa, the universality of sequences and power of dis-
crimination can be increased. Stull et al. [36] utilized plastid ge-
nomes from 22 eudicotyledonous species representing about
75% of angiosperm diversity to design 55000 bait probes capable
of capturing the breadth of eudicot diversity. Although coverage
depth varied considerably across the 24 taxa assessed, the probe
set recovered essentially complete plastomes of all taxa. These
studies indicate that plastid probe enrichment, particularly
probes designed to target highly conserved plastome regions,
are suitable for assessment across wide phylogenetic distances
[36,37].

Restriction Enzyme Sequencing Approaches

v

Before the development of NGS platforms, biologists were ham-
pered by the lack of sequence information for developing probes
to explore the genetics and genomics of their organism. The am-
plified fragment length polymorphism (AFLP) method [38] for
DNA fingerprinting has been employed across a vast array of taxa
across the Tree of Life. The AFLP method meets the CBOL criteria
[20] for universality because primers are based on restriction
sites and can be applied to any taxon with minimal develop-
mental effort and without any prior sequence knowledge needed.
The AFLP method detects single nucleotide polymorphisms
(SNPs) between taxa, and this restriction enzyme approach has
been adapted to NGS platforms. Two methods have been devel-
oped and presently are used primarily in the plant breeding com-
munity to detect SNPs among closely related taxa and intermated
individuals. These include restriction site-associated DNA se-
quencing (RAD or RADseq) and genotyping by sequencing (GBS).
RAD sequencing [39] begins with the digestion of genomic DNA
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with a restriction enzyme, ligation of the “P1” primer adaptor
(consisting of a forward amplification site, an Illumina sequenc-
ing primer site, and a barcode), to the restriction site, shearing
the ligated DNA to size-fractionate it, ligating the “P2" to the re-
verse complement of the “P1” primer site, and then selectively
amplifying the RAD tags. On the other hand, GBS utilizes restric-
tion enzymes that leave 2-3 base-pair overhangs and avoids cut-
ting in the repetitive regions of a genome [40]. Barcode and com-
mon adapters are ligated to the DNA-digested sticky ends, size-
selected, amplified by PCR, cleaned-up, and quality controlled,
and finally subjected to multiplexed sequencing on the Illumina
platform. Neither RAD nor GBS requires a reference genome, but
both require bioinformatics computers or cloud computing and
bioinformatics skills.

Presently, and likely for several more years, whole genome se-
quencing will be impractical for identifying and discriminating
among botanical samples because sequencing to a sufficient
depth can be cost-prohibitive and de novo genome assembly is
not trivial. Instead, NGS applied to reduced genomes is a viable
alternative that is easily implemented. Several genome reduction
methods are currently employed. These include methods de-
signed to reduce the repetitive regions through 1) the use of a
thermo stable duplex-specific nuclease [41]; 2) digestion with
methylation-sensitive restriction enzymes [40]; or 3) a single re-
striction enzyme ligated to an adaptor (RESCAN, [42]). Perhaps
ironically, the high copy number fraction, including ribosomal
and cpDNA that have been extensively used in molecular system-
atic studies, are largely excluded by these methods.

Whole Chloroplast Sequencing

v

A number of plant biologists have started to use whole chloro-
plast (cp) genome sequencing, also known as super-barcoding,
to analyze phylogenetic relationships among some hard-to-re-
solve plant groups [43]. Some plants of medicinal interest have
already been examined this way [44,45], but mainly to assess
their phylogeny. Cp genome sequencing is akin to what several
bacterial taxonomists have proposed should be done to provide
better insight into the separation of one bacterial species from
another, especially for problematic families such as the Burkhol-
deriaceae [46]. The vast number of finished or draft bacterial ge-
nomes in various databases makes this approach possible. The
number of cp genomes in GenBank has significantly increased
from 1986 to 2012 [17]. However, unlike the case for bacterial ge-
nomes, the number of available plastomes, approximately 411, is
limited. Decreasing sequencing costs and NGS technologies will
make this strategy more popular and common. The targeted en-
richment strategy for plastids [36], discussed above, which recov-
ers essentially whole cp genomes, establishes this as a viable
strategy and provides bait sequences for a wide diversity of taxa.
It is likely that the super barcoding/targeted enrichment ap-
proach using NGS will be useful for botanical authentication and
validation. Also, urgently needed are the bioinformatics re-
sources and training to make this information available and uti-
lizable.
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Authenticating and Validating Botanicals, Herbals,
and Dietary Supplements: Considerations

