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Method

DNA copy number analysis of fresh and formalin-fixed
specimens by shallow whole-genome sequencing
with identification and exclusion of problematic
regions in the genome assembly

Ilari Scheinin,1,2,12 Daoud Sie,1,12 Henrik Bengtsson,3,4 Mark A. van de Wiel,5,6

Adam B. Olshen,3,4 Hinke F. van Thuijl,1,7 Hendrik F. van Essen,1 Paul P. Eijk,1

François Rustenburg,1 Gerrit A. Meijer,1 Jaap C. Reijneveld,7,8 Pieter Wesseling,1,9

Daniel Pinkel,3,10 Donna G. Albertson,3,10,11 and Bauke Ylstra1

1Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands; 2Department of Pathology,

Haartman Institute and HUSLAB, FIN-00014 University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; 3Helen

Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA; 4Department

of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94158, USA; 5Department of

Epidemiology and Biostatistics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands; 6Department of Mathematics,

VU University, 1181 HV Amsterdam, The Netherlands; 7Department of Neurology, VU University Medical Center, 1007 MB

Amsterdam, The Netherlands; 8Department of Neurology, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands;
9Department of Pathology, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; 10Department of Laboratory

Medicine, University of California San Francisco, San Francisco, California 94153, USA; 11Bluestone Center for Clinical Research,

New York University College of Dentistry, New York, New York 10010-4086, USA

Detection of DNA copy number aberrations by shallow whole-genome sequencing (WGS) faces many challenges, in-

cluding lack of completion and errors in the human reference genome, repetitive sequences, polymorphisms, variable

sample quality, and biases in the sequencing procedures. Formalin-fixed paraffin-embedded (FFPE) archival material, the

analysis of which is important for studies of cancer, presents particular analytical difficulties due to degradation of the

DNA and frequent lack of matched reference samples. We present a robust, cost-effective WGS method for DNA copy

number analysis that addresses these challenges more successfully than currently available procedures. In practice, very

useful profiles can be obtained with ~0.13 genome coverage. We improve on previous methods by first implementing

a combined correction for sequence mappability and GC content, and second, by applying this procedure to sequence

data from the 1000 Genomes Project in order to develop a blacklist of problematic genome regions. A small subset of these

blacklisted regions was previously identified by ENCODE, but the vast majority are novel unappreciated problematic

regions. Our procedures are implemented in a pipeline called QDNAseq. We have analyzed over 1000 samples, most of

which were obtained from the fixed tissue archives of more than 25 institutions. We demonstrate that for most samples our

sequencing and analysis procedures yield genome profiles with noise levels near the statistical limit imposed by read

counting. The described procedures also provide better correction of artifacts introduced by low DNA quality than prior

approaches and better copy number data than high-resolution microarrays at a substantially lower cost.

[Supplemental material is available for this article.]

Alteration in chromosomal copy number is one of the main

mechanisms by which cancerous cells acquire their hallmark

characteristics (Pinkel et al. 1998; Hanahan and Weinberg 2011).

For > 20 yr, these alterations have been routinely detected first by

genome-wide comparative genomichybridization (CGH) (Kallioniemi

et al. 1992) and subsequently by array-based CGH (Snijders et al.

2001) or single nucleotide polymorphism (SNP) arrays (Ylstra et al.

2006). Nowwhole-genome sequencing (WGS) offers an alternative

to microarrays for many genome analysis applications, including

copy number detection.

Several methods have been developed to estimate DNA copy

number from WGS data. They can be grouped into the following

four categories, each of which has its own set of requirements,

strengths, and weaknesses (Teo et al. 2012): (1) Assembly-based

methods construct the genome piece by piece from the sequence

reads instead of aligning them to a known reference; these

methods have the greatest sensitivity to detect deviations from the

reference genome, including copy number changes and genome

� 2014 Scheinin et al. This article, published in Genome Research, is available
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rearrangements, but require high sequence coverage (typically

403) (Li et al. 2010) and therefore incur high cost; (2) split-read

and (3) read-pair methods map sequence reads from both ends of

size-fractionated genomic DNA molecules onto the reference ge-

nome; these methods can provide information on copy number

and genome rearrangements, but they impose requirements on

molecule sizes and therefore are highly sensitive to DNA integrity;

and (4) depth of coverage (DOC)methods infer copy number from

the observed sequence depth across the genome anddonot require

both ends of the molecule to be sequenced.

Archival tissue is an invaluable resource for biomarker detection

studies (Casparie et al. 2007). Projects investigating cancers with

long survival, such as diffuse low-grade gliomas (LGGs) with a subset

of patients surviving > 25 yr after diagnosis (van Thuijl et al. 2012),

require long-term clinical follow-up. Archival FFPE tissue is often the

only source of material for study (Blow 2007). The use of such

samples has been challenging due to poor DNA quality; hence, array

CGH results, for example, have been variable (Mc Sherry et al. 2007;

Hostetter et al. 2010; Krijgsman et al. 2012; Warren et al. 2012). To

make large archival sample series accessible for genome research,

a robust technique is required that performs well on diverse sample

types, with high resolution, quality and reproducibility, and at low

cost without the necessity for a (matched) normal sample. Here we

focus exclusively on DOC methods, because they are theoretically

most compatible with DNA isolated from FFPE material.

Typically, DOC methods for copy number divide the refer-

ence genome into bins and count the number of reads in each,

although there are also bin-free intensity-based implementations

(Shen and Zhang 2012). Copy number is then inferred from the

observed read counts across the genome. To compensate for

technological bias, many DOC algorithms, such as CNV-seq (Xie

and Tammi 2009), SegSeq (Chiang et al. 2009), BIC-seq (Xi et al.

