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Abstract 

 

A key regulator of DNA damage-induced apoptosis is the tumor suppressor gene, 

p53.  p53 is a transcription factor that upregulates genes involved in cell cycle arrest, 

apoptosis, and senescence.  How p53 decides to activate one of these responses in 

response to DNA damage is largely unanswered.  Many have hypothesized it is due to 

interaction with various signaling pathways and post-translational modification. The p53 

tumor suppressor can be modified by SUMO-1 in mammalian cells, but the functional 

consequences of this modification are unclear. Conjugation to SUMO is a reversible post-

translational modification that regulates several transcription factors involved in cell 

proliferation, differentiation, and disease. In Chapter II, we demonstrate that the 

Drosophila homolog of human p53 can be efficiently sumoylated in insect cells. We 

identify two lysine residues involved in SUMO attachment, one at the C-terminus, 

between the DNA binding and oligomerization domains, and one at the N-terminus of the 

protein. We find that sumoylation helps recruit Drosophila p53 to nuclear dot-like 

structures that can be marked by human PML and the Drosophila homologue of Daxx. 

We demonstrate that mutation of both sumoylation sites dramatically reduces the 

transcriptional activity of p53 and its ability to induce apoptosis in transgenic flies, 

providing in vivo evidence that sumoylation is critical for Drosophila p53 function. 

Many therapeutic cancer treatments rely on DNA-damaging agents to induce 

apoptosis in cancer cells.  However, fifty percent of all human tumors lack functional p53 

and p53 mutant cells are partially resistant to damage-induced apoptosis.  Therefore, it is 
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important to identify mechanisms to induce apoptosis independent of p53.  Drosophila 

provides a good model system to study p53-independent apoptosis because it contains a 

single p53 homolog. In Chapter III, we describe a p53-independent mechanism that acts 

in parallel to the canonical DNA damage response pathway in Drosophila to activate 

apoptosis in response to inappropriately repaired chromosome breaks.  Induction of 

chromosome aberrations by DNA damage followed by cell division results in segmental 

aneuploidy and reduced copy number of ribosomal protein genes. We find that activation 

of the pro-apoptotic gene hid by the JNK pathway acts in a p53-independent mechanism 

to induce apoptosis and limit the formation of aneuploid cells. Mutations in grp, the 

Drosophila Chk1 homolog, and puc, a negative regulator of the JNK pathway sensitize 

p53 mutant cells to IR-induced apoptosis.  We propose a model in which the death of 

cells with reduced copy number of genes required for cell survival helps maintain 

genomic integrity following chromosome damage.  
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Preserving the integrity of the genome is essential for maintaining cellular fitness.  

Loss of critical genes results in cells that are less fit, and therefore tissues with overall 

decreased fitness. Upon induction of DNA damage, cells use repair mechanisms to 

protect integrity of the genome and to return the chromosome back to its original form.  

However, one consequence of this repair is that is not always accurate and can lead to 

mutations at the site of the break or cause chromosome rearrangements.  It is an 

accumulation of these mutations that can eventually lead to cancer. 

 Cells have evolved several mechanisms to efficiently deal with DNA damage.  

Unicellular organisms rely on cell cycle checkpoints and repair mechanisms to resolve 

the damage.  Multi-cellular organisms also rely on these mechanisms, and can 

additionally eliminate the damaged cell from the tissue by activating apoptosis.   

However, how a cell is selected to undergo apoptosis following DNA damage is largely 

unanswered.  Additionally, the functional consequence of damage-induced apoptosis in 

vivo  is not well understood. 

A key step in the induction of apoptosis is the activation of the tumor suppressor 

gene, p53.  It is well established that p53 is a transcription factor that is required for the 

immediate and efficient response to DNA damage by upregulating genes involved in cell 

cycle arrest, apoptosis, and senescence.  How p53 selects the transcriptional program to 

induce apoptosis is not well understood.  Likely, it is due to interactions with various 

signaling pathways and post-translational modifications triggered by various stimuli.  

However, under what conditions these interactions and modifications occur and exactly 

how they impact p53 function in vivo is still unclear.   
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DNA-damage induced apoptosis is of also clinical importance because many 

DNA damaging agents are used to kill cancer cells.  However, approximately 50% of all 

human tumors are mutant for functional p53 and are partially resistant to damage-induced 

apoptosis. Therefore, it is not only important to understand how p53 is regulated after 

DNA damage, but also mechanisms of damage-induced apoptosis that are independent of 

p53.  In mammals, two other p53 homologs, p63 and p73, induce p53-independent 

apoptosis after DNA damage.  However, many layers of complexity exist within the p53 

family.  For example, certain mutant forms of p53 can inhibit p63 and p73.  Identifying 

damage-induced apoptotic pathways that are independent of p53, p63, and p73 will be 

important for treating tumors lacking functional p53. 

Cell signaling in response to DNA damage leading to apoptosis has primarily 

been studied in cell culture.  How cells within a tissue are selected to undergo apoptosis 

after DNA damage is unclear.  Because the apoptotic response to DNA damage is 

conserved from insects to mammals, Drosophila melanogaster provide a genetically 

tractable model system to study the regulation of damage-induced apoptosis in the 

context of a tissue.  In Drosophila, there is only a single p53 homolog, which is also 

called p53 and has a conserved function for damage-induced apoptosis.  Induction of 

DNA damage by IR or unprotected telomeres rapidly induces apoptosis in the Drosophila 

developing wing.  Interestingly, Drosophila lacking the p53 tumor suppressor gene delay 

apoptosis following induction of DNA damage.  These results suggest that there are two 

apoptotic responses activated by DNA damage: (1) an early and immediate response that 

is p53-dependent and (2) a later response that is p53-independent.  Thus, Drosophila 
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provides a useful model system to study the regulation of p53-dependent apoptosis, as 

well as to identify mechanisms that induce apoptosis independent of p53. 

 

DNA damage-induced apoptosis in mammals 

 

This section provides an overview of DNA damage-induced apoptosis in 

mammals.  It is divided into 3 subsections: DNA damage signaling and cell cycle arrest, 

the tumor suppressor gene p53, and the canonical apoptosis pathway. 

 

DNA damage signaling and cell cycle arrest.  Upon induction of double strand 

breaks (DSBs) by ionizing radiation (IR), there are proteins that sense the damage and 

activate downstream signaling pathways to elicit the appropriate cellular response. These 

responses include DNA repair, cell cycle arrest, and apoptosis.  Members of the MRN 

complex, Mre11, Rad50, and Nbs1, are the sensors of a DSB, which recruit and activate 

the phosphoinositide 3-(PI-3) kinase, ATM.   In turn, ATM rapidly recruits another PI-3 

kinase, ATR and its binding partner ATR-interacting protein (ATRIP)(Lee and Paull 

2004; Lee and Paull 2005; Myers and Cortez 2006).   ATM and ATR phosphorylate 

many downstream substrates that mediate responses to DNA damage.  Interestingly, 

ATM and NBS1 deficiencies result in the human disorders, Ataxia telangiectasia and 

Nijmegen Breakage syndrome, respectively.  These diseases have many overlapping 

phenotypes, including increased sensitivity to IR and defective telomeres, demonstrating 

that both genes play a critical role in the DNA damage response (Harper and Elledge 
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2007). 

ATM and ATR phosphorylate many downstream substrates including checkpoint 

kinases, Chk1 and Chk2, and the transcription factor p53 to induce cell cycle arrest 

(Harper and Elledge 2007).  ATR primarily phosphorylates Chk1, and in turn, Chk1 

phosphorylates the phophatases, Cdc25A and Cdc25C (Sanchez et al. 1997; Liu et al. 

2000).  Once phosphorylated, Cdc25A and Cdc25C are inhibited from activating their 

respective cyclin dependent kinases and cyclin counterparts, resulting in a G1 and G2 

arrest (Peng et al. 1997; Mailand et al. 2000).  ATM and Chk2 primarily phosphorylate 

p53, which upregulates genes involved in cell cycle arrest and apoptosis (Fridman and 

Lowe 2003). 

 

Mammalian p53.  p53 belongs to a small family of transcription factor proteins, 

including p63 and p73.  p63 and p73 have clear roles in normal development and immune 

function, while p53 has evolved to prevent tumour development by killing unstable cells 

(Vousden and Lu 2002).  p53 is 393 amino acids with three domains, a N-terminal 

transactivation domain, a central DNA binding domain, and a C-terminal tetramerization 

domain.  Two p53 homodimers bind to form a tetramer that can transactivate genes in 

response to a variety of cellular stresses.  Although additional functions of p53 have been 

suggested, p53 primarily functions as a transcription factor that upregulates genes 

involved in cell cycle arrest, apoptosis, and senescence. The importance of p53 as a 

tumor suppressor and transcriptional activator is highlighted by the fact that 50% of all 

human cancers contain a mutation in p53 and more than 80% are located in the DNA-
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binding domain (Das et al. 2008). 

In mammals, p53 protein levels are regulated by the E3 ligase, Mdm-2.  In 

unstressed cells, Mdm-2 can monoubiquinate p53, which allows for p53 to be exported 

from the nucleus, or it can polyubiquinate p53, resulting in proteasomal degradation (Li 

et al. 2003; Carter et al. 2007). ATM and Chk2 phosphorylate p53 at the N-terminus in 

response to DNA damage.  Phosphorylation of p53 inhibits its ability to interact with 

Mdm-2, allowing for its stabilization and ability to transactivate many genes involved in 

cell cycle arrest and apoptosis (Bode and Dong 2004).  Additionally, Mdm-2 is a 

transcriptional target of p53 in response to DNA damage, indicating an autoregulatory 

feedback mechanism between these two proteins (Fridman and Lowe 2003). 

To induce cell cycle arrest, p53 upregulates p21, 14-3-3σ, and GADD45 (growth 

arrest and DNA damage inducible protein).  The cyclin dependent kinase inhibitor, p21 

induces a G1 arrest by inhibiting cyclin dependent kinases cdk2 and cdk4. 14-3-3σ and 

GADD45 induce a G2 arrest by simultaneously inhibiting cdc2/cyclinB complexes. 14-3-

3σ is a scaffold protein that sequesters cdc2/cyclinB into the cytoplasm, while GADD45 

destabilizes the cdc2/cyclinB complex (Olsson et al. 2007).  

To induce apoptosis, p53 upregulates genes that extrinsically and intrinsically 

activate the apoptotic pathway.  Extrinsic apoptosis is induced by binding of a ligand to 

its receptor.  Members of the tumor necrosis factor (TNF) family, including FAS ligand 

and Death Receptor 5, are induced by p53 to extrinsically induce apoptosis. Although 

these proteins contribute to the induction of apoptosis, mouse models lacking individual 

components of this pathway have a normal apoptotic response to DNA damage, 
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suggesting that individual components are not required for damage-induced apoptosis 

(Danial and Korsmeyer 2004).  The pro-apoptotic Bcl-2 family members, Bax, Puma, 

Noxa, and Bid are upregulated by p53 to intrinsically induce apoptosis (Fridman and 

Lowe 2003).  In some cell types, upregulation of these pro-apoptotic genes is also 

dependent on p63 and p73, which are thought to aid in the ability of p53 to bind NOXA 

and bax promoters (Figure 1.1) (Flores et al. 2002).   
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Figure 1.1.  Mammalian DNA damage response pathway.  Members of the MRN 

complex act as the sensors of DSBs.  The MRN complex activates ATM and ATR, which 

in turn activates downstream checkpoint proteins.  Chk1 induces cells cycle arrest, while 

Chk2 primarily phosphorylates and activates p53.  Normally, p53 levels are kept low 

through interaction with Mdm2, however, phosphorylation of p53 inhibits this interaction 

and allows p53 to stabilize and upregulate genes involved in apoptosis and cell cycle 

arrest. 
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One key question is how does p53 select the transcriptional program for cell cycle 

arrest versus apoptosis.  Post-translational modification of p53 is one factor that 

influences transcriptional outcome.   p53 undergoes many post-translational 

modifications including phosphorylation, ubiquitination, sumoylation, acetylation, and 

methylation.  For example, p53 can be acetylated at several different lysine residues.  

