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Abstract

Background: Structural rearrangements of the genome resulting in genic imbalance due to copy number change

are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they

may be an advantage to cells. In order to explore the biological consequences of copy number changes in the

Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.

Results: Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence

indicating that copy number changes were due to selection during tissue culture. First, we found that copy

numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways,

consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific,

we identified some copy number changes shared by many of the independent cell lines. These included dramatic

recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells,

and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines,

there was strong evidence that they supported a common phenotypic outcome. For example, we found that

proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were

under-represented in another (Kc167).

Conclusion: Our study illustrates how genome structure changes may contribute to selection of cell lines

in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.

Background
Copy number

While genes do generally come in pairs, there are a

number of situations where gene copy number deviates

from fully diploid [1]. Some of these deviations are nor-

mal, such as occurs in the case of sex chromosomes [2]

and amplification in terminally differentiated cells [3,4].

Polyploidy is also a whole chromosome-level copy num-

ber change that alters phenotypes in organisms such as

plants and honey bees with distinct ploidy-specific

morphs [5,6]. In most situations, copy number changes

are abnormal and deleterious, and vary in extent from

full chromosomes, to chromosome segments, to focal

regions altering the copy number of single genes. Karyo-

typically obvious copy number changes are usually re-

ferred to as aneuploidy. Submicroscopic copy number

changes of limited extent along a chromosome are often

referred to as copy number variants. Recent advance-

ment of genome-wide techniques has made the detec-

tion of copy number much easier, and the extent of copy

number variants in populations is extensive [7,8].

Mechanisms responsible for different copy number

classes vary. The major cause of whole chromosomal

copy number change is mis-segregation at mitosis or
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meiosis, due to non-disjunction, checkpoint defects, co-

hesion defects, merotelic attachment of microtubules to

kinetochores, multipolar mitotic spindles, or recombin-

ation or repair events generating dicentric and acentric

chromosomes [9,10]. Segmental copy number changes

result from rearrangements due to repair events, unbal-

anced segregation of translocations to generate duplica-

tion and deletion pairs and recombination at tandem

duplications [11-13]. These copy number events can be

extensive, resulting in large copy number blocks, but are

particularly informative when only a few loci are af-

fected. Such small extent copy number changes are often

found associated with repeats that promote non-allelic

homologous recombination, while recombination medi-

ated by 2 to 15 bp segments of microhomology can gen-

erate more sporadic changes in copy number [13].

While one can debate whether 2 bp is truly homologous,

in both cases regions of extended or limited homology

facilitate rearrangements during DNA repair.

At the organismal level, changes in copy number are

often associated with a range of abnormalities, including

death, developmental defects or delay, psychiatric disor-

ders, spontaneous abortions, and cancers [11,14]. Some

copy number changes are the ‘drivers’ with phenotypic

consequences, while others are neutral or nearly neutral

‘passengers’ [15-18]. When copy number changes are

extensive (for example, monosomic chromosomes) mul-

tiple drivers are probable, but when copy number

changes are limited in extent, and recurrent, it may be

possible to deduce the identity of the driver genes asso-

ciated with a particular phenotype. Additionally, in both

Drosophila and humans, extensive copy number change

results in death during development [19,20]. In Drosoph-

ila this is unlikely due to specific drivers, but rather the

additive effect of multiple copy number changes [21].

The effect of copy number change on fitness is

context-dependent. For example, in crop plants poly-

ploids often produce larger fruits or flowers [22]. Unbal-

anced copy number changes result in more severe

phenotypic changes than polyploidy, underscoring the

importance of gene dosage balance, rather than absolute

copy number [23]. In micro-organisms such as Candida

albicans altered copy number of genes is believed to me-

diate antibiotic resistance [24]. Similarly, in tumor cells

copy number changes resulting in favorable copy num-

ber configurations of drivers are associated with resist-

ance to chemotherapy [25]. Indeed, direct experimental

evidence shows that tumor cells gain advantages from

chromosomal and segmental copy number changes, as a

knockout of mitotic checkpoint components in mice in-

creases both copy number deviations and spontaneous

or carcinogen-induced tumorigenesis [9]. This link be-

tween copy number and cancer cell fitness is supported

by high-throughput profiling of 8,000 cancer genomes,

where pan-lineage alterations have been linked to kinases

and cell cycle regulators [18]. These studies suggest that

copy number changes can increase cellular fitness.

Drosophila chromosomes

Euploid Drosophila melanogaster cells are diploid, with

three pairs of autosomes and one pair of sex chromo-

somes, with females having two Xs and males having a

single X and a Y chromosome. The number of X chro-

mosomes determines sex [26], and the X chromosome is

dosage compensated by association with the male-

specific lethal (MSL) complex [27,28]. The Y chromo-

some is required for male fertility but not viability and

XX females bearing a Y are viable and fertile [29]. The

small fourth chromosome is often monosomic, and is

compensated by Painting of fourth (POF) [30]. To

understand the biological effects of copy numbers, we

studied genome structures of D. melanogaster tissue-

culture cells. As previously demonstrated by resequen-

cing S2 cells [31], we found extensive copy number

changes in these lines. Our data strongly support the

idea that copy number change alters pathway function

to select for increased growth, and that coherent copy

number changes in genes encoding members of protein-

protein complexes correct for imbalances to maintain

complex function. Similarly, we suggest that selection

against deleterious copy number effects result in regions

where copy number changes are rare.

Results
To determine copy number genome-wide, we performed

next generation DNA sequencing (DNA-Seq) on naked

DNA harvested from 19 modENCODE cell lines [32-41]

and control DNA from adult females (Table 1). We then

mapped the sequence reads to release 5 of the D. mela-

nogaster reference genome to identify the relative copy

number of each gene. In two cases, we resequenced

libraries made from independent cultures, grown in dif-

ferent labs (S2-DRSC and Cl.8) to assay copy number

stability, and found excellent agreement. For the Cl.8

line, we found that the overall genome copy number

structure was 99.6% identical. For the highly rearranged

S2-DRSC line, we observed 87.2% copy number agree-

ment between two independent cultures, suggesting that

even these highly aberrant copy number states are rela-

tively stable. Below, we describe the structure of these

genomes in order of degree of copy number change.

Ploidy of cell lines

We first determined basal genome ploidy status from

ratiometric DNA-Seq data. We took advantage of the ex-

tensive copy number deviations in the cell lines to make

this determination. In our DNA-Seq analysis of the cell

lines, we set the mean peak of DNA-Seq read count
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density at ‘1’ to reflect the relative nature of the mea-

surements and plotted X-chromosome and autosomal

DNA-Seq densities separately (Figure 1). DNA density

ratios from different copy number segments can be rep-

resented as fractions with a common denominator and

the smallest such denominator indicates the minimum

ploidy. One good illustration was the S1 cell line. We

observed a DNA-density peak at 1.47 from DNA-Seq of

S1 cells, suggesting that a segmental duplication of auto-

somal DNA occurred in this line (approximately 50%

Table 1 modENCODE cell lines used in this study

Official name Short name Tissue origin Origin genotype Clonal status Reference

1182-4H 1182-4H Embryo mh Not cloned; grown sparingly since establishment [32]

ML-DmBG3-c2 BG3-c2 L3 CNS y1 v1 f1 malF1 Cloned; grown sparingly since cloning [33]

CME W1 Cl.8+ Cl.8 L3 wing disc Oregon R Cloned; grown moderately since cloning [34]

ML-DmD16-c3 D16-c3 L3 wing disc y1 v1 f1 malF1 Cloned; grown sparingly since cloning [35]