2011), and CNAnorm (Gusnanto et al. 2012), compare tumor

signal to a normal reference signal, similar to array CGH. Com-

monly, a pool of different individuals is used as a normal reference

DNA. In many applications, including cancer genome analysis,

matched normal DNA from the same patient is preferable to avoid

detection of germline copy number variants (Feuk et al. 2006),

allowing focus solely on somatic aberrations (Perry et al. 2008).

Two DOCmethods, readDepth (Miller et al. 2011) and FREEC

(Boeva et al. 2011), do not require a reference signal. This has three

principal advantages: the cost is reduced by half, archival material

for which matched normal reference tissue is unavailable (most

cases) can be analyzed, andmeasurement noise from the reference

sample is avoided. Achieving these benefits requires accurate

computational correction for biases in the DOC sequence data

since they are no longer being normalized by comparison with

data from a matched reference specimen.

Here we describe a multiplexed, single-read (SR), shallowWGS

procedure based on the Illumina platform that produces improved

DOC copy number profiles. Because DOC profiles are fundamen-

tally based on counting the number of sequence reads, the mini-

mum achievable noise can be easily calculated. We show that

a larger proportion (most) of the samples we have analyzedwith our

procedures show noise levels at the theoretical minimum than with

other analysis methods. We achieve the improved performance by

simultaneous (rather than sequential) correction of primary read

counts for sequence mappability and GC content, and by using

a comprehensive empirical approach for recognition and filtering of

problematic genome regions. We also show that compared to pre-

vious shallow WGS analysis procedures, our approach provides

improved correction of spurious localized profile variations, which

are presumably due to sample quality problems; and microarray

analysis costs more and yields a poorer signal-to-noise ratio than

shallow WGS. Thus our DOC profiles provide a more accurate rep-

resentation of the genome copy number structure than can be

obtained by other approaches and should allow segmentation and

calling algorithms to more sensitively recognize true aberrations.

Results

Shallow WGS and alignment to the reference genome

Shallow WGS was performed with DNA isolated from FFPE sec-

tions of 15 LGGs (van Thuijl et al. 2014), two oral squamous cell

carcinomas (SCCs AB042 and AB052) (Bhattacharya et al. 2011),

and the breast cancer cell line BT474 on the Illumina HiSeq 2000

using run mode SR50, which sequences only one end of the DNA

molecules for 50 base pairs. In general, these DNA samples were

multiplexed with others so that each HiSeq sequencing lane con-

tained between 18 and 22 total samples.We use sample LGG150 to

illustrate our analysis procedures in the main article text and fig-

ures because it contains a range of different types of genome al-

terations that are typical for solid tumors. Complete analyses of all

LGG samples, BT474, AB042, and AB052, including whole-ge-

nome plots and enlarged views of chromosome 1, are presented in

Supplemental Figures S1–S3. In addition, we present noise data

from more than 1000 mostly formalin-fixed archival specimens

obtained from many hospitals throughout Europe.

On average, we obtained 9.2 million total reads per sample

(range 3.1–23.9) for the multiplexed samples, of which 8.2 million

(range 3.0–22.9) aligned to the human reference genome with the

sequence alignment algorithm BWA (Li and Durbin 2009). We

filtered out PCR duplicate reads and reads with mapping qualities

lower than 37 (highest value returned by BWA), resulting in a final

average read count of 6.0million (range 2.4–18.1) per sample. Read

counts for the 15 LGGs, AB042, AB052, and BT474 are provided in

Supplemental Table S1.

Binning of sequence reads

We divided the human reference genome into nonoverlapping,

fixed-sized bins. We use 15-kb bins in the analysis presented here

because this results in approximately the same number of bins as

the number of array elements on 180K oligonucleotide CGH arrays

and provides reasonable noise levels with as few as 6million reads.

We note, however, that any bin size could be used, and such an

option is provided in the accompanying software package,

QDNAseq. Removal of 12,893 bins that were completely com-

posed of uncharacterized bases (denoted with N’s in the human

reference genome sequence) resulted in a total number of 179,187

autosomal bins. We determined raw copy number estimates by

counting the number of reads in each bin. Themedian-normalized

log2-transformed read counts, the raw copy number profile, for

sample LGG150 is shown in Figure 1A. Regions of low-level loss

and gain (e.g., on chromosomes 10 and 20, respectively) are ap-

parent in the profile. In addition, some very narrow regions of

highly elevated read counts and a substantial number of bins with

very low read counts are present. The horizontal stripes of data

points are due to the integer nature of the read counts. Experience

based on classical cytogenetics and array CGH suggests that many

features of this profile reflect characteristics of the sequencing and

analysis process rather than true copy number variation (Baldwin

et al. 2008).
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Correction of read counts

It is well established that raw read counts are affected by GC con-

tent and mappability of the sequence reads (Benjamini and Speed

2012; Derrien et al. 2012; Rieber et al. 2013). Published analysis

methods generally correct for these factors independently if cor-

rections for both are used. Although independent correction is

effective for many cases, genome profiles from some samples, es-

pecially those that are formalin-fixed, contain clearly artifactual

variations. Independent correction for GC and mappability is ap-

propriate only if these two factors do not interact in their effects on

read counts. We desired to determine if simultaneous correction

might provide improved read count profiles. We implemented si-

multaneous correction by calculating themedian read count for all

bins with the same combinations of GC andmappability (Fig. 1B).

We then fit a LOESS surface through the medians (Fig. 1D). To

correct the raw read count of a bin, we divided the raw count by the

LOESS value of its combination ofGC andmappability. (Fitting the

LOESS has the benefit of stabilizing the values for bins with closely

related GC and mappability.) Following this procedure, the cor-

rected profile for LGG150, after log2-transformation and centering,

is much cleaner (Fig. 1C) than before correction. The correction of

bins with low counts is particularly noticeable, but at the cost of

introducing bins with read counts that appear to be anomalously

high. Copy number profiles and plots of the median read counts as

a function of GC content and mappability are shown for the 15

LGGs, AB042, AB052, and BT474 in Supplemental Figures S1 and S2.

