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DNA binding protein identification 
by combining pseudo amino acid 
composition and profile-based 
protein representation
Bin Liu1,2, Shanyi Wang1 & Xiaolong Wang1,2

DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary 
to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence 
information of proteins. The bottleneck for constructing a useful predictor is to find suitable features 
capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein 
identification, and PseAAC was further improved by incorporating the evolutionary information 
by using profile-based protein representation. Finally, Combined with Support Vector Machines 
(SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated 
benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, 
and it can achieve stable performance on an independent dataset. By using an ensemble learning 
approach to incorporate more negative samples (non-DNA binding proteins) in the training process, 
the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is 
available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

DNA-binding proteins have diverse functions in the cell, and play vital roles in various cellular processes, 
such as gene regulation, DNA replication, and repair1. Identi�cation of DNA-binding proteins is one of 
the most important tasks in the annotation of protein functions. In recent years, DNA-binding proteins 
can be identi�ed by several experimental techniques, including �lter binding assays2, X-ray crystallog-
raphy3 and NMR4. However, it is time-consuming and expensive to identify DNA-binding proteins by 
experimental approaches. Facing the avalanche of new protein sequences generated in the post-genomic 
and big data age5,6, it is highly desired to develop automated methods for rapidly and e�ectively identi-
fying DNA-binding proteins basing on the protein sequence information alone.

�e computational methods for DNA binding protein identi�cation can be grouped into two catego-
ries: (i) methods based on structures (ii) methods based on sequences. �e �rst type makes use of both 
the structural and sequential information of target proteins (see, e.g.,7–10). Although these methods show 
promising predictive performance, the structural information of proteins is not always available, particu-
larly for the huge amount of proteins, which prevents the application of these methods. In contrast, the 
second type methods overcome this shortcoming by only requiring the sequence information as input 
for the prediction11–20.

A key to improve the performance of the sequence-based methods is to �nd suitable feature extrac-
tion algorithms that can capture the characteristics of DNA binding proteins and non DNA binding 
proteins. Motivated by the successful application of Chou’s pseudo amino acid composition (PseAAC) to 
many important tasks in the �eld of computational proteomics, here we are to propose a new approach 
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for DNA binding protein identi�cation called iDNAPro-PseAAC, which extends the classic PseAAC 
approach by incorporating the evolutionary information in the form of pro�le-based protein representa-
tion21. �e iDNAPro-PseAAC has the following advantages compared with other currently available 
approaches: (i) It is able to incorporate the global or long range sequence-order e�ects by means of 
PseAAC. (ii) �e evolutionary information imbedded in the pro�le-based protein representation is 
employed by iDNAPro-PseAAC. (iii) It considers the various physical-chemical properties of amino 
acids.

To establish a really useful statistical predictor for a protein system, we need to consider the follow-
ing procedures: (i) Construct or select a valid benchmark dataset to train and test the predictor. (ii) 
Formulate the protein samples with an e�ective mathematical expression that can truly re�ect their 
intrinsic correlation with the attribute to be predicted. (iii) Introduce or develop a powerful algorithm 
(or engine) to operate the prediction. (iv) Perform properly cross-validation tests to objectively evaluate 
the anticipated accuracy of the predictor. Below, we are going to describe how to build the new predictor 
according to the four procedures.

Results
The influence of λ and ω on the performance of iDNAPro-PseAAC. �ere are two parameters 
λ and ω in iDNAPro-PseAAC, which would in�uence its performance (see method section). λ can be 
any integer between 1 and L-1, where L is the shortest length of sequences in the benchmark dataset. 
�e range of ω is 0-1. �e performance of iDNAPro-PseAAC with di�erent λ and ω combinations is 
shown in Fig.  1 and Supplementary S1, from which we can see that iDNAPro-PseAAC achieves the 
best performance with λ =  3 and ω =  0.7. �ese parameter values are used in the following experiments.

Discriminant Visualization. To further study the discriminant power of features, we calculate 
the discriminant weight vectors in the feature space. In the SVM training process, we can get the 
sequence-speci�c weights, which can be used to calculate the discriminant weight of each feature. �e 
feature discriminant weight vector W can be calculated as following:
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where the weight vector A of the training set with N samples obtained from the kernel-based training; 
M is the matrix of sequence representatives; j is the dimension of the feature vector. �e element in W 
represents the discriminative power of the corresponding feature.