ML-DmD17-c3 D17-c3 L3 haltere disc y1 v1 f1 malF1 Cloned; grown sparingly since cloning [35]

ML-DmD20-c2 D20-c2 L3 antennal disc y1 v1 f1 malF1 Cloned; grown sparingly since cloning [35]

ML-DmD20-c5 D20-c5 L3 antennal disc y1 v1 f1 malF1 Cloned; grown sparingly since cloning [35]

ML-DmD4-c1 D4-c1 L3 mixed discs y1 v1 f1 malF1 Cloned; grown sparingly since cloning [35]

ML-DmD8 D8 L3 wing disc y1 v1 f1 malF1 Not cloned; grown sparingly since establishment [35]

ML-DmD9 D9 L3 wing disc y1 v1 f1 malF1 Not cloned; grown sparingly since establishment [35]

Kc167 Kc167 Embryo e/se Cloned; grown very extensively since cloning [36,37]

CME L1 L1 L3 leg disc Oregon R Not cloned; grown sparingly since establishment [34]

mbn2 mbn2 L3 hemocytes l(2)mbn Not cloned; grown moderately since establishment [38]

S1 S1 Embryo Oregon R Not cloned; grown moderately since establishment [39]

S2-DRSC S2-DRSC Embryo Oregon R Not cloned; grown very extensively since establishment [39]

S2R+ S2R+ Embryo Oregon R Not cloned; frozen for >25 years, then grown sparingly [39,40]

S3 S3 Embryo Oregon R Not cloned; grown moderately since establishment [39]

Sg4 Sg4 Embryo Oregon R Cloned; grown moderately since cloning [39]

W2 W2 Wing disc Oregon R Not cloned; grown sparingly since establishment [34]
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Figure 1 Cell line ploidy by DNA-Seq. Histograms of normalized DNA read density of 1 kb windows. Red, reads from X chromosomes; black,

reads from autosomes; blue, centers of individual peak clusters; gray, peak cluster ratios. #1 and #2 indicate the results from two independent sets

of DNA-Seq from different labs.
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increase) on a baseline diploid karyotype, since there

was no DNA block with intermediate DNA content be-

tween approximately 1.5 and 1. Another example is

Kc167 cells, which had at least four levels of relative

read-count ratios centered on 0.58, 0.77, 1.03 and 1.29.

This distribution of DNA densities was consistent with

tetraploidy. In the majority of cases, this simple analysis

yielded a clear ploidy estimate. We scored BG3-c2, Cl.8,

D20-c2, D20-c5, D4-c1, L1, S1, W2, and D8 cell lines as

minimally diploid, and S2-DRSC, S2R+, S3, Sg4, Kc167,

D16-c3, and D17-c3 cell lines as minimally tetraploid. Our

results for D9 and mbn2 cell line ploidy were inconclusive,

due to the presence of multiple regions of relative read

densities that were not ratios of whole numbers.

Ratiometric DNA-Seq data allowed us to determine

minimal ploidy, but not absolute ploidy. Therefore, we

also examined mitotic spreads (Figure 2; Additional files

1 and 2) to make ploidy determinations. In contrast with

relativistic DNA-Seq measurements, mitotic chromo-

somes can be counted directly to determine chromo-

some number, although it is not always possible to

determine exact chromosome identity due to rearrange-

ments. We observed that S1, Kc167, S2-DRSC, S2R+, S3

and D20-c5 were tetraploids. BG3-c2 and 1182-4H cells

were diploid. The DNA-Seq read ratio patterns for

D20-c5 suggested minimal diploidy, not tetraploidy,

which may be due to a whole genome duplication fol-

lowing establishment of a relative copy number profile

as detected by DNA-Seq.

Interestingly, the karyotypes of individual cells varied

in all lines (Figure 2; Additional file 1). Prima facie, the

variable numbers of chromosomes in the cells is in dis-

agreement with the consistency of the DNA-Seq calls.

For example, DNA-Seq results indicated tetraploidy for

D17-c3 cells, yet the karyogram showed a mixed state

with diploid and tetraploid cells. Despite these heteroge-

neous ploidies, the DNA-Seq values for independent cul-

tures (separated by an unknown, but presumed large

number of passages) showed good agreement. These

data suggest that even if the cell-to-cell karyotypes differ,

the distribution of karyotypes is stable in the population

of cells from a given line.

Chromosomal gains and losses in cell lines

We identified frequent numeric aberrations of the X, Y,

and fourth chromosomes. X chromosome karyotype is a

natural copy number deviation that determines sex in

Drosophila. Sexual identity is fixed early in development
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by Sex-lethal (Sxl) autoregulation [42], so deviations in

the X chromosome to autosome (X:A) ratio that may

have occurred during culture are not expected to result

in a change in sex. Therefore, we used DNA-Seq-derived

copy number and then expression of sex determination

genes in expression profiling experiments (RNA-Seq) to

deduce if the X chromosome copy was due to the sex of

the animal from which the line was derived, or if the

copy number change was secondary during culture.

In control females (Figure 1), there was a single peak

of DNA read density centered on approximately 1 re-

gardless of whether the reads mapped to the X chromo-

some or to autosomes. In the cell lines there were clear

cases of X:A = 1 (that is, female), X:A = 0.5 (that is,

male), and some intermediate values. DNA-Seq results

for the S2-DRSC, BG3-c2, Cl.8, D20-c2, D20-c5, D4-c1,

L1, mbn2, S1, S3, Sg4 and W2 lines showed under-

representation of reads mapping to the X chromosome

(X:A <0.75), suggesting that they are male, or female

cells that have lost X chromosome sequence. Similarly,

by these criteria Kc167, D8, D9, D16-c3 and D17-c3 cells

appear to be female (X:A >0.75), but might also be male

with extensive X chromosome duplications. Cytological

analysis confirmed these findings (Additional file 1).

To determine sexual identity we analyzed the expres-

sion of sex-determination genes and isoforms from

RNA-Seq data compared to those from 100 different

lines of sexed D. melanogaster adults (Table 2). In Dros-

ophila, the MSL complex (MSL-1, MSL-2, MSL-3, MLE

proteins, and RoX1 and RoX2 non-coding RNAs) local-

izes to the X chromosome and hyper-activates gene

expression to balance transcription levels to that of auto-

somes [43]. The alternative splicing of Sxl pre-mRNAs

controls SXL protein production, which in turn regulates

MSL formation by modulating msl-2 splicing and pro-

tein levels. Sxl also regulates sex differentiation via the

splicing of transformer (tra) pre-mRNA [44,45]. Except

for D9 cells, we observed that the two RNA components

of the male-specific MSL complex (roX1 and roX2)