Although it is controversial how acetylation alters p53 function, acetylated p53 at lysine 

120 accumulates on promoters of pro-apoptotic genes.  Mutation of this residue affects 

pro-apoptotic activity, but does not impair cell cycle arrest.  Several lysine residues that 

are acetylated can also be methylated.  The affect of methylation on p53 largely depends 

of which residue is methylated.  Methylation of lysine 372 enhances p53 stability and 

restricts it to the nucleus, whereas methylation of lysine 370 represses transcriptional 

activity (Olsson et al. 2007; Das et al. 2008).   

Lastly, p53 can be modified by SUMO-1 (small ubiquitin like modifier-1) on 

lysine 386. Like ubiquitination, SUMO-1 is covalently attached to the lysine residue of a 

target protein. Sumoylation affects localization, activity, and stability of a protein (Muller 

et al. 2004).  The affect of sumoylation of p53 is controversial in mammals.  Some have 

reported that sumoylation of p53 has been shown to stimulate pro-apoptotic function 

(Gostissa et al. 1999; Rodriguez et al. 1999b; Muller et al. 2000), while others have 

shown no impact on p53 function (Kwek et al. 2001; Schmidt and Muller 2002).  In 

Chapter II, we demonstrate that sumoylation of Drosophila p53 modulates its 

transactivation function.  We show for the first time in vivo that the sumoylation sites of 

Drosophila p53 are required for efficient induction of apoptosis following DNA damage.   
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Canonical apoptosis pathway.  In mammals, a cells decision to commit to 

apoptosis in response to DNA damage is primarily mediated through mitochondrial outer 

membrane permeabilization (MOMP).  MOMP is dependent on the Bcl-2 family of 

proteins, consisting of pro-apoptotic and anti-apoptotic members.  The Bcl-2 family is 

divided into three groups based on the presence of up to four Bcl-2 homology domains 

(BH1-4).  The first group consists of anti-apoptotic Bcl-2 proteins, which contain BH 

domains 1-4.  The anti-apoptotic proteins are primarily located in the outer mitochondrial 

membrane, where they bind and inhibit pro-apoptotic Bcl-2 proteins.  The last two 

groups, effectors and BH3 only proteins, are pro-apoptotic Bcl-2 proteins. Effectors 

include, BAK and BAX, which contain BH domains 1-3, and BH3 only proteins, BID, 

BIM, BAD, Noxa, and PUMA.  Upon induction of cellular stress, cells upregulate BH3 

only proteins that bind and inhibit anti-apoptotic Bcl-2 proteins, resulting in free BAX 

and BAK.  Once liberated, BAX and BAK homo-oligomerize and form proteolipid pores 

in the outer membrane of the mitochondria, resulting in MOMP.  Overexpression of anti-

apoptotic Bcl-2 or mutation of pro-apoptotic bax renders cells resistant to apoptosis, 

demonstrating the importance of the Bcl-2 family of proteins and the loss of 

mitochondrial intergrity in the apoptotic pathway (Chipuk and Green 2008).   

Once the mitochondrial membrane has been permeabilized, proteins from the 

intermembrane space are released.  These proteins include SMAC/Diablo, Omi/HTRA, 

and cytochrome c.  In unstressed cells, Inhibitors of Apoptosis (IAPs) bind and inhibit 

caspases.  Once SMAC/Diablo and Omi/HtrA are released from the mitochondrial 

intermembrane space, they sequester IAPs.  Binding of SMAC/Diablo and Omi/HTRA to 
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IAPs results in the autoubiquination and degradation of IAPs, allowing for the subsequent 

activation of caspases (Srinivasula and Ashwell 2008).  

Caspases are cysteine proteases that execute cell death through cleavage of many 

substrates, resulting in apoptotic phenotypes such as nuclear condensation, DNA 

laddering, and cellular blebbing. Caspases are synthesized as inactive zymogen 

precursors, containing a large and a small subunit preceded by an N-terminal prodomain.  

Cleavage of the zymogen precursors allows the small and large subunit to associate and 

form the active site. Caspases are divided into 2 groups; initiators and effectors.  

Although seven mammalian caspases play a role in apoptosis (four initiator and three 

effector), the initiator caspase-9 and effector caspase-3 are the predominant caspases 

involved in apoptosis after DNA damage.  Initiator caspase-9 has a long pro-domain that 

contains a caspase recruitment domain (CARD), which is required for interaction with 

Apaf-1 (apoptotic protease activating factor 1).  Caspase-9 autocatalytically cleaves itself 

into its active form.  However, caspase-9 does not have optimal catalytic activity until it 

forms the apoptosome with Apaf-1 and cytochrome c.  Once the apoptosome is formed, 

caspase-9 can cleave and activate effector caspase-3.  The effector caspase-3 can then 

cleaves numerous cellular substrates to induce cell death (Figure 1.2)(Bao and Shi 2007). 
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Figure 1.2.  Canonical apoptosis pathway in mammals.  In response to cellular stress, 

such as DNA damage, p53 becomes activated and upregulates the pro-apoptotic Bcl-2 

genes Bax, PUMA, NOXA, and Bid.  These proteins antagonize the anti-apoptotic 

protein Bcl-2, allowing for Bak and Bax to induce MOMP.  Once the outer mitochondrial 

membrane is permeabilized it releases SMAC/Diablo, Omi/HtrA, and cytochrome c.  

SMAC/Diablo and Omi/HtrA antagonize IAPs, allowing for the activation of caspases.  

Cytochrome c associates with initiator caspase-9 and Apaf-1 to form the apoptosome.  

Formation of the apoptosome allows caspase-9 to cleave and activate the downstream 

effector caspase-3 to kill the cell. 

Caspase-3
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DNA damage-induced apoptosis in Drosophila 

 

 This section provides an in-depth view of the Drosophila DNA damage response 

and apoptosis pathways.  Sections include DNA damage signaling and cell cycle arrest, 

Drosophila p53, and the canonical apoptotic pathway in flies. 

 

DNA damage signaling and cell cycle arrest.  In response to DSBs induced by IR, 

cells in the imaginal wing disc undergo a G2 arrest for approximately 4-8hrs. mei-41 

(ATR orthologue), grapes (Chk1 orthologue), and mus304 (ATRIP orthologue)  are 

required for damage-induced cell cycle arrest, but not apoptosis (Hari et al. 1995; Fogarty 

et al. 1997; Brodsky et al. 2000b; Brodsky et al. 2004). Flies with mutations in mei-41, 

grps, and mus304 have defects in meiotic recombination and females show reduced 

fertility (Baker and Carpenter 1972; Brodsky et al. 2000b).  Additionally, developing 

embryos normally go through 13 synchronized nuclear divisions in a syncytial 

environment.  After the 13th synctial division a long interphase occurs to allow for 

cellularization and the intiation of zygotic transcription.   mei-41 and grps mutant 

embryos fail to terminate the final synticial division, initiate zygotic transcription, and 

cellularize (Sibon et al. 1997; Sibon et al. 1999).  mus304 mutants also show cell cycle 

defects and aberrant nuclear morphology at early stages of embryogenesis (Brodsky et al. 

2000b).  These results demonstrate that mei-41, grps, and mus304 function in the same 

genetic pathway, which is required for cell cycle arrest.  

Like mammals, mutants of Drosophila tefu (ATM homologue) have high 
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frequencies of telomere fusions and spontaneous apoptosis (Bi et al. 2004; Oikemus et al. 

2004; Silva et al. 2004; Song et al. 2004).  Members of the MRN complex, Drosophila 

mrell, rad50, and nbs1, also show similar phenotypes, indicating that these proteins are 

required for telomere protection (Bi et al. 2004; Ciapponi et al. 2004; Ciapponi et al. 

2006; Oikemus et al. 2006).  Additionally, these mutants have defects in DNA repair and 

are defective for DNA damage responses.  For instance, Drosophila ATM and Nbs1 are 

required for IR-induced apoptosis.  Drosophila nbs1 is also required for IR-induced cell 

cycle arrest and ATM plays a role in cell cycle arrest at low dose of IR (Oikemus et al. 

2004; Ciapponi et al. 2006; Oikemus et al. 2006).  These results indicate that ATM and 

members of the MRN complex play a role in telomere protection, as well as DNA 

damage responses. 

Finally, Drosophila mnk (homolog of Chk2) and p53 are both required for 

damage-induced apoptosis at early time points (Brodsky et al. 2000a; Ollmann et al. 

2000; Xu et al. 2001; Sogame et al. 2003; Brodsky et al. 2004).  In response to DNA 

damage, p53 is phophorylated in a MNK-dependent manner (Brodsky et al. 2004).  

Imaginal tissues deficient for mnk fail to induce apoptosis at early time points after DNA 

damage and show a partial defect in cell cycle arrest (Xu et al. 2001; Brodsky et al. 

2004).  Additionally, syncytial embryos treated with DNA damaging agents undergo 

MNK-dependent “mitotic catastrophe”.  This mitotic response to DNA damage 

eliminates cells with genomic instability and prevents aneuploid cells from being formed 

(Takada et al. 2003).    
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Drosophila p53.  Drosophila p53 is a 385 amino acid protein that has a similar 

structure to mammalian p53, consisting of a N-terminal transactivation domain, a central 

DNA binding domain, and C-terminal tetramerization domain.  The highest amount of 

sequence homology is in the DNA binding domain, including conservation of frequently 

mutated residues.  Drosophila p53 has the ability to bind human p53 recognition sites, 

and mutation of conserved sites within the DNA binding domain inhibits DNA binding 

(Brodsky et al. 2000a; Jin et al. 2000; Ollmann et al. 2000). Despite little sequence 

similarity in the other domains, there are several pieces of evidence that indicate 

conserved activities.  For instance, like human p53, the transactivation domain of 

Drosophila p53 shows a high proportion of acidic residues and the tetramerization 

domain contains several basic residues that aid in sequence specific DNA binding. 

Additionally, yeast one and two-hybrid assays also show conserved activities for the 

amino and carboxyl terminal domains (Brodsky et al. 2000a).  Finally, crystal structures 

reveal that Drosophila p53 has a similar secondary structure in the tetramerization 

domain of mammalian p53 (Jin et al. 2000; Ollmann et al. 2000; Ou et al. 2007).     

Unlike mammals, Drosophila p53 does not induce cell cycle arrest after DNA 

damage (Brodsky et al. 2000a; Jin et al. 2000; Ollmann et al. 2000).  Additionally, there 

is no evidence for the upregulation of the p21 homolog, decapo, after damage (Brodsky 

et al. 2004).  Another difference between mammalian and Drosophila p53 is the 

regulation of p53 protein levels.  Drosophila embryos treated with IR show no increase in 

p53 protein levels by western blot analysis (Brodsky et al. 2004). Furthermore, 

Drosophila p53 does not appear to contain an Mdm2 binding motif and there is no 
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obvious Mdm2 homolog in the genome.  Regulation of p53 protein levels may have 

developed later in evolution to better mediate levels of p53-dependent transcription 

(Brodsky et al. 2000a; Ollmann et al. 2000; Brodsky et al. 2004).  