�e discriminative weights of all the 23 features are shown in Fig. 2. We can see that 9 amino acids 
show positive values, while the other 11 amino acids show negative values. Interestingly, most of the 
amino acids with positive values, such as R, K, have been reported as important residues in DNA binding 
proteins, and they are redundant in DNA protein binding regions22. iDNAPro-PseAAC is able to capture 

Figure 1. �e performance of iDNAPro-PseAAC with di�erent λ and ω combinations. iDNAPro-

PseAAC achieves the best performance with λ =  3 and ω  =  0.7.
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this kind of features of DNA binding proteins, which could explain the reason for its better performance. 
Another interesting pattern is that all the three features capturing the sequence-order e�ects (λ =  1, 2, 3) 
show negative values, indicating that this kind of features is useful for representing the features of non 
DNA binding proteins.

Results on the benchmark dataset. Table 1 shows the predictive results of iDNAPro-PseAAC on 
the benchmark dataset by using Jackknife test. For comparison, the results of four state-of-the-art meth-
ods are also listed, including DNAbinder (dimension 21)23, DNAbinder (dimension 400)23, DNA-Prot24 
and iDNA-Prot25. �e reason why we select these four methods is that they have public available so�ware 
tools with reported optimized parameters. �eir optimized results on the benchmark dataset can be 
easily obtained by using these tools and parameter settings.

From Table 1 we can see that iDNAPro-PseAAC achieves the best performance. In order to further 
study the performance of the proposed method, the ROC curve is employed to evaluate the performance 
of di�erent methods. ROC curve is a graphical plot that illustrates the performance of a binary classi�er 
system with its discrimination threshold varying. �e horizontal coordinate is false-positive rate and the 
vertical is true-positive rate. �e true-positive rate is also known as sensitivity in biomedical informatics, 
or recall in machine learning5,26. �e false-positive rate is also known as the fall-out and can be calculated 
as 1 -speci�city. �e area under the curve (AUC) is the evaluation criteria for the classi�er. Figure  3 
shows the ROC curve of the �ve methods, from which we can see that iDNAPro-PseAAC outperforms 
other four approaches in terms of AUC.

Performance comparison with other related computational predictors. To further evaluate the 
performance of iDNAPro-PseAAC and facilitate the comparison against previous predictors, an inde-
pendent test dataset PDB186 constructed by Lou et al. is used27, where 93 proteins are DNA-binding 
proteins and 93 proteins are non-DNA-binding proteins. To avoid the homology bias, we use the 
NCBI’s BLASTCLUST28 to remove those proteins from the benchmark dataset that have more than 25% 
sequence identity to any protein within a same subset of the PDB186 dataset. �e iDNAPro-PseAAC 
is re-trained on the resulting benchmark dataset, and then this model is used to predict the samples 
in the independent dataset. �e results are shown in Table 2, and the ROC curves of various methods 
are plotted in Fig.  4. Compared with the results listed in Table  2, we can see that iDNAPro-PseAAC 
can achieve stable performance on the independent dataset, indicating that the proposed method is a 

Figure 2. �e discriminative weights of all the 23 features. 

Method Acc(%) MCC Sn(%) Sp(%) AUC(%)

iDNAPro-PseAAC 76.56 0.53 75.62 77.45 83.92

DNAbinder (dimension 21)a 73.95 0.48 68.57 79.09 81.40

DNAbinder (dimension 400)b 73.58 0.47 66.47 80.36 81.50

DNA-Protc 72.55 0.44 82.67 59.76 78.90

iDNA-Protd 75.40 0.50 83.81 64.73 76.10

Table 1.  A comparison of the jackknife test results by iDNAPro-PseAAC with the other methods on the 

benchmark dataset of Eq. 2 (cf. Supporting Information S3).
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useful tool for DNA binding protein identi�cation. iDNAPro-PseAAC outperforms other approaches 
except for DBPPred. However, our method is more e�cient than DBPPred. DBPPred uses 1486 features 
derived from predicted secondary structure, predicted relative solvent accessibility, and position speci�c 
scoring matrix. �ese features are calculated with the help of two so�ware tools, including SPINE-X and 
Psi-Blast. All these tools require a time consuming multiple sequence alignment process29. Furthermore, 
these features contain several parameters, which should be optimized on a validate dataset. �is requires 
additional running time for DBPPred and raises the risk of over-�tting problem caused by this parame-
ter optimization process. In contrast, the 23 features used in iDNAPro-PseAAC can be easily generated 
only based on the protein sequences. �erefore, iDNAPro-PseAAC is more e�cient than DBPPred, and 
avoids the risk of over-�tting.