genes were expressed at female levels in the cell lines

with X:A >0.75 (Kc167, 1182-4H, D8, D16-c3, and D17-

c3), suggesting that observed DNA-Seq copy number

values were due to the female identity of the cells used

to establish these cultures. Similarly, cell lines that had

Table 2 Sex chromosomes and sex-biased expression

Cell line* X:Aa Y:Ab Gene expression levels (FPKM)c Splicing events (PSI)d

roX1 roX2 msl-2 traF tra Sxl

Kc167 0.94 0.00 0.41‡ 1.17 1.94‡ 9.04‡ 0.22‡ 0.00‡

1182-4H 0.95 0.00 5.19‡ 0.11‡ 3.75 16.67‡ 0.52 0.04

D8 1.01 0.00 0.77‡ 0.22‡ 3.64 7.99 0.35 0.13

D16-c3 0.87 0.00 2.88‡ 0.00‡ 5.94† 16.75‡ 0.38 0.29

D17-c3 0.84 0.00 0.23‡ 0.13‡ 6.79† 6.93 0.74 0.44

D9 0.86 0.00 66.98 8.82 14.34† 6.35 0.87 0.86

D4-c1 0.56 0.00 70.44 1.48 10.18† 0.32† 0.99 0.75

BG3-c2 0.56 0.63 0.16‡ 29.65† 19.79† 0.54† 1.00† 1.00†

Cl.8 0.50 0.34 212.07† 38.37† 20.95† 0.54† 1.00† 1.00†

D20-c5 0.53 0.00 19.06 4.94 11.13† 0.00† 1.00† 1.00†

L1 0.54 0.00 96.50 7.73 24.10† 0.00† 1.00† 1.00†

mbn2 0.61 0.00 156.02† 11.54 22.64† 0.00† 1.00† 1.00†

S2-DRSC 0.55 0.01 8.17 51.43† 16.08† 0.00† 1.00† 1.00†

S2R 0.68 0.00 0.00‡ 29.60† 13.27† 0.48† 1.00† 1.00†

S3 0.53 0.00 6.13‡ 11.42 18.75† 0.00† 1.00† 1.00†

Sg4 0.54 0.00 106.46 18.82† 29.44† 0.00† 1.00† 1.00†

W2 0.55 0.04 60.20 2.99 12.93† 1.65 1.00† 1.00†

S1 0.52 0.24 198.00† 1.05 18.26† 0.00† 1.00† NA

a,bX or Y chromosome to Autosome ratio (mapped DNA density).
cExpression levels of sex-specific genes. Expression levels are FPKM (fragments per kilobase per million reads) values.
dLevels of splicing events are summarized. PSI, proportion spliced in. PSI values close to 1 represent male-like splicing, and PSI values close to 0 represent

female-like splicing.
*D20-c2 cell line: 0.53 for X:A, 0 for Y:A ratios (no RNA-Seq result).
†,‡Male or female characteristics, respectively, that are determined based on RNA-Seq analyses of 100 different fly lines (whole animals, P < 0.05, one

sampled t-test).
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an X:A <0.75 (D4-c1, BG3-c2, Cl.8, D20-c5, L1, mbn2,

S2-DRSC, S2R+, S3, Sg4, W2 and S1) expressed roX1

and/or roX2 at male levels, which was again consistent

with the deduced sex. The expression of msl-2, tra, and

Sxl were also consistent with sex karyotype. Overall, the

cell lines with a X:A >0.75 showed female expression,

while those with a ratio of <0.75 showed male expression

(P < 0.01, t-test); however, there was some ambiguity. For

example, D9 expressed intermediate levels of roX1, male

levels of msl-2 and female tra. We suggest that in the

majority of cases X chromosome karyotype is the result

of the sex of the source animals, but where karyotype

and sex differentiation status are ambiguous, the X

chromosome copy number may be due to gains/losses

during culture.

Interestingly, both functionally redundant roX genes

were expressed in whole adult males (not shown), while

in the cell lines, sometimes only one roX gene was

highly expressed. To determine if expression of a single

roX gene was sufficient for MSL-complex-mediated

dosage compensation, we measured X chromosome gene

expression relative to autosomes. Overall transcript

levels from genes from the X chromosomes in the cells

that expressed roX genes at male levels were not signifi-

cantly different from those of autosomes (P > 0.25 for all

cell lines, t-test), suggesting that having a single roX is

sufficient for normal X chromosome dosage compensa-

tion in these cell lines.

We observed frequent loss of the Y chromosome from

the male cell lines. The D. melanogaster Y chromosome is

not currently assembled, but some Y-chromosome genes

are known. DNA-Seq reads were mapped on the Y

chromosome (chrYHet) in a minority of the male cell lines

(BG3-c2, Cl.8, S1, and W2) and we observed Y chromo-

somes by cytology in BG3-c2, Cl.8 and S1 lines (Additional

file 1). The failure to map reads to Y chromosomes in the

other male lines (D20-c5, L1, mbn2, S2-DSRC, S2R+, S3,

Sg4) was also consistent with karyograms and reflects loss

of Y chromosomes (Additional file 1). The Y chromosome

bears only a few fertility genes (X/0 flies are sterile males)

that should be of little consequence outside the germline.

Frequent loss suggests that there is little selective pressure

to maintain a Y in tissue culture cells.

Lastly, we observed widespread loss/gain of the short

(approximately 1.4 Mb) fourth chromosome in cell lines

by both DNA-Seq and cytology (Figure 3A; Additional

file 1). The number of fourth chromosomes was variable

within cell lines as well. As an illustration, in Cl.8 cells

where overall genome structure is relatively intact dip-

loidy, the number of fourth chromosomes varied from 0

to 3. This observation was also supported by DNA-Seq

results, which demonstrated clear decrease of copy num-

ber (combined P < 1.0e-11, false discovery rate (FDR)-

corrected permutation test).

Segmental and focal copy number changes

We observed frequent sub-chromosomal copy number

changes (Figure 3A; Additional file 3). Some of the larger

departures from ploidy were also identifiable in the kar-

yograms. For example, mitotic spreads of S1 cells exhib-

ited an acrocentric chromosome that looked like the left

arm of chromosome 2 (‘2r’ in Additional file 1), which

was reflected in DNA-Seq data as extended high copy

number block. However, most of the focal changes were

submicroscopic in the low megabase range. Collectively,

we observed more increases of copy number (1,702)

than decreases (388). On average, 12.9% of the haploid

genome was duplicated, or gained, while 6.3% was de-

leted, or lost; 95% of the copy number blocks were

shorter than 0.8 Mb (median = 37 kb) in the case of in-

creased copy and 1.8 Mb (median = 97 kb) in the case of

decreased copy.

DNA-Seq data showed that genome structure was cell

line-specific. For example, in Cl.8 cells we observed few

copy number changes, which were spread over multiple

small segments covering only 0.88% of the genome. In

contrast, in S2-DRSC and Kc167 cells, we observed copy

number changes for >30% of the genome. Interestingly,

Kc167 cells had more low copy number regions than

high copy number regions, while S2-DRSC had more

high copy number regions than low copy number re-

gions. These data indicate that there are fundamentally

different routes to a highly rearranged genomic state.

While the overall genome structures were cell line-

specific, we did observe regions of recurrent copy num-

ber change. While some of the cell lines (for example,

S2R + and S2-DRSC) are derived from a single ancestral

cell line and differ by divergence, the majority of the cell

lines were isolated independently, suggesting that simi-

larities in genome structure occurred by convergent evo-

lution under constant selection for growth in culture.

Our investigation revealed 89 regions of the genome

covering a total of approximately 9.3 Mb showing strong

enrichment for increased copy number (Figure 3B;

P < 0.05, FDR-corrected permutation test). Among those

segments, 51 regions were longer than 5 kb. We also

found 19 regions covering approximately 2.9 Mb with

significant enrichment for decreases in copy number; 14

of these regions were longer than 5 kb. Driver genes

promoting growth in culture may be located in these

regions.

We examined regions of recurrent copy number

change more closely to identify some candidate drivers.

As an illustration, duplications of sub-telomeric regions

of chromosome 3 L (approximately 3 Mb) were found in

10/19 cell lines (combined P < 1.0e-16, FDR-corrected

permutation test). The most overlapping segment within

this region was a duplication region of approximately

30 kb. There are six annotated genes in this core
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duplicated segment (Figure 3C, asterisks): CR43334 (pri-

RNA for bantam), UDP-galactose 4′-epimerase (Gale),

CG3402, Mediator complex subunit 30 and UV-revertible

gene 1 (Rev1). When we asked if any of these specific

genes showed increased copy number in the other cell

lines, even if segmental structure was lacking, we found

that CR43334 and Rev1 had higher copy numbers in five

additional cell lines. As another example, an approxi-

mately 19 kb duplication region in chromosome 2 L was

found in 10 different cell lines (combined P < 1.0e-17).

