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DNA is under constant attack from both endogenous and exogenous sources, and
when damaged, specific cellular signalling pathways respond, collectively termed
the “DNA damage response.” Efficient DNA repair processes are essential for
cellular viability, although they decline significantly during aging. Not surprisingly, DNA
damage and defective DNA repair are now increasingly implicated in age-related
neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects
both upper and lower motor neurons in the brain, brainstem and spinal cord, leading
to muscle wasting due to denervation. DNA damage is increasingly implicated in the
pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins
linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a
DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases
of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition.
Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it
also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also
fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause
of both ALS and related condition frontotemporal dementia, in European and North
American populations. Genetic variants encoding other proteins involved in the DNA
damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX,
VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and
defective DNA repair as an important mechanism linked to neurodegeneration in ALS.
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INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressing neurodegenerative disorder affecting
motor neurons in the brain, brainstem, and spinal cord, which is usually fatal within 3–5 years
from symptom onset. ALS overlaps significantly with frontotemporal dementia (FTD), the most
common form of early-onset dementia (under 60 years of age) that primarily affects the frontal and
temporal lobes of the brain. Together ALS and FTD represent a common disease spectrum with
intersecting clinical, pathological, and genetic features, where ALS and FTD are at the two opposite
ends (Lomen-Hoerth et al., 2002; Clark and Forman, 2006). Whilst ALS is primarily a movement
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disorder and FTD is a cognitive/behavioural condition, there
is growing recognition that FTD signs can be present in a
proportion of ALS patients and vice versa. This implies that
there is clinical overlap between these two diseases. Furthermore,
the same genes can be mutated and similar neuropathological
features can be present in both conditions. This implies that
these two disorders are part of a common disease spectrum, with
pure ALS at one end of the spectrum, and pure FTD at the
opposite end. Therefore, ALS with overlapping FTD symptoms
(ALS-FTD) is situated in the middle of this spectrum (Lomen-
Hoerth et al., 2002; Clark and Forman, 2006). Interestingly, a
relationship between ALS and several forms of cancer (brain,
tongue, and prostate) has been also reported (Freedman et al.,
2005, 2013; Fang et al., 2013; Torgovnick and Schumacher, 2015),
and aberrant DNA repair processes are strongly implicated in
cancer progression. However, this relationship has not yet been
explored in detail.

It is important to decipher the detailed mechanisms
responsible for neurodegeneration in ALS (and FTD), so that
successful therapeutics can be designed. However, there are
currently few effective treatments for these conditions, offering
little hope for patients and their families.

The clinical manifestations of ALS usually appear in mid-life
(between 50 and 60 years of age). During aging, the cell is less
able to deal with stressors such as environmental or endogenous
insults, hence it is thought that impairment to normal cellular
mechanisms progresses during lifespan. Ultimately in mid-life
the accumulated damage therefore outweighs the ability of
neurons to deal with the insults, leading to neurodegeneration
and cell death.

The major pathological hallmark of ALS is the presence
of misfolded protein inclusions in affected tissues. TAR DNA
binding protein 43 (TDP-43), a DNA/RNA binding protein, is
present in a pathological form (misfolded, aggregated, hyper-
phosphorylated, and truncated) in almost all (97%) cases of
ALS (Heyburn and Moussa, 2017). Fused in Sarcoma (FUS) is
another DNA/RNA binding protein with striking structural and
similarities to TDP-43. Recently pathological forms of FUS have
been implicated as another key feature of ALS (Tyzack et al.,
2019; Harley et al., 2020; Ikenaka et al., 2020). Not surprisingly,
protein misfolding is strongly implicated as a disease mechanism
in ALS/FTD. A long list of cellular events are also implicated
in pathophysiology, involving either abnormal RNA/DNA
metabolism or dysfunctional proteostasis mechanisms, including
defects in protein degradation (the ubiquitin proteasome
system and autophagy), trafficking [nucleocytoplasmic,
endoplasmic reticulum (ER)-Golgi and axonal transport],
cytoplasmic mis-localisation of normally nuclear proteins,
mitochondrial dysfunction, glutamate excitotoxicity, ER
stress, redox dysregulation, and apoptosis (Ravits et al., 2013;
Robberecht and Philips, 2013; Gao et al., 2017; Mandrioli et al.,
2020). Moreover, defects in DNA repair and induction of the
DNA damage response (DDR) are increasingly implicated as
disease mechanisms in ALS.

Neurons are post-mitotic so they are particularly susceptible
to DNA damage, and with their high metabolic demands
and oxygen consumption, they are particularly prone to

oxidative DNA damage (McKinnon, 2013). In addition, given
that motor neurons are large even by neuronal standards,
their metabolic demands, and oxygen consumption are further
increased compared to other cells and other types of neurons.
It is possible that this contributes to the specific vulnerability
of motor neurons to DNA damage in ALS. This implies
that enhancing DNA repair or inhibiting DNA damage
may offer novel therapeutic approaches for ALS in the
future. However, currently no therapeutic strategies based
on these mechanisms are available or have been trialled
in ALS.

Whilst the number of DNA damage and repair proteins
linked to ALS is steadily growing, there are still some aspects
of the DDR that have not yet been associated with ALS. In
this review we focus primarily on those features of the DDR
that are directly or indirectly linked to ALS/FTD, both the
functions of ALS-associated proteins in DNA damage and repair
and the pathological characteristics related to the DDR in ALS.
For a comprehensive analysis of DNA repair mechanisms, the
reader is directed to several excellent detailed reviews on this
topic, including those published in the recent “DNA damage
repair” collection in Nature Reviews Molecular Cell Biology
(Ray Chaudhuri and Nussenzweig, 2017; Stingele et al., 2017;
Lans et al., 2019; Scully et al., 2019; Zhao et al., 2020; DNA
Damage Repair, 2021; Lee and Paull, 2021)1. In addition,
we refer readers to several other reviews about the role of
reactive oxygen species (ROS) and mitochondrial-associated ER
degradation in the DDR (see Nissanka and Moraes, 2018 and
Kok et al., 2021).