Influence of Negative Samples on the Predictive Performance. In real world application, there 
are more non DNA binding proteins (negative samples) than the DNA binding proteins (positive sam-
ples)30. However, in order to avoid the classi�er biased problem, a balanced benchmark dataset  is used 
to construct iDNAPro-PseAAC. �erefore, it is interesting to explore the in�uence of di�erent negative 
sets on the predictive performance of iDNAPro-PseAAC. In this regard, we conduct the following exper-
iments. First we extend the size of the negative set − in the the benchmark dataset  by selecting more 
non DNA binding proteins from PDB31. A�er removing the redundant proteins sharing more than 25% 

Figure 3. �e ROC curves obtained by di�erent methods on the benchmark dataset using the jackknife 

tests. �e areas under the ROC curves or AUC are 0.839, 0.826, 0.814, 0.815, 0.789 and 0.761 for iDNAPro-
PseAAC, DNAbinder (dimension 21), DNAbinder(dimension 400), DNA-Prot and iDNA-Prot, respectively. 
See the main text for further explanation.

Methods Acc(%) MCC Sn(%) Sp(%) AUC(%)

iDNAPro-PseAAC 69.89 0.402 77.41 62.37 77.54

iDNA-Prot 67.20 0.344 67.70 66.70 N/Ab

DNA-Prot 61.80 0.240 69.90 53.80 N/A

DNAbinder 60.80 0.216 57.00 64.50 60.70

DNABIND 67.70 0.355 66.70 68.80 69.40

DNA-�reader 59.70 0.279 23.70 95.70 N/A

DBPPred 76.90 0.538 79.60 74.20 79.10

Table 2.  A comparison of the resultsa obtained by iDNAPro-PseAAC and the other methods on the 

independent dataset PDB186. a�e results of iDNA-Prot25, DNA-Prot24, DNAbinder23, DNABIND47, DNA-
�reader48, and DBPPred27 were obtained from27. bN/A represents the unreported values.
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similarity with the independent dataset, we obtain 2059 negative samples, which were listed in 
Supplementary S2. �e extended negative set is then randomly divided into 4 subsets. For each subset, 
its size is approximately equal to that of the positive set + in the the benchmark dataset . �ese four 
subsets are respectively combined with the positive set +, and four new datasets are generated. Four 
predictors of iDNAPro-PseAAC trained with these four datasets can be represented as iDNAPro-PseAAC-1, 
iDNAPro-PseAAC-2, iDNAPro-PseAAC-3, and iDNAPro-PseAAC-4, respectively. �eir performance 
is then evaluated on the independent dataset. Table  3 shows the results of the four methods, and the 
corresponding ROC curves are plotted in Fig. 5, from which, we can see that the four predictors show 
similar performance, indicating that di�erent subsets of negative samples don’t have signi�cant impact 
on the performance of iDNAPro-PseAAC. Next, we investigate if these four predictors can be combined 
to further improve the performance. In this regard, we employ a simple ensemble learning approach to 
combine them32,33. For each test sample, it is predicted by the four predictors respectively, and the �nal 
class label of the test sample is assigned based on the average values of the four probability values calcu-
lated by the four predictors. �e results of iDNAPro-PseAAC-EL (iDNAPro-PseAAC with the ensemble 
learning approach) are shown in Table 3 and Fig. 5. Performance improvement can be observed. �is is 
because by using ensemble learning method, more negative samples are used to train iDNAPro-PseAAC, 
leading to a more accurate predictor.

Discussion
Because of the importance of DNA binding protein identi�cation, computational predictors only using 
the sequence information for DNA binding protein identi�cation is highly desired. In this study, we 
proposed a method called iDNAPro-PseAAC for DNA binding protein identi�cation, which combines 
the pseudo amino acid composition with pro�le-based protein representation. Experimental results show 

Figure 4. �e ROC curves obtained by di�erent methods on the independent dataset PDB186. �e 
areas under the ROC curves or AUC are 0.775, 0.607, 0.694, and 0.791 for iDNAPro-PseAAC, DNAbinder, 
DNABIND and DBPPred, respectively. See the main text for further explanation.