This region included only one gene, PDGF- and VEGF-

receptor related (Pvr), suggesting that copy number for

this gene is highly selected for in cell culture. If genes in

these recurrent copy number increase regions were

drivers, then we would expect that they would be

expressed in the cells. Indeed, pri-bantam and Pvr genes

were highly expressed in the cell lines (Additional file 4).

Mechanisms generating segmental and focal copy

number changes

Creation of common copy number changes would be

facilitated by repeated breakage at ‘hot spots’ in the

genome due to regions of microhomology or longer

stretches due to structures such as inserted transposons.

In the absence of selection, the extant breakpoint distri-

bution would map the positions of such hot spots. We

mapped breakpoints by examining read-count fluctua-

tions in every 1 kb window over the genome to identify

2,411 locations with breaks in at least one of the 19 cell

lines (Figure 3B; Additional file 3). Among these break-

points, we discovered 51 hotspots of copy number dis-

continuity in the same 1 kb window (P = 5.00e-06,

permutation test). This suggests that there are regions in

the genome that suffer frequent breaks in tissue-culture

cells. Investigation of hot spots revealed 18 containing

long terminal repeats (LTRs) or long interspersed ele-

ments (LINEs) in the reference assembly, and an add-

itional 9 regions showed simple DNA repeats within the

1 kb (±1 kb) windows. These observations are consistent

with reports of overrepresentation of sequence repeats

at copy number breakpoints [13], and with the suggested

roles of transposable elements in the formation of copy

number variants [46,47]. For the recurrent copy number

change regions, we observed a broad regional enrich-

ment for breakpoints (P = 4.07e-10, Fisher’s exact test),

but not precise locations. These data suggest that there

were both structural features in the genome that promoted

generation of copy number changes and selection that de-

termined which copy number changes were retained.

Expression and DNA/chromatin binding profiles in

relation to copy number

If copy number changes have a role in cellular fitness,

the effect might be mediated by altered gene expression.

We therefore examined the relationship between gene

dose and expression in 8 cell lines that had more than

100 expressed genes in high or low copy number seg-

ments (Figure 4). In seven cell lines (S2-DRSC, S2R+,

mbn2, Kc167, D8, D9 and D17-c3) mRNA level was

positively correlated with gene dose. There was no cor-

relation between gene expression and gene dose in Sg4

cells. Even in the cases where the correlation was posi-

tive, the correlation was usually not linear, as has been

previously observed [31]. In most lines, we observed de-

creased expression per copy of high copy number genes

(P < 0.05, Mann-Whitney U test). Similarly, overall gene

expression of the low copy number genes was moder-

ately higher than expected on a per copy basis (Figure 4).

This sublinear relationship is evidence for a transcrip-

tional dampening effect.

The transcriptional response to gene copy number

could be gene-specific or dose-specific. A dose-specific

compensation system might be expected to result in a

global change to chromatin structure corresponding to

copy number segments. There is precedent for such

dose-specific modifications of X and fourth chromo-

somes. For example, the modENCODE chromatin struc-

ture analysis of S2-DRSC cells clearly shows differences

between X and autosomal chromatin using any of a

host of histone modification or binding of chromatin-

associated proteins (Figure 5). This is consistent with the

global regulation of the X in these male cells by the

MSL complex and perhaps other regulators [27,28].

To determine if there was a chromatin signature for

copy number, we asked if there were histone modifica-

tion marks or occupancy sites that correlated with copy

number classes in 232 modENCODE ChIP-chip datasets

from S2-DRSC, Kc167, BG3-c2 and Cl.8 cells. We ob-

served only a few weak correlations (|r| = 0.1 to 0.3), re-

stricted to histone H3K9 di- and tri-methylation marks,

and their related proteins (Figure 5), Suppressor of Hairy

wing (SU(HW)), and Imitation SWI (ISWI). These cor-

relations were slightly stronger for expressed genes.

Interestingly, ISWI binding correlated with copy number

(See figure on previous page.)

Figure 3 DNA copy numbers. (A) Plots of mapped DNA read density along the genome. Deduced copy number is indicated by color (see key).

(B) Heatmaps display how many cell lines have increased (green) or decreased (red) copy number. Black lines in the first two rows show significance.

Blue lines indicate breakpoints. Black in the bottom row shows the number of breakpoints shared by the 19 cell lines. (C) A zoomed-in map of the

sub-telomeric region (1 Mb) of chromosome 3 L. Asterisks: genes within the highly duplicated regions. Genes with little or no functional information

(‘CG’ names) were omitted for brevity.
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on the X chromosome of male S2-DRSC cells, but not fe-

male Kc167 cell X chromosomes. ISWI binding did not

correlate with autosomes of either line. This localization

on the X is consistent with the known role of ISWI pro-

tein in X chromosome structure, as ISWI mutant pheno-

types include cytologically visible ‘loose’ X chromatin only

in males [48,49]. We found that histone H3K9me2 and

me3 marks were negatively correlated with gene copy

numbers in all four tested cell lines on all chromosomes.

The histone H3K9 methyltransferase, Suppressor of varie-

gation 3-9 (SU(VAR)3-9), showed the same pattern of

binding, strongly supporting the idea that H3K9 methyla-

tion is a copy number-dependent mark. H3K9me2

and H3K9me3 epigenetic marks are associated with

transcriptional repression [50]. SU(HW) functions in

chromatin organization and is best known for preventing

productive enhancer promoter interaction. Thus, the

relationship is the opposite that one would expect if

H3K9me2, H3K9me3, and SU(HW) were responsible for

the reduced expression per copy we observed when copy

number was increased. These results are more consistent

with selection to drive down expression of these regions

by both reduced copy number and transcriptionally un-

favorable chromatin structure.

Pathway coherence

If there has been selection for particular advantageous

copy number configurations in the cell lines, then this
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should result in a coherent pattern of events in terms of

specific cellular activities such as growth control. As a

first pass analytical tool, we performed Gene Ontology

(GO) term enrichment analysis to determine if copy

number changes were associated with particular func-

tions (Figure 6; Additional file 4). Tissue culture cells

have no obvious need for many of the functions associ-

ated with the complex interactions between tissues and

organs in a whole organism and should not undergo

terminal differentiation. Indeed, we found that genes

with differentiation functions were randomly found in

copy number change regions but were enriched in low

copy number regions in Kc167 cells (P < 0.001, Holm-

Bonferroni corrected hypergeometric test). Additionally,

we found increased copy numbers of genes encoding

members of the dREAM complex in S2-DRSC, mbn2, S1

(See figure on previous page.)

Figure 5 Copy numbers and chromatin immunoprecipitation. (A,B) A heatmap that summarizes correlation between copy numbers and

chromatin immunoprecipitation (ChIP) signals of expressed genes in S2-DRSC (A) or Kc167 (B) cell lines. Target proteins for ChIP and modENCODE

submission numbers are listed (right side). Columns show autosomal promoter regions (1 kb upstream of transcription start) and gene body

regions as indicated. (C,D) ChIP signals of H3K9me2 (C) and SU(HW) (D) at autosome gene bodies are displayed against different copy number

classes as boxplots (S2-DRSC cells). Top, middle, and bottom lines of boxes for upper quartile, median, and lower quartile points, respectively.