AMYOTROPHIC LATERAL SCLEROSIS

Most ALS cases arise sporadically (90–95%) whereas the
remaining 10% are genetic (Mejzini et al., 2019). The
greatest proportion of ALS and FTD cases are caused by
hexanucleotide (GGGGCC) repeat expansions in the first
intron of the C9ORF72 gene, which are responsible for 40%
of familial and 8% of sporadic ALS cases in Europe/North
America (Lee et al., 2013; Ling et al., 2013; Balendra and
Isaacs, 2018). In healthy individuals, up to 25 GGGGCC
repeats are present, whereas ALS/FTD patients can harbour
from hundreds to thousands of these repeats (DeJesus-
Hernandez et al., 2011; Kim G. et al., 2020). Interestingly,
the hexanucleotide expansion is bidirectionally transcribed
and undergoes a non-canonical form of translation [repeat
associated non-AUG (RAN) translation] which does not
require a start codon (Niblock et al., 2016; Kim G. et al.,
2020). This process results in the production of five different
dipeptide repeat proteins (DPRs), polyGA, polyGP, polyGR,
polyPA, and polyPR, that are strongly associated with
toxicity (Freibaum and Taylor, 2017; Kim G. et al., 2020).
In addition, toxicity can result from the repeat encoding-
RNA in the form of RNA foci or other aberrant RNAs that
sequester RNA-binding proteins (Freibaum and Taylor,

1https://www.nature.com/collections/hwnqqcstyj/
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2017; Kim G. et al., 2020). The presence of the repeat
expansion can also lead to loss of the normal cellular
function of the C9orf72 protein, which is also associated
with neurodegeneration in ALS/FTD via haploinsufficiency
(Gendron and Petrucelli, 2018).

The remaining genetic causes of both ALS and FTD involve
mutations in FUS and TARDBP (encoding TDP-43), which
together account for ∼1% of all ALS cases, and a growing
list of other genes linked to rarer familial forms (Abramzon
et al., 2020; McCann et al., 2021). Mutations in superoxide
dismutase 1 (SOD1) cause 18.9% of familial ALS cases but
these are not associated with FTD (Zou et al., 2017). Several
genes encoding proteins involved in the DNA damage response
(DDR) have been identified in ALS or ALS/FTD patients. As
well as TDP-43 (Konopka et al., 2020) and FUS (Wang et al.,
2013), this includes NEK1 (Higelin et al., 2018), CCNF (encoding
cyclin F) (Williams et al., 2016), C21orf2 (van Rheenen et al.,
2016), SETX (encoding senataxin) (Chen et al., 2006), VCP
(Abramzon et al., 2020) and SQSTM1 (Abramzon et al., 2020).
SETX mutations are associated with a rare, autosomal dominant
childhood- or adolescent-onset disease (Bennett et al., 2018) and
VCP mutations are the cause of 1–2% of familial ALS cases
(Koppers et al., 2012). Table 1 summarises the prevalence of
mutations in genes linked to DNA repair that are associated
with ALS.

DNA DAMAGE

Damage to DNA is a constant hazard to cells because
nucleic acids are chemically unstable under physiological
conditions. They are therefore susceptible to assault by both
endogenous factors such as free radicals, and environmental
sources, including ultraviolet and infrared radiation (Jackson
and Bartek, 2009). As an example, DNA depurination at 37◦C
and pH 7.4 results in the loss of 9,000–10,000 bases per
day by non-enzymatic hydrolytic cleavage of glycosyl bonds
in a mammalian cell (Lindahl and Barnes, 2000). Highly
specific cellular mechanisms exist to detect and repair DNA
damage and thus combat these threats. Persistent DNA damage
(genotoxic stress) triggers the specific signalling pathways, that
comprise the DNA damage response (DDR) (Jackson and
Bartek, 2009). The DDR senses and promotes specific repair
of the lesion (detailed below) (Jackson and Bartek, 2009).
However, if the lesion cannot be repaired, this drives cells
into either apoptosis or senescence to prevent replicating the
damaged genome and thus introducing mutations. Maintaining
genomic integrity is therefore essential for cellular health and
viability (Carusillo and Mussolino, 2020). This is true of
most cells, but it is particularly important for post-mitotic
neurons, that need to withstand a lifetime of insults to
DNA (Iyama and Wilson, 2013). Furthermore, DNA damage

TABLE 1 | Prevalence of mutations present in ALS in genes encoding proteins associated with DNA repair.

Gene Prevalence (% cases)

Sporadic ALS (sALS) Familial ALS (fALS)

TARDBP, encoding TDP-43 <1% (Zou et al., 2017) ∼4% (Zou et al., 2017)

FUS <1% (Deng et al., 2014; Zou et al., 2017) ∼4% (Deng et al., 2014; Zou et al., 2017)

NEK1 3–4% in European population (Cirulli et al., 2015; Brenner et al., 2016; Kenna et al., 2016; Nguyen et al., 2018)

C21orf72 Rare, <1%

CCNF, encoding cyclin F 1.39% (Williams et al., 2016) 0.6–3.3% (Williams et al., 2016)

SETX, encoding senataxin Rare (Chen et al., 2006), <1%

VCP Rare (Koppers et al., 2012), <1% 1–2% (Johnson et al., 2010; Koppers et al., 2012)

SQSTM1, encoding sequestosome-1/p62 4.4% (Fecto et al., 2011) 1.8% (Fecto et al., 2011)

HNRNPA1 Rare (Kim et al., 2013), <1%

HNRNPA2/B1 Rare (Kim et al., 2013), <1%

SARM1 Rare (Gilley et al., 2021), <1%

PFN1, encoding profilin-1 Rare (Brettle et al., 2019), <1%

UBQLN2 Rare (Huang et al., 2017), <1% 1–2% (Deng et al., 2011; Fecto and Siddique, 2011; Williams et al., 2012)

ERBB4 71.4% of people with respiratory onset ALS, 46.4% of people with non-respiratory onset (Al Khleifat et al., 2022)

SIGMAR1 Rare (Al-Saif et al., 2011), <1%

GLE1 Rare (Kaneb et al., 2015), <1%

SOD1 1.2% (Zou et al., 2017) 18.9% (Zou et al., 2017)

DAO Rare (Mitchell et al., 2010), <1%

KIAA1563/ALS2 Rare (Hand et al., 2003)

C9ORF72 7% (Chia et al., 2018) 34% (van Blitterswijk et al., 2013; Zou et al., 2017)

ATXN2 1.32% (Wang et al., 2014) 1.58% (Wang et al., 2014)

MATR3 Rare (Chia et al., 2018), <1% Rare (Chia et al., 2018), <1%

TBK1 Rare (Chia et al., 2018), <1% Rare (Chia et al., 2018), <1%

ELP3 Rare (Kenna et al., 2013; Couthouis et al., 2014), <1%

TIA1 Rare (Mackenzie et al., 2017), <1% ∼2% (Mackenzie et al., 2017)

List of genes based on Sun et al. (2020).
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accumulates during aging, which is the biggest risk factor for ALS
(Agathangelou et al., 2018).