\/

The discrimination required for the identification of plants used
in herbal medicines and dietary supplements may not have to be
as detailed as the evidence needed for elucidating the Tree of Life.
For one, species boundaries for many plant families are still un-
certain because of incomplete data, and thus more analysis is
needed to fill in the gaps. For another, herbal medicines do not
originate from as many phyla as the plants that comprise the Tree
of Life. In the cases where the botanical is a gymnosperm, e.g.,
ginkgo, species-specific primers can be employed to identify the
presence or absence of the plant in a dietary supplement or herb-
al medicine [14]. Also, the major goals for DNA barcoding botani-
cals and related products are to determine their authenticity (the
identity of plant species that is sold or used for an extract) and
purity (whether or not other species are substituted or accidently
added to the starting material). Companies and vendors want to
identify the plants used as starting products for herbal medi-
cines, but require simple methods to authenticate and validate
them. Similarly, clinical researchers need to verify that the die-
tary supplements or botanicals they are studying contain the ma-
terial specified by the label. Moreover, due to the shear bulk and
diversity of material used in the manufacturing of these products
as well as the fact that people who are not trained in plant biol-
ogy will perform much of the testing, the methods have to be
cheap, fast, and easy-to-use. Hence, the reasons for using a lim-
ited number of barcodes, the universality of the primers to ampli-
fy them, and reliable and reproducible methods of DNA isolation
are clear. However, because DNA barcoding of botanicals requires
comparison with closely related species, the need for phyloge-
netic analysis on a larger scale still stands [47]. The lack of phy-
logenies and knowledge of an herbal product’s relationship to
other species severely hinders accurate authentication of plants
used as botanicals.

Because plant materials used for herbal products contain numer-
ous phenolics, flavonoids, and other secondary compounds,
which comprise the vast majority of extracts sold to the public,
difficulties arise with isolating high quality DNA for authentica-
tion. Also, the starting plant material may have been dried in the
sun or heated in such a way that any isolated DNA is degraded. In
cases where the DNA is very fragmented, nuclear loci are prob-
ably better for distinguishing one plant species from another
and potentially from adulterants, although opinions exist on both
sides about the robustness of ITS2 in amplifying DNA from her-
barium specimens [25,47]. The difference in results may depend
on the quality of preservation and the age of the herbarium
specimens (© Fig. 1B) ([25]; D.F.C. Moraes and A.M. Hirsch, un-
publ.). In any case, homemade methods have been used to repair
degraded DNA from dietary supplements [48], and today kits can
be purchased for this purpose. Also, NGS platforms with their
short reads, sequence depth, and accuracy in base calling, partic-
ularly with paired-end reads, have significantly diminished the
impact of degraded DNA in obtaining useful sequence informa-
tion.

Application of DNA Methods to Botanicals

v

Early on, Mihalov et al. [49] identified two different types of gin-
seng by amplifying a 650-bp ITS fragment and the plastid se-
quence for rbcL, and Lau et al. [50] employed ITS2 primers to au-