Notches indicate the 95% confidence interval of each median and whiskers display the maximum, or minimum, value within the range of 1.5

times of interquartile distance, respectively. Dots display individual genes within different copy number classes. Pearson’s correlation for r and its

significance (P-value). (E,F) ISWI ChIP signal analyzed for X chromosome gene bodies in a male (S2-DRSC; E) and a female (Kc167; F) cell line. TSS,

transcription start site.

Figure 6 Gene Ontology and copy number in S2-DRSC and Kc167 cells. (A) ‘Biological processes’ sub-ontology of overrepresented genes

in S2-DRSC cells as a hierarchical structure. Circle size corresponds to relative enrichment of the term in GO categories. Circle colors represent

P-values (Holm-Bonferroni corrected hypergeometric test). (B) GO enrichment of genes in low copy number segments of Kc167 cells. Please note

that both S2-DRSC low and Kc167 high copy number genes are not significantly enriched in specific GO categories.
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and S2R + cells. The dREAM complex represses differenti-

ation-specific gene expression [51,52], consistent with selec-

tion for copy number changes minimizing differentiation.

The most significant associations (P < 0.001) between

copy number class and function were with genes having

cell cycle, metabolic, or reproduction-related GO terms

(reproduction-related categories contain many of the cell

cycle genes due to the high rates of cell divisions in the

germline relative to somatic cells in adult Drosophila).

Interestingly, genes with cell cycle-related functions were

enriched in both high copy number regions in S2-DRSC

and low copy regions in Kc167 cells (P < 0.001 for both).

The context of this dichotomy was informative. Genes

with high copy numbers in S2-DRSC cells included Ras

oncogene at 85D, string, Cyclin D, cdc2, and other posi-

tive regulators of cell cycle progression, or mitotic entry.

These data suggest selection for growth occurred in S2-

DRSC cells. In contrast, tumor suppressor genes, and

negative regulators of cell cycle, including Retinoblast-

oma-family protein (Rbf ), Breast cancer 2 early onset

homolog (Brca2), and wee, were preferentially found in

the low copy number regions of Kc167 cells, suggesting

that inhibitors of cell growth were selected against in

Kc167 cells. Thus, both the high copy number and low

copy number events can be explained by selection for

proliferation.

Compensatory copy number changes

Copy number changes in adult Drosophila result in

propagation of transcriptional effects into the rest of the

genome [53]. As these events can destabilize gene bal-

ance in pathways and complexes, we hypothesized that

compensatory copy number changes might boost fitness.

To examine this possibility, we asked if genes have

undergone copy number changes to maintain protein-

protein complex stoichiometry by overlaying copy num-

ber information of S2R + cells onto a physical protein

interaction network that was built from complexes iso-

lated from the same cell line [54].

There were 142 protein-protein interaction networks

that contained at least one gene product encoded from

copy number change regions (Figure 7A). Among these,

we identified 84 complexes that had >90% co-occurrence

of copy number change in the same direction at the gene

Figure 7 Copy number and physical interaction networks. (A) A ternary plot that displays fractions of high, normal, and low copy number

genes that encode complexes in Drosophila protein-protein interaction networks. Each point corresponds to a protein complex or a cluster.

Distances from the three apexes in the triangle indicate fraction of cluster members from a given copy number class. Dashed lines indicate

expected portion of each copy number class based on a random distribution of S2R + cell line copy numbers. Complexes where copy number

composition is significantly different from the expected ratio (P < 0.05, hypergeometric test) are filled in blue. (B-F) Protein interaction networks

described and labeled in (A). Green, high copy gene products; red, low; white, normal. For (F), six proteins whose associations with the

proteasome parts are not clear in the literature were omitted.

Lee et al. Genome Biology 2014, 15:R70 Page 12 of 20

http://genomebiology.com/2014/15/8/R70



level (P = 0.041, permutation test). These copy number

changes were not due to passenger effects as stoichiom-

etry-preserving changes in copy number were still evident

after filtering for nearby genes (P = 0.03). Examples

included the genes encoding Vacuolar H+ ATPase (P =

0.017, hypergeometric test) and Dim γ-tubulin (DGT)

complexes (P = 0.004), where members were among high

copy number genes (Figure 7B,C). For both complexes,

genes encoding their components were spread on five dif-

ferent chromosome arms with only a pair of genes show-

ing <0.5 Mb proximity, indicating that the co-associations

are not due to simple physical proximity in the genome.

We also identified complexes where the encoding genes

were in low copy, such as a Cytochrome P450-related

complex (P = 0.001; Figure 7D). We found correlated copy

number changes even for very large complexes, such as

the small GTPase related-complex (cluster 6), which has

38 proteins. Twenty-four of the loci encoding cluster 6

members were present at high copy (Figure 7E; P = 5e-04).

By examining complexes where we failed to score a simple

correlation, we uncovered more complicated patterns

where sub-components of the complex show correlated

and anti-correlated copy number changes. A good illustra-

tion is the proteasome (Figure 7F). While the overall com-

position was consistent with genome-wide copy number

levels, we found that genes encoding the lid of the regula-

tory 19S subunit showed coherent copy number reduction

in S2R + cells (P = 0.015, hypergeometric test). In contrast,

proteins composing the base and alpha-type subunits

of the 20S core were dominated by copy number gains

(P = 0.017 and 0.014, respectively). This suggests that

the actual occurrence of coherent copy number changes

among genes encoding protein complex members may be

higher than what we report here.

Discussion
Copy number and cell line evolution

In our study, we provide copy number maps for 19 cell

lines that display copy number differences relative to the

Drosophila reference genome. Some cell lines, such as

Cl.8, D4-c1, and W2, have relatively intact genomes. In

contrast, the cell lines that are more widely used in the

Drosophila community, such as S2-DRSC, Kc167, and

S2R+, show extensive copy number change for >40% of

the genome. Some of copy number differences might

simply reflect genome structures in the source animal.

For example, we have observed similar genome struc-

tures for D20-c2 and D20-c5, which were generated from

the same original animals. Retention of the source gen-

ome structure would suggest that copy number change

can be quite stable during cell passage, although many

of the cell lines were derived from the same genotype of

flies and have been rarely used since freezing. We also

inferred change of genome structure over time. For

example, we observed structural discrepancies between

S2-DRSC and S2R + cell lines, even though these cell

lines were derived from the original S2 cells circa 1972

[39]. While S2-DRSC has been grown very extensively in

multiple labs since it was established, S2R + spent more

than 25 years in a freezer, and has been grown sparingly

in the 15 years since [40]. The approximately 32% differ-

ence in copy number between these two lines indicates

that the long period of in vitro culture of S2 cells contrib-

uted to the changes. Unfortunately, records for passages

and transfers of cell lines among labs are anecdotal at best,

so we cannot estimate change per passage. Nevertheless,

cell line genome structure suggests that some elements of

initial genotype are conserved, while most copy number

changes are acquired. Locations of many copy number

changes were shared among several cell lines, even those

with clearly different sources, indicating that recurrent

copy number changes have occurred.

