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This review summarizes reports of recurrent DNA
sequence copy number losses in human neoplasms
detected by comparative genomic hybridization. Re-
current losses that affect each of the chromosome
arms in 73 tumor types are tabulated from 169 re-
ports. The tables are available online at http://
www.amjpathol.org and http://www.helsinki.fi/;lgl
_www/CMG.html. The genes relevant to the lost re-
gions are discussed for each of the chromosomes. The
review is supplemented also by a list of known and
putative tumor suppressor genes and DNA repair
genes (see Table 1, online). Losses are found in all
chromosome arms, but they seem to be relatively rare
at 1q, 2p, 3q, 5p, 6p, 7p, 7q, 8q, 12p, and 20q. Losses
and their minimal common overlapping areas that
were present in a great proportion of the 73 tumor
entities reported in Table 2 (see online) are (in de-
scending order of frequency): 9p23-p24 (48%), 13q21
(47%), 6q16 (44%), 6q26-q27 (44%), 8p23 (37%),
18q22-q23 (37%), 17p12-p13 (34%), 1p36.1 (34%),
11q23 (33%), 1p22 (32%), 4q32-qter (31%), 14q22-
q23 (25%), 10q23 (25%), 10q25-qter (25%),15q21
(23%), 16q22 (23%), 5q21 (23%), 3p12-p14 (22%),
22q12 (22%), Xp21 (21%), Xq21 (21%), and 10p12
(20%). The frequency of losses at chromosomes 7 and
20 was less than 10% in all tumors. The chromosomal
regions in which the most frequent losses are found
implicate locations of essential tumor suppressor
genes and DNA repair genes that may be involved in
the pathogenesis of several tumor types. (Am J
Pathol 1999, 155:683–694)

Knowledge of chromosomal deletions has significantly
contributed to the detection of tumor suppressor genes,
since the inactivation of one allele, according to the two-
hit hypothesis, often results from a deletion on the chro-
mosomal level.1 Massive deletions often obliterate entire
chromosomes (monosomy) or chromosome arms in tu-
mor tissue. A typical example of this underlying event led
to the discovery of the RB1 (retinoblastoma 1) gene.
Chromosome studies have revealed a great number of
deletions which indicate presence of tumor suppressor
genes or DNA repair genes in corresponding regions.2

As methodological problems in the cytogenetic analy-
sis of solid tumors have restrained attempts to apply
standard techniques to screening for deleted chromo-
somal areas, comparative genomic hybridization (CGH)
has been proven to be a powerful genome-wide screen-
ing method. Since the CGH technique was introduced in
1992, studies using this method have been reported in
about 200 papers that describe a great number of recur-
rent deleted chromosomal areas in a wide variety of
human neoplasms.3,4 The Peutz-Jeghers syndrome is the
first example of how CGH suggested the chromosomal
region to which the tumor suppressor gene STH11/LKB1
(serine/threonine kinase) was mapped.4 Here we sum-
marize 170 reports of DNA sequence copy number
losses detected by CGH in 73 tumor types. We aimed to
cover all relevant papers published by the end of 1998.

Comparative Genomic Hybridization Reveals
DNA Copy Number Imbalances

Comparative genomic hybridization allows DNA copy
number losses and gains to be studied in one hybridiza-
tion experiment.3 CGH methodology has been described
and discussed in detail previously.5,6

Comparative genomic hybridization is sensitive for de-
tecting deletions that are 10 to 20 megabases in size.7,8
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The present paper and our previous review of DNA
copy number amplifications can be accessed electroni-
cally at http://www.amjpathol.org and http://www.
helsinki.fi/;lgl_www/CMG.html.