Types of DNA Damage
DNA can be damaged in several different ways. This
involves chemical addition or disruption to a base
(creating an abnormal nucleotide or fragment), DNA
replication errors, or a break in one or both DNA
strands. Typical base alterations include alkylation,
oxidation and methylation, loss of bases caused by
hydrolysis, and bulky adduct formation involving covalent
linkages between DNA and other reactive molecules
(Chatterjee and Walker, 2017). DNA damage can also
occur when crosslinking agents covalently connect two
nucleotides from the same or opposite DNA strands,
forming intra-strand or inter-strand crosslinks, respectively
(Chatterjee and Walker, 2017).

Major forms of DNA damage are single-stranded and
double-stranded breaks (SSBs and DSBs respectively), in
which the phosphodiester bonds break in one or both
DNA strands (Chatterjee and Walker, 2017). Single-strand
breaks are more common than double-stranded breaks,
but the latter are highly toxic lesions that can result
in genetic instability, and thus are usually much more
deleterious (Chatterjee and Walker, 2017). Furthermore,
SSBs can also convert to the more harmful DSBs
(Chatterjee and Walker, 2017).

Spontaneous SSBs and DSBs can result from the accumulation
of R-loops, which are three-stranded nucleic acid structures
consisting of a DNA:RNA hybrid with a displaced, non-
template single-stranded DNA. R loops are central to several
physiological cellular processes, including mitochondrial
DNA replication, immunoglobulin diversification and
transcription regulation (Barroso et al., 2019). However,
they also constitute a major source of DNA damage and
result from replication stress, the formation of SSBs and
DSBs and genome instability (Garcia-Muse and Aguilera,
2019). Similarly, G-quadruplexes are another type of aberrant
DNA structure that regulate basic nuclear processes but they
can also trigger DNA damage, genome instability, and cell
death. They are formed in nucleic acid sequences that are
rich in guanine (Burge et al., 2006). These types of damage
can inhibit both DNA replication and transcription and
can ultimately lead to cell death. They can also result in
a high incidence of mutations if not repaired effectively
(Chatterjee and Walker, 2017).

Types of DNA Repair
Each type of damage requires a specific mechanism of
DNA repair and the DDR determines which repair pathway
is activated (Harper and Elledge, 2007). The six major
DNA repair pathways are detailed below (Chatterjee and
Walker, 2017). Whilst the DDR responds to different forms
of DNA damage distinctly, sometimes the pathways can
overlap, such as those involved in SSB and DSB repair
(Ma and Dai, 2018).

Base Excision Repair
Minor distortions to the DNA double helix induced by
oxidation, deamination, alkylation, and loss of a nucleobase
are repaired by base excision repair (BER). In this process
DNA glycosylases recognise and remove the damaged base
while leaving the sugar-phosphate backbone intact, creating
an apurinic/apyrimidinic site (Krokan and Bjoras, 2013).
DNA repair is then mediated by either (a) short-patch-
repair, facilitated by Apurinic/apyrimidinic endonuclease
(APE1), DNA polymerase (POL) β, DNA ligase 1 (LIG1)
and a complex of DNA ligase III (LIG3) and X-ray repair
cross-complementing protein 1 (XRCC1) (Chatterjee and
Walker, 2017), or (b) long-patch-repair, which is mediated
by APE1, POL β or POL δ/ε, flap endonuclease and LIG1
(Chatterjee and Walker, 2017).

Nucleotide Excision Repair
Bulky lesions generated by UV radiation, mutagens from
the environment or chemotherapeutic agents, can be
repaired by nucleotide excision repair (NER), of which
there are two types; global genome NER (GG-NER) and
transcription-coupled NER (TC-NER) (Chatterjee and
Walker, 2017). In GG-NER, xeroderma pigmentosum,
complementation group C (XPC), together with UV excision
repair protein radiation sensitive 23 B (RAD23B), sense
the presence of a single-stranded DNA (ssDNA) lesion. An
endonuclease complex composed of DNA excision repair
protein ERCC1, DNA repair endonuclease XPF (XPF-
ER CC1) and xeroderma pigmentosum complementation
group G protein (XPG), cut the damaged strand. Several
replication proteins – proliferating cell nuclear antigen
(PCNA), replication factor C (RFC), POL δ, POL ε or POL
κ, and LIG1 or XRCC1–LIG3 – then carry out the final
step of gap-filling synthesis and ligation (Chatterjee and
Walker, 2017). In contrast to GG-NER, initiation of TC-
NER occurs by the physical blockage of RNA polymerase
II on the bulky DNA lesions. Cockayne syndrome protein
A (CSA) and Cockayne syndrome protein B (CSB) are
recruited to the lesion (Fousteri et al., 2006), followed
by recruitment of transcription factor IIH and repair
(Chatterjee and Walker, 2017).

Mismatch Repair
Mismatch repair facilitates the repair of base insertions, deletions,
and mis-incorporation of bases that arise during DNA replication
and recombination. These errors result in the formation of
specific structures, insertion-deletion loops (IDLs). In humans,
these lesions are first recognised by mismatch recognition
proteins, heterodimers of either MutSα (MSH2/MSH6) or MutSβ

(MSH2/MSH3). Then, MutL complexes are recruited to DNA
to regulate excision of the mismatched bases. POL δ, RFC, high
mobility group box 1 protein (HMGB1), and LIG1 coordinate the
final steps involving the synthesis of new DNA (Li, 2008).

Single-Stranded Break Repair
Poly(ADP-ribose) polymerase 1 (PARP1) is an abundant
nuclear protein with several functions in the DDR,
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including repair of both SSBs and DSBs (Ray Chaudhuri
and Nussenzweig, 2017). One of the earliest events in
DNA repair is the recruitment of PARP1 to various types
of DNA lesions (Ray Chaudhuri and Nussenzweig, 2017).
Oxidative damage to DNA, erroneous activity of DNA
topoisomerase 1 (TOP1), collapse of DNA replication
processes and stalled transcription events generate SSBs,
which are detected by PARP1 (Davidovic et al., 2001). APE1,
polynucleotide kinase 3′-phosphate (PNKP), aprataxin (APTX)
and Flap endonuclease (FEN1) then prepare the ssDNA
gap for filling and ligation (McKinnon and Caldecott,
2007). POL β and POL δ/ε mediate filling, while LIG1 is
responsible for DNA ligation (McKinnon and Caldecott, 2007;
Chatterjee and Walker, 2017).