Microarray analysis showed that Drosophila p53 upregulates the pro-apoptotic 

genes head involution defective  (hid), reaper (rpr), sickle (skl), and the Drosophila TNF 

ligand, eiger to induce apoptosis (Brodsky et al. 2000a; Sogame et al. 2003; Brodsky et 

al. 2004). The Drosophila TNF ligand, Eiger, induces apoptosis extrinsically through 

cell-to-cell signaling (Igaki et al. 2002; Moreno et al. 2002b).   Although overexpression 

of eiger is sufficient to induce apoptosis, genetic experiments show that it is not required 

for IR-induced apoptosis (Brodsky et al. 2000a).  p53 intrinsically induces apoptosis 

through upregulation of the pro-apoptotic genes hid, rpr, and skl.  An irradiation 

responsive enhancer region (IRER) is located upstream the rpr promoter. The IRER is 

required for induction of rpr and the adjacent gene hid after DNA damage (Zhang et al. 

2008).  Within the IRER, p53 binds and transcriptionally induces rpr expression 

(Brodsky et al. 2000a).  hid is required for damage-induced apoptosis in imaginal tissues, 

whereas rpr plays a smaller role (Brodsky et al. 2004; Moon et al. 2008) (Figure 1.3).   
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Figure 1.3.  Drosophila DNA damage response pathway.  In response to IR, ATM, 

Chk2, and p53 induce apoptosis.  At the same time, Mei-41 and Mus304 activate Grp to 

induce cell cycle arrest.  Members of the MRN complex contribute to repair as well as 

both the apoptotic and cell cycle arrest pathways. 
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The JNK pathway.  Similar to mammals, the Drosophila JNK pathway 

contributes to induction of apoptosis in response to many stimuli including DNA damage.  

The gene, hemipterous (hep), is the upstream MAPKK that activates the MAPK, Bsk, 

and in turn phosphorylates D-Jun (Glise et al. 1995; Riesgo-Escovar et al. 1996; Sluss et 

al. 1996).  D-Jun heterodimerizes with D-Fos to form the AP-1 transcription factor 

complex (Perkins et al. 1988).  A target of the JNK pathway and AP-1 is the MAPK 

phosphatase, puckered, which forms a negative feedback loop by dephosphorylating JNK 

(Martin-Blanco et al. 1998). In response to ultra violet light, the JNK pathway induces 

cell death by activating the downstream transcription factors D-Fos and Foxo (forkhead 

Box O), which induces transcription of hid (Luo et al. 2007).  Also, in response to IR, 

JNK is activated in a p53-dependent manner and is required for the efficient induction of 

apoptosis (McEwen and Peifer 2005) 

 

Canonical apoptosis pathway.  Although the core apoptotic machinery is 

conserved from Drosophila to mammals, the key points of control in the pathway are 

different.  The Drosophila genome contains two Bcl-2 homologs debcl/dBorg1/Drob-

1/dBok and buffy/dBorg2.  Debcl promotes apoptosis, while buffy has anti-apoptotic 

functions (Brachmann et al. 2000; Colussi et al. 2000; Igaki et al. 2000; Quinn et al. 

2003).  Debcl and buffy mutants have normal apoptotic patterning in the embryo and 

debcl mutants show reduced amounts of apoptosis following IR.  Despite the 

conservation of Bcl-2 proteins in flies, these results demonstrate that Bcl-2 proteins are 

not essential regulators of apoptosis (Sevrioukov et al. 2007).    
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In Drosophila, the pro-apoptotic genes hid, rpr, and grm control the induction of 

apoptosis. Hid, Rpr, and Grim are found in the cytoplasm and are functionally similar to 

mamamalian Smac/Diablo and Omi/HtrA, which all contain an IAP binding motif (IBM) 

at the N-terminus that is required for their pro-apoptotic function (Bergmann et al. 2003).  

Overexpression of any one of these pro-apoptotic genes is sufficient to induce apoptosis 

(Grether et al. 1995; Chen et al. 1996; White et al. 1996).  Interestingly, hid, rpr, and grm 

are all located in the same genomic region (White et al. 1994; Grether et al. 1995; Chen 

et al. 1996).  The H99 deficiency spans this region and H99 deficient embryos lack 

developmental cell death and show reduced IR-induced apoptosis (White et al. 1994). 

sickle (skl), another cell death protein that contains an IBM motif and is located just 

outside of the H99 region, can also induce apoptosis when overexpressed (Christich et al. 

2002; Srinivasula et al. 2002; Wing et al. 2002).  

Although the pro-apoptotic proteins hid, rpr, and grm are functionally similiar, 

there are differences in the way they are regulated.  For instance, rpr and grm expression 

is limited to cells that are destined to die, suggesting they are controlled primarily by 

transcriptional regulation (White et al. 1994; Chen et al. 1996). hid can also be 

transcriptionally induced, however, it is also expressed in living cells, and is subject to 

post-translational modification to suppress its pro-apoptotic function (Bergmann et al. 

1998; Kurada and White 1998).  

Overexpression of hid or rpr in the Drosophila eye imaginal disc results in an eye 

ablation phenotype due to excessive apoptosis (Grether et al. 1995; White et al. 1996).  

thread, which encodes Drosophila Inhibitor of Apoptosis Protein 1 (DIAP1) was initially 
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identified in a screen searching for modifiers of the eye ablation phenotype (Hay et al. 

1995).  While overexpression of DIAP1 or gain of function alleles suppressed the eye 

ablation phenotype, loss of thread led to increased cell death and caspase activation 

(Wang et al. 1999; Goyal et al. 2000; Lisi et al. 2000).   These results indicate that hid 

and rpr induce cell death by inhibiting DIAP1. 

IAPs were first identified in baculovirus, and were later discovered in Drosophila 

and mammals.  IAPs play an important role in suppressing activation of caspases in the 

living cell (Bao and Shi 2007).  DIAP1 contains two baculovirus IAP repeats (BIR), and 

a RING domain, which encodes an E3 ubiquitin ligase that is required for ubiquitin-

mediated degradation (Hay et al. 1995).  In living cells, BIR2 domain of DIAP1 binds to 

the prodomain of Drosophila homolog of caspase-9, Dronc, and ubiquitinates it, causing 

its degradation (Meier et al. 2000; Muro et al. 2002; Wilson et al. 2002; Chai et al. 2003).  

In addition, the BIR1 domain of DIAP1 binds to the Drosophila homolog of caspase-3, 

and inhibits its catalytic activity (Yan et al. 2004). 

Upon apoptotic stimulation, several mechanisms act to deplete DIAP1 levels, thus 

allowing for caspase activation.  Rpr, Hid, and Grm bind to one of the BIR domains of 

DIAP1 via their IAP Binding Motif (IBM).  Binding of the IBM to the BIR domain 

results in the autoubiquitination and degradation of DIAP1.  Additionally, Rpr and Grm 

have also been shown to limit DIAP1 levels through suppression of protein translation 

(Joazeiro and Weissman 2000; Yang et al. 2000b; Holley et al. 2002; Yoo et al. 2002; 

Olson et al. 2003).  Lastly, activation of caspases can also limit DIAP1 protein levels.  

Normally, the N-terminus of DIAP1 contains a stabilizing residue. However, a caspase 
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cleavage site on DIAP1 at residue 20 results in a destabilizing Asn residue at the N-

terminus, causing its rapid degradation, a process known as the N-end rule pathway 

(Ditzel et al. 2003).  Once DIAP1 levels are depleted, caspases can be activated and begin 

cleaving downstream substrates.  

The Drosophila genome contains seven caspase genes.  The caspases Dredd, 

Strica, and Dronc encode initiator caspases, while Decay, Damn, Drice, and DCP-1 are 

effector caspases (Salvesen and Abrams 2004).  Dronc is essential for most 

developmental and stress-induced apoptosis (Chew et al. 2004; Daish et al. 2004; Xu et 

al. 2005). Dronc contains a caspase recruitment domain (CARD) in its prodomain 

(Dorstyn et al. 1999), and is similar to mammalian caspase-9 (Kornbluth and White 

2005).  The CARD domain, which is required for most developmental cell death, binds to 

the CARD domain of the Drosophila Apaf-1 homolog, Dark, to make up the apoptosome.  

Binding of Dronc to Dark is required for its auto-activation (Kanuka et al. 1999; 

Rodriguez et al. 1999a; Zhou et al. 1999; Muro et al. 2004; Xu et al. 2005). Dronc can 

also cleave and activate the downstream effector caspase Drice in vitro (Hawkins et al. 

2000).  Drosophila Drice and DCP-1 are functional homologs of mammalian caspase-3 

(Fraser and Evan 1997; Fraser et al. 1997; Song et al. 1997).  In embryos, drice is 

required for cell death in some cell types, whereas either drice and dcp-1 can induce 

apoptosis in other cell types, indicating that they have partially redundant function (Xu et 

al. 2006).  In the imaginal wing disc, drice is required for IR-induced apoptosis, whereas 

dcp-1 is dispensable (Kondo et al. 2006).  

Until recently it was unclear if the mitochondrial pathway played a role in the 
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induction of apoptosis in Drosophila.  Although the release of cytochrome c from the 

mitochondria is not required (Dorstyn et al. 2002; Zimmermann et al. 2002; Means et al. 

2006), mitochondrial fragmentation does contribute to the induction of apoptosis. 

Localization of Hid, Rpr, and Grim to the mitochondria is required for optimal cell death 

(Haining et al. 1999; Claveria et al. 2002; Olson et al. 2003).  At the mitochondria, Hid 

and Rpr causes changes in the mitochondrial ultrastructure and is required for full 

induction of apoptosis.  These results suggest a conserved role for the mitochondria in 

cell death (Figure 1.4)(Abdelwahid et al. 2007; Goyal et al. 2007). 
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Figure 1.4.  Canonical apoptosis pathway in Drosophila.  In response to DNA damage, 

p53 becomes activated and upregulates the pro-apoptotic genes hid, rpr, and skl, resulting 

in the inhibition and degradation of DIAP1.  Once degraded, DIAP1 can no longer inhibit 

caspases, allowing Dronc to form the apoptosome with Dark and cleave downstream 

effector caspase, Drice to induce death. 
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Compensatory Proliferaton.  A substantial number of cells are eliminated when an 

imaginal wing disc is treated with a DNA damaging agent, yet it can still develop into a 

normal size adult wing.  This result suggests that cells within the tissue communicate 

with one another to eliminate damaged cells and increase proliferation to replace the 

dying cells (Milan et al. 1997). Dying cells transiently signal surrounding cells to 

proliferate, a process known as compensatory proliferation.  When dying cells are kept 

alive by the caspase inhibitor p35, they propagate the compensatory signal, resulting in 

overgrowth of the tissue. These dying cells begin to accumulate the morphogens 

Decapentaplegic (Dpp) and Wingless (Wg).  Accumulation of these morphogens is 

dependent on p53, JNK pathway activation, and dronc (Huh et al. 2004; Perez-Garijo et 

al. 2004; Ryoo et al. 2004; Perez-Garijo et al. 2005; Kondo et al. 2006; Wells et al. 

2006).  It has been suggested that upregulation of Dpp is required for proliferation, while 

upregulation of Wg is necessary to prevent excessive proliferation, indicating that these 

morphogens play opposing roles to optimize growth after DNA damage (Perez-Garijo et 

al. 2005). 