Recurrent DNA Copy Number Losses

Recurrent losses in different tumor types are shown in
Table 2197 (online). We define a loss to be recurrent when
its frequency in a certain tumor type is at least 10% and
the number of aberrant cases is at least three. If a par-
ticular loss is observed in at least 30% of the cases and
the loss has been reported in at least two publications, it
is considered to be an established loss and indicated in
bold type in Table 2. An asterisk in Table 2 indicates that
the loss was located within the area but did not neces-
sarily affect the whole area in all cases. As a whole, the
description should be considered a flexible way to sum-
marize critical areas of recurrent DNA copy number
changes in each tumor type. A description without an
asterisk indicates minimal overlapping areas. Figure 1 is
a compilation of the recurrent losses in 73 tumor entities
presented in Table 2. The most common losses (Figure 1)
were 9p, 13q, and 6q, found in 35, 34, and 32 of the 73
tumor entities (48%, 47%, and 44%). The corresponding

minimal overlapping regions were 9p23-p24, 13q21,
6q16, and 6q26-q27. Other frequent losses involved 8p
(37%), 18q (37%), 17p (34%), 1p (34%), 11q (33%), and
4q (31%), with minimal overlapping regions at 8p23,
18q22-q23, 17p12-p13, 1p36.1, 11q23, 1p22, and 4q32-
qter. Other recurrent losses involved 2q (16%), 3p (22%),
4p (21%), 5q (23%), 10p (21%), 10q (25%), 11p (19%),
12q (13%), 14q (25%), 15q (23%), 19p (13%), 21q (10%),
22q (22%), X (22%), and Y (12%), with minimal overlap-
ping regions at 2q36-qter, 3p12-p14, 4p16, 5q21, 10p12,
10q23, 10q25-q26, 11p14, 12q21, 14q22-q23, 15q21,
19p13.1-pter, 21q21, 22q12, Xp21, Xq21, Yp, and Yq11-
q12. The frequency of recurrent losses at chromosomes
7 and 20 was less than 10% in all tumors.

Known and Putative Tumor Suppressor
Genes and DNA Repair Genes in
Chromosomal Regions with Recurrent Losses

Table 1197 (online) shows examples of known and puta-
tive tumor suppressor genes and DNA repair genes.
Their association with each of the chromosomes is dis-
cussed below.

Figure 1. Summary of losses in 73 tumor entities reported in Table 2. Each line by a chromosome arm represents a tumor entity. Red and black lines indicate that
the loss was found in at least 30% of the cases in that particular tumor type (numbers refer to numbering in Table 2 online). A red line signifies that two different
publications reported the loss, and a black line shows that the loss was published in one report only. A blue line indicates that the loss was involved in 10 to 29%
of the cases. A bold line shows the smallest common overlapping area of the losses.
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Chromosome 1

The most relevant candidates may be MTS1/SA1/TFS1
(1pter-p22.1; malignant transformation suppression-1),
ID3 (1p36.13-p36.12; inhibitor of DNA binding 3), NB/
NBS (1p36.13-p36.11; neuroblastoma suppressor),
TNFR2 (1p36.3-p36.2; tumor necrosis factor receptor 2),
DAN (1p36.13-p36.11; differential-screening-selected
gene aberrant in neuroblastoma), CDC2L1 (1p36; cell
division cycle 2-like 1), MOM1/PLASG2 (1p35; phospho-
lipase A2), and BRCD2 (1p36; breast cancer suppressor-
2). Recently the P73 gene was mapped to 1p36 and its
protein is known to share considerable homology with the
tumor suppressor p53. 1p36 is a frequently deleted re-
gion in neuroblastoma and other tumors. Disregulation of
P73 may therefore contribute to their tumorigenesis.9,10

However, no clear evidence supporting the importance of
the loss of any of these genes has been published.

Chromosome 2

The mismatch repair genes MSH2, MSH6/GTBP, and
PMS1 have been assigned to 2p22-p21, 2p16, and 2q32,
respectively.11