DSB Repair: HR and NHEJ
DSBs are repaired by two major distinct pathways, homologous
recombination (HR) and non-homologous end joining
(NHEJ). However, in neurons, NHEJ is the major pathway,
although it is more error prone than HR (Thompson and
Schild, 2001; Lieber, 2008). In NHEJ, a specific kinase,
DNA protein kinase (DNA-PK), is recruited to DSBs where
it ligates the ends of DNA together with no regard for
sequence homology. This can therefore generate deletion
or insertion mutations (Lieber, 2008). In contrast, HR
uses a specific DNA template to repair the DSB, leading
to reconstitution of the original sequence. Hence, HR has
much less chance of introducing mutations than NHEJ
(Thompson and Schild, 2001).

In both pathways, DSBs are recognised by ataxia telangiectasia
mutated kinase (ATM), which phosphorylates histone H2AX
over a mega-base region of DNA surrounding a DSB.
Phosphorylated H2AX (γH2AX) forms discrete foci in the
nucleus that are clearly visible by microscopy, and thus
are a widely used marker of the presence of DSBs (and
hence DNA damage) in cells (Larry and Charles, 2000–
2013). In NHEJ, the broken DNA ends are bound by parts
of the DNA-PK complex, first a Ku70/Ku80 heterodimer,
followed by recruitment of the catalytic subunit of DNA-
PK (DNA-PKcs) (Ciccia and Elledge, 2010). These ends are
then processed by the nuclease Artemis and DNA polymerases
Polµ or Polλ, to create compatible ends (Lieber, 2010) that
are ligated by a large DNA ligase complex involved in
NHEJ. This complex contains DNA ligase 4, X-ray cross-
complementation group 4 (XRCC4) and the XRCC4 like factor
(XLF)/Cernunnos (Ahnesorg et al., 2006; Buck et al., 2006).
Histone deacetylase 1 (HDAC1) is also implicated in the binding
of PARP1 at DSBs during NHEJ (Robert et al., 2016). HDACs
catalyse the removal of acetyl groups from the amino-terminal
lysine residues of histones, and acetylation/deacetylation is a
dynamic process that modulates several aspects of DSB repair
(Li et al., 2020).

In contrast, in HR the broken ends undergo resection
by the MRN-complex, CtBP-interacting protein (CtIP), and
other endonucleases, which generate 3′-ss DNA (Sartori
et al., 2007; Brandsma and Gent, 2012). The ssDNA tail
then becomes coated with replication protein A (RPA),

which subsequently becomes displaced by RAD51 to form a
nucleoprotein filament. RAD51, whose function is controlled
by BRCA2, searches for a homologous sequence on the
sister chromatid and catalyses invasion of the strand. The
recombination intermediates are then resolved (Pardo et al.,
2009; Brandsma and Gent, 2012).

THE ROLE OF PROTEINS ASSOCIATED
WITH ALS/FTD IN THE DDR

Recently, the functions of TDP-43 and FUS have been expanded
to include their roles in DNA repair and the DDR. Given that
the role of DNA damage in ALS is only just emerging, it is
likely that future studies will reveal an even stronger relationship
between these proteins, ALS, and DNA damage/repair. It is also
possible that the list of proteins associated with ALS involved
in the DDR will be extended in the future. Both TDP-43
and FUS are thought to function in both the detection of
DSBs via sensing of γH2AX, and in their repair by NHEJ
(Wang et al., 2013; Hill et al., 2016; Konopka et al., 2020).
Similarly, both proteins are involved in the assembly of DNA
repair complexes by creating a scaffold for the recruitment
of other DNA repair proteins, such as XRCC1 or XRCC4
(Wang et al., 2018; Guerrero et al., 2019). Similarly, there
is also evidence that senataxin and p62 are involved in the
repair of DSBs (Hewitt et al., 2016; Rawal et al., 2020).
FUS is also implicated in the repair of oxidatively damaged
bases in BER (Wang et al., 2018). Senataxin, FUS and TDP-
43 are implicated in the repair of R-loop associated DNA
damage (Hill et al., 2016; Giannini et al., 2020). In addition,
both C21orf21 and NEK1 interact with each other during
DNA repair (Lai et al., 2011). We discuss these mechanisms
in detail below.

TDP-43 Participates in
Transcription-Induced DNA Damage and
NHEJ
TDP-43 was originally identified as a transcriptional repressor
binding to the trans-activation response (TAR) element of
HIV human immunodeficiency virus (Lee et al., 2011). The
RNA binding functions of TDP-43 are well characterised, and
involve many RNA metabolic processes, including transcription,
splicing, and miRNA biogenesis (Lee et al., 2011). However,
the DNA-binding functions of TDP-43 have been described
more recently. A global proteomic study first provided evidence
that TDP-43 interacts with Ku70 in HEK-293 cells, implying
it may have a role in DNA repair (Freibaum et al., 2010).
A subsequent report revealed that TDP-43 functions in the
repair of transcription-associated DNA damage. Induction of
DNA damage enhanced the co-localisation of TDP-43 with
damaged DNA, as detected by the formation of γH2AX
foci, and increased the co-localisation of TDP-43 with RNA
polymerase II, which transcribes DNA into mRNA (Hill et al.,
2016). Furthermore, depletion of TDP-43 resulted in increased
sensitivity to the RNA polymerase II inhibitor α-amanitin, a
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transcription stalling agent, leading to the formation of more
DNA breaks in U2OS cells (Hill et al., 2016). As DNA is
damaged when transcription is obstructed, this implies that TDP-
43 is required for DNA repair. Similarly, the accumulation of
DNA damage during transcription is linked to the formation of
potentially harmful R-loops (Sebastian and Oberdoerffer, 2017).
Interestingly, depletion of TDP-43 enhances the formation of
R loops and production of DSBs in non-neuronal HeLa cells
(Giannini et al., 2020). In contrast, resolving the formation
of R-loops by digestion of DNA-RNA hybrids with RNASEH1
prevented the accumulation of DNA damage induced by TDP-
43 depletion (Hill et al., 2016). This implies that TDP-43
is specifically associated with the repair of DNA damage
arising from the formation of R-loops. However, it does not
exclude the possibility that TDP-43 also prevents the formation
of R-loops itself. The precise mechanisms involved in this
process therefore require further investigation. Nevertheless,
one possibility is that TDP-43 resolves transcription-associated
DNA damage by NHEJ DSB repair, given that recent studies
have highlighted its role in this mechanism (Mitra et al., 2019;
Konopka et al., 2020).