Blacklisting bins to exclude problematic regions

Examination of Figure 1C shows the presence of multiple very

narrow peaks and some apparent deletions that might indicate

aberrations. Some of these structures, for example many of the nar-

row peaks, appear to have been introduced by the GC-mappability

correction.Many of these features are highly recurrent across, both

tumor andnormal, samples (data not shown). Recurrence alonemay

imply that these peaks represent common germline copy number

variations (CNVs). The observation that they are frequently located

in (peri-)centromeric and (sub-)telomeric regions, however, sug-

gested that a large number are artifacts.

Figure 1. Correction to read counts. Copy number profiles from (A) uncorrected and (C ) corrected read counts; (B) median read counts per bin as
a function of GC content and mappability; and (D) the corresponding LOESS fit for sample LGG150. Regions of the isobar plots that are white contain no
bins with that combination of GC andmappability. In the copy number profiles, bins are ordered along the x-axis by their genomic positions, and the y-axis
shows median-normalized log2-transformed data. Small triangles at the top and bottom edges represent data points that fall outside the plot area. Upper
left corners show the number and size of bins.Upper right corners of themedian read counts plot shows the total number of sequence reads, and upper right
corners of the copy number profiles the expected andmeasured standard deviation. The expected standard deviation (E s) is defined as

ffiffiffiffiffiffiffiffiffi
1=N

p
, whereN is

the average number of reads per bin. The measured standard deviation ðbsDÞ is calculated from the data with a mean-scaled and 0.1%-trimmed first-order
estimate, prior to log2 transforming the data for plotting (see text).
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The presence of chromosomal regions with anomalous be-

havior is well established and has led others, for example, the

ENCODE Project Consortium, to develop blacklists of sequences

to exclude from their analyses (The ENCODE Project Consortium

2012). Some of these sequences map to regions with known repeat

elements, such as satellites, centromeric, and telomeric repeats.

Therefore we tested the effect of removing bins withmappabilities

below the arbitrary threshold of 50 and bins overlapping with the

ENCODE blacklists (Fig. 2A). Clearly, the profiles are improved, but

many regions of potentially artifactual variation remain (indicated

by black dots in Fig. 2A). Changing the mappability threshold af-

fects the results to some degree but fails to sufficiently remove the

problematic regions without also removing a major proportion of

the bins (see Supplemental Fig. S4).

Given the insufficiency of the ENCODE blacklist for copy

number analysis and the apparent recurrence of the problematic

regions, we developed our own data-driven list of problematic

genome regions. We started by analysis of a collection of normal

genomes, which has the potential to identify problematic se-

quencemotifs as in ENCODE, unknown problems in the reference

genome sequence, and common CNVs. We obtained the required

sequence data from the publicly available WGS data set from the

1000 Genomes Project (1000G) (The 1000 Genomes Project Con-

sortium 2012). After selecting samples that were sequenced in

a manner similar to our experimental setup (Illumina platform,

low-coverage, SR50), we identified and downloaded 38 cases. The

individuals have a substantial range of ethnic backgrounds (nine

CEU, eight JPT, seven YRI, five CHB, three ASW, two PUR, one

CLM, one IBS, one LWK, and one MXL).

The 38 samples were then processed as described above. The

difference between the actual count and the LOESS fitted valuewas

determined for each bin based on its GC and mappability values.

These residuals were recorded for each sample, and the median of

the residuals across the 38 samples was calculated per bin. The

distribution of themedian residual values is sharply peaked, which

reflects the fact that normal diploid samples are being analyzed,

but has ‘‘fat’’ tails, representing bins with anomalous behavior and

those with CNVs (Fig. 2B). We chose to blacklist all bins with

Figure 2. Blacklisting problematic regions. (A) Copy number profile for sample LGG150with bins overlapping with the ENCODE blacklist highlighted in
red, bins withmappabilities below 50 highlighted in blue, and the overlap between the two in yellow. (B) Distribution of median residuals per bin from the
1000 Genomes Project across the 38 samples. Residuals are defined as the distance between observed read counts and the fitted LOESS surface, divided by
the LOESS value. The outer plot shows the entire range of values with two discrete peaks. The minor peak around �1.0 results from repetitive sequences.
Reads that align equally well to multiple locations in the genome are filtered out. Repetitive sequences therefore have a lower than expected number of
readsmapped. Themajor peak around zero containsmost of the bins, and the inset shows amagnification of the peak, with the dotted vertical bars and the
shaded area showing the cutoff of 4.0 standard deviations (as estimated with a robust first-order estimator) for blacklisting. (C ) Copy number profile of
sample LGG150 with bins in the novel blacklist based on residuals of the 1000 Genomes samples highlighted in red. (D) The final copy number profile of
sample LGG150 after filtering out bins in the ENCODE and 1000G blacklists.

Copy number profil ing by shallow genome sequencing

Genome Research 2025
www.genome.org

 Cold Spring Harbor Laboratory Press on December 4, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


median residuals greater than 4.0 standard deviations, using a ro-

bust first-order estimator (von Neumann et al. 1941) that focuses

on the width of the central peak to determine the standard de-

viation. This procedure removed 10,413 bins. We based our choice

of the cutoff on the distributions of residuals found with a number

of different bin sizes ranging from 1 to 1000 kb (Supplemental Fig.

S5). The cutoff can be adjusted in the QDNAseq package if other

values are desired. Changing it by one standard deviation in either

direction, however, does not materially affect the results.