Chromosome 3

Losses of DNA sequences at chromosome 3 mostly in-
volve the short arm. Using standard cytogenetic and loss
of heterozygosity (LOH) methods, four regions at 3p,
which have been implicated to encompass putative tu-
mor suppressor genes, have been recognized. They
span bands p12, p14.2, p21.3, and p25 (reviewed by Le
Beau et al).12 The tumor suppressor gene VHL (von Hip-
pel-Lindau) locates at 3p25-p26. Germline mutations of
this gene are found in patients with the von Hippel-Lindau
disease, a familial cancer syndrome with susceptibility to
the development of several neoplasms, such as renal cell
carcinoma.13 Mutations in VHL have also been reported
to occur in sporadic renal cell carcinoma tumors (30 to
60%), with most of them displaying homozygous loss
(reviewed by Decker et al),14 as well as in other tumor
types.13 Another important gene in 3p is the FHIT (fragile
histidine triad) gene that spans the fragile site FRA3B at
3p14.2. Several tumor types, including lung, pancreatic,
and head and neck squamous cell carcinomas as well as
gastrointestinal cancers, have been reported to display
alterations of the FHIT gene.15–18 However, because
some analyses have shown similar alterations of FHIT in
both malignant and nonmalignant tissues19,20 and be-
cause studies using a non-nested polymerase chain re-
action technique20,21 show some discrepancies with the
first reports, the role of FHIT as a possible tumor suppres-
sor gene needs to be further clarified (reviewed by Le
Beau et al).12 A recent paper reports progress in the
search of putative tumor suppressor gene(s) at 3p21.3 by
the identification of a homozygous deletion in a breast
cancer cell line and its corresponding tumor.22 DNA mis-
match repair gene MLH1 resides at 3p21.3-p23 and DNA

repair gene XPC, which was found mutated in xeroderma
pigmentosum syndrome type C, is located at 3p25.23

Chromosome 4

In breast cancer, loss of chromosome 4 was significantly
more common in hypodiploid tumors.24 So far no tumor
suppressor gene has been identified on chromosome 4,
but some CGH and LOH results clearly indicate regions
in chromosome 4 to which a yet unidentified tumor sup-
pressor gene will be assigned.24–28 In esophageal ade-
nocarcinoma, high frequency of LOH has been observed
in regions 4q21–25, 4q21-qter, and 4q33-q35.25 One of
the critical areas in testicular cancer is 4cen-q13. Three
candidate genes located in or close to this area have
been suggested, AFP (a-fetoprotein gene), ALB (embry-
onal protein gene), and KIT (tyrosine kinase receptor
gene).26

Chromosome 5

A myeloid tumor suppressor locus was recently mapped
to 5q31.1,29,30 which is consistently lost in myeloid neo-
plasms with 5q aberrations.30 Two tumor suppressor
genes, APC (adenomatosis polyposis coli) and MCC
(mutated in colorectal cancer), which have been mapped
to 5q21-q22, are mainly involved in colorectal cancer.
Somatic mutations in APC have been identified in colo-
rectal tumors as well as in some cancers of stomach,
pancreas, thyroid, and ovary.31 DNA mismatch repair
gene MSH3 is located at 5q11-q12.

Chromosome 6

p21/WAF/CDKN1A (6p21.2; cyclin-dependent kinase in-
hibitor 1A) is considered to be a putative tumor suppres-
sor gene. So far no tumor suppressor gene has been
identified at 6q. However, microsatellite marker analyses
on different malignancies, such as breast and ovarian
carcinoma, NHL, and malignant mesothelioma have re-
vealed several regions at 6q showing allelic imbalance
suggesting the existence of one or more tumor suppres-
sor genes.32–37 Moreover, chromosome 6 transfer exper-
iments have implicated the chromosomal regions 6q23-
q25 and 6q24-q25 as the locations for putative tumor
suppressor genes involved in breast and ovarian cancer,
respectively.33,38 One candidate tumor suppressor gene
is LOT-1/hZAC (lost on transformation 1) at 6q24-
q25.39,40

Chromosome 7

Cytogenetic data indicate that complete and interstitial
deletions of chromosome 7 are among the most common
solely occurring cytogenetic aberrations in myeloid neo-
plasms.41 Both 7p and 7q have been suggested to be
locations of putative tumor suppressor genes. However,
no tumor suppressor gene has so far been identified, but
at least two distinct critical areas, 7q22 and q31, have

DNA Copy Number Losses in Human Neoplasms 685
AJP September 1999, Vol. 155, No. 3



been suggested in different solid tumors.42–45 Involve-
ment of more than one critical region in 7q has been
shown in myeloid disorders as well,46,47 and correlation
between poor prognosis and a factor located at 7q31 has
been reported.48 DNA mismatch repair gene PMS2 is
located at 7p22.