TDP-43 is recruited specifically to sites of DNA damage
(Konopka et al., 2020) during NHEJ, where it acts as a
scaffold for recruitment of the XRCC4-DNA ligase IV complex
(Mitra et al., 2019). Knock down or knock out of TDP-
43 by either shRNA or CRISPR/Cas9 techniques impairs
NHEJ, resulting in the accumulation of genomic DSBs (Mitra
et al., 2019). Interestingly, knockdown of TDP-43 also inhibits
the formation of γH2AX foci in NSC-34 cells, suggesting
that TDP-43 may be involved in the recognition of DSBs
(Konopka et al., 2020).

Knockdown of TDP-43 also leads to chromatin instability
and impaired DNA repair in HEK 293T cells (Kawaguchi
et al., 2020). Furthermore, the interaction between TDP-43
and multiple binding partners are altered following DNA
damage in HEK293T cells. Differential interactions, both
increased and decreased, with proteins of the nuclear RNA
exosome and ribosome, chromatin-associated proteins,
transcription-coupled DNA repair proteins (Kawaguchi
et al., 2020), and several important DNA repair proteins,
including TOP1, Ku80, replication factor C subunit (RFC3)
and NPM1 (a multi-functional protein in the DDR) have been
described (Kawaguchi et al., 2020). Together, these findings
provide compelling evidence that TDP-43 functions in the
DDR (Figure 1).

FUS Participates in Transcription
Induced DNA Damage and NHEJ
Given the striking structural and functional similarities with
TDP-43, it is not surprising that FUS is also implicated
in comparable DNA repair processes, which were described
prior to those involving TDP-43 (Hill et al., 2016). Similar
to TDP-43, it was proposed that FUS functions in the
repair of transcription associated DNA damage. Furthermore,
FUS localises at sites of transcription-associated DNA damage
during R loop formation (Hill et al., 2016). Depletion of

FUS results in increased sensitivity to α-amanitin, leading
to DNA damage due to impaired transcription, implying
that FUS is required for the repair of DNA damage during
transcription (Hill et al., 2016). Also similar to TDP-43,
FUS either prevents the formation of R-loops or repairs
the damage associated with R-loop formation. This was
demonstrated by the resolution of R-loops by digestion of
DNA:RNA hybrids with RNASEH1, which prevented the
accumulation of DNA damage (Hill et al., 2016). Given the
similarities between FUS and TDP-43, as well as the known
role of FUS in NHEJ repair, it is therefore likely that FUS
cooperates with TDP-43 during NHEJ to repair DNA lesions
formed during transcription. However, this has not yet been
confirmed experimentally.

A role for FUS in NHEJ has been also reported from
its direct interaction with HDAC1 (Wang et al., 2013).
Interestingly, induction of DNA damage by etoposide enhances
this interaction, and both proteins are necessary for successful
DNA repair (Wang et al., 2013). Furthermore, knockdown
of FUS diminishes γH2AX expression and resulted in less
accumulation of DDR factors, nibrin (NBS1), pATM, and Ku70
at DSB sites, suggesting that FUS functions in one of the
earliest stages of the DDR (Wang et al., 2013). FUS is also
recruited to UVA irradiation-induced DNA damage in a PARP-
dependent manner (Mastrocola et al., 2013; Rulten et al., 2014;
Altmeyer et al., 2015). In addition, the interactions of FUS
with Ku80 and NPM1 are also altered following DNA damage,
highlighting the role of FUS in the repair of DNA breaks
(Kawaguchi et al., 2020).

Other studies have suggested a role for FUS in
BER, which has not yet been described for TDP-43. In
healthy neurons, the glycine-rich region of FUS (residues
268–355) facilitates PARP-1-dependent recruitment of
XRCC1/DNA Ligase IIIα (LIG3) to sites of oxidatively
modified bases during BER, resulting in its activation
(Wang et al., 2018). Together these findings indicate
that FUS has broad functions in several DNA repair
pathways (Figure 2).

Other Proteins Associated With ALS With
Functions in the DNA Damage
Response: NEK 1, C21orf2, Cyclin F,
Senataxin, VCP, and p62
NEK1 represents one of 11 members of the highly conserved
NIMA kinase family, which has functions in cell-cycle
progression and mitosis (Shalom et al., 2008). Knockdown
of NEK1 using stable RNA interference results in delayed
DNA repair in response to diverse DNA damage-inducing
agents. These include methyl-methanesulfonate, which
stalls replication forks, hydrogen peroxide, which generates
apurinic or apyrimidinic sites, and SSBs and DSBs, or cisplatin,
which results in the formation of DNA intra- and inter-
strand cross links (Pelegrini et al., 2010). This implies that
NEK1 has a role in the cellular response to genotoxic stress
(Pelegrini et al., 2010).
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FIGURE 1 | The roles of TDP-43 in DNA repair. (A) TDP-43 functions in the repair of R-loops formed during transcription, where it binds to γH2AX foci and RNA
polymerase II (RNA Pol II). (B) In NHEJ DSB repair, (1) TDP-43 binds to damaged DNA, where it possibly facilitates the phosphorylation of histone H2AX. (2) TDP-43
binds to Ku70 and creates a scaffold for recruitment of the main DNA ligase involved in NHEJ, the XRCC4-DNA ligase IV complex (XRCC4).

FIGURE 2 | The roles of FUS in DNA repair. FUS is implicated in diverse DNA repair pathways. (A) FUS functions in the repair of R-loop associated DNA damage,
formed during transcription, where it binds to γH2AX foci and RNA polymerase II (RNA Pol II), similar to TDP-43. (B) FUS is recruited to the sites of DSBs, which can
be repaired by NHEJ or HR, although in neurons NHEJ is the most important mechanism. FUS interacts directly with HDAC1 to regulate DSB repair (1). It also
participates in the phosphorylation of histone H2AX (2) and likely facilities the assembly or stabilisation of DNA repair complexes (3). (C) FUS is also implicated in BER
DNA repair, by facilitating the assembly or stabilisation of DNA repair complexes. This also includes recruitment of the XRCC1/DNA ligase III α to repair oxidatively
damaged bases.
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C21orf21 interacts with NEK1 and is also thought to
function in DNA repair (Lai et al., 2011). C21orf21 inhibits
cellular proliferation following DNA damage induced by ionising
radiation, and its depletion inhibits the efficiency of DSB repair
by HR (Fang et al., 2015).