 

DNA damage induced, p53-independent apoptosis 

 

  Approximately 50% of all human cancers are mutant for p53 and partially 

resistant to damage-induced apoptosis.   Because many cancer therapies rely on DNA 

damaging agents to induce cell death, it is important to identify pathways that induce 

apoptosis in the absence of p53.  This section provides an overview of previously 
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described mechanisms of p53-independent apoptosis. 

 The most well defined example of p53-independent apoptosis is mediated by the 

p53 homolog, p73 (Agami et al. 1999; Gong et al. 1999; Yuan et al. 1999).  Isoforms of 

p73 share significant homology with p53, particularly in the DNA binding domain 

(Kaghad et al. 1997; Kartasheva et al. 2002).  However, p73 and p53 seem to have 

different functions in vivo and knock out mice display very different phenotypes. For 

example, p53 deficient mice are tumor prone, while p73 deficient mice show defects in 

neuronal development and immune function, but no increase in tumor formation 

(Donehower et al. 1992; Yang et al. 2000a).  Despite these phenotypic differences, p53 

family members aid in the induction of apoptosis after DNA damage, in both the 

presence and absence of p53 (Roos and Kaina 2006). 

  In response to DNA damage, Chk1 and Chk2 phosphorylate and activate the 

transcription factor, E2F1, which increases levels of p73 mRNA and protein (Irwin et al. 

2000; Stiewe and Putzer 2000; Urist et al. 2004).  p73 is further stabilized by c-Abl 

mediated phosphorylation (Agami et al. 1999; Gong et al. 1999; Yuan et al. 1999).  Once 

phosphorylated and stabilized, p73 mediates the transcriptional upregulation of PUMA, 

which causes BAX mitochondrial translocation and apoptosis (Melino et al. 2004).  

However, many tumors that express mutant forms of p53 inhibit p73, rendering cells 

resistant to cancer therapies that induce DNA damage (Di Como et al. 1999; Gaiddon et 

al. 2001; Bergamaschi et al. 2003; Irwin et al. 2003).  Additionally, certain squamous cell 

carcinomas suppress p73-dependent apoptosis through interaction with p63 (Rocco et al. 

2006). Finally, p73 is rarely mutated and often overexpressed in tumors (Roos and Kaina 
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2006).  These results indicate that many layers of complexity exist within the p53 family, 

it is important to identify alternate pathways that induce apoptosis independent of the p53 

family.  

Inhibiting cell cycle checkpoints after treatment with DNA damage is another 

mechanism that induces p53-independent apoptosis.  In response to DSBs, p53-deficient 

cells rely on ATM/ATR dependent activation of the p38MAPK/MK2 checkpoint for cell 

survival. Mutation of the p38MAPK/MK2 pathway in p53 mutant cells, but not p53 wild-

type cells, results in a mitotic catastrophe (Reinhardt et al. 2007). Zebrafish and 

mammalian cell culture models have shown that cells can also undergo p53-independent 

apoptosis by mutation of Chk1.  This Chk1-independent pathway requires atm, atr, and 

caspase-2.  Interestingly, this pathway is unaffected by p53 deficiency, inhibition of 

caspase-3, or overexpression of Bcl-2 (Sidi et al. 2008). 

Drosophila provides an excellent model system to study p53-independent 

apoptosis because it contains a single p53 homolog.  Flies with unprotected telomeres 

have increased amounts of spontaneous apoptosis, which can mostly be suppressed by a 

mutation in p53.  However, some apoptosis still remains, indicating there is a p53-

independent apoptotic response (Oikemus et al. 2004; Oikemus et al. 2006).  Consistent 

with this observation, imaginal wing discs treated with IR can undergo p53-independent 

apoptosis, however, the amount of apoptosis is reduced and it occurs with greatly delayed 

kinetics (Wichmann et al. 2006).  Additionally, this study also indicated that one or more 

of the pro-apoptotic genes in the genomic region Df(3L)H99 deletion is likely to 
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contribute to p53-independnet apoptosis (Wichmann et al. 2006). However, it is still 

unclear how these cells activate apoptosis in the absence of p53.  

Previously, it has been shown that cells treating cells with IR leads to various 

chromosome rearrangements (Gatti et al. 1974).  When these cells go through mitosis 

they become heterozygous for large regions of a chromosome, which is referred to as 

segmental aneuploidy (Lindsley et al. 1972; Baker et al. 1978). In Chapter III, we 

demonstrate that p53-independent apoptosis limits the production of cells with segmental 

aneuploidy after DNA damage. Additionally, it has been shown that significant 

segmental aneuploidy is required for p53-independent apoptosis (Titen and Golic, 

unpublished result). Ribosomal protein genes are distributed throughout the genome. 

Therefore, cells with segmental aneuploidy often results in reduced copy number of at 

least one ribosomal protein gene (Baker et al. 1978).  Because loss of a ribosomal protein 

gene is sufficient to induce apoptosis, we favor the model that segmental aneuploidy 

triggers p53-independent apoptosis through loss of a ribosomal protein gene.  

 

Haploinsufficiency of ribosomal protein genes 

 

This section provides an overview of haploinsufficiency of ribosomal protein 

genes in flies and the phenomenon of cell competition.  Conservation of 

haploinsufficiency of ribosomal protein genes is also reviewed in this section. 
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  Haploinsufficiency of ribosomal protein genes in Drosophila.  The most extensive 

analysis of haploinsufficiency of ribosomal protein genes has occurred in Drosophila. 

Flies that are heterozygous for a ribosomal protein gene were first described as a 

dominantly inherited class of mutants exhibiting varying degrees of developmental delay, 

short and thin bristles, and reduced viability and fertility.  These mutations were linked to 

50 different loci scattered across the genome and were termed Minutes (Schultz 1929).  

Recently, it was shown that the Drosophila genome contains highly conserved orthologs 

of all 79 mammalian ribosomal proteins.  Of the 79 ribosomal protein genes, 64 of them 

encode Minute loci.  Only one of the Minute loci did not encode a ribosomal protein 

gene, rather it corresponded to a translation initiation factor (Marygold et al. 2007). 

Minute flies develop normal wings.  Interestingly, clones of Minute cells in the 

wing are out-competed by their wild type neighbors, a phenomenon known as cell 

competition (Morata and Ripoll 1975).  Slower growing Minutes have increased 

competition, compared to faster growing Minutes.  However, cell competition can be 

suppressed when Minute clones are induced into Minute background with a similar 

growth rate or when flies are starved (Simpson 1979; Simpson and Morata 1981).  These 

data demonstrate that it is a difference in growth rates that results in the elimination of 

Minute clones. 

Originally, cell competition was thought to be solely due to the difference in cell 

autonomous growth rates (Morata and Ripoll 1975).  Later, it was shown that Minute 

cells undergo apoptosis due to inability to compete with wild-type neighbors for the 

morphogen, Decapentaplegic (Dpp) (Moreno et al. 2002a). dpp is expressed at the 
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anterior/posterior boundary of the imaginal wing disc and forms a long range morphogen 

gradient to the outer edges (Zecca et al. 1995). Dpp transcriptionally represses brinker, 

which is expressed in the outer regions of the wing disc, where levels of Dpp are low 

(Campbell and Tomlinson 1999; Jazwinska et al. 1999; Minami et al. 1999; Muller et al. 

2003; Martin et al. 2004).  Minute clones are unable to sequester the morphogen Dpp, 

resulting in the aberrant expression of brinker, and activation JNK dependent apoptosis 

(Moreno et al. 2002a).  Additionally, it has demonstrated that aberrant expression of 

morphogens in the imaginal wings disc, including brinker, is sufficient to activate JNK 

dependent apoptosis (Figure 1.5)(Adachi-Yamada et al. 1999; Adachi-Yamada and 

O'Connor 2002). 
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Figure 1.5.  Model for Drosophila cell competition.  Flies heterozygous for ribosomal 

protein genes have some developmental defects, but normally give rise to a normal adult 

wing.  However, clones of cells heterozygous for a ribosomal protein gene in a wild-type 

wing disc undergo apoptosis, a process known as cell competition.  This process is 

facilitated by ectopic expression of brk and JNK dependent apoptosis. 
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A genetic screen was performed to identify other genes that affect cell 

competition. Genes in the hippo pathway were originally identified in a clonal screen for 

mutations that result in an overgrowth phenotype (Tapon et al. 2002; Harvey et al. 2003; 

Lai et al. 2005).  Mutation of genes in the hippo pathway including hippo, warts, sav, and 

mats allowed Minute clones to survive (Tyler et al. 2007). Minute clones containing 

mutations in hippo, warts, or mats increased Dpp signaling to rescue the growth defect.  

Interestingly, salvador was able to rescue the growth defect independent of Dpp signaling 

(Tyler et al. 2007).  Other genes required for cell competition include genes in the 

engulfment pathway such as draper, wasp, and phosphatidylserine receptor. Wild-type 

cells begin engulfing Minute cells, which is required to activate the apoptotic program (Li 

and Baker 2007). Although engulfment previously has been shown to contribute to cell 

death (Hoeppner et al. 2001; Reddien et al. 2001), these results indicate that engulfment 

is required during cell competition and the cell-autonomous cell-death program is 

insufficient to remove M/+ cells by itself (Li and Baker 2007). Engulfment genes are 

required for wild-type cells to activate apoptosis in neighboring Minute cells, suggesting 

that wild-type cells “eat” their way through mosaic compartments (Li and Baker 2007).  

Clones of cells overexpressing myc, a transcription factor that regulates many 

genes involved in growth, acts as super competitors in a wild-type background, resulting 

in over-proliferation of myc clones and elimination of their wild-type neighbors.  Wild-

type neighboring cells fail to effectively compete for Dpp and undergo JNK and hid-

dependent apoptosis (de la Cova et al. 2004; Moreno and Basler 2004).  It is important to 

note that clones overexpressing myc can no longer act as super competitors if the cells 
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are also heterozygous for a ribosomal protein gene.  This result is consistent with the 

model that ribosomal proteins act downstream of myc and efficient protein synthesis is 

required to out compete neighboring cells (Moreno and Basler 2004). 

 

Haploinsufficiency of ribosomal protein genes in mice.  Mouse embryos 

heterozygous for ribosomal protein gene S6 die during gastrulation (E5.5) and have 

increased p53-dependent apoptosis and cell cycle arrest.  Mutation of p53 allows them to 

survive past gastrulation, but they are smaller than their littermates.  They eventually die 

at E12.5, showing decreased expression of D-type cyclins, diminished fetal liver 

erythropoiesis, and placental defects (Panic et al. 2006). Examination of ribosomal 

subunits showed an accumulation of the 34S precursor, a phenotype previously 

characterized in S6 deficient livers (Sulic et al. 2005; Panic et al. 2006).  Although these 

animals show aberrant translation machinery, it is the p53 checkpoint that initially 

eliminates them. These results suggest that mammals have evolved a strong selective 

pressure to eliminate cells heterozygous for a ribosomal protein gene in a p53-dependent 

manner, however p53-independent mechanisms can eventually terminate the animal 

(Volarevic et al. 2000; Sulic et al. 2005; Panic et al. 2006).    

         Another example of haploinsufficiency of a ribosomal protein gene is the Belly spot 

and tail (Bst) mouse.  This mutation is semidominant and homozygous lethal. Phenotypes 

of Bst/+ include decreased pigmentation, kinked tail, and retinal abnormalities.  Mapping 

of Belly spot and tail (Bst) mouse showed a deletion in the RpL24 ribosomal protein 
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gene.     Bst/+ cells have decreased protein synthesis, slower proliferation, and are out-

competed by wild type cells in a chimeric mouse (Oliver et al. 2004). 