Chromosome 8

In bladder carcinomas loss of 8p has been associated
with invasive tumor growth.49,50 In breast, prostate, and
small-cell lung carcinomas loss of 8p is often detected in
association with gain at 8q, suggesting isochromosome
8q formation. LOH studies on different tumor types have
often shown two or three independent regions of deletion
at 8p, which may indicate that more than one tumor
suppressor gene is located on this chromosome
arm.51–54 The 8p region has been suggested to harbor
several candidate tumor suppressor genes. Recently, a
gene frequently deleted in human liver cancer (DLC1,
dynein light-chain gene 1) was isolated and localized at
8p21.3-p22.55 Located at the same band is PRLTS
(PDGF-receptor b-like tumor suppressor), which has
been found to be altered in a few cases of hepatocellular,
colorectal, and non-small-cell lung carcinomas.56 A third
breast cancer susceptibility gene has been suggested to
reside at 8p12-p22,57 and recently a third EXT-like gene
[EXTL3, exostoses (multiple)-like 3] has been identified in
the same region.58 EXT1, a putative tumor suppressor
gene, is located at 8q24.1.

Chromosome 9

Band 9p21 contains a tumor suppressor gene, CDKN2A
(cyclin-dependent kinase inhibitor 2A), which encodes a
cell-cycle inhibitor, p16.59,60 Deletions at the locus often
encompass and inactivate a gene nearby, CDKN2B
(p15), which has similar functions as CDKN2A.61 High
frequency of CDKN2A alterations has been observed in
many primary malignancies. Small homozygous dele-
tions represent a major mechanism of the inactivation of
the gene.61–74 Germline alterations of CDKN2A are fre-
quent in kindreds with familial melanoma, and CDKN2A
has been suggested to be a familial melanoma
gene.66,75–77 In some reports of acute lymphoblastic leu-
kemia, CDKN2A deletions have been associated with
adverse prognostic factors71–73 and also with poor rate of
event-free survival.74,78

LOH studies of transitional cell carcinoma of the blad-
der have revealed at least three common regions of
deletion at 9q: 9q13-q31, 9q32-q33, and 9q34.79–81

The locus for the nevoid basal cell carcinoma syn-
drome, an autosomal dominant disorder that predisposes
to basal cell carcinomas, ovarian fibroma, and medullo-
blastoma, has been mapped to the 9q22.3-q31 region by
linkage analysis.82–85

In bladder cancer (9q32–33; DBCCR1, deleted in blad-
der cancer chromosome region candidate 1) and in ovar-
ian carcinoma (9q31 and 9q32-q34) three candidate tu-
mor suppressor genes/areas have been suggested,68,86

and in lung carcinoma Suzuki et al87 suggested tuberous
sclerosis complex 1 (TSC1)-associated region at 9q34 as
a candidate locus for a tumor suppressor gene.

DNA repair gene XPA, which was found mutated in
xeroderma pigmentosum syndrome type A, is located at
9q22.3-q31.88 Nearby, at 9q22.3 resides PTCH, a candi-
date gene for basal cell nevus syndrome characterized
by postnatal cell carcinomas and developmental abnor-
malities.89

Chromosome 10

Although no tumor suppressor gene has been mapped to
10p, both functional studies and direct analysis of human
tumors strongly support the idea that at least one, and
possibly two, tumor suppressor genes for prostate can-
cer and human gliomas are present on 10p.90,91

Recent studies of the 10q23 region have led to the
isolation of a candidate tumor suppressor gene, PTEN
(phosphatase and tensin homolog), that appears to be
mutated at a considerably high frequency in human can-
cers, eg, in breast cancer and thyroid cancer. In prelim-
inary screenings, mutations of PTEN have been detected
in glioblastoma, prostate cancer, breast cancer, and en-
dometrial carcinoma.92–94 Moreover, the 10q region is
known to contain the MXI1 gene assigned to 10q24-q25.
The MXI1 (MAX-interacting protein 1) gene may nega-
tively regulate CMYC oncogene (V-MYC avian myelocy-
tomatosis viral oncogene homolog) activity and have a
tumor suppressing function. Altered MXI1 function as
such might contribute to tumorigenesis.95,96