thenticate medicinal Dendrobium species. LeRoy et al. [48] uti-
lized ITS1 as well as the same 650-bp ITS region used by [49] to
differentiate two different legume dietary supplements obtained
from both fresh tissues and commercial samples. A problem,
however, with using the larger ITS region is that it may pick up
divergent paralogous ITS sequences that exist in some plants
[51]; many of these may be highly polymorphic [52,53]. For ex-
ample, the presence of multiple copies of ITS made the authenti-
cation of a medically useful plant such as green tea challenging
[54]. Moreover, the possibility exists that some ITS sequences
may be derived from fungal contaminants or endophytes. The
presence of these “extra” ITS regions in the starting material or
within the powdered dietary supplements and whether they are
fungal-derived must be addressed. Fungal endophytes frequently
contribute to the phytomedicinal profile of a plant [55], but con-
tamination by unwanted fungi may lead to poor quality starting
material due to disease and damage. Some of the problems of di-
vergent paralogous ITS sequences may be resolved by using ITS2
[26,56-60]. PCR products derived from ITS2 are generally small
in size (100-400 bp) and thus are useful for the frequently frag-
mented DNA that is isolated from dried plant material.
Information regarding differences in ITS sequences can also be
resolved through a technique known as single strand conforma-
tional polymorphism (SSCP). SSCP was originally developed for
the analysis of allelic differences in humans [61] and has been
widely applied to other studies that require differentiation be-
tween DNA sequences, particularly the microbial community
structure [62]. SSCP has also been shown to be useful for the dif-
ferentiation of plants, and the technique can be used to authenti-
cate botanicals and identify the presence of contaminating plant
material. Similar to the other types of barcoding described earlier,
SSCP discriminates between genotypes by taking advantage of
the polymorphism present between species in specific DNA
markers. In SSCP, the DNA marker is amplified by PCR, denatured
or digested to generate single-stranded DNA (ssDNA), cooled to
facilitate the formation of secondary structure, and then run on
an acrylamide gel. The secondary structure of the ssDNA is deter-
mined by the nucleotide sequence; therefore, the variation found
between species in certain markers will result in differences in
the DNA’s migration on the gel. SSCP can be used to authenticate
products by comparing the migration of the ssDNA to that of an
authenticated sample. Furthermore, the existence of contami-
nants can be detected by the presence of bands that do not mi-
grate as expected. Bands on the gel can be subsequently excised
and sequenced, which allows an additional level of authentica-
tion and the identification of the contaminating material by bar-
coding.

SSCP was first used in the study of botanicals by Kojoma et al. [63]
to differentiate between three species of cinnamon using the
trnL-trnF IGS chloroplast region and the trnL intron. Lum and
Hirsch [57] found the ITS2 region more useful than the ITS1 for
this procedure and also utilized matK to differentiate several
plants, including two closely related species of licorice, from each
other. They further applied the method to commercial samples of
dried plant material and confirmed by sequencing that the ap-
propriately sized bands were of the products specified and that
any additional bands present were due to contaminating plant
material [57]. SSCP in combination with capillary electrophore-
sis, which eliminates the need for polyacrylamide gels, was used
by Wu et al. [64] to authenticate olive oil. These authors found
that the rbcL gene could discriminate between seven oil plants
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and that SSCP analysis could be used directly on oil samples to
authenticate their content [64].

High-Resolution Melting

v

High-resolution melting (HRM) is a method developed to distin-
guish between sequence variants amplified by PCR and has been
applied to a wide variety of tasks. These include detecting adul-
terants of botanicals and foods, assessing methylation levels and
allele-specific gene expression, and variant detection in marker-
assisted crop breeding [65-71]. This simple technique is suitable
for applications in which primers can be developed that target
genes or genomic regions for which sequence variation exists be-
tween the two samples, e.g., the bona fide botanical and the con-
taminant. To obtain the melting curve, fluorescence is plotted as a
function of temperature as the thermal cycler temperature in-
creases and the double-stranded DNA dissociates [65]. The shape
and melting temperature (Ty,) of the curve are functions of the
GC/AT ratio of the amplified region; the T, of a melting domain
increases with greater GC content. Sequences with Ty, of less
than 2 °C can easily be distinguished [65], and the shape of the
melting curve can discriminate between two amplicons with a
Ty, of less than 0.3 °C [68]. High-resolution instruments have the
capability of distinguishing between amplicons with a Ty, of 0.0°
C[72]. In genotyping applications, deletions/insertions are easily
distinguished because they have large effects on melting temper-
atures, whereas heterozygotes are recognized by changes in the
shape of the melting curves. Successfully differentiating between
homozygotes with different base substitutions (SNPs), however,
is dependent on the nature of the substitution, precision of the
instrument, and melting analysis software [72].