We were concerned that the initial presence of bins with high

residuals, whichwere candidates for blacklisting, had the potential

to affect the LOESS fit of the initial read counts. Therefore, we

implemented an iterative process, recalculating the LOESS cor-

rection after removal of the problematic bins found in the previous

cycle and again determining the residual distribution. Bins with

residuals greater than the same numerical cutoff values established

in the first iteration were removed. The list of excluded bins, our

blacklist, stabilized at 11,124 bins after 14 iterations. Figure 2C

shows the profile of LGG150with our blacklisted bins highlighted.

This blacklist contains many bins not included in the ENCODE

list and also includes 97% (6200 of 6404) of the bins with

mappabilities below50.Overlaps betweenour blacklist, the ENCODE

list, and bins with mappabilities below 50 are presented in Sup-

plemental Figure S6. We intentionally were not conservative in

blacklisting, since the copy number of a blacklisted locus can be

imputed from neighboring bins (assuming no very focal aberra-

tions are present), and most analytical packages handle this im-

putation automatically (van de Wiel et al. 2011).

For analysis of experimental samples, we routinely remove

bins contained in the union of the ENCODEblacklist and our 1000

Genomes-based list at the beginning of the analysis so that their

anomalous values do not affect the LOESS GC-mappability fit; al-

though in practice the procedure seems to be fairly robust to the

presence of these outliers. Similarly, the LOESS fit could be affected

by copy number aberrations present in the data. Therefore, our

software allows the correction described in the previous section to

be implemented iteratively. After the initial analysis, bins with

large LOESS residuals, which presumably are located in copy

number aberrations, are excluded and the analysis is repeated. This

cycle is iterated until the list of bins that are used stabilizes. We

found this approach to be of little benefit in most cases, and the

data presented in this paper have been corrected without this

iterative step.

In total, this procedure removed 12,278 of the 15-kb bins

(6.9%). Together with the 12,893 bins that consist of only

uncharacterized nucleotides (N’s in the reference genome se-

quence), they form 954 separate continuous regions, which are

listed in Supplemental Table S2.We also list the 2273 genes that fall

within these regions, which thus includes genes in common germ-

line CNVs. Figure 2D shows the final profile of sample LGG150

with the blacklist filtering and GC-mappability correction applied.

Whole-chromosome losses can be seen involving chromosomes 10

and 22, and a gain of 20. A focal amplification is also present on

chromosome 7, as well as a homozygous deletion on 9p. Final

profiles for all LGG samples, BT474, AB042, and AB052 are shown

in Supplemental Figures S1–S3.

Noise and detection limits

Noise in copy number profiles has contributions from the statistics

of counting sequence reads as well as the many steps in the ana-

lytical chain from sample acquisition and fixation through DNA

isolation, sequencing, and computational processing. Since the

variances of independent noise sources are additive, it is conve-

nient to use the variances of the profiles to investigate their noise

characteristics. Profiles normalized so that the mean value is 1.0

have variances due to counting statistics equal to 1/N, where N is

the average number of reads per bin (neglecting small effects due to

copy number aberrations and the counting corrections). Thus, the

difference between the variance of the copy number profile and

the variance due to counting statistics (1/N) for that profile gives

a measure of the noise contribution from the entire sample han-

dling and analytical process, independent of sequence depth.

Therefore we examined the dependence of the variances of our

profiles on sequence depth.

We first tested the dependence of the variance on read depth

aloneby subsampling reads froma single data setwith 108.4million

mapped reads of sample AB042. The subsampled data ranged over

a factor of 100, from about 600 to 6 reads per bin.We performed the

subsampling five times at each subsampling level and calculated the

variances using a mean-scaled and 0.1%-trimmed first-order esti-

mator. This estimator emphasizes bin-to-bin variation so that it is

not affected by copy number aberrations (see Methods). Figure 3A

shows the variance of the subsampled data for AB042 versus the

variance due to counting statistics (1/N). A regression line fitted to

the subsampled data has a slope of 1.026 and intercept of 0.00107,

very close to the theoretical 1/N counting statistics (slope = 1; in-

tercept = 0). The similar behavior of the measured and theoretical

slopes indicates that variance versus read depth behaves essentially

as expected. The fact that the intercept of the fitted regression line is

close to zero indicates that the noise introduced from the sample

quality and the analytical process is negligible. Thus, the noise is

dominated by counting statistics at the read depths typical for

shallowWGSanalysis (30 readsper bin). [Wenote that copynumber

profiles are typically log2-transformed in our figures. If the variance

were to be calculated based on the transformed profile, the contri-

bution due to read depth would be log2(e)
2/N » 2.08/N].

We also examined the noise introduced by the library prep-

aration and sequencing procedures by performing 10 independent

sequencing runs from one DNA isolation of sample AB052. The

variances of these profiles are also plotted in Figure 3A. The slope

and intercept of the regression line are 1.003 and 0.000781, re-

spectively. Thus, the total variance is again very close to the vari-

ance due to counting statistics (1/N), indicating that the library

preparation and sequencing procedures have an insignificant

contribution to the total variance. Further, the profiles from most

of the LGG samples and the cell line BT474, which represent

completely independent samples, also had variances very close to

the theoretical counting statistics limit (Fig. 3A). Thus, DNA sam-

ples from a range of specimens obtained from our laboratories

provided near optimal data using this measure.

Importantly, the variance characteristics shown in this small

set of examples are generally representative of our experience

with a large body of clinical specimens from many sources. We

have now analyzed over a thousand samples obtained frommore

than 25 hospitals in five countries, mostly from FFPE tissues. A

minority consisted of snap-frozen tissue samples or DNA extracted

from cells freshly obtained from peripheral blood, sputum,

swabs of the oral mucosa, or cancer cell lines. The samples rep-

resented a wide spectrum of neoplasms, mainly carcinomas, but

also neuroectodermal and mesenchymal neoplasms, as well as

non-neoplastic tissues and cells, generally submitted for detection

of somatic aberrations. In most cases, DNAs were isolated in the

laboratories that provided the specimens, using their local
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protocols. Sampleswere sequenced in pools of;20 per lane. Figure

3B shows the variances of the resulting profiles versus 1/N for these

samples. This figure shows that for the vast majority of samples,

the overall variance in our profiles is dominated by the read depth.