Chromosome 11

The short arm of chromosome 11 harbors a number of
known tumor suppressor genes, eg, WT1 (Wilms’ tumor
1) at 11p13 and WT2 (Wilms’ tumor 2) and a cyclin-
dependent kinase inhibitor (CDKN1C) at 11p15.5, a tu-
mor susceptibility gene 101 (TSG101) at 11p15.1–p15.2,
a metastasis suppressor gene for prostate cancer KAI1
(Kangai 1) at 11p11.2, and a putative tumor suppressor
gene EXT2 at 11p11-p12. Furthermore, a liver tumor sup-
pressor gene has been localized at 11p11.2-p12.97 It is
not known whether these genes are lost in the above-
mentioned tumor types, but the involvement of the known
tumor suppressor genes or novel genes deserves further
study.

In breast cancer, CGH studies have shown that the
entire 11q or the region at 11q14-qter are most commonly
affected. In several tumors, the minimal common region
of 11q deletion has been mapped to 11q22-q23 by LOH
studies.98–107

11q is a very gene-rich area but contains only a few
identified tumor suppressor genes. The ATM (11q22.3,
ataxia telangiectasia mutated) gene, altered in some
forms of leukemia, has a role in cell cycle check point
control, genome surveillance, and cellular defense
against oxidative stress, and has been considered to
function as a tumor suppressor gene.108 Recently
PPP2R1B [protein phosphatase 2 (formerly ZA at 11q22-
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q24), regulatory subunit A(PR6) b isoform], a gene which
encodes a subunit for serine/threonine protein phospha-
tase, was identified as a putative tumor suppressor gene
in lung and colon cancer.109 In most cases the mutation
in one allele was accompanied by the deletion of the
other allele. MEN1, a gene located at 11q13, is defective
in multiple endocrine neoplasia type 1 which is charac-
terized by the occurrence of tumors of the parathyroid
glands, the pancreas, and the pituitary gland.

Chromosome 12

The 12p13 region contains the TEL [for translocation, E
Twenty-six Specific (ETS), leukemia] (ETV6) gene, which
encodes a member of the ETS-like family of transcription
factors.110 In the cryptic translocation t(12;21) (p13;q22)
of childhood acute lymphoblastic leukemia (ALL), TEL is
fused to the AML1 gene.111,112 AML1 encodes a DNA-
binding subunit of the AML1/CBFB transcription factor
complex.113 This translocation is the most common mo-
lecular genetic aberration of childhood ALL, occurring in
approximately 25% of the patients, and it is associated
with a favorable outcome.114–118 The nontranslocated
allele of TEL is frequently deleted in connection with the
translocation.119,120 Raynaud et al121 showed this dele-
tion to be a secondary event that occurred after the
translocation. Cavé et al120 reported deletion of TEL in 34
of 44 patients with t(12;21) (77%). In contrast, homozy-
gous deletion of TEL is a rare event in childhood ALL.119

12q13 harbors also a cyclin-dependent kinase inhibitor,
CDKN1B, that using a mouse model has been shown to
have a role in cell proliferation control. So far, little is
known of putative candidate genes located at 12q.

Chromosome 13

RB1 (retinoblastoma 1) at 13q14.3 is one of the best
studied tumor suppressor genes.122–124 Hereditary reti-
noblastoma is caused by a germline mutation of
RB1.125,126 This finding gave support to the two-hit hy-
pothesis proposed by Knudson in 1971.1 RB1 is defec-
tive in several cancers, eg, osteosarcoma, soft tissue
sarcoma, small-cell lung carcinoma, breast, and bladder
cancer.122

13q14 contains the recently reported genes LEU1 (leu-
kemia associated gene 1) and LEU2 (leukemia associ-
ated gene 2) which are strong candidates as tumor sup-
pressor genes relevant to chronic lymphocytic
leukemia.127 13q14 losses in this region have been de-
tected by CGH in 11 to 12% of chronic lymphocytic
leukemia.128,129

Germline mutations in BRCA2 (13q12.3; breast cancer
2) confer an increased risk for breast cancer.130,131

Germline mutations predispose the carriers also to ovar-
ian cancer, prostate cancer, and male breast cancer. A
CGH study of breast cancers from mutation carriers re-
vealed a loss at the BRCA2 locus at a high frequency
(73%), indicating the loss of the wild-type allele.132