        Haploinsufficiency of ribosomal protein genes in human disease.  Diamond-

Blackfan anemia (DBA) is a congenital hypoplastic anemia.  Patients exhibit low 

numbers of erythroid precursors in the bone marrow.  Fifty percent of the patients have 

short stature, various physical abnormalities, and a predisposition to leukemias (Flygare 

and Karlsson 2007).  Approximately 25% of DBA patients have a mutation in RpS19, 2% 

have a mutation in RpS24, and a small number have been linked to a mutation in RpS17 

(Draptchinskaia et al. 1999; Gazda et al. 2006; Gazda and Sieff 2006; Cmejla et al. 2007; 

Choesmel et al. 2008).  Recently, a small number of patients showed a mutation in 

RpL35A, which is the first example of large subunit mutation contributing to the disease.  

This results supports the hypothesis that this disease is likely due to an overall defect in 

ribosomal function, rather than a specific function of a ribosomal protein gene (Farrar et 

al. 2008).   

Cells deficient for RPS19 show a reduction of 40S in subunits, have fewer mature 

40S ribosomes, and an increase in apoptosis (Choesmel et al. 2007; Idol et al. 2007).  

Global gene expression analysis of bone marrow cells from patients with DBA show 

misregulation of genes involved in apoptosis, DNA repair, and cancer (Gazda et al. 

2006).  Recently, it has been shown that mice heterozygous for RPS19 have increased 

apoptosis in bone marrow, low red blood cell count, and growth retardation.  Many of 

these phenotypes could be suppressed in a p53 null background (McGowan et al. 2008).  
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 Another human disease linked to haploinsufficiency of a ribosomal protein gene 

is 5q- syndrome.  This somatic chromosomal deletion results in a subtype of a 

myelodysplastic syndrome caused by defective erythroid differentiation (Van den Berghe 

et al. 1974).  These patients have an increased risk of developing acute myeloid leukemia.  

Recently, it was identified that this disease is linked to haploinsufficiency of RPS14 and 

shows similar defects in pre-rRNA processing as DBA and increased levels of apoptosis 

(Ebert et al. 2008).     
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CHAPTER II 

MODIFICATION OF DROSOPHILA p53 BY SUMO MODULATES ITS 

TRANSACTIVATION AND PRO-APOPTOTIC FUNCTIONS 
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sites and performed colocalization experiments in S2 cells.  DNA-binding and 

transactivation assays were performed by Andrea Lunardi.  Laura McNamee performed 

all the in vivo analysis. 

 

 

Introduction 

 

The p53 tumor suppressor is a highly regulated transcription factor that 

coordinates cellular responses to DNA damage, activation of oncogenes, and a variety of 

other stress signals (Vousden and Lane 2007); accordingly, p53 inactivation is the most 

common mutation found in human cancers (Harris and Levine 2005). A complex array of 

post-translational modifications regulate stability, localization, conformation, and 

transcriptional activity of p53, with crucial implications for its tumor suppressive 

function (Bode and Dong 2004; Toledo and Wahl 2006; Watson and Irwin 2006; Horn 

and Vousden 2007). 
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SUMO-1 belongs to a family of small ubiquitin-related proteins that are 

covalently linked to lysine residues of protein substrates (Muller et al. 2001; Hay 2005). 

In contrast to ubiquitination, sumoylation does not target modified proteins for 

degradation, but can affect their localization, stability, and functions (Muller et al. 2001; 

Muller et al. 2004; Gill 2005; Hay 2005). Human p53 can be modified by SUMO-1 on a 

single C-terminal lysine (K386) but the effects of this modification are controversial 

(Hoeller et al. 2006; Watson and Irwin 2006). Initial studies indicated that SUMO 

stimulates the activity of p53 (Gostissa et al. 1999; Rodriguez et al. 1999b; Muller et al. 

2000). In contrast, other work suggested that sumoylation does not affect p53 

transcriptional activity (Kwek et al. 2001; Schmidt and Muller 2002). In addition, 

conflicting reports indicate that the SUMO E3 ligase PIAS1 can either stimulate or 

inhibit p53 activity (Megidish et al. 2002; Schmidt and Muller 2002). Overexpression of 

SUMO-1 stimulates recruitment of p53 to PML Nuclear Bodies (NBs), with implications 

for p53 pro-apoptotic activity, but mutation of the SUMO acceptor site does not prevent 

p53 localization to NBs (Fogal et al. 2000; Kwek et al. 2001). Two knock-in mouse 

models have been generated in which all C-terminal lysine residues in p53 have been 

mutated, including the sumoylation site; despite extensive cell culture data indicating 

critical roles of these residues for p53 function, these mice are similar to wild type, and 

MEFs and thymocytes derived from these animals display normal apoptotic responses 

after DNA damage (Feng et al. 2005; Krummel et al. 2005). These results suggest that 

several post-translational modifications of the C-terminus, including sumoylation, may 

not be crucial for p53 function in mammalian cells (Toledo and Wahl 2006). 
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Other members of the p53 family are also sumoylated at their C-terminus (Watson 

and Irwin 2006). In cell culture, sumoylation of p63a destabilizes the protein and 

decreases its transactivation function (Huang et al. 2004; Ghioni et al. 2005) while 

sumoylation of p73a modulates its nuclear localization and turnover (Minty et al. 2000). 

Therefore, although the biological effects of sumoylation may vary among p53-related 

proteins, modification with SUMO is a common feature of the p53 family, suggesting an 

ancient regulatory mechanism inherited from a common ancestor gene. 

In Drosophila melanogaster there is a single p53 family member, with the same 

domain structure of mammalian p53 proteins. The core DNA binding domain has the 

greatest sequence similarity, while the N- and C-terminal domains show little sequence 

conservation but retain similar structural and functional features (Brodsky et al. 2000a; 

Jin et al. 2000; Ollmann et al. 2000; Ou et al. 2007). Drosophila p53 binds the same 

consensus sequence as human p53, and transactivates reporter constructs driven by p53 

responsive elements (Brodsky et al. 2000a; Jin et al. 2000; Ollmann et al. 2000). 

Drosophila mutants lacking p53 function are viable and fertile, but are defective for 

induction of apoptosis by DNA damage or unprotected telomeres (Brodsky et al. 2000a; 

Ollmann et al. 2000; Lee et al. 2003; Sogame et al. 2003; Brodsky et al. 2004; Oikemus 

et al. 2004). Drosophila p53 induces cell death when overexpressed in eye imaginal discs 

(Brodsky et al. 2000a; Ollmann et al. 2000), upregulates pro-apoptotic genes including 

reaper, sickle, hid and Eiger, and binds a specific DNA damage responsive element 

within the reaper promoter (Lee et al. 2003; Sogame et al. 2003; Brodsky et al. 2004; 

Akdemir et al. 2007). Activation of Drosophila p53-dependent apoptosis following DNA 
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damage depends on the protein kinase Mnk/Chk2, which phosphorylates p53 (Peters et 

al. 2002; Brodsky et al. 2004). Other post-translational modifications of Drosophila p53 

have not been demonstrated. 

Here we show that Drosophila p53 can be modified by SUMO on two 

independent residues. We present evidence that a sumoylation-defective p53 mutant is 

markedly less active than the wild-type counterpart, in cell culture and in vivo, 

implicating sumoylation in the biochemical circuitry that positively regulates Drosophila 

p53 function. 

 

 

Results 

 

Identification of two functional sumoylation sites in Drosophila p53.  In yeast 

two-hybrid screens, we and others have found interactions between Drosophila p53 and 

lesswright/dUbc9 (an E2 SUMO ligase), Su(var)2-10/dPIAS (an E3 SUMO ligase) and 

Ulp1 (a SUMO specific peptidase), suggesting that p53 may be sumoylated (Stanyon et 

al. 2004; Formstecher et al. 2005)(M.H.B. and Garson Tsang, unpublished results). 

Within the p53 sequence there are two consensus sites for sumoylation, one on lysine 302 

in the C-terminal region of the protein, the other on lysine 26 within the N-terminal 

transactivation domain (Fig. 2.1A). These sites do not directly correspond to the single 

site identified at the extreme C-terminus of mammalian p53, p63 or p73 (Watson and 

Irwin 2006). 
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To test if Drosophila p53 can be sumoylated, Drosophila S2 cells were 

transfected with His-tagged p53 (HT-Dmp53) alone, with Drosophila SUMO fused with 

GFP (GFP-dSUMO), or with a non-conjugatable version of SUMO lacking the C-

terminal glycines necessary for attachment to substrates (GFP-dSUMOΔC). Transfected 

p53 was visualized by immuno-blotting with an antibody to the RGS-His tag. As shown 

in Figure 2.1B-C, transfected p53 migrates as one primary band and two slower 

migrating bands; the apparent molecular weights are compatible with attachment of one 

or two SUMO molecules. In cells transfected with GFP-dSUMO, the upper bands shift to 

higher molecular weights, compatible with covalent attachment of one and two GFP-

dSUMO molecules. This shift is not observed in cells transfected with the non-

conjugatable GFP-dSUMOΔC (Fig. 2.1B). 

To test the requirement of lysine 302 and lysine 26 for conjugation, they were 

replaced with arginine by site-directed mutagenesis. When either lysine 26 or lysine 302 

are altered, the resulting proteins (p53 K26R and p53 K302R) display a single slower 

migrating band (Fig. 1B). When both residues are mutated, the resulting protein (p53 

KRKR) is no longer modified. Comparison of the various mutants suggests that lysine 

302 may be sumoylated more efficiently than lysine 26. In addition, modification at K302 

apparently induces a greater shift in migration than modification at K26 (Fig. 2.1C). 

To verify that endogenous SUMO is covalently attached to p53, HT-Dmp53 was 

immuno-precipitated from transfected S2 cells and probed with an antibody to 

Drosophila SUMO (Fig. 2.1D). Based on these results, we conclude that a significant 
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fraction of Dmp53 is sumoylated when expressed in S2 cells, with lysine 302 being the 

primary modification site. 
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Figure 2.1 
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Figure 2.1. Identification of two sumoylation sites in Drosophila p53. (A) Schematic 

structure of human and Drosophila p53, with respective sumoylation sites. The 

transactivation (TA), DNA binding (DBD) and oligomerization (OD) domains are also 

indicated.  (B) Sumoylation of p53. Wild-type HT-Dmp53 and the indicated mutants 

were transfected in S2 cells with or without plasmids expressing GFP-dSUMO or its non-

conjugatable version GFP-dSUMODC. Lysates were separated by SDS-PAGE. HT-

Dmp53 and GFP-dSUMO were detected by immunoblotting.  (C) The various 

sumoylated forms migrate differently. The indicated p53 mutants were transfected in S2 

cells and analyzed by immunoblotting in the same gel.  (D) p53 is conjugated to 

endogenous SUMO. Wild-type HT-Dmp53 and the double-lysine KRKR mutant were 

transfected in S2 cells. Lysates were immunoprecipitated with a monoclonal antibody to 

the RGS-His tag, and revealed with an antibody to Drosophila SUMO (bottom right). 