In our experience, profiles with a variance corresponding to greater

than 30 reads per bin, around 6 million total reads for 15-kb bins

(;0.13 sequence coverage), are suitable for most subsequent

analyses. Because the noise is dominated by counting statistics for

most samples, it is possible to make instructive estimates of the

smallest aberrations that can be detected as a function of read

depth. In Supplemental Figure S7, we present estimates for gain

and loss as well as a simple analytical formula applicable for a wide

range of situations.

We note that some samples have variances clearly above the

1/N line (Fig. 3B). New sample preparation and analysis of several

of these excessively noisy samples indicates that the noise is re-

producible, both in magnitude and in shape along the genome,

suggesting that it has its origin in the sample. Most likely it is due

to degraded/damagedDNA resulting from the fixation and storage.

Increasing sequence depth will not reduce this noise relative to the

(1/N) line for variance due to counting statistics.

The software package QDNAseq

The software package QDNAseq was developed to implement the

novel profile correction and blacklisting approach described above

and to perform downstream segmentation and calling of aberra-

tions using well established software tools. QDNAseq uses BAM

files as input because they are produced by the commonly used

alignment algorithms such as BWA (Li and Durbin 2009). The

program is implemented in R (R Core Team 2014) and is available

in Bioconductor (Gentleman et al. 2004). Detailed information

concerning its operation is included in the Bioconductor vignette.

Briefly, bin size, LOESS parameters, and blacklisting parameters are

adjustable. Blacklisted bins can be visualized, as in Figure 2, A and

C. Options are to either filter out bins overlapping with the

ENCODE blacklist (1723 bins when using the 15-kb bin size) and/or

the blacklist we developed from the 1000G data (11,124 bins). A

key feature of QDNAseq is the use of fixed-sized bins, which is

necessary for most published downstream procedures that handle

series of tumor samples (van deWiel et al. 2011). Use of fixed-sized

bins furthermore allows calculation of annotation data (GC content,

mappability, overlap with ENCODE blacklist, 1000G residuals) in

advance, facilitating computation and analysis procedures. Analysis

is therefore relatively rapid. For example, processing of the LGG150

sample included in this paper takes 75 sec from the input BAM file to

the filtered and corrected profile in Figure 2D on a standard work-

station or laptop with a 2.3 GHz Intel Core i5 CPU. Included in the

QDNAseqpackage is also anoption to compare tomatched reference

samples should that be desired (see Supplemental Fig. S8).

The output of QDNAseq is read counts per bin, which have

been corrected, filtered, normalized, and optionally log2-trans-

formed. QDNAseq was built in a modular fashion such that anal-

ysis tools and pipelines for downstream segmentation and copy

number calling previously developed for microarrays (for review,

see van de Wiel et al. 2011), for example, can be readily applied.

Downstream analysis can also be performed and was tested with

the commercially available software suite Nexus Copy Number

(BioDiscovery). QDNAseqhas also beenmade available inChipster

(Kallio et al. 2011) and Galaxy (Goecks et al. 2010) and allows

export of the copy number results into the Integrative Genomics

Viewer (IGV) (Thorvaldsd�ottir et al. 2013). The popular segmen-

tation package DNAcopy (Venkatraman and Olshen 2007) can be

invoked directly fromwithinQDNAseq. In addition to the existing

user-definable parameters available in DNAcopy, an option to

smooth signals over a specified number of consecutive bins has

been added in QDNAseq. For calling (annotation of segments with

copy number states such as gain, amplification, or loss), the

package CGHcall (van de Wiel et al. 2007) can be invoked at the

user’s discretion.

Figure 3. Dependence of variance on sequence depth. (A) The relationship between sequence depth and variance ðbs2

DÞ for 15 LGGs (black), cell line
BT474 (blue), 10 independent library preparations of SCC sample AB052 (yellow), and subsamplings of AB042 data (red). All individual samples are within
the left half of the graph, with the subsamplings extending to the right half as well. The black line shows the linear expectation of the variance as 1/N, where
N is the average number of reads per bin. Lines fitted through the AB042 subsamplings and AB052 repeats have slopes of 1.026 and 1.003, and intercepts
of 0.00107 and 0.000781, respectively. (B) The relationship between sequence depth and variance for more than a thousand samples sequenced at our
institute.
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Comparison to other algorithms and array CGH

Multiple algorithms have been developed for DOC DNA copy

number analysis. Most compare the tumor sample to a reference

signal and thus require acquisition of an appropriate reference

sample and additional sequencing. Two algorithms have been

published for analysis of shallow WGS that do not require a refer-

ence signal, readDepth (Miller et al. 2011) and FREEC (Boeva et al.

2011). Both adjust read counts and/or filter out bins based on GC

content and mappability, but lack other blacklisting options such

as those based on ENCODE or the 1000 Genomes-based blacklist.

Both have integrated segmentation and calling to identify gains

and losses. Since the novel aspects of QDNAseq occur in the de-

termination of the filtered and corrected read count profile, we

opted to evaluate the performance of QDNAseq relative to the

preprocessing parts of these other analysis packages. However,

readDepth does not output bin-level data so we could only com-

pare our results with FREEC. A third program, CLImAT, was re-

cently published which, among other things, infers copy number

from the observed sequence depth without requiring a reference

signal (Yu et al. 2014). The goal of this program, however, is to use

relatively deep (103 genome coverage) sequencing to obtain in-

formation that is not available from a small number of reads (0.13

genome coverage), which is the focus of our work. The CLImAT

algorithm uses a simpler form of simultaneous GC and mappability

correction that is likely to be too noisy at our read depth, so we did

not evaluate it.