ING1 (inhibitor of growth 1), a candidate tumor sup-
pressor gene, was recently cloned and mapped to

13q34.133,134 This region is known to contain alterations
in squamous cell carcinomas of the head and neck.135 By
CGH, losses in this region have been detected in 50% of
squamous cell carcinoma of the head and neck.136

Chromosome 14

There is no known tumor suppressor gene at 14q. Several
LOH studies at 14q have been performed on different
tumors. Analyses on ovarian and bladder carcinomas
have shown similar results revealing two regions, one at
14q12-q13 and another at 14q32, to be the most frequent
areas to show LOH.137,138 14q32.1-q32.2 was also found
to exhibit LOH in renal oncocytomas.139 14q23-q24.3
and 14q24.2-qter were implicated as regions for frequent
deletions in renal oncocytomas and nonpapillary renal
cell carcinomas, respectively.139,140 These data impli-
cate the possibility of several tumor suppressor genes at
14q, which could be important in many different types of
tumor.

Chromosome 15

It has been suggested that a putative tumor suppressor
gene, which may play a role in the later stages of carci-
nogenesis and be associated with metastasis in breast
cancer, is located at 15q14.141

Chromosome 16

The level of RB2/p130 (16q12.2, retinoblastoma-like 2)
expression is inversely related to histological grade and
the development of metastases in lung cancer,142 and a
decreased level of pRb2/p130 is associated with in-
creased risk of recurrence and death in endometrial can-
cer.143 Expression of CMAR (16q24.3; cell matrix adhe-
sion regulator) mRNA is frequently diminished in
colorectal cancer144 and in hepatocellular carcinoma.145

Recently a putative tumor suppressor gene CTCF
(CCCTC-binding factor) has been localized to 16q22.1
and it is a candidate for breast cancer tumorigenesis.146

Mutations including large deletions in TSC2 (tuberous
sclerosis 2), located at 16p13.3, are found in patients with
tuberous sclerosis, indicating its role to act as a tumor
suppressor.147 E-cadherin, the CDH1 gene (16q22.1,
cadherin 1) has been suggested to act as a tumor/inva-
sion suppressor for sporadic infiltrative lobular breast
carcinomas.148 H-cadherin, the CDH13 gene (16q24.2-
q23, cadherin 13), has been reported to be inactivated
due to deletions and hypermethylations in lung can-
cer.149

Chromosome 17

One of the best known tumor suppressor genes, TP53, is
located at 17p13.150 It codes for a protein, p53, that acts
as a transcription factor and prevents damaged DNA
from replicating.151,152 Losses or other inactivating mu-
tations in TP53 are possibly the most common genetic
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changes in cancer.153,154 Other well known tumor sup-
pressor genes located at chromosome 17 are BRCA1
(breast cancer 1) (17q21) and NF1 (neurofibromatosis 1)
(17q11.2). BRCA1 codes for a component of the RNA
polymerase II holoenzyme.155 Mutations in BRCA1 are
thought to be responsible for 52% of inherited breast
cancer and 81% of inherited breast and ovarian can-
cer.156 NF1 codes for neurofibromin, which stimulates the
GTPase activity of ras.157 Mutations in neurofibromin are
associated with type 1 neurofibromatosis.

Chromosome 18

The band q21 includes two known tumor suppressor
genes, DPC4 (deleted in pancreatic carcinoma 4)
(SMAD4) and DCC (deleted in colorectal cancer). DPC4,
a member of the MAD gene family, is involved in signal
transduction of serine threonine kinase receptors.158 Its
inactivation occurs in almost half of pancreatic carcino-
mas158 but is uncommon in other tumor types.159–161

However, studies in colorectal cancer cells and DPC4
mutated mice have suggested that DPC4 has a role in the
progression of colorectal tumors.162,163 The DCC gene
(deleted in colorectal cancer) encodes a netrin recep-
tor.164 Recently, DCC has been found to induce apopto-
sis in the absence of ligand binding.165 Originally, dele-
tions and mutations of DCC have been found in colorectal
carcinomas.166 Moreover, inactivation of DCC has been
found in breast, prostate, pancreatic, and gastric cancer,
in glioma and osteosarcoma, and in some hematological
malignancies.167–173 The 18q21 region harbors also an-
other member of the MAD gene family, MADR2 (MAD-
related protein 2) (SMAD2), which has been proposed to
be a tumor suppressor gene.174 No currently known tu-
mor suppressor gene has been assigned to 18p.