Expression of HT-Dmp53 proteins was also analyzed in the immunoprecipitate (bottom 

left) and in total lysates (input). The antibody to Drosophila SUMO has a weak cross-

reactivity to p53 (asterisk). Arrows indicate p53 modified with one or two SUMO 

molecules. 
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Drosophila p53 localizes to nuclear dots.  The distribution of wild-type and non 

sumoylatable p53 was analyzed in transfected S2 cells. As shown in Figure 2.2A, 

transfected p53 is found throughout the nucleus with marked accumulation in dot-like 

structures. p53 forms nuclear dots in 70-80 percent of transfected cells, with most nuclei 

having 2 or 3 dots. This localization was not dependent on the adhesion substrate 

(Concanavalin A or poly-lysine) and did not change using N-terminally tagged or 

untagged p53 (not shown). The p53 K to R mutants form nuclear dots with similar 

frequency, shape, and size as the wild-type protein. When co-transfected with GFP-

dSUMO, wild type p53 and single lysine mutants co-localize with SUMO in nuclear dots. 

However, only a subset of nuclear dots formed by the non-sumoylatable p53 KRKR 

mutant overlap with dots formed by GFP-dSUMO (Fig. 2.2 and Fig. 2.3). 

Localization of wild type and non-sumoylatable p53 was also analyzed in 

transgenic flies, using the GAL4/UAS system. With a GMR-GAL4 driver, high levels of 

p53 are produced in the posterior of the developing eye imaginal disc, sufficient to induce 

ectopic apoptosis in the absence of DNA damage (Brodsky et al. 2000a; Ollmann et al. 

2000; Brodsky et al. 2004). In the absence of GAL4 driver, p53 is expressed at low 

levels, insufficient to induce apoptosis (see Fig. 2.8). In both conditions, wild type p53 

and p53 KRKR are found throughout the nucleus with a sub-nuclear domain of elevated 

staining, similar to that seen in cell culture (Fig. 2.2C-D). We used a polyclonal antibody 

to visualize endogenous SUMO in these cells (Long and Griffith 2000). Endogenous 

SUMO is not detected in cells expressing less p53, probably due to low levels of SUMO 

throughout the entire nucleoplasm. At the higher p53 expression levels, endogenous 
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SUMO accumulates in nuclear dots with wild type, but not with non-sumoylatable p53 

(Fig 2.2C). 

In contrast with cell culture results, p53 KRKR transgenic cells displayed lower 

overall levels of immuno-staining, suggesting reduced expression levels. This result was 

observed in four independent transformants per line (data not shown), and therefore is not 

a consequence of genomic insertion sites. No p53 immunostaining was detected in cells 

solely expressing endogenous levels of p53 (data not shown). Following exposure to 

ionizing radiation (IR), wild type p53 and p53 KRKR are still detected throughout the 

nucleus and in nuclear dots (Fig. 2.2D). Together, these results confirm that p53 

accumulates in sub-nuclear structures in cultured cells and in normal developing tissues. 

The non-sumoylatable p53 KRKR mutant can also form nuclear dot-like structures, but 

has reduced capacity to recruit SUMO. 
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Figure 2.2. Nuclear localization of exogenous p53 in tissue culture and developing 

eye imaginal discs.  (A) Wild-type and non sumoylatable p53 form nuclear dots in 

cultured cells. S2 cells were transfected with the indicated constructs, plated on 

Concanavalin A coated coverslips before fixation, and analyzed by confocal 

immunofluorescence using a monoclonal anti-Dmp53 antibody. Nuclei were visualized 

by Hoechst staining (scale bar 5mm).  (B) p53 sumoylation mutants display differential 

localization with respect to GFP-dSUMO and human PML IV. Wild-type p53 and the 

indicated mutants were co-transfected with GFP-dSUMO or human PML IV in S2 cells. 

Cells were treated as above. Localization of p53 proteins (red) and GFP-dSUMO or PML 
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IV (green) was analyzed by confocal microscopy. Only merged images are shown, where 

yellow indicates co-localization. The complete set of single images for all the mutants are 

available in Figures 3.3 and 3.4.  (C) Drosophila p53 (green), SUMO (red) and DAPI 

(blue) expression in the developing eye imaginal disc. High levels of p53 expression in 

the posterior of the developing eye imaginal disc were obtained using GMR-Gal4 to drive 

expression of GUSp53 transgenes. Overexpressed wild type p53 accumulates endogenous 

SUMO in subnuclear domains. Overexpressed p53KRKR also forms nuclear dots, but 

recruits much less SUMO (scale bar 5µm).  (D) Drosophila p53 (green) and DAPI (blue) 

expression in irradiated developing eye imaginal discs. Overview (A) and high 

magnification (B-C) of moderately expressed wild type p53, forming nuclear dots in an 

untreated eye disc. Overview (D) and high magnification (E-F) of wild type p53 four 

hours after X-irradiation. Overview (G) and high magnification (H-I) of p53KRKR forming 

dots in an untreated eye disc. Overview (J) and high magnification (K-L) of p53KRKR four 

hours after X-irradiation. 
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Figure 2.3. Dmp53 sumoylation mutants display differential localization with 

respect to GFP-dSUMO. Wild-type p53 and the indicated lysine mutants were co-

transfected with GFP-dSUMO in S2 cells. Cells were plated on Concanavalin A coated 

coverslips two hours before fixation. Localization of the expressed proteins was analyzed 

by confocal microscopy. Images refer to single Z sections. 
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 Sumoylation affects p53 localization to nuclear dots defined by human PML and 

Drosophila Daxx-like protein.  We next asked if nuclear dots formed by wild type or 

non-sumoylatable p53 are in fact the same structures. In mammalian cells, p53 

accumulates within PML nuclear bodies (NBs) under specific conditions (Fogal et al. 

2000; Kwek et al. 2001; Melchior and Hengst 2002; Gostissa et al. 2003). Markers for 

such structures are PML and Sp100 (Lallemand-Breitenbach et al. 2001; Salomoni and 

Pandolfi 2002), but there are no Drosophila homologs of these proteins. However, 

transfected human PML IV forms nuclear dots that co-localize with SUMO in 

Drosophila cells (Lehembre et al. 2000). When co-transfected with hPML IV, wild type 

p53 and single lysine mutants co-localize with PML in nuclear dots. On the contrary, 

only a subset of nuclear dots formed by the non-sumoylatable p53 KRKR mutant overlap 

with those formed by PML (Fig. 2.2 and Fig. 2.4). 
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Figure 2.4. Analysis of the nuclear localization of Dmp53 mutants with respect to 

human PML IV.  (A) Human PML IV co-localizes with GFP-dSUMO in nuclear dots. 

The indicated constructs were transfected in S2 cells. Cells were plated on Concanavalin 

A coated coverslips two hours before fixation. The expressed proteins were analyzed by 

confocal immuofluorescence. PML IV was visualized using the PGM-3 monoclonal 

antibody (Santa Cruz).  (B) p53 sumoylation mutants display differential localization 

patterns with respect to human PML IV. Wild-type p53 and lysine mutants were co-

transfected in S2 cells along with a plasmid expressing human PML IV. Localization of 

the expressed proteins was analyzed by confocal microscopy as above. p53 was 

visualized using a monoclonal antibody (Brodsky et al. 2000a), human PML IV was 

visualized using the H-238 polyclonal antibody (Santa Cruz). 
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Daxx, a transcriptional repressor and scaffolding protein, is also found in 

mammalian PML-NBs (Michaelson 2000; Salomoni and Khelifi 2006). The Drosophila 

homolog of Daxx, referred to as Daxx-like protein (DLP), has been described very 

recently (Bodai et al. 2007): it encodes a large peptide with similarity to Daxx in the C-

terminus. We observed that DLP accumulates in nuclear dots when overexpressed in 

Drosophila S2 cells, and these dots co-localize with GFP-dSUMO and human PML IV 

(Fig. 2.5). A DLP deletion lacking the first 710 aminoacids, named DLP(ct), shows 

similar behavior, indicating that the region of Daxx similarity is sufficient for the 

observed localization (Fig. 2.5). We used GFP-DLP(ct) as a marker to analyze 

localization of p53 mutants; we counted the fraction of p53 nuclear dots co-localized with 

DLP(ct) in confocal images from independent co-transfection experiments (Fig. 2.6A). 

As summarized in Figure 2.6C, 85 to 90% of the dots formed by wild type p53 or single 

lysine mutants co-localize with DLP(ct). In contrast, only 45% of nuclear dots formed by 

the non-sumoylatable p53 KRKR co-localize with DLP(ct). Notably, the co-localization 

of the p53 KRKR mutant with DLP is restored to wild type levels when SUMO is fused 

to p53 KRKR to mimic constitutive K26 sumoylation (Fig. 2.6B). Together, these results 

indicate that sumoylation affects the recruitment of Drosophila p53 to specific nuclear 

domains. 
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Figure 2.5 
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Figure 2.5. Daxx-like protein forms nuclear dots that co-localize with human PML 

IV.  (A) Schematic representation of DLP (Daxx-like protein) aligned with human Daxx. 

The region of similarity is indicated, together with some structural elements: CC, coiled 

coil; NLS, nuclear localization signal; D/E, acidic region. DLP(ct) is a N-terminal 

deletion of DLP, starting at methionine 710.  (B) HA-DLP and HA-DLP(ct) form nuclear 

dots that co-localize with GFP-dSUMO. Constructs were transfected in S2 cells and 

analyzed by confocal immunofluorescence (scale bar 5 mm).  (C) GFP-DLP co-localizes 

with human PML IV. GFP-DLP was co-transfected with human PML IV in S2 cells. 

Localization of the expressed proteins was analyzed by confocal microscopy. Human 

PML IV was visualized using the H-238 polyclonal antibody (Santa Cruz). 
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Figure 2.6 
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Figure 2.6. Sumoylation affects localization of p53 to nuclear dots marked by Daxx-

like protein (DLP).  (A) Mutation of the lysines affects p53 co-localization with DLP. 

Confocal analysis of the nuclear localization of wild-type p53 and lysine mutants with 

respect to GFP-DLP(ct) in transfected S2 cells.  (B) Fusion to SUMO induces full co-

localization of p53 KRKR with DLP. Confocal analysis of the nuclear localization of the 

SUMO-KRKR chimera with respect to GFP-DLP(ct). The structure of the SUMO-KRKR 

chimera is schematically drawn in the same panel: Drosophila SUMO (aminoacids 1 to 

85) is fused to residue 18 of p53 KRKR. Images refer to a single Z section.  (C) 

Quantification of p53 nuclear dots co-localized with GFP-DLP(ct) dots, assayed with the 

indicated constructs. More than 460 nuclear p53 dots were counted per mutant, in three 

independent experiments. 
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Non-sumoylatable p53 is less active than the wild-type protein in cultured cells.  

Given the conflicting data on the functional relevance of sumoylation in mammalian p53, 

we asked whether sumoylation might affect the transcriptional activity of Drosophila 

p53. Initially, we used the pG13-LUC plasmid, a reporter responsive to mammalian p53 

(Jin et al. 2000). We transfected this construct with increasing amounts of expression 

vectors encoding untagged versions of p53 mutants, and assayed for luciferase. With this 

reporter, equal expression levels of non-sumoylatable p53 KRKR mutant have 

significantly less transcriptional activity than wild-type p53 (Fig. 2.7). In contrast, 

mutants with substitution of either single lysine display a transactivation activity similar 

to wild-type p53. To confirm this behavior with a Drosophila promoter element, a 

luciferase reporter driven by a DNA damage responsive cis-regulatory sequence from the 

reaper locus, containing a p53 binding site (Rpr150 enhancer) (Brodsky et al. 2000a), 

was constructed and tested as above. The non-sumoylatable p53 KRKR mutant was also 

less active than wild-type p53 or single lysine mutants using this reporter (Fig. 2.7B). 