HRM has capitalized on the widespread use of barcodes and con-
served sequences to distinguish among the adulterants of a vari-
ety of foods including olive oil [70] and legumes [73-75]; the
amount of the adulterant is typically detected to a level of 1% of
the admixture. When applying HRM to botanicals, primer sets
can be designed for detecting between unknown or known con-
taminants [68]. In the former case, a universal barcode can be de-
signed to detect the unknown adulterants, while a sequence-spe-
cific primer pair can be designed if the botanical is commonly
contaminated with a known species. Although the development
of the primers and determination of the level of sensitivity to
the adulterant requires up-front development to design primers
for a given taxa, once established, this method has the advantage
of being quick and requires no subsequent sequencing. Perhaps
surprisingly, HRM has only been applied sparingly to detect adul-
terants in botanicals. High-resolution melting was used to identi-
fy Helleborus niger L. by targeting chloroplast trnL-trnF and matK
regions [76]. Although data are limited, assays using universal
primers appear to be less sensitive in detecting adulterants than
those that target specific adulterant taxa. Assays using universal
primers targeting the matK gene detected a level of 0.1% contam-
ination in an admixture of H. niger and an unknown species, but
by using primers specific to the common adulterant Veratrum
nigrum, the assay detected a level of 0.0005% contamination of
the H. niger/V. nigrum admixture [76].
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Cases of Possible Adulteration or Substitution and

the Need for Databases of Medicinal Plants

v

Several recent studies on medicinal plants have addressed the is-
sue of identification, particularly as it refers to commercial prod-
ucts, and the need to increase the number of DNA sequences
available in genome databases for commercially important
plants. Some of these studies are summarized in Table 2S, Sup-
porting Information. At the present time, the number of DNA se-
quences available for herbal and botanical products is insuffi-
cient. For example, a study of herbal teas, which are classified as
food and not as dietary supplements, showed that although rbcL
or matK barcodes were available for most of the teas, many of the
labeled ingredients were not detected, whereas other materials
that were not listed on the label were found [77]. The authors of
this report queried both GenBank (NCBI) and the BOLD [78] data-
bases and found it difficult to make a successful match. They at-
tributed their lack of success to the limited information in the da-
tabases with respect to the ingredients listed on the labels. An-
other study on saw palmetto dietary supplements showed that
6% of the samples were either mislabeled or misidentified [79].
The supplements contained DNA from related palms, which can-
not be legally sold in the US. Also, Wallace et al. [80] studied both
plant and animal commercial products and utilized both Gen-
Bank and a local barcode library to identify some of the species.
They found that Korean ginseng frequently was identified as
American ginseng. Thus, an important issue for barcoding is the
comprehensiveness and accessibility of the barcode databases.
Currently, the most common sources for matching plant names
with DNA barcodes is either GenBank or BOLD. Although Gen-
Bank contains a large number of DNA sequences from a wide va-
riety of plants, the database is self-archived and, hence, sequence
errors are common and often persist. BOLD at this point in time
does not include a large enough number of DNA sequences for
commercially important plants. However, it has the advantage of
having voucher specimens and storing supporting information.
Other databases in development are a Medicinal Materials DNA
Barcode Database (MMDBD) [81] and one being produced by the
China Barcode of Life group [59]. The lack of adequate database
support influences numerous studies, even when using a high-
throughput analysis (HTS) based on Second Generation sequenc-
ing technology. One such study analyzed the components of tra-
ditional Chinese medicine (TCM) that consisted of either plant or
animal material or both [82]. Although HTS may be more efficient
than many of the DNA-based methods described herein and of-
fers a deeper coverage of more samples, the poor state of much
of the material used for TCM in particular and phytomedicines
in general results in highly degraded DNA. Thus, in the HTS study,
high-quality DNA was isolated from only 54% (15/28) of the sam-
ples analyzed [82], and it was not clear whether all of the compo-
nents of the samples were actually identified. In addition, for
these samples, the materials making up some of these medicines
were on the CITES (Convention on International Trade in Endan-
gered Species) list or contained plants that were toxic or poten-
tially allergenic (Table 2S, Supporting Information). Such findings
bring up serious concerns with regard to both legality and safety.
Despite the fact that mislabeling (or including unlabeled materi-
al) has long been an issue that industry has been aware of, anoth-
er recent study points out that these issues still persist. Newmas-
ter et al. [83] used rbcL and ITS2 barcodes to analyze 44 different
herbal products as well as 50 leaf samples corresponding to the
contents of the dietary supplements examined. Although DNA
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barcodes were recovered from 91% of the herbal products, the
authors were unable to authenticate more than 50% of them. In
addition, 33% of the samples contained products not listed on
the labels. The authors concluded that most of the herbal prod-
ucts were of poor quality, containing ingredients not on the label
or substitutions, contaminants, or fillers. Rather than using Gen-
Bank or BOLD to identify the herbal products, the authors gener-
ated their own barcode library, the sequences of which were later
deposited in BOLD and GenBank. At the time of analysis, too few
commercial plant DNA sequences existed in BOLD, making accu-
rate identifications potentially difficult. A library of vouchered
specimens was also generated. This research [83] created a lot of
attention, including being described in the New York Times and
other media sources, partly because of the large number of sam-
ples that were shown not to contain the labeled herbal product
[84]. The study also generated a strong negative response from a
group that focuses on botanicals and was criticized on several is-
sues [12]. However, based in part on publication [83], the attor-
ney general of New York State, in early 2015, called for the re-
moval of certain herbal supplements from retail pharmacies, as
reported in the New York Times, because DNA barcoding showed
that most of the tested products did not contain the herbs listed
on their labels [85]. What is not clear, however, was if these prod-
ucts were actually supposed to consist of dried plant material or
were they extracts? If the latter, many of these are added to an
inert filler, which is often derived from plant material. As men-
tioned earlier in this review, many analytical methods such as
GC/MS, HPLC, 2D-NMR, or LC/MS/MS are used to deduce the
presence or amount of an active pharmaceutical ingredient (API)
within an herbal supplement.