Recurrence depends on a combination of biased gen-

eration of rearrangements and selection for the resulting

copy number changes. Syntenic blocks reveal patterns of

genome structure in Drosophila [55,56]. However, the

occurrence of copy number discontinuity was only mar-

ginally biased with respect to syntenic blocks (about 10%

more intra-syntenic breaks than inter-syntenic disrup-

tion). Furthermore, the breakpoints we identified dem-

onstrated poor overlap with common fragile sites that

are induced by aphidicolin treatment [57]. Similarly,

comparison of recurrently low copy regions in the cell

lines to the previously reported 65 regions where DNA

replication was significantly repressed in salivary glands

[58] identified only three regions (all sub-telomeric) that

were at least partially overlapping. While structural

factors are prerequisites for breaks, repair, and recombin-

ation, the observation that there are shared copy number

changes, including potentially useful driver genes, suggests

that copy number evolution is functionally constrained, as

has been suggested for copy number polymorphism pat-

terns at the organismal level [59-61]. Interestingly, except

for regions where unambiguous mapping of reads is com-

plicated by low sequence complexity (which may contrib-

ute to copy number change), we were not able to find any

significant overlap between regions of copy number poly-

morphism in Drosophila animal populations and the copy

number regions we identified in the cell lines. This sug-

gests that the combination of hot spots for breaks and se-

lective forces are distinct at the animal and cellular levels.

Gene dosage effects and compensation

The amount of transcript produced from genes with a

given copy number is a function of both the gene dose

and secondary changes in the rest of the genome, in-

cluding feedback regulation and buffering due to kinetics

[62]. The sum of these trans-effects in gene networks
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can antagonize the dosage effect and result in gene-

specific dosage compensation [63]. We observed clear

dosage effects in 19 cell lines, and the response varied

from compensated, to sub-linear buffering, to nearly lin-

ear relationships between dose and expression. Previous

genome-wide expression studies on Drosophila S2-DRSC

cells [31], adult Drosophila [53,64,65], and human cells

[66] have shown sub-linear relationships between copy

number and expression. Two models have been pro-

posed for the observed dosage effects and partial com-

pensation in Drosophila [31,53,64]. The first model

proposes that there is a variable gene-by-gene response

to copy number, which is mediated by regulatory feed-

back systems. The variable dose/response characteristics

we observed in this study support this model. The sec-

ond model proposes the existence of a copy number rec-

ognition system, analogous to MSL and POF, which

uniformly adjust expression of genes with a given altered

dose. While we did find evidence for dose-specific his-

tone marks, the pattern is difficult to reconcile with a

global compensatory response to copy number. The ob-

served modifications would be expected to exacerbate

the dose effect, not enhance dosage compensation. It

seems likely that both transcriptional repression and re-

duced copy number of these regions are selected to in-

crease cellular fitness.

Apoptosis

One of the more striking observations suggests that pro-

survival gene copy number has been under heavy selec-

tion. For example, almost 80% of the cell lines acquired

additional copies of the pri-bantam gene, and there was

higher expression of the bantam microRNA (miRNA) in

those cell lines. bantam is an anti-apoptotic miRNA that

suppresses the pro-apoptotic function of Wrinkled (a.k.a.

hid) and prevents proliferation-induced cell death [67].

Indeed, bantam was the most abundant miRNA in 25

cell lines, which were surveyed in the small-RNA com-

ponent of modENCODE [68]. This strongly suggests

that additional copies of the bantam gene are drivers

providing selective advantages to cell lines.

Supporting the apoptosis suppression hypothesis, we

also discovered that the platelet-derived growth factor

(PDGF)/vascular endothelial growth factor (VEGF)

receptor-encoding Pvr gene is duplicated in 10 cell

lines. Pvr also promotes anti-apoptotic survival, as loss

of Pvr causes apoptosis and reduces the number of

hemocytes in Drosophila embryos, which can be rescued by

the pan-caspase inhibitor p35 [69]. Pvr and the PDGF/

VEGF receptor ligand encoding PDGF- and VEGF-related

factor 2 genes are highly expressed in the cell lines where

the copy numbers of those genes have increased [41].

This suggests that cell lines select for anti-apoptotic activ-

ities. Consistent with this suggestion, RNA interference

screening of viability and growth-related genes has demon-

strated that knockdown of Pvr reduces viability of cells and

decreased mitotic as well as cytokinetic indexes in S2,

S2R+, and Kc167 cells [70-72].

Support for copy number modification of apoptosis re-

sponses is extensive. In addition to bantam and Pvr,

many genes involved in the JNK pathway [73] showed

changes in copy number in the S2-DRSC and Kc167 cell

lines. For example, basket (encoding JNK) was located

in a duplicated region in S2-DRSC cells. In contrast,

Kc167 had fewer copies of puckered (encoding mitogen-

activated protein kinase phosphatase) that functions to

negatively regulate JNK activity. Finally, the kayak

gene (encoding FOS), a downstream target of JNK, was

found at a highly duplicated region of chromosome 3R

(10 copies). These conditions of potentially high JNK ac-

tivity in both cell lines would induce apoptosis in normal

cells [74,75]. However, it is known that the same condi-

tion may promote cell growth and proliferation when

the caspase cascade is compromised [75]. Thus, high

JNK pathway activity would be advantageous to cells in

culture only if caspase pathway activity was reduced.

Drosophila has two important initiator caspases [76],

Death-related Ced-3/Nedd-2 like protein (DREDD) and

Nedd-2 like caspase (NC). The genes for both of them

were found in low copy number regions in S2-DRSC and

Kc167 cells. The inhibition of the caspase pathways can

also be mediated by inhibitor of apoptosis proteins

(IAPs). Drosophila has at least two genes that encodes

IAP-like proteins and inhibit caspases; thread (encoding

IAP1) and Inhibitor of Apoptosis 2 (Iap2) [77]. While

they are not clustered on the genome (chromosome 3 L

and 2R, respectively), both of them were found in high

copy number regions in S2-DRSC cells. In combination

with JNK, these copy number changes might help cells

grow in culture while minimizing apoptosis. Indeed,

RNA interference-mediated depletion of thread or Iap2

results in reduced cell viability and increased apoptosis

in S2, S2R+, or Kc167 cells [70,78,79], which is sup-

pressed by inhibition of caspase cascade activation in S2

cells [79]. These observations are reminiscent of the

situation in cancer cells, where the copy number of anti-

apoptotic genes are overrepresented and pro-apoptotic

genes are underrepresented [17]. This suggests shared

roles of copy number in these cell-level natural selection

progressions and underscores the advantages of Dros-

ophila cell lines in the study of tumorigenesis.

Cell cycle and repair

Copy numbers of cell cycle-regulator genes may also

contribute to the proliferative nature of the cell lines.

Positive regulators of the cell cycle, such as the Cyclin E,

or string genes, were located in high copy regions in 4

different cell lines and were never represented in low
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copy number segments among 19 cell lines. In contrast,

well-known negative regulators of the cell cycle, such as

Rbf and Brca2, were often found in low copy number re-

gions, and never found in high copy number regions. In

addition to the cell cycle, or apoptosis-related genes, fre-

quent duplication (15 cell lines) of Rev1, which is near

bantam, is also of note. Yeast Rev1p is required for mu-

tagenic bypass to help repair a range of DNA lesions

[80]. Similarly, Drosophila REV1 regulates a switch

between highly processive DNA polymerases to lesion

bypassing polymerases, such as DNA polymerase zeta

and eta [81]. This raises the possibility that overrepre-

sentation of the Rev1 gene may contribute to hypermu-

tability of the cell lines. However, it is also possible that

Rev1 copy number is simply driven by linkage to bantam

as a passenger.

Conclusions
Our results strongly suggest that copy number is a

potent way for cells to evolve to culture conditions

(Figure 8). We suggest a two-step process, where copy

number changes in critical genes increase growth and

survival, followed by refined selection to restore genic

balance. While very specific changes in copy number of

driver mutations might maximize growth, these changes

in copy number usually extend into neighboring genes.