Chromosome 19

A serine/threonine kinase STK11/LKB1 (19p13.3), found
to be responsible for the Peutz-Jeghers syndrome, has
been cloned recently.4 STK11/LKB1 is the first example
of cloning in which the role of CGH was essential in
indicating the chromosomal location.175 Another candi-
date gene in 19 is EXT3 [exostoses (multiple) 3]. By using
linkage analysis, one of the loci of hereditary multiple
exostoses, EXT3, has been assigned to 19p.176 It has
been suggested that EXT3 has tumor suppressing func-
tions. Cyclin-dependent kinase inhibitor 2D (19p13;
CDKN2D) belongs to the INK4 family. One member of the
INK4 family, CDKN2A, has been shown to function as a
tumor suppressor in a variety of cancers (Table 1).

The BAX (BCL2-associated X protein) gene (19q13.3)
is a primary-response gene for p53, involved in a p53-
regulated pathway for induction of apoptosis.177 BAX
forms heterodimers with BCL2 and reduces the death-
repressing activity of BCL2.178 The gene coding for ZIP
kinase is also located in 19q13.3. ZIP kinase induces
morphological changes in apoptosis in mammalian cells
when overexpressed, suggesting that it plays an impor-
tant role in the induction of apoptosis.179 Three function-

ally related genes, XRCC1 (X-ray-repair complementing
defective in Chinese hamster 1),180 ERCC1 (excision re-
pair complementing defective repair in Chinese hamster
1),181 and ERCC2 (excision repair complementing defec-
tive repair in Chinese hamster 2),182 are located close to
19q13.2-q13.3. Several different lines of evidence have
shown that these gene products play an important role in
both UV cross-link repair and nucleotide excision repair.

Chromosome 20

Chromosome banding analysis has revealed recurrent
deletions at 20q in myeloproliferative diseases and my-
eloid leukemias.2 No CGH study of a large series of
patients with these diseases has been reported so far.

No known tumor suppressor genes have been found in
chromosome 20. Several candidate genes and novel
ESTs (expressed sequence tags) have been identified in
studies of deletions of chromosome 20q in myeloid dis-
orders. The common deleted region (CDR) in cells of
myeloid leukemia patients was narrowed down to 8
megabases at 20q12 by Wang et al183 and a YAC contig
was constructed on the CDR.184 The plausible candidate
genes in the CDR include PLCG1 (phospholipase C, g 1),
HNF4 (hepatocyte nuclear factor 4), TOP1 (topoisomer-
ase 1), MYBB (myeloblastosis viral oncogene homolog-
like 2), ADA (adenosine deaminase), and CD40.183–186

Chromosome 21

No known tumor suppressor genes have been found on
chromosome 21. Furthermore, evidence of any candidate
gene for tumor suppression in this chromosome appears
to be very scarce.

Chromosome 22

The long arm of chromosome 22 contains the tumor
suppressor gene neurofibromatosis type 2 (NF2) at
22q12,187 but there is also evidence for the presence of
another putative tumor suppressor gene distal to NF2.188

Chromosome X

No currently known tumor suppressor gene has been
located to chromosome X. LOH studies of chromosome X
on ovarian, endometrial, cervical, and breast cancer and
on renal oncocytomas,97,189–196 however, suggest that
the chromosomal regions Xp11-p22, Xq12, X25-q26, and
Xq28 could harbor tumor suppressor genes.