Cyclin F is a non-canonical cyclin which is a part of
the SKP1-CUL1-F-box (SCF) E3 ubiquitin-protein ligase
complex (Krajewski et al., 2020). Studies of skin cutaneous
melanoma have suggested that cyclin F is involved in
DNA repair (Gagat et al., 2018) and cell cycle progression
(Yuan et al., 2019). Cyclin F interacts with ribonucleotide
reductase family member 2 (RRM2), which catalyses the
conversion of ribonucleotides to deoxyribonucleotides
(dNTPs) necessary for DNA synthesis during replication
and DNA repair. Defective elimination of cyclin F
delays DNA repair and sensitises cells to DNA damage
(D’Angiolella et al., 2012).

Senataxin functions in the resolution of R-loops. It plays
important roles in maintaining genome integrity by co-
ordinating transcription, DNA replication, and the DDR
(Rawal et al., 2020). Yeast cells lacking functional Sen1,
an ortholog of human senataxin, are characterised by the
formation of DNA:RNA hybrids proximal to the break site,
and defects in the fidelity of DNA repair and accurate
processing of DSBs (Rawal et al., 2020). This is accompanied
by prolonged binding of Ku70/80 at DSBs and increased
mutagenic NHEJ events. Moreover, local DNA:RNA hybrids
prime initiation of non-canonical Mre11- and Dna2-dependent
DSB re-section, promoting HR repair (Rawal et al., 2020). At
R-loop sites, senataxin also localises to sites of collision between
components of the replisome and transcription apparatus,
implying it functions at the interface of transcription and
the DDR (Yeo et al., 2015). Loss of senataxin in human
and mouse cells causes hypersensitivity to treatment with
agents that induce either replication stress or R-loop formation,
resulting in genomic instability and chromosomal rearrangement
(Yeo et al., 2015).

Valosin-containing protein (VCP) is an AAA+ ATPase
that is rapidly recruited to sites of DNA damage, where
it removes K48-linked poly-ubiquitinated chromatin proteins
and facilitates their turnover (Vaz et al., 2013). VCP is
believed to be directly phosphorylated at Ser784 in response
to DNA damage by phosphatidylinositol 3-kinase-related kinase
(PIKK) family members with important functions in the
DDR: ATM, ataxia- and Rad3-related (ATR), and DNA-
PKcs (Blackford and Jackson, 2017). Inhibition of these
kinases with caffeine or the more specific ATM inhibitor
KU55933, perturbs VCP phosphorylation at Ser784 following
etoposide treatment in HeLa cells (Zhu et al., 2020). Ser784
phosphorylation correlates with a decrease in VCP association
with chromatin, cofactors NPL4/UFDI, and poly-ubiquitinated
substrates (Zhu et al., 2020).

SQSTM1/p62 (sequestosome 1) selectively targets poly-
ubiquitinated proteins for degradation via macro-autophagy and
the proteasome (Hewitt et al., 2016). In the DDR, SQSTM1
facilitates proteasomal degradation of DNA repair machinery
components filamin A (FLNA) and RAD51, resulting in slower

repair of DSBs (Hewitt et al., 2016) and enhancement of NHEJ
repair (Hewitt et al., 2016). In autophagy-defective cells, SQSTM1
inhibits ring finger protein 168 (RNF168), an E3 ligase, which
is essential for the ubiquitination of histone H2A in response
to DSBs (Wang et al., 2016). This event blocks the recruitment
of DNA repair protein BRCA1, receptor-associated protein 80
(RAP80) and RAD51 to the sites of DSBs, resulting in impairment
of DSB repair (Wang et al., 2016).

INDUCTION OF DNA DAMAGE IN ALS
BY PATHOLOGICAL FORMS OF TDP-43,
FUS, C9orf72, SOD 1, AND NEK 1

Not surprisingly, DNA damage has been described following
expression of mutant forms of the proteins described above in
disease models. However, in addition, DNA damage is present
following expression of other proteins associated with ALS, and
has been detected in human patient tissues.

TDP-43
Expression of ALS-associated TDP-43 mutants A315T (familial)
and Q331K (sporadic) in neuronal NSC-34 cells results in
impaired NHEJ compared to expression of wildtype TDP-43
(Konopka et al., 2020). Similarly, more DNA damage and less
NHEJ was present in fibroblasts derived from ALS patients
bearing the TDP-43 M337V mutation compared to fibroblasts
from control individuals (Konopka et al., 2020). However,
both TDP-43 mutants still co-immunoprecipitate and co-localise
with 53BP1 foci, implying that they are recruited to sites of
DNA damage, albeit to a lesser extent than wildtype TDP-43
(Konopka et al., 2020). Hence this implies that TDP-43 mutants
possess direct deficits in DNA repair (Konopka et al., 2020).
Expression of TDP-43 Q331K in SH-SY5Y cells results in less
interaction of TDP-43 with the XRCC4-DNA ligase IV complex
and enhanced cytosolic mis-localisation compared to wildtype
TDP-43 (Guerrero et al., 2019). These abnormalities prevent
the translocation of XRCC4-DNA ligase IV to the nucleus,
which perturbs DNA repair (Guerrero et al., 2019). Human
spinal cord tissue from a ALS TDP-43 Q331K patient displays
accumulation of DSBs and more expression of γH2AX compared
to age-matched controls (Guerrero et al., 2019). Therefore,
together these data imply that pathological forms of TDP-43 in
ALS impair DNA repair, leading to the accumulation of DNA
damage and diminished genomic integrity. The presence of TDP-
43 pathology in almost all ALS patients, including sporadic
disease, also implies that in most ALS cases, depletion of TDP-
43 from the nucleus inhibits DNA repair. Furthermore, it is
known that the presence of unrepaired DNA lesions triggers
apoptosis and leads to neurodegeneration (Stein and Toiber,
2017), suggesting that this is an important mechanism associated
with pathophysiology in ALS.