This imbalance has the potential to destabilize protein

complexes. That mutations are co-selected to maintain

gene balance is an old idea [82,83], and our work sup-

ports this idea.

It seems likely that copy number changes are a generic

feature of tissue culture cells and tumors, which share

an uninhibited growth phenotype. Genomic aberrations,

sustaining a proliferative state, and resisting cell death

are hallmarks of cancer [84,85]. The tantalizing links be-

tween copy number changes observed in tumors and

Drosophila cell lines suggest that the power of Drosoph-

ila genetics can be applied to human diseases with copy

number etiology.

Materials and methods
Cell culture and library preparation

The cell lines used for DNA resequencing and RNA-Seq

were grown and harvested as described [41], except that

Kc167 cells were cultured in the serum-free medium

CCM-3 (HyClone, Logan, UT, USA) rather than in

Schneider’s medium with 10% serum, and S2-DRSC and

BG3-c2 were cultured in M3+ BPYE in place of Schneider’s

medium. Cells were harvested at plateau for DNA

extraction.

For DNA libraries, 1.5 × 107 cells were rinsed in

phosphate-buffered saline and incubated with 2 mg of

Proteinase K (Amresco 0706, Solon, OH, USA) for

2 hours at 37°C, phenol-chloroform extracted, and etha-

nol precipitated. Resuspended nucleic acid was digested

with 50 μg of RNaseA (Amresco 0675) for 1 hour at

37°C. Final ethanol precipitation was performed with

0.3 M (final) NaOAc. Resuspended DNA was fragmen-

ted to less than 800 bp by sonication. Libraries were pre-

pared as described (‘Preparing samples for sequencing

genomic DNA, part # 11251892’; Illumina, San Diego,

CA, USA), with the exception of an additional gel ex-

traction (size select for 150 to 200 bp) after the PCR step

(see modENCODE website for details [86]).

DNA resequencing of BG3-c2, Cl.8, S2-DRSC, and

Kc167 was performed with the Illumina-based short-

read sequencing platform. They were run for 36 cycles

on a GAII or HiSeq 2000 (Illumina). The other cell lines

l

ll l l

ll l l

l l

ll l

Figure 8 A schematic model of copy number evolution. At an early stage of cell line establishment, cells that acquired ‘advantageous’ copy

number changes would be selected due to the dosage effect of potential driver genes. We suggest that these included increased copy number

for anti-apoptosis, or pro-survival genes as well as decreased copy number of pro-apoptotic or tumor suppressor genes. Further culture passages

selected cells with more optimized genome structure that restored genic stoichiometric imbalance caused by drivers and especially passenger

copy number changes.
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used in this study, as well as an independent set of Cl.8,

were sequenced to have either 76 or 100 bp paired-end

reads on a GAII or HiSeq 2000 (1182-4H, Cl.8+, D16-c3,

D17-c3, D20-c2, D20-c5, D4-c1, D8, D9, L1, mbn2, S1,

S2R+, S3, Sg4, and W2). We also re-analyzed S2-DRSC

sequencing data from a previous study.

For RNA libraries, the extraction of total RNA from

the cell lines was previously described [41]. RNA-Seq li-

braries were prepared as in [87], and a further detailed

protocol can be found from modENCODE DCC. The

sequencing was performed on Illumina platforms (GAII

or HiSeq200). RNA-Seq of BG3-c2, Cl.8, S2-DRSC, and

Kc167 was performed as unstranded paired-end sequen-

cing with 37 bp read-length. The other cell lines were

paired-end sequenced to 76, 78, 100 or 108 bp read-

length in a strand-specific manner (1182-4H, D16-c3,

D17-c3, D20-c5, D4-c1, D8, D9, Kc167, L1, mbn2, S1,

S2R+, S3, Sg4, and W2).

Previous modENCODE datasets

ChIP-chip datasets were from the modENCODE Data

Coordination Center (DCC) [86] and are also available in

the NCBI Short Read Archive (SRA). We used a total of

232 datasets of ChIP-chip as well as nucleosome profiling

on microarrays from modENCODE [88]. See te Data ac-

cess section below for the list of all datasets used.

Data processing and copy number calling

We aligned both DNA and RNA sequencing data to the

reference D. melanogaster genome that we obtained

from UCSC genome browser (dm3, which corresponds

to Berkeley Drosophila Genome Project release 5; ex-

cluding chrUextra). We mapped with Bowtie 0.12.8 for

reads shorter than 50 bp, or Bowtie2 2.0.2 for longer

read lengths [89,90]. We allowed up to two mismatches

from short read data with unique mapping (-v 2 -m 1

parameters) for Bowtie. We used Bowtie2 in its end-to-

end mode with the ‘sensitive’ preset option.

The alignment results were used to obtain ratiometric

DNA densities in 1 kb windows using FREEC 5.7 [91].

For segments defined by the LASSO method (Least Ab-

solute Shrinkage and Selection Operator), the median

DNA content of each segment was given to all 1 kb win-

dows. The mean of DNA read density was set as 1 and

other bins were represented as ratios based on the mean.

We used clustering analysis to estimate different DNA

content levels. The agglomerative nesting algorithm

(AGNES) was used with R program language and its

package ‘cluster’ [92]. Any DNA density ratios that had

less than 500 bins (=500 kb) were excluded. We set mini-

mum dissimilarity between cluster centers (=interval

between peaks) as 0.167, which is expected from hexa-

ploidy. We counted possible numbers of ploidy levels

from 0 (no DNA) to 1 (expected DNA density of the

majority of the genome). This estimation was used as an

input of FREEC to define baselines of copy number call-

ing, except for D20-c5. We used tetraploid-baseline for

D20-c5, from the karyogram. For D9 and mbn2 cell lines,

we performed further calculations based on tetraploidy.

When karyograms suggest a mixed population of diploid

and tetraploid cells, we used our estimation from DNA-

Seq as our baselines to account for the detectable copy

number segments (BG3-c2 and D4-c1, diploids; D16-c3

and D17-c3, tetraploids).

Samtools v.0.1.18 [93] was used to determine X

chromosome or Y chromosome to autosome ratios from

DNA-Seq results. Mean coverage (Read length × Num-

ber of mapped reads/Haploid length of the reference

genome) of X chromosomes and all autosomes was

compared except for chrU in the reference genome.

Scaffolds based on heterochromatic regions (chrXHet,

chr2LHet, chr2RHet, chr3LHet, and chr3RHet) were not

used except for chrYHet. To avoid the severe mappabil-

ity issue on the Y chromosome (chrYHet), the Y:A ratios

were obtained from a 5 kb region with no obvious DNA

repeats (chrYHet:140,000-145,000).

We used the GEM mappability program (GEnome

Multitool) packages to define regions with poor mapp-

ability, and marked any 1 kb windows with less than

90% mappability as unknown [94]. We generated differ-

ent mappability profiles based on different lengths of

short reads by allowing up to two mismatches. The

minimum and the maximum of expected GC contents

were set as 0.3 and 0.45, respectively, in FREEC. Gene

copy numbers were assigned based on the gene model.

We did not call copy numbers for genes with any 1 kb

windows where copy number was not determined.

When copy number change occurred within a gene, we

chose the call for transcription start site.

To calculate significance of copy number changes

among cell lines, we performed permutation tests. We

randomly shuffled locations of 1 kb windows within a

cell line genome-wide one million times to determine

P-values of 1 kb window copy number changes. We ad-

justed P-values using the Benjamini-Hochberg method

for the multiple hypothesis correction [95]. Stouffer’s

method [96] was used to combine P-values where specific

regions were described. Analysis of breakpoints was per-

formed with custom scripts written in R. We used se-

quence for the breakpoints that were found from five or

more cell lines to find potential motifs with the MEME

suite (minimum motif length 2 bp, maximum 50 bp) [97].