Chromosome Y

The genes involved with loss of Y have not yet been
identified.
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Conclusion

Our review (Table 2) shows that CGH has provided an
enormous amount of data on DNA sequence copy num-
ber losses. Because the number of cases studied for
many tumor types is less than 20, it is hardly possible to
draw reliable conclusions based on the frequencies of
losses. At this stage we can, however, conclude the
following. Losses are found in all chromosome arms, but
they seem to be relatively rare at 1q, 2p, 3q, 5p, 6p, 7p,
7q, 8q, 12p, and 20q (Figure 1). Losses and their minimal
common overlapping areas that were present in a great
proportion of the 73 tumor entities reported in Table 2 are
(in descending order of frequency): 9p23-p24 (48%),
13q21 (47%), 6q16 (44%), 6q26-q27 (44%), 8p23 (37%),
18q22-q23 (37%), 17p12-p13 (34%), 1p36.1 (34%),
11q23 (33%), 1p22 (32%), 4q32-qter (31%), 14q22-q23
(25%), 10q23 (25%), 10q25-qter (25%),15q21 (23%),
16q22 (23%), 5q21 (23%), 3p12-p14 (22%), 22q12
(22%), Xp21 (21%), Xq21 (21%), and 10p12 (20%).

The minimal overlapping areas presented above are
merely approximations derived from the large number of
original results. The reader should also take into consid-
eration that in many original papers the results from sub-
telomeric and subcentromeric areas as well as from the
problematic chromosomal regions at 1p, 16p, 17p, 19,
22, and Y have been interpreted with great caution. De-
spite the inaccuracy, the common losses are chromo-
somal areas in which essential (known and putative) tu-
mor suppressor genes most probably reside. Relevant
cancer genes or candidate genes have been discussed
above in connection with each of the chromosomes un-
der the heading Recurrent DNA Copy Number Losses.

Even when the above-mentioned common losses are
seen in a wide variety of tumor entities, there seem to be
tumor types that do not contain these losses or the fre-
quency of these losses is very low. For example, in he-
matological neoplasms the loss at 11q23 seems to be
restricted to mantle cell lymphoma and chronic lympho-
cytic leukemia. Losses at 7 and 20q are usually rare, but
according to karyotype analysis these losses are recur-
rent in myeloid neoplasias. Excluding these examples, it
is too early to draw conclusions about tumor-specific
losses. Before the clinical significance of recurrent losses
can be interpreted, more data need to be analyzed.
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sizes of deletions detected by comparative genomic hybridization.
Genes Chromosomes Cancer 1998, 21:172–175

9. Jost CA, Marin MC, Kaelin Jr. WG: p73 is a human p53-related
protein that can induce apoptosis. Nature 1997, 389:191–194

10. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A,
Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput
D: Monoallelically expressed gene related to p53 at 1p36, a region
frequently deleted in neuroblastoma and other human cancers. Cell
1997, 90:809–819

11. Lowsky R, DeCoteau JF, Reitmair AH, Ichinohasama R, Dong WF,
Xu Y, Mak TW, Kadin ME, Minden MD: Defects of the mismatch
repair gene MSH2 are implicated in the development of murine and
human lymphoblastic lymphomas and are associated with the ab-
errant expression of rhombotin-2 (Lmo-2) and Tal-1 (SCL). Blood
1997, 89:2276–2282

12. Le Beau MM, Drabkin H, Glover TW, Gemmill R, Rassool FV, Mc-
Keithan TW, Smith DI: An FHIT tumor suppressor gene? Genes
Chromosomes Cancer 1998, 21:281–289

13. Béroud C, Joly D, Gallou C, Staroz F, Orfanelli MT, Junien C: Soft-
ware and database for the analysis of mutations in the VHL gene.
Nucleic Acids Res 1998, 26:256–258

14. Decker HJH, Weidt EJ, Brieger J: The von Hippel-Lindau tumor
suppressor gene: a rare and intriguing disease opening new insight
into basic mechanisms of carcinogenesis. Cancer Genet Cytogenet
1997, 93:74–83

15. Sozzi G, Veronese ML, Negrini M, Baffa R, Cotticelli MG, Inoue H,
Tornielli S, Pilotti S, De Gregorio L, Pastorino U, Pierotti MA, Ohta M,
Huebner K, Croce CM: The FHIT gene at 3p14.2 is abnormal in lung
cancer. Cell 1996, 85:17–26

16. Simon B, Bartsch D, Barth P, Prasnikar N, Munch K, Blum A, Arnold
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