To test if the reduced transcriptional activity of p53 KRKR is due to impaired 

sequence-specific DNA binding, we prepared lysates from transfected S2 cells and 

performed electrophoretic mobility shift assays (EMSA) using a double stranded DNA 

oligonucleotide containing the p53-binding element from the Rpr150 enhancer. As shown 

in Figure 2.7C-D, the p53 KRKR mutant binds efficiently to the oligonucleotide probe, 

indicating that mutation of both lysines does not prevent sequence-specific DNA binding. 
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Figure 2.7 
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Figure 2.7. Mutation of both sumoylation sites affects transcriptional activity of p53 

but not its DNA binding.  (A) Transactivation of a human p53-responsive promoter. The 

pG13-LUC reporter plasmid was transfected in S2 cells together with increasing amounts 

of vector expressing wild type p53 or sumoylation mutants. A plasmid constitutively 

expressing beta-galactosidase was included as a control for transfection efficiency. p53 

transcriptional activity was measured by luciferase assay, while the levels of expressed 

proteins were analyzed by immunoblotting of the same lysates (lower panel). Fold 

induction values of the p53 KRKR mutant are indicated. Error bars indicate s.e.m. (n=4). 

(B) Transactivation of a Drosophila p53-responsive promoter. The pRpr150-LUC 

reporter carrying the p53 binding site from the Reaper DNA-damage responsive enhancer 

was transfected and assayed as described above. Error bars indicate s.e.m. (n=3).  (C) 

Electrophoretic mobility shift assay (EMSA). Wild-type p53 and lysine mutants were 

tested for sequence specific DNA binding by gel shift, using a double stranded 

oligonucleotide containing the p53-responsive element form the Reaper enhancer 

(Rpr150). Specificity of the binding was confirmed by competition with cold Rpr150 

oligonucleotide. Lane 1, free probe. Lanes 2 to 9, whole cell lysates from S2 cells 

untransfected (NT) or transfected with the indicated p53 constructs.  (D) Protein levels of 

transfected p53 mutants were assayed by immunoblotting of the lysates used for EMSA. 
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p53 sumoylation sites are essential for in vivo function.  To determine if 

sumoylation affects p53 function in vivo, we compared the activity of wild type and non-

sumoylatable p53 in the developing eye. We examined the ability of p53 to induce 

apoptosis under two conditions, when highly overexpressed and when activated 

following exposure to ionizing radiation (IR). Overexpression of p53 using GMR-Gal4 

and GUS-p53 results in a rough, reduced eye phenotype, accompanied by a loss of 

pigmentation in the center of the eye (Ollmann et al. 2000; Brodsky et al. 2004)(Fig. 

2.8A-B). Overexpression of p53 KRKR induces a similar rough eye, but with less loss of 

pigmentation (Fig. 2.8C), suggesting a difference in wild type and mutant p53 activity 

during eye development. 

GMR-Gal4 induces target gene expression beginning in the morphogenetic 

furrow, which marks cells in the eye imaginal disc as they initiate synchronous cell cycle 

progression and differentiation. The furrow first forms in cells at the posterior of the disc 

and moves to increasingly anterior cells. As a result, cells near the furrow have just begun 

to express the transgene, while more posterior cells have expressed it for longer times. 

Overexpressed wild type p53 induces a high level of apoptosis in a band of cells 

immediately posterior to the furrow, as assayed by activated caspase and TUNEL 

staining (Fig. 2.8D, E, G, and data not shown). In eye discs overexpressing p53 KRKR, 

the band of apoptosis is initially weaker and extends further posterior from the furrow 

(Fig. 2.8F-G). In these experiments, the mean distance of apoptotic cells is increased 

from 38.0 (s.e.m.=3.0) for wild type p53 to 59.3 (s.e.m.=2.5) for p53KRKR (p=0.036, two-

tailed student’s t-test). However, the total number of apoptotic cells is similar; the 
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average number of TUNEL positive cells is 568 (s.e.m.=55.5) for wild type p53 and is 

474 (s.e.m.=37.4) for p53KRKR (p=0.20). Since the distance from the morphogenetic 

furrow corresponds to the length of time cells have been overexpressing p53, these 

experiments indicate a delay in the induction of apoptosis by non-sumoylatable p53. This 

delay could reflect either lower levels of p53 KRKR expression, decreased transcriptional 

activity of p53 KRKR, or both. 

The role of sumoylation in p53 function was also examined during DNA damage 

induced apoptosis. Drosophila p53 is required for the rapid induction of apoptosis by 

ionizing radiation (IR) (Brodsky et al. 2000a; Ollmann et al. 2000) (Fig. 2.8H, L, I, M, 

and P). In the absence of a GAL4 driver, the GUS vector expresses sufficient p53 in the 

posterior of the eye disc to fully restore IR-induced apoptosis in a p53-null background 

(Brodsky et al. 2004) (Fig. 2.8J, N, and P). In contrast, expression of p53 KRKR only 

weakly rescues IR-induced apoptosis (Fig. 2.8K, O, and P). Under these conditions, 

apoptosis is induced at the same time in all cells, and quantification of cleaved caspase-3 

reveals a six-fold decrease in the level of IR-induced apoptosis in p53KRKR transgenics 

(Fig. 5P, p=0.008, student’s t-test). The decrease is greatest near the furrow, resulting in a 

change in the pattern of apoptotic cells. It is important to emphasize that the failure to 

fully rescue apoptosis is not due to insufficient expression levels, since both the wild type 

and mutant p53 transgenes are expressed at higher levels than endogenous p53 

(endogenous p53 is not detected by immunofluorescence). These results confirm that the 

p53 KRKR mutant is less active than the wild-type protein and demonstrate that 
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sumoylation sites are critical for induction of apoptosis by p53 following DNA damage in 

vivo. 
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Figure 2.8 
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Figure 2.8. p53
KRKR

 does not induce apoptosis as efficiently as wild type p53, and is 

unable to fully rescue DNA damage-induced apoptosis.  (A-F) High levels of p53 

expression in the posterior of the developing eye imaginal disc were obtained using 

GMR-Gal4 to drive expression of GUSp53 transgenes. (A) Wild type adult eye. (B) 

Adult eye overexpressing wild type p53. (C) Adult eye overexpressing p53KRKR.  (D-F) 

TUNEL staining for apoptotic cells in eye imaginal discs. (D) Wild type eye imaginal 

disc. (E) Eye disc overexpressing wild type p53. (F) Eye disc overexpressing p53KRKR. 

Scale bar: 20μm. (G) Distribution profiles of the distance of TUNEL positive cells from 

the furrow in p53+ expressing cells versus p53KRKR expressing cells. All samples were 

normalized to calculate the mean percentage of apoptotic cells at a given distance from 

the furrow out of the total number of apoptotic cells in the disc. Distribution profiles were 

generated to plot percent of apoptotic cells at each distance from the furrow (n=5).       

(H-O) Cleaved caspase-3 staining of eye imaginal discs mock-treated, or four hours after 

X-irradiation. In the absence of a Gal4 driver, the Glass/multimer promoter of GUSp53 

transgenes expresses levels of p53 that can rescue DNA damage induced apoptosis in a 

p53 mutant tissue, but are too low to induce apoptosis without an external stress. The 

transgene expression domain in the posterior of each eye disc is indicated with brackets. 

(H-K) Untreated eye discs. (L-O) Eye discs stained for cleaved capase-3 four hours after 

X-irradiation. (P) Quantification of relative volumes of cleaved caspase-3 staining in the 

regions marked by brackets. See methods for details of caspase quantification. Bars 

indicate standard error of the mean (n=5). A two tailed t-test was used to determine the 

significance of the observed changes. 
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Discussion 

 

In this work, we find that Drosophila p53 has two sites of sumoylation: one at the 

N-terminus and the other in the C-terminal region, before the oligomerization domain. 

Human p53, as well as p63 and p73, are sumoylated on a single residue at the extreme C-

terminus (Feng et al. 2005; Watson and Irwin 2006). Therefore, the modification is 

conserved, but its position has changed during evolution. In mammalian p53 the last C-

terminal amino acids are not required for oligomerization, and serve a regulatory 

function. In contrast, in Drosophila p53 the C-terminal 24 amino acids form an alpha-

helix that interacts with the oligomerization domain and is required for tetramerization 

(Ou et al. 2007). Thus, both in mammals and Drosophila, C-terminal sumoylation of p53 

occurs on a site where it should not interfere with oligomerization. 

Because of very low expression levels, it is extremely difficult to detect 

endogenous p53 in Drosophila tissues or cell lines, even after DNA damage stimulation. 

Although we have not been able to examine endogenous p53, we have demonstrated that 

p53 is efficiently modified in cells in which SUMO and the SUMO ligating enzymes are 

present at physiological levels. Exploration of the signaling pathways that regulate p53 

sumoylation in vivo will require the development of reagents and/or techniques to 

efficiently detect endogenous p53 protein in Drosophila cells. 

p53 forms nuclear dots when over-expressed in Drosophila cells in culture and in 

developing eye imaginal discs. In tissue culture, dots formed by p53 co-localize with dots 

formed by human PML IV and Drosophila Daxx. It is tempting to speculate that such 



 65

structures may be related to mammalian PML nuclear bodies. However, an important 

caveat is that these observations rely on ectopic expression of transfected proteins, since 

no reagents are available to detect endogenous counterparts. The absence of an obvious 

PML homolog in Drosophila clearly indicates that these structures are not identical in 

insects and mammals; however, the recruitment of human PML IV to dots containing 

Drosophila SUMO, p53, and Daxx homologs does suggest that some aspects are 

conserved. We find that non-sumoylatable p53 also forms nuclear dots. However, it 

seems likely that nuclear dots formed by non-sumoylatable p53 are qualitatively different 

from those formed by the wild-type protein, as suggested by the reduced co-localization 

with dots marked by GFP-SUMO, hPML IV and DLP. Thus, the change in localization to 

specific sub-nuclear domains correlates with the reduced activity of the p53 KRKR 

mutant. 

Our experiments demonstrate that sumoylation sites are important for the activity 

of Drosophila p53 both in tissue culture and in vivo. However, the sumoylation-deficient 

p53 KRKR mutant is not completely inactive; it retains sequence-specific DNA binding, 

and moderately transactivates both reporter constructs tested (Fig. 2.7). p53 KRKR also 

retains some residual ability to induce apoptosis in irradiated imaginal discs, indicating 

that sumoylation sites are not absolutely required for p53 activation by DNA damage 

(Fig. 2.8), but are essential for optimal activity. 

It is important to note that single mutation of either sumoylation site had no 

significant effect on the activity of p53. This implies that modification of a specific lysine 

is not critical; rather, it is important that SUMO can be attached to the protein. This 
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observation indicates that sumoylation does not simply function to compete with another 

modification of the same residue (i.e. ubiquitination or acetylation). Our observation that 

sumoylation is not required for DNA binding suggests that this modification may mediate 

recruitment of additional factors needed for p53 dependent transcription of target genes. 

Alternatively, sumoylation may indirectly control p53 modification on other residues via 

interaction with specific modifying enzymes. 

Sumoylation affects turnover of human p63α and p73α (Watson and Irwin 2006), 

but we see no difference in the expression levels of transfected wild-type or mutant p53 

in S2 cells, where p53 KRKR has clearly reduced transcriptional activity (Fig.2.1, Fig. 

2.7 and data not shown). In contrast, in developing eye discs, p53 KRKR seems to be 

expressed at lower levels than wild type. This difference may contribute to the difference 

in apoptosis induced by strong p53 overexpression. However, p53 KRKR cannot rescue 

DNA damage-induced apoptosis in p53 mutant animals, despite being expressed at much 

higher levels than endogenous p53 in wild-type animals (see Fig. 2.2 and Fig. 2.8. 