Both QDNAseq and FREEC perform better than the Agilent

array CGH platform at the sequencing depths used here. Figure 4,

A, B, and C shows the profiles of sample LGG150 obtained with

QDNAseq, array CGH, and FREEC, respectively. The data from

QDNAseq and FREEC are very similar in their calculated noise, but

FREEC contains several focal apparent gains and losses that are not

present in the QDNAseq data due to blacklist filtering. These arti-

factual features in FREEC output are at risk of being interpreted as

true aberrations. Array CGH has greater noise and more outliers

than with both sequencing analyses, with a standard deviation

of 0.19 compared to 0.17 for sequencing analyses. Moreover,

the deflections for the copy number changes are larger for the

sequencing methods than for array CGH. The average signal-to-

noise ratio (SNR) for 12 whole-chromosome aberrations among

Figure 4. Comparison to other methods. (A) Final copy number profile of sample LGG150 obtained with QDNAseq after removing blacklisted bins and
correcting read counts for GC content and mappability. This procedure results in 166,909 bins, and highlighted in red are those 750 bins that are not
contained in the output of FREEC. (B) Copy number profile of sample LGG150 obtained with an Agilent 180K microarray with 164,378 unique array
elements. (C ) Copy number profile of sample LGG150 obtained with FREEC with 170,474 bins. Highlighted in red are those 4315 bins that are not
contained in the output of QDNAseq. Note that many of the red bins are in focal peaks that have the potential of being called aberrations but which are
probably spurious since they are contained in the QDNAseq blacklists. (D) Noise ðbs2

DÞ for QDNAseq versus FREEC calculated from the thousand samples in
Figure 3B. Only the 166,159 bins present in the output of both algorithms were used in order to eliminate differences caused by blacklisting spurious bins.
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the 15 LGG samples was 1.89, 1.91, and 1.40 for QDNAseq, FREEC,

and aCGH, respectively (Supplemental Table S3).

Comparison of data obtained with QDNAseq and FREEC on

the entire set of ;1000 samples shows that the variance with

FREEC was never lower than with QDNAseq and often somewhat

higher (Fig. 4D). To assure that the comparison concentrates on

differences in read count corrections and not the filtering of

blacklisted bins, the variance calculations were performed only on

the set of bins contained in the output of both programs. This

shows that the simultaneous correction for GC content and

mappability implemented in QDNAseq always performs at least as

well as the sequential corrections in FREEC and is better for some

samples.

Simultaneous correction for GC content and mappability out-

performs separate corrections for cases in which the two parameters

interact. The interaction can be seen from examination of the LOESS

surfaces for the various samples. For sample LGG150 presented in

Figure 1, read counts always increase with increasing mappability

regardless of GC content. Thus to a reasonable approximation there

is minimal interaction. In contrast, samples LGG155 and LGG259

both have read count maxima along the mappability-axis that vary

with GC content (Supplemental Figs. S1, S2). Consequently, a single

correction curve for GC that is applied to all mappabilities, and vice

versa, will not properly correct these samples.

The major benefit of our simultaneous correction approach is

seen in the removal of spurious regions of variation in the profiles.

Supplemental Figure S9 shows profiles for the whole genome and

for chromosome 1 generated from the same sequencing data by

QDNAseq and FREEC for all 15 LGG samples, two SCCs, and BT474.

Examination of the profiles for LGG151 and LGG155 shows clearly

that small features in the profiles produced by FREEC are corrected

by QDNAseq. Similar features also occur on other chromosomes.

Improved correction of this sample-related variability allows use of

more sensitive segmentation and calling procedures for a given level

of false positives. Three of the 15 LGG samples showed significant

improvement using QDNAseq. Thus our correction procedure fa-

cilitates correct biological interpretations from samples with a wider

range of quality.

Discussion

We have described a shallow WGS procedure designed to obtain

high-quality DNA copy number information from fresh and ar-

chival samples. The method was developed in the process of ana-

lyzing over a thousand tumor DNA samples obtained from more

than 25 hospitals in five countries, mostly from FFPE tissue. Our

goal was to provide the best possible read count profiles so that

subsequent segmentation and calling steps would be able to sensi-

tively detect true aberrations at acceptable levels of false positives.

The data presented show that our corrected profiles have noise

levels very near the fundamental limit imposed by the statistics of

read counting formost samples, and are less sensitive toDNAquality

induced artifacts than profiles produced by prior approaches. The

predictable nature of the major noise source of our read count

profiles represent a considerable interpretive simplification com-

pared tomicroarray DNA copy number profiles, in which the noise

sources are obscure and copy number changes are frequently re-

duced inmagnitude due to array performance (Snijders et al. 2001;

Ylstra et al. 2006).

Our procedure contains two novel features: simultaneous

correction of counts for GC content and mappability, and empir-

ical recognition of problematic regions of the genome based on

analysis of a group of normal samples. Here, we demonstrate the

performance of QDNAseq on 1000 samples, mostly from archival

FFPE cases. The simultaneous correction for GC and mappability,

using a LOESS fit of the raw count data to the average values of

these parameters for each sequencing bin, always performs at least

as well, and in more degraded DNA samples better, than the sep-

arate corrections that are used by most existing algorithms. Nev-

ertheless, it is also evident that our correction remains inadequate

for some samples. It is likely that a more thorough understanding

of the impact of formalin fixation and the distribution of base

composition and mappabilities within the sequencing bins will

result in improved ability to obtain useful copy number data from

samples that remain problematic. Further, although our blacklist

was developed from 38 normal samples representing a variety of

ethnicities from the 1000 Genomes Project, similarly derived

blacklists tailored to the ethnicity of the population from which

the samples were obtained would allow more precise blacklisting

of common germ-line CNVs relevant for that population.