For RNA-Seq analysis, we used Ensembl release 67

[98] of Flybase 5.39 [99] gene annotations. A minor al-

teration was made to remove antisense transcripts of

mod(mdg4) since these caused errors in downstream

analysis. RNA-Seq results were aligned to the genome

using TopHat 2.0.6 [100]. TopHat runs on Bowtie, and
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therefore we selectively used either Bowtie or Bowtie2

based on the read lengths. Reads were uniquely mapped

with a gene model provided (-g 1 -G parameters). We

set 200 bp as inner distance between pairs and 40 bp for

the minimum intron lengths (-r 200 -i 40). For experi-

mental sets with 36 bp read-lengths, we additionally

used the segment-length 16 option. We used Cufflinks

2.0.2 to calculate transcript abundance in FPKM (frag-

ments per kilobase per million reads) based on the refer-

ence annotation (-G parameter) [101]. Option ‘-b’ was

used to account for the random hexamer-based bias. For

the results presented in this study, we used FPKM >1 as

a cutoff for gene expression [102].

We analyzed sex-specific splicing events using Spanki

0.4.0 (splicing analysis kit) [103]. We used the quickjunc

utility within Spanki, with alignment files generated by

TopHat as input, to quantify splice junction coverage,

requiring an anchor size of 8 bp. We defined pairwise

splicing events with AStalavista [104] and used the span-

kisplice utility to identify splice junctions that compose

mutually exclusive splice variants (inclusion and exclu-

sion forms). For clarity in presenting results for differen-

tial splicing in sex-determination pathway components,

we labeled the male/female predominant forms as the

inclusion/exclusion forms, respectively. Each of these

forms was then quantified with the average of their junc-

tion coverage. Proportion spliced in (PSI) for splicing

events was calculated by dividing the junction coverage

of the inclusion form by the sum of the inclusion and

exclusion coverage. This yields a PSI value between 0

(predominance of the exclusion form) to 1 (predominance

of the inclusion form). Results from RNA-Seq analysis of

200 different male and female flies are used to provide ref-

erence ranges of sex-specific gene expression and splicing

events (HL, S Russell, and BO, unpublished).

ChIP signals from microarray datasets were based on

normalized intensity ratio (M values) in wiggle format

files. Areas under the wiggle histograms were calculated

and normalized with the length of regions of interest

using R. We determined ChIP signals for 1 kb upstream

of transcription start and gene body regions separately.

Pearson’s correlation was used to analyze the relation-

ship between copy number and ChIP signal. We used

r > 0.1 and P < 0.001 as a cutoff of correlation (r > 0.2 for

X chromosome).

Protein interaction network analysis and Gene

Ontology study

Lists of genes in the protein-protein interaction network

were from the Drosophila Protein interaction Map

(DPIM) [54]. We used clusters with P < 0.01, and inte-

grated copy number information (S2R + cell line) with

an R script. Differences in the number of genes showing

copy number change from the expected value were

tested by Fisher’s hypergeometric test. Significance of

the number of DPIM clusters with coherent copy num-

ber change was tested by permutation tests (1,000 times

with no replacement). We used Cytoscape 2.8.3 to

visualize networks [105]. To account for the coherence

independent from gene clustering along chromosomes,

we did a similar permutation test but filtered out any

complexes that have any two members from the genes

within 500 kb; >99.5% of the longest length of synteny

blocks [55,56].

For the GO analysis, we used a Cytoscape plugin,

BiNGO 2.44 [106]. A hypergeometric test was used to test

for significant enrichment of GO terms, and P-values were

corrected with the Holm-Bonferroni method [107]. Gene

lists used as inputs for GO analysis of S2-DRSC and Kc167

cell copy number are in Additional file 4.

Karyograms

Cells were treated with 1 mM colchicine for 2 hours to

disrupt the mitotic spindle. After phosphate-buffered sa-

line washing, we added hypotonic solution (0.5% sodium

citrate) by gently dropping (5 ml into a 15 ml tube) and

incubated for 10 minutes at room temperature. We cen-

trifuged the cells to remove supernatant, then fixed cells

by adding 3:1 (v:v) ice-cold mix of methanol and acetic

acid (5 ml) drop-wise. The step was repeated. The super-

natant was discarded and the cells were resuspended in

100 μl of fixative and 10 μl was spread and air-dried on

a microscope slide. DAPI (1.5 mg/ml) in Vectashield

(Vector Laboratories, Burlingame, CA, USA) was used

for staining. Chromosome preparations were analyzed

using a Zeiss Axioplan fluorescence microscope (Carl Zeiss

Microscopy, Oberkochen, Germany) equipped with a CCD

camera (CoolSnap HQ, Photometrics, Tucson, AZ, USA).

We used Adobe Photoshop to align the karyograms.

Detailed interpretation of mitotic spreads is provided in

Additional files 1 and 2.

Data access

All sequencing data described in this manuscript can be

found in the Gene Expression Omnibus (GEO) and the

SRA. DNA-Seq data for Cl.8 (#2), BG3-c2, Kc167, and

S2-DRSC are in the GEO under accessions GSM697064-

5, GSM498672-3, GSM498670-1, and GSM498668-9.

Data for the other cell lines as well as Oregon R results

used in this study are in the SRA under accessions

SRA052953 (SRR497712-8, SRR497720-2, SRR497724-

30). S2-DRSC (#1) [31] is archived in the GEO under

accession GSE16344. The modENCODE transcriptome

group produced RNA-Seq data, and results are available

in SRA008380 (SRR015074, SRR015076, SRR015078,

SRR015080, SRR015082, SRR015084, SRR015086, SRR0

15088, SRR015090, SRR015092, SRR015094, SRR0150

96, SRR015098, SRR015100, SRR015102, SRR015104,
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SRR015106, SRR015108, SRR015110, SRR015112) and

SRA009364 (SRR070266, SRR070271-4, SRR070277, SR

R070286, SRR07028-9, SRR070291, SRR111868-9, SRR

111871, SRR111876-7, SRR189833-5). Copy number

calling of the cell lines are provided in Additional files 3

and 4.

ChIP-chip results [88] are in the modENCODE DCC

under submission IDs: 201, 274-80, 282-5, 288-99, 301-

13, 316-31, 921-2, 924-8, 930, 937-8, 940-67, 2650-

1, 2653-5, 2658-60, 2666-74, 2984, 2986-8, 2991, 2994,

2996, 2998-3000, 3002-5, 3007, 3009, 3011, 3013-4,

3016-7, 3019-20, 3026-7, 3029-32, 3035-50, 3052, 3054-

8, 3060-2, 3064, 3170, 3279-83, 3286-9, 3291, 3293-6,

3299-304, 3675-6, 3700, 3708, 3710, 3744-5, 3748-53,

3755, 3757-8, 3760-3, 3765, 3768-70, 3777, 3783-

92, 3797, 3800, 3803-4, 3894, 3897, 3899, 3941-3, 3945,

3948-50, 4126-7, 4176, 4179, 4182-3, 4185, 4187-8, and

4197.

Additional files

Additional file 1: Karyograms of all cell lines used in this study.

Additional file 2: A summary of the number of chromosomes and

whole chromosome copy number changes from the karyograms.

Additional file 3: Genome-wide copy number in cell lines and copy

number breakpoints (1 kb level).

Additional file 4: Genome-wide copy number and expression data

(gene level).
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