DNA damage has also been shown to induce features of TDP-
43 pathology – cytoplasmic mis-localisation and stress granule
(SG) formation – in NSC-34 cells and mouse primary cortical
neurons expressing either wildtype and or ALS-associated
mutants A315T and Q331K (Konopka et al., 2020). Both wildtype
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and mutants are recruited to SGs, however, wildtype TDP-
43 forms more SGs than the mutants (Konopka et al., 2020).
Similarly, phosphorylated TDP-43-positive structures were also
observed in the cytoplasm of TDP-43 M337V fibroblasts derived
from pre-symptomatic ALS TDP-43 mutation carriers (Konopka
et al., 2020). Moreover, pathological TDP-43 aggregates co-
localise with SGs in ALS and FTD in human tissue and in vitro
(Volkening et al., 2009; Liu-Yesucevitz et al., 2010). Thus,
DNA damage triggered by TDP-43 pathology may contribute to
neurodegeneration in the majority of ALS cases.

DNA damage was also detected in cortical neurons in early
disease stages of a TDP-43 transgenic mouse model displaying
cytoplasmic TDP-43 that lacks the nuclear localisation signal
(NLS) (Konopka et al., 2020). Similarly, loss of nuclear TDP-
43 strongly correlates with DSB repair defects, DDR activation
and accumulation of DNA damage in a Caenorhabditis elegans
strain with knockin of a Tdp-1(ok803) loss-of-function mutation,
containing deletion of the C-terminal 299 residues containing
the TDP-1 NLS and two TDP-1 RRMs (Mitra et al., 2019). In
addition, conditional SH-SY5Y cell lines expressing wildtype or
mutant TDP-43 Q331K displayed more cytosolic sequestration of
poly-ubiquitinated, aggregated mutant TDP-43 than control lines
(Guerrero et al., 2019). This correlated with increased genomic
DNA strand breaks, and activation of phospho-ATM, phospho-
53BP1, γH2AX and neuronal apoptosis (Guerrero et al., 2019).

Cytoplasmic aggregates immunoreactive for TDP-43 were
identified in human sporadic ALS-derived fibroblasts (Riancho
et al., 2020). These cells displayed more γH2AX and 53BP1
foci and were more vulnerable to induction of DNA damage by
X-ray irradiation than control fibroblasts (Riancho et al., 2020).
Mis-localisation of mutant TDP-43 A382T in neuronal SH-SY5Y
cells and lymphoblastoid cell lines from an ALS patient resulted
in the formation of R-loops, DSBs and Fanconi anemia repair
centres, involved in the repair of the inter-strand crosslinks and
replication fork blockages (Giannini et al., 2020). DNA damage
has also been detected in neuronal genomes of sporadic ALS
patients (Fitzmaurice et al., 1996; Ferrante et al., 1997; Kim B.
et al., 2020).

Hence, in summary, the function of TDP-43 in DNA repair
is perturbed in ALS and induction of DNA damage leads to the
production of TDP-43 pathology and SGs. Both loss of TDP-43
functions in the nucleus as well as gain of toxic functions in the
cytoplasm are implicated in neurodegeneration associated with
the DDR in ALS.

FUS
There is also considerable evidence for DNA damage associated
with FUS in ALS. Motor neurons derived from FUS-P525L
and P525L induced pluripotent stem cell (iPSC) lines show
a significant delay in the repair of SSBs (Wang et al., 2018)
following H2O2 treatment, implying there are deficits in oxidative
DNA repair (Wang et al., 2018). Loss of function of FUS in the
nucleus and defects in DNA nick ligation (Wang et al., 2018), due
to less recruitment of XRCC1/LIG3 to SSBs (Wang et al., 2018),
were observed. Similarly, α-motor neurons of lumbar spinal
cords from FUS-ALS patients showed robust immunoreactivity
to γH2AX in the nucleus (Naumann et al., 2018).

Analysis of genomic DNA integrity by long and accurate
polymerase chain reaction (LA-PCR) detected∼twofold DSBs or
SSBs in ALS spinal cord tissue displaying cytosolic accumulation
of FUS relative to control tissue (Wang et al., 2018). In another
study involving human iPSCs-derived motor neurons, mutation
of the FUS NLS resulted in impairment of PARP-1 dependent
DDR signalling, leading to DSB formation, neurodegeneration
and the formation of FUS aggregates (Naumann et al.,
2018), implying that DNA damage is an early event in the
pathophysiology of FUS-ALS (Naumann et al., 2018). In addition,
etoposide treatment of these cells leads to FUS mis-localisation
to the cytoplasm and inclusion formation, implying that DNA
damage is upstream to the formation of pathological forms of
FUS (Naumann et al., 2018). FUS-GFP was recruited rapidly
to DNA damage sites in wildtype IPSC-derived motor neurons
unlike FUS-NLS mutant lines (Naumann et al., 2018). This could
be rescued by restoration of nuclear import of FUS by inhibition
of arginine methylation using adenosine-2,3-dialdehyde (AdOx)
(Naumann et al., 2018) or prevention of nuclear export of FUS
by inhibition of DNA-PK with inhibitor NU7442 (Naumann
et al., 2018). Together these studies imply the existence of a link
between the pathological location of FUS and DNA damage.
Thus, in summary, similar to TDP-43, in FUS-associated ALS,
impaired DDR signalling may lead to neurodegeneration and
aggregate formation. These studies indicate the need for novel
therapeutic approaches aimed at restoring DNA repair in ALS,
particularly those that are upstream to aggregate formation.