Shallow WGS is cost effective. Our experience indicates that

high quality DNA copy number information can be obtained with

;6 million reads per sample (;0.13 genome coverage). High-

capacity instruments such as the Illumina HiSeq can obtain this

read depth with a multiplex analysis of 20 samples per lane. We

achieved a further increase in efficiency by sequencing only 50 bp

from one end of the DNA molecules, which also allows the use of

compromised samples with short DNA fragments. This level of

sequence depth provides better resolution than is available from

microarrays and costs significantly less. Shallow sequencing has

a particular cost benefit if combined with exome sequencing be-

cause the initial preparation for both is the same. The additional

cost of the shallow sequence run is marginal (;5% extra) and

provides high-resolution genome-wide copy number information.

If the shallow sequencing run is performed prior to exome en-

richment and the exome sequencing run, it can also serve as the

ultimate quality control. Although we obtained most of our data

on an Illumina HiSeq instrument, the use of smaller capacity se-

quencers, such as the Illumina MiSeq, offer rapid turnaround and

have the required capacity for relatively infrequently submitted

diagnostic samples.

Methods

Sample selection

Fifteen LGGs (van Thuijl et al. 2014), two SCCs (Bhattacharya et al.

2011), and the breast cancer cell line BT474 were used to develop

and illustrate the shallow WGS pipeline presented. All material

used from LGG and SCC tumors was derived from FFPE archival

samples. Patient consent was obtained for SCCs as published pre-

viously (Bhattacharya et al. 2011). LGG samples were collected

from five Dutch hospitals (VU University Medical Center in

Amsterdam, Academic Medical Center in Amsterdam, Radboud

University Medical Center in Nijmegen, St. Elisabeth Hospital in

Tilburg, and Isala Klinieken in Zwolle). Sample collection was ap-

proved by the Medical Ethics Committees of all five hospitals.

Areas containing > 60% tumor cells were outlined on hematoxylin

and eosin-stained slides, and 10 subsequent 10-mm sections were

used for DNA isolations.

DNA from the LGG samples was isolated as previously described

(van Essen andYlstra 2012). DNA concentrationsweremeasuredwith

the Nanodrop 2000 (Fisher Scientific), and 500 ng was used as input

for ShallowWGS laboratory preparation. DNA from the SCC samples

was isolated as previously described (Bhattacharya et al. 2011),
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DNA concentrations were measured with the Qubit 2.0 fluorom-

eter dsDNA BR Assay (Life Technologies), and 250 ng DNA used as

input for shallow WGS laboratory preparation. The BT474 breast

tumor cell line was cultured and DNA isolated as previously de-

scribed (Krijgsman et al. 2013). DNA concentration was measured

with the Qubit fluorometer and 250 ng used as input.

Shallow WGS laboratory preparation

DNA was sheared on a Covaris S2 (Covaris) with the following

settings: duty cycle 10%, intensity 5.0, bursts per sec 200, duration

240 sec (FFPE), duration 300 sec (fresh and fresh-frozen), mode

frequency sweeping, power 23V, temperature 5.5°C to 6°C, water

level 15. Sample preparation was then performed with the TruSeq

DNA kit V2 (Illumina). After end repair and 39 adenylation, adapter

ligation was performed with 1 mL of adapter index for fresh (frozen)

samples and 0.55 mL of adapter index for FFPE samples. Final se-

quence library amplification was performedwith 10 PCR cycles for

FFPE derived DNA samples or eight cycles for DNA derived from

fresh or fresh-frozen samples. One PCR cycle included 10 sec 98°C,

30 sec 60°C, and 30 sec 72°C. The PCR program started with 30 sec

98°C and ended with 5 min 72°C. The final holding temperature

was 10°C.

The yield of the sequence library was assessed with a Bio-

analyzer DNA 1000 and/or HS DNA (Agilent Technologies). Li-

braries with small PCR products (;120 nt in length caused by

unligated adapter dimers) or large PCR products (> 1000 nt in

length caused by an exhausted PCR mix) were selected for clean-

ing. Cleaning was performed by using a double-sided bead size

selection procedure with Agencourt AMPure XP beads (Beckman

Coultier). Libraries were equimolarly pooled with 18–22 barcoded

samples and 7 pM molarity loaded per lane of a HiSeq Single End

Flowcell (Illumina). This was followed by cluster generation on

a cBot (Illumina) and sequencing on a HiSeq 2000 (Illumina) in

a single-read 50-cycle run mode (SR50).

Alignment to reference genome

Sequence reads were aligned to the human reference genome build

GRCh37/hg19 downloaded from Ensembl (Flicek et al. 2013) with

BWA 0.5.9 (Li and Durbin 2009), with a maximum edit distance of

2 and base trimming quality of 40. PCR duplicates were marked

with Picard 1.61 (http://broadinstitute.github.io/picard/), and fil-

tered out with SAMtools 0.1.18 (Li et al. 2009) together with reads

with mapping qualities (MAPQ) lower than 37. We note that the

maximumpossible value and the distribution ofmapping qualities

varies between aligners, and a different cutoff might be suitable for

e.g., Bowtie (Langmead and Salzberg 2012), which was tested here

but did not show an improvement over BWA for copy number

assessment.

Annotations for genomic bins

The genome was divided into nonoverlapping, fixed-sized bins of

15 kb. GC content of each binwas calculated as number of C andG

nucleotides divided by number of A, C, G, and T nucleotides in the

reference sequence. The percentage of characterized nucleotides

was calculated by dividing the number of nucleotides A, C, G, and

T with the bin size (15 kb). This is used to adjust read counts for

bins partially covered by uncharacterized nucleotides (N’s) or in-

complete bins at the very ends of chromosomes.