Methods Acc(%) MCC Sn(%) Sp(%) AUC(%)

iDNAPro-PseAAC-1 69.89 0.406 79.57 60.22 75.00

iDNAPro-PseAAC-2 71.50 0.449 86.02 56.99 75.00

iDNAPro-PseAAC-3 69.89 0.409 81.72 58.06 74.10

iDNAPro-PseAAC-4 69.35 0.407 84.95 53.76 70.20

iDNAPro-PseAAC-EL 71.50 0.442 82.76 60.22 77.80

Table 3.  Results on independent dataset PDB186 achieved by iDNAPro-PseAAC trained with di�erent 

datasets.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:15479 | DOi: 10.1038/srep15479

that it outperform other approaches in both benchmark dataset and independent dataset. Furthermore, 
the discriminative model can be analyzed to reveal the in-depth features of DNA binding proteins, which 
would bene�t the researchers who want to investigate the characteristics of DNA binding proteins. Some 
recent studies have shown that DNA-binding proteins also regulate the microRNA targets, and involve 
in the noncoding RNA-protein-disease network 34–39. We believe that this predictor would be a high 
throughput tool for DNA binding protein investigation.

Methods
Benchmark Dataset. A reliable and stringent benchmark dataset is necessary to build and evaluate 
a statistical predictor. In this regard, an updated benchmark dataset for this study is constructed based 
on the latest version of Protein Data Bank (PDB)31, which can be formulated as:

  = ∪ ( )+ − 2

where + represents the subset containing DNA binding proteins (positive samples), − represents the 
subset containing non DNA binding proteins (negative samples), and the symbol ∪ is the “union” in the 
set theory. DNA-binding protein sequences are collected from the PDB by searching the mmCIF key-
word of ‘DNA binding protein’, ‘protein-DNA complex’, and other key words with similar meaning. To 
construct a high quality and non-redundant benchmark dataset, the protein sequences obtained should 
be �ltered by the following 2 criteria. (1) Proteins with length less than 50 AA were removed, which 
might be fragment. (2) To reduce redundancy and homology bias, the sequence similarity lower than 
25% between any two proteins were cut o� by using PISCES40. Finally, we obtained 525 DNA binding 
proteins for the subset of +. 550 non DNA binding proteins were randomly selected from the PDB 
according to the above criteria. �e accession codes and sequences of the 525 positive and 550 negative 
samples are given in the Supplementary S3.

Profile-based protein representation. Pro�le-based protein representation21 is an e�cient approach 
to extract the evolutionary information from frequency pro�les. Its main steps are as follows.

Given the protein sequence P consisting L amino acids as formulated as:

= ( )P R R R R R R LR 31 2 3 4 5 6 L

where R1 represents the 1st residue, R2 represents the 2nd residue and so forth. �e frequency pro�le of 
sequence P generated by PSI-BLAST28 with default parameters can be represented as a matrix M:

Figure 5. �e ROC curves obtained by di�erent iDNAPro-PseAAC predictors on the independent 

dataset PDB186. �e areas under the ROC curves or AUC are 0.750, 0.750, 0.741, 0.702, 0.778 for 
iDNAPro-PseAAC-1, iDNAPro-PseAAC-2, iDNAPro-PseAAC-3, iDNAPro-PseAAC-4, and iDNAPro-

PseAAC-EL, respectively.
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where 20 is the number of standard amino acids; mij is the target frequency representing the probability 
of amino acid i (i =  1, 2, …, 20) appearing in sequence position j (j =  1, 2, 3…, L) of protein P during 
evolutionary process. �e mij is calculated as:
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where fij represents the observed frequency of amino acid i in column j, α is the number of di�erent 
amino acids in column j-1. β is a free parameter set to a constant value of 10, which is initially used by 
PSI-BLAST. gij is the pseudo-count for standard amino acid i in position j. It is calculated as follows:
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where pk is the background frequency of amino acid k, qik is the score of amino acid i being aligned to 
amino acid j in BLOSUM62 substitution matrix, which is the default score matrix of PSI-BLAST.

For each column in M, the amino acids are sorted in descending order according to their frequency 
values. �us the sorted matrix ↓M  can be represented as:
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�e pro�le-based protein representation P′ of protein P can be generated by combining the most 
frequent amino acids in all the columns of M, and can be represented as:

′ = ′ ′ ′ ′ ′ ′ ′ ( )P R R R R R R R 91 2 3 4 5 6 L

where ′R i represents the most frequent amino acid in the i-th column of ↓M , whose frequency value is 
↓
,m i1 .