In any case, DNA barcoding, and very likely NGS-facilitated bar-
coding, is here to stay and currently, no other standardized meth-
ods, high-throughput or otherwise, exist to determine the au-
thenticity of supplements that contain plant material to a 100%
level. It is our strong recommendation that reliable information
resources become more freely available not only for preparing
high-quality DNA, but also for enabling accurate identification,
authentication, and determination of the purity of the materials
used to prepare dietary supplements and herbal medications and
perhaps even more importantly, to test them rigorously before
they are packaged into capsules or decoctions. Moreover, it is
critical that databases containing DNA sequences of plants used
as botanicals, phytomedicines, and dietary supplements be cura-
ted and supported by voucher specimens and ancillary materials.
The lack of sufficient sequence information, resources, and back-
up material for botanicals and medicinal plants in public data-
bases remains a significant problem.

At this time, it is not clear how quickly industry will take on the
task of authenticating the starting materials or the products it
sells. Concern about the integrity of herbal products is on the rise,
and if industry does not take the lead on testing botanicals and
dietary supplements, who will? DSHEA took the dietary supple-
ment industry away from overview by the FDA in the US, and it
seems unlikely that this will change [86]. In the meantime, we
are dealing with an imperfect world with regard to the integrity
of herbal products. Although many reputable companies produce
high-quality dietary supplements and herbal medicines, the op-
portunities for accidental harm or for the consumer wasting his
or her money on an ineffective product still exist. The compo-
nents of herbal products are not strictly regulated and as such
consumers have very little knowledge of the potential adverse ef-
fects that some of them may have. An alarming range of adulter-
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ants and/or contaminants has been reported in the literature,
with adverse effects ranging from mild to severe and in extreme
cases, death [11,87-92]. With such consequences in mind, it be-
hooves producers of botanicals, dietary supplements, and herbal
medicines to invest more into research towards improving the
quality and efficacy of these products. In addition, each ingre-
dient in a dietary supplement or phytomedicine should be rigor-
ously tested for safety before and after marketing [93] by multi-
ple techniques following strict scientific guidelines. Moreover, in-
dustry and academics must partner on developing accurate and
reliable assays for testing not only the integrity of the starting
material for botanicals, but also on developing procedures for
monitoring the purity of the finished products. Because much of
the botanical/phytomedicine market is based on the perception
of product quality and integrity, industry support is critical to re-
solving these problems to ensure the quality of the initial and fi-
nal constituents. DNA-based authentication of the ingredients
incorporated into these products is perhaps the most efficient
and economical method by which adverse effects of adulterants
and plant or microbial contaminants may be minimized. Indeed,
this is an important first step in determining the safety of herbal
products and the plant material from which they are derived.

Supporting information

Some examples of DNA-based techniques and specifically of DNA
barcoding-based studies to evaluate the authenticity of herbal
products are available as Supporting Information.
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