Mappability is a measure of the uniqueness of a specific se-

quence in the reference genome and depends on the length of the

sequence and the number of mismatches allowed. If Fk(x) is the

frequency at which the k-mer sequence at position x is observed in

the reference genome sequence and its reverse complement, the

mappability of this position is defined as Mk(x) = 1/Fk(x). In this

paper, we use the term mappability to refer to the average

mappability of all 50-mer sequences within a bin, allowing for two

mismatches, and scaling the value from0 to 100. These valueswere

calculated from the ENCODE alignability track for 50-mers (data

version January 2010) with the bigWigAverageOverBed program

downloaded from the UCSC Genome Browser (Kent et al. 2002;

Rosenbloom et al. 2013).

The ENCODE blacklisted regions (March 2012 Freeze) were

used to calculate percent overlap with each bin. Pregenerated bin

annotations are available for human reference genome build

GRCh37/hg19 and bin sizes of 1, 5, 10, 15, 30, 50, 100, 500, and

1000 kb.

Binning and correction of read counts

The number of sequence reads in each bin was calculated. Read

counts were adjusted for those 487 bins that are only partly cov-

ered by characterized nucleotides in the reference genome se-

quence. For a bin containing a proportion r of uncharacterized

nucleotides, no reads could be mapped to this fraction of the bin,

and the read count was therefore adjusted by dividing it by 1 � r.

Next, median read counts were calculated as a function of GC

content and mappability. For this purpose, GC content and

mappability values were rounded to integers (IEC 60559 standard).

A two-dimensional LOESS surface was then fitted to the observed

median read counts. The read count for each bin was then cor-

rected by dividing it with the fitted LOESS value.

Optimal parameters for the LOESS correction were evaluated

with an odd-even cross-validation as follows: Bins were divided

into odd and even bins, and only odd ones were used to calculate

the LOESS correction as above. The same correction was then ap-

plied to both odd and even bins, and the absolute values for dif-

ferences in adjusted counts between adjacent odd and even bins

were calculated. A test statisticwas calculated as a trimmedmeanof

the absolute values after removal of the upper 10% to account for

copy number breakpoints. Parameter values of span = 0.65 and

family = ‘symmetric’ were chosen to minimize the value of the test

statistic.

1000 Genomes residuals

The blacklist based on 1000 Genomes samples was generated as

follows. Publicly available samples from the 1000Genomes Project

that matched the experimental setup were downloaded (Illumina

single-read of at least 50 bp, low coverage, whole-genome se-

quencing). For samples with read lengths longer than 50 bp, the

reads were truncated to the first 50 bp. In total, 38 samples that

matched the experimental setup were available. Alignment and

two-dimensional LOESS correction were then performed as outlined

above. Residuals [(observed read count � LOESS fit)/LOESS fit] from

the correction were recorded, and medians per bin were then cal-

culated across the 38 samples. Cutoff for exclusion was set at 4.0

standard deviations (as estimated with a robust first-order estimator

[von Neumann et al. 1941]). After bins exceeding this cutoff were

removed, the LOESS correction was repeated without these

anomalous bins and residuals calculated again. This process was

repeated until the list of bins to be excluded stabilized.

Noise, comparison to other algorithms, and array CGH

FREEC (version 6.4) (Boeva et al. 2011) was run with a bin size of

15 kb, mappability-based read count correction turned on, mini-

mum mappability set to 50, and otherwise default settings. These
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settings were selected to mimic QDNAseq as closely as possible. As

a measure of noise, we used an estimator based on first-order dif-

ferences (von Neumann et al. 1941). This noise estimator is sen-

sitive to uncorrelated bin-to-bin read count differences along the

profile, but is largely unaffected by correlated behavior of groups of

bins such as steps in the profile due to true copy number aber-

rations or long-range waviness. For robustness against large out-

liers, we excluded 0.1% of extreme values from both ends of

the distribution. Unless specified otherwise, terms ‘‘standard

deviation’’ and ‘‘variance’’ used in this paper refer to this mean-

scaled 0.1%-trimmed first-order estimate and its square, re-

spectively. They are calculated for a linear representation of the

profiles even though we present log2-transformed profiles for

display convenience. The standard deviation of a profile, denoted

by bsD, and the theoretically expected standard deviation based on

read counting, denoted by E s, are given above each profile.

All samples were profiled with CGH arrays that contained

180K in situ synthesized 60-mer oligonucleotides evenly distrib-

uted (every 17 kb) across the genome (Agilent Technologies).

BT474 CGH arrays were performed previously (Krijgsman et al.

2013) and data downloaded from the GEO database (Edgar et al.

2002) with accession numberGSM903069. Labeling, hybridization,

scanning, and feature extraction were carried out as previously de-

scribed (Krijgsman et al. 2013) with pooled normal reference sam-

ples. After median normalization, wave-correction was performed

with NoWaves (van de Wiel et al. 2009), which would account for

GC variation across the genome. The SCC samples have also been

previously characterized by 2K BAC arrays which data are available

in GEO with accession GSE28407 (Bhattacharya et al. 2011).

Data access

QDNAseq package is available through Bioconductor (http://www.

bioconductor.org/) (Gentleman et al. 2004). Source code is avail-

able in GitHub (https://github.com/ccagc/QDNAseq/), and for the

version used to generate data presented in this paper, also in the

Supplemental Material. Sequence and microarray data have been

submitted to the European Genome-phenome Archive (EGA;

http://www.ebi.ac.uk/ega/) (Leinonen et al. 2011) which is hosted

at the EBI, under accession number EGAS00001000642.
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