C9orf72
Several lines of evidence demonstrate that DNA damage
is induced by C9orf72 hexanucleotide repeat expansions in
ALS/FTD. This results in the formation of both R loops and G
quadruplexes, inducing nucleolar stress and DNA damage (Farg
et al., 2017; Walker et al., 2017), which has been detected in both
C9orf72-ALS patient tissues and neuronal cells (Farg et al., 2017).
C9orf72 hexanucleotide repeat expansions induce the formation
of greatly expanded RNA which form foci that sequester DNA
repair proteins, including TDP-43, FUS, NPM1 and APE1, which
would therefore disrupt their normal DNA repair functions
(Lee et al., 2013; Cooper-Knock et al., 2014). DPRs induce
the formation of DSBs, which are further enhanced following
knockout of heterogeneous ribonucleoprotein hnRNPA3 (Nihei
et al., 2020). In the dentate gyrus of C9orf72 patient brains,
lower nuclear hnRNPA3 levels were associated with increased
DNA damage (Nihei et al., 2020). Expression of the DPRs
polyGA and polyPR promote the formation of phosphorylated
ATM foci, a major sensor of DSBs, whereas polyGA reduces
formation of phosphorylated ATM foci (Nihei et al., 2020).
Furthermore, the presence of DPR polyGA increases oxidative
stress and DNA damage in iPSC-derived motor neurons. This
was associated with binding to mitochondrial ribosomal proteins,
compromising mitochondrial functions (Lopez-Gonzalez et al.,
2016). Another possible mechanism by which the DPRs can
perturb DNA repair is related to the nuclear envelope. C9orf72
DPRs are known to inhibit nucleocytoplasmic transport and
disrupt the nuclear pore complex (Freibaum et al., 2015; Jovicic
et al., 2015). More recently, defects in the architecture of the
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FIGURE 3 | Illustration summarising how DNA damage induces neurodegeneration in ALS. Genomic integrity is essential for maintenance of cellular homeostasis.
However, defective DNA repair processes diminish genomic integrity, leading to mutations and cell death. (A) The presence of specific mutations in ALS, including
the C9orf72 hexanucleotide repeat expansion, induces the formation of aberrant DNA structures such as R loops, inducing stress in the nucleolus. In addition, key
DNA repair proteins, including TDP-43 and FUS, are dysfunctional and form aberrant pathological forms in ALS, causing transcription-induced DNA damage.
(B) Inefficient binding of TDP-43 and FUS at sites of DNA damage, as well as impairment of their activities in DNA repair in their pathological forms, inhibit the
assembly or stabilisation of key DNA repair complexes. Putatively, other proteins associated with ALS, including mutant forms of senataxin, VCP, cyclin F, and NEK1,
may also lead to deficiencies in DNA repair. These events lead to accumulation of DNA damage and impaired genomic integrity, which triggers neurodegeneration.

nuclear envelope were linked to the impairment of genome
integrity and induction of DNA damage (Cancer Discovery, 2021;
Rodriguez-Munoz et al., 2022). However, the direct relationship
between DPRs, DNA damage and nuclear envelop in ALS
requires further investigation.

SOD 1
ALS-associated mutations in SOD1 have also been linked to DNA
damage. More DNA damage and apoptosis induced by activation
of p53 were observed in SH-SY5Y cells expressing mutant SOD1
G93A compared to cells overexpressing wildtype SOD1 (Barbosa
et al., 2010). Similarly, over-expression of SOD1 G93A in NSC-34
cells activates the DDR and downregulates expression of human
SpeedyA1 (Spy1), which is responsible for cellular survival and
inhibition of DNA damage-induced apoptosis (Wang et al.,
2019). However, in contrast, in human iPSC-derived motor
neurons bearing SOD1 mutations G93A or A4V, the DDR and
DNA repair were found to be unchanged compared to isogenic
controls, implying that SOD1 mutations have no effect on DNA
damage (Kim B. et al., 2020). SOD1 catalyses the conversion of
superoxide anions into hydrogen peroxide, thus protecting the
cell from oxidative damage (Fridovich, 1997). Interestingly, in
response to elevated endogenous or exogenous reactive oxygen

species (ROS), SOD1 relocates to the nucleus, where it regulates
expression of oxidative resistance and DNA repair genes (Tsang
et al., 2014). In ALS, the cytoplasmic accumulation of mutant
SOD1 G93A has been linked to both impairment of the protective
activity of SOD1 against oxidative stress, as well as disruption of
expression of these protective genes, leading to the accumulation
of DNA damage (Sau et al., 2007).

NEK 1
NEK1 was only recently associated with ALS, where genetic
risk variants were detected in ∼3% of European and European-
American ALS cases (Kenna et al., 2016). To date there has been
only one publication related to the DNA repair function of NEK1
in ALS. Mutant NEK1c.2434A>T hiPSC-derived motor neurons
displayed significantly more DNA damage and impaired DDR
compared to wildtype neurons, both in the absence of DNA
damage inducing agents and following DNA damage induced
by γ-irradiation, in a maturation-dependent manner (Higelin
et al., 2018). Given the role of NEK1 in the cellular response to
genotoxic stress (Pelegrini et al., 2010) and the lack of knowledge
about its role in ALS, future investigations into the link between
the function of NEK1 in DNA repair and ALS may bring new
insights into its role in pathogenesis.
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CONCLUSION

Accumulation of DNA damage is one of the major cellular
insults involved in aging, which is the most important risk
factor for neurodegeneration. Increasing evidence implicates a
role for DNA damage and impaired DNA repair processes in
ALS. Early studies described increased oxidative DNA damage
in ALS tissues and models. However, these initial findings have
now been significantly expanded, and they suggest that DNA
damage is a central pathogenic mechanism in ALS. DNA damage
has been observed in disease models involving multiple different
proteins associated with both sporadic and familial forms of
ALS. Increasingly, proteins with roles in DNA repair are found
to be mutated in ALS, implicating loss of these normal cellular
functions in pathophysiology. However, DNA damage is detected
in ALS in the absence of proteins with a known function in
DNA repair, suggesting that future studies may reveal more ALS
proteins engaged in DNA repair. DNA damage has also been
detected early in disease course in animal models, implying that
it is directly involved in pathophysiology. However, it is unclear
whether DNA damage is a direct cause of neurodegeneration
in ALS or whether it results from other disease processes.
Nevertheless, the direct involvement of TDP-43 and FUS in DNA
repair mechanisms is significant given that TDP-43 is implicated
in a pathological form in 97% of ALS cases (Heyburn and Moussa,
2017) and similarly, FUS pathology is now thought to be present

in sporadic ALS (90% of all ALS) (Tyzack et al., 2019). Together
these findings imply that DNA damage and defective DNA
repair are a common and central feature in ALS pathogenesis.
Moreover, they highlight the importance of future studies aimed
at inhibiting DNA damage or restoring DNA repair as novel
therapeutic strategies for ALS. Figure 3 summarises our current
understanding of how DNA damage induces neurodegeneration
in ALS. Given the link between TDP-43 pathology and DNA
damage, it is possible that therapies that target the DDR may be
widely applicable in ALS, such as PARP-1 inhibitors, which are
known to inhibit neuronal death. However these approaches have
not been evaluated clinically (Thapa et al., 2021).
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