Pseudo amino acid composition (PseAAC). One of the most important but also most di�cult 
problems in computational biology and biomedicine is how to formulate a biological sequence with a 
discrete model or a vector, yet still keep considerable sequence order information. �is is because all 
the existing operation engines, such as SVM (Support Vector Machine) and NN (Neural Network), 
can only handle vector but not sequence samples, as elaborated in41,42. However, a vector de�ned in a 
discrete model may completely lose all the sequence-order information. To avoid completely losing the 
sequence-order information for proteins, the pseudo amino acid composition or PseAAC was proposed43.

�e PseAAC approach then performs on the pro�le-based protein representation P′ (c.f. Eq. 9) to 
convert it into a �xed length feature vector by using PseAAC:

′ = , , …, , …, ( )λ+x x x xP [ ] 10u1 2 20
T

where T is transpose operator, λ is the distance parameter considering the sequence-order e�ects of 
residues in proteins. xu can be calculated by
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where fu is the occurrence frequency of 20 standard amino acid in pro�le-based protein representation 
P′. ω is the weight factor for the sequence-order e�ect. θk is the sequence-order correlation factor, which 
can be calculated as:

θ λ=
∑ Θ( ′ , ′ )

−
( ≤ )

( )
=
−

+

L k
k

R R
12k

i
L k

i i k1

where ′R i is the i-th amino acid in P′. L is the length of P′. k is the distance between two amino acids 
along P′. Θ( ′ , ′ )+R Ri i k  represents the scores calculated according to seven kinds of physical-chemical 
properties of amino acids (their values are listed in Supplementary S4, which can be calculated by:

( )∑Θ( ′ , ′ ) = ( ′ ) − ( ′ )
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where ( ′ )I Rj i  and ( ′ )+I Rj i k  are the normalized physicochemical property values of amino acid ′R i and 
′ +R i k in property j, which can be calculated by the following equation:
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where ( )˜ aI j i  represents the raw physicochemical property value of amino acid aj in property j. ak (k =  1, 
2, 3, 4, …, 20) represents the 20 standard amino acids.

Support Vector Machine. In machine learning, support vectors are supervised learning models with 
associated learning algorithms44. For a given training samples, the basic mission of SVM is constructing 
a separating hyper-plane to maximize the margin of di�erent samples in training set. An SVM model is 
a representation of examples as points in space, mapped so that the examples of the separate categories 
are divided by a clear gap.

In this study, we adopt the Lib-SVM package. �e kernel function was set as Radial Basis Function(RBF) 
which can be de�ned as:

γ( ) = (− − ) ( ),  K X X exp X X 15i j i j
2

�e two parameters C and γ  were were optimized on the benchmark dataset by the grid tools in the 
LIBSVM. A�er optimizing, C is set as 8192 and γ  is set as 8.0.

�e �owchart of generating the feature vectors and constructing the SVM classi�er for 
iDNAPro-PseAAC is shown in Fig. 6.

Evaluation methodology. How to evaluate the performance of a new predictor is a key component. 
�ere are three cross-validation methods, which are o�en used: independent dataset, subsampling or 
K-fold(such as 5-fold, 7-fold, or 10-fold) test, and Jackknife test. However, there are considerable arbi-
trariness exists in the independent dataset test and the K-fold cross validation. Jackknife can make the 
least arbitrary and has been widely used in computational genomics and proteomics. In the jackknife 
test, each of the proteins sequence in the benchmark is singled out as an independent test sample in turn.

Also, four metrics called the sensitivity(Sn), speci�city(Sp), accuracy(Acc), and Mathew’s correlation 
coe�cient(MCC), are o�en used to measure the test quality of a predictor from di�erent angles45.
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where TP represents the number of the true positive; TN, the number of the true negative; FP, the num-
ber of the false positive; FN, the number of the false negative; SN, the sensitivity; Sp, the speci�city; Acc, 
the accuracy; MCC, the Mathew’s correlation coe�cient.

In the study, we also use the metrics receiver operation characteristics (ROC) score. ROC curve is a 
graphical plot that illustrates the performance of a binary classi�er system as its discrimination threshold 
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is varied46. A score 1 denotes perfect separation of positive samples from negative ones, whereas a score 
of 0 indicates that none of the sequences selected by the algorithm is positive.
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