Endogenous p53 was not detectable in wild-type cells). This observation demonstrates 

that sumoylation sites are critical for induction of apoptosis by p53 in vivo, regardless of 

the difference in expression levels detected between exogenous wild-type and KRKR p53 

proteins in eye discs. 

Our results in Drosophila are consistent with studies in mammalian cells 

reporting that sumoylation promotes p53 function (Gostissa et al. 1999; Rodriguez et al. 

1999b; Li et al. 2006), but are in contrast with knock-in mouse models demonstrating that 

C-terminal lysines are not crucial for p53 function in vivo (Feng et al. 2005; Krummel et 
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al. 2005; Toledo and Wahl 2006). There are several possible explanations for this 

discrepancy. First, since knock-in p53 models had mutations in all C-terminal lysines, it 

is possible that loss of other modification sites masks a specific requirement for 

sumoylation. Second, human p53 might be sumoylated at additional non-canonical 

residues (Kwek et al. 2001; Jakobs et al. 2007); a weak secondary site may compensate 

for loss of the primary sumoylation site. Third, interaction with sumoylated proteins may 

be sufficient to substitute for direct sumoylation of mammalian p53; these interacting 

partners may not be present in Drosophila (e.g. PML)(Fogal et al. 2000). Finally, specific 

features of the molecular regulation of Drosophila p53 may account for a more stringent 

requirement for sumoylation. 

In conclusion, our data demonstrate that SUMO attachment is a modification of 

p53 that is evolutionarily conserved from insects to mammals. Specific requirements for 

this modification may have changed with the emergence of three p53 paralogs in 

vertebrates, but sumoylation sites are clearly important for function of the single p53 

protein in Drosophila. Our results support the general hypothesis that sumoylation has an 

important role in regulation of metazoan p53 and p53-related proteins. 

 

Materials and Methods 

 

Plasmids.  The cDNA for Drosophila p53 was picked from the Drosophila Gene 

Collection (DGC1.0). Mutants K26R, K302R and KRKR were generated by PCR-based 

mutagenesis. The cDNAs for Drosophila SUMO and DLP(ct) were retrieved from 
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DGC1.0, while full length DLP was obtained from the Drosophila Genomics Resource 

Center (DGRC). Coding regions were amplified by PCR and inserted in pAc5.1 vectors 

(Invitrogen) modified for expression of N-terminally RGS-His-, HA- or GFP- tagged 

proteins. In the SUMO-KRKR chimera, Drosophila SUMO (aa 1 to 85) is fused to 

residue 18 of the p53 KRKR mutant. Expression of the fusion protein at the expected 

molecular weight was verified by immunoblotting (not shown). For luciferase assays, 

untagged wild-type p53 and K to R mutants were cloned in pAc5.1 vectors. All 

constructs involving PCR were fully sequenced. pRpr150-LUC was constructed inserting 

the 150 bp EcoRI-XhoI fragment from the pH150-LacZ reporter (Brodsky et al. 2000a) 

into the EcoRI-XhoI sites of the pGL2-promoter vector (Promega). 

 

Cell culture, transfection and luciferase assays.  S2 cells were cultured at 26˚C in 

Schneider’s Drosophila medium (Invitrogen) with 10% complemented fetal calf serum 

(FCS), penicillin (50 U/ml) and streptomycin (50 mg/ml). Transfections were performed 

by calcium phosphate co-precipitation. For luciferase assays, S2 cells in 3 cm petri dishes 

were transfected with 500 ng of the reporter, and 250 ng or 500 ng of p53 expression 

plasmids. In all samples, 100 ng of pPacLacZ were included for normalization of 

transfection efficiency. After 36 hours, cells were lysed and assayed for Luciferase and 

beta-galactosidase activity. Fold induction is the ratio of luciferase over beta-

galactosidase, normalized to the activity of the reporter co-transfected with empty vector. 

Expression levels of transfected proteins were verified by immunoblotting of the same 
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lysates; gel loading was normalized for transfection efficiency using beta-galactosidase 

levels. 

 

Western blotting, immuno-precipitation and immunofluorescence.  

Immunoblotting was performed in standard conditions. For immunoprecipitations, S2 

cells seeded in 6 cm Petri dishes were collected 24 hours after transfection and lysed in 

RIPA buffer (300mM NaCl) containing 10 mM N-ethylmaleimide, 1 mM PMSF, and 

protease inhibitors. Clarified lysates were incubated at 4˚C with anti RGS-His primary 

antibody cross-linked to Protein G-Sepharose (GE Healthcare). For immuno-

fluorescence, 36 hours after transfection S2 cells were plated on glass coverslips coated 

with 0.5 mg/ml Concanavalin A (Sigma) or 0.5 mg/ml poly-lysine (Sigma). After 2 

hours, cells were washed with PBS and fixed in 4% paraformaldehyde at RT for 20 min. 

Cells were permeabilized in PBS plus 0.1% Triton X-100. Images were captured using a 

laser-scanning microscope (Zeiss Axiocam 100M). The following primary antibodies 

were used: mouse anti-RGS-His (Qiagen), rabbit anti-GFP (self produced), rabbit anti-

SUMO (Long and Griffith 2000), mouse anti-HA (mAb 12CA5), mouse anti-Drosophila 

p53 (Brodsky et al. 2000a). 

 

Electrophoretic mobility shift assay.  For EMSA, approximately 5x106 S2 cells 

seeded in 6 cm petri dishes were transfected with p53 expression plasmids and harvested 

48 hr after transfection in lysis buffer (10mM Tris-HCl [pH 7.5], 1 mM EDTA, 0.5% 

NP40, 150 mM NaCl, 1 mM DTT, 10% glycerol, 0.5 mM PMSF, and protease 
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inhibitors). After 20 minutes on ice, extracts were centrifuged at 16000xg for 20 min at 

4°C to remove cell debris. Protein concentration in supernatants was determined using 

Bio-Rad protein assay. Expression levels of transfected proteins were verified by 

immunoblotting of the same lysates. A 26-mer DNA oligonucleotide containing the cis-

acting p53 responsive sequence from the Reaper enhancer (5’- 

ACCTGACATGTTTGAACAAGTCGAGC -3’) was end-labeled with 32P and annealed 

to the complementary strand. For binding reactions, 30 μg of whole cell extract were 

added to gel shift buffer (20 mM HEPES [pH 8], 25 mM KCl, 0.1 mM EDTA, 2 mM 

MgCl2, 0.5 mM DTT, 0.025% NP-40, 2 mM spermidine, 10% glycerol, 0.1 mg/ml 

acetylated BSA, 120 ng double-stranded poly(d[I-C])) containing the labeled 

oligonucleotide in a final volume of 30 μl. Competition was done adding 500 ng of 

unlabeled double stranded oligonucleotide. Reactions were incubated for 30 min at RT, 

and electrophoresed on a non-denaturing 4% polyacrylamide gel before autoradiography. 

 

Transgenes and genetics.  Flies were raised at 250C.  Wild type p53 and p53
KRKR 

were expressed using the GUS vector which contains both the UAS promoter for 

inducible expression by Gal4, and Glass binding sites from GMR for low to moderate 

expression in the developing eye (Brodsky et al. 2000a; Brodsky et al. 2004). Cloning of 

wild type p53 was previously described (Brodsky et al. 2004), while GUSp53
KRKR was 

constructed using Gateway cloning. For high levels of p53 expression, GMRGal4 

animals were crossed to four independent lines of GUSp53
+ and GUSp53

KRKR.  For lower 
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levels of expression and rescue of damage-induced apoptosis, p53
- animals were crossed 

to GUSp53
+; p53

- and GUSp53
KRKR; p53

- flies. 

 

Irradiation and immuno-histochemistry.   Climbing third instar larvae were 

irradiated with 4000 rads using a faxitron X-ray cabinet or mock treated. Four hours 

following irradiation, eye discs were dissected and stained with antibodies as previously 

described (Brodsky et al. 2000a). Discs were incubated with primary antibodies in PBTN 

(PBS, 0.3% triton, 5% normal goat serum) overnight at 4°C, and with secondary 

antibodies in PBTN for two hours at room temperature. The primary antibodies used 

were rabbit anti-cleaved caspase-3 (1:100, Cell Signaling), rabbit anti-SUMO (1:1000, 

gift from L.C. Griffith) (Long and Griffith 2000), and mouse anti-Drosophila p53 (1:10) 

(Brodsky et al. 2000a). The secondary antibodies used were donkey anti-mouse Alexa 

488 and donkey anti-rabbit Alexa 555 (1:2000, Molecular Probes). TUNEL staining was 

performed using ApopTag Fluorescein In Situ Apoptosis Detection Kit (Chemicon). Eye 

imaginal discs were fixed in 4% formaldehyde, washed 5 times with PBTw (PBS+ 0.3% 

Tween-20), and post fixed with cold ethanol/PBS (2:1). Following rehydration and 

washing, discs were treated with TdT mix for 1hr at 370C. After the reaction was stopped, 

discs were incubated with Fluorescein-conjugated anti-dig antibody for 30 minutes and 

mounted with Vectashield. 

 

Confocal microscopy and quantification of TUNEL and active caspase staining. 

Localization of p53 and SUMO was visualized using a Leica SP2 AOBS confocal 
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microscope with a 63X objective. For an overall view of the GMR region, a Z-series was 

taken through the eye disc at intervals of 284 nm, at a zoom of 1.75. For a higher 

magnification view, a Z-series was taken through the eye disc at intervals of 122 nm, at 

zoom of 4. To quantify the amount of cleaved caspase-3 in the eye disc, a Z-series was 

taken through the entire eye disc at intervals of 1.42 µm with a 20x objective. A 3-D 

reconstruction of each eye disc was generated using Imaris 5.0 image analysis software 

(Bitplane AG). Only the posterior region of the eye disc in which the p53 transgene is 

expressed was analyzed. The volume positive for cleaved caspase-3 was determined 

using a high intensity threshold, while the total disc volume was determined using a low 

intensity threshold (Fig. 2.9). The caspase-positive index for the posterior of the eye disc 

was calculated by dividing the cleaved caspase-3 volume by the total volume. To 

quantify the number and location of TUNEL positive cells in the eye disc, a Z-series was 

taken through the entire eye using a Zeiss Axioplan2 microscope and an Hamamatsu 

ORCA-ER camera with a 20x objective. Images were deconvolved using an inverse filter 

algorithm in the Zeiss Axiovision 4.5 image analysis software. Imaris 5.0 image analysis 

software was used to create a 3-D reconstruction of the TUNEL staining in the eye disc. 

Individual positive cells were marked using the “spot” function, which identifies local 

maxima of signal intensity (Fig. 2.9). The distance of TUNEL positive cells from the 

morphogenetic furrow was determined by subtracting the position of the furrow from the 

position of each cell. 
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Figure 2.9 
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Figure 2.9. Quantification of apoptosis in developing eye discs. In all panels, 

anterior is to the left (on the X-axis), dorsal is at the top (on the Y-axis) and the disc 

is viewed looking down on the apical surface (along the Z-axis).  (A-C) Activated 

caspase-3 quantification assay. (A) An X-Y view of a confocal Z-series from an eye 

imaginal disc treated with ionizing radiation and stained with anti-cleaved caspase-3.   

Eye imaginal disc images were cropped at morphogenic furrow. (B) Isosurface of objects 

with signal above a high intensity threshold (only anti-cleaved caspase-3 stained cells). 

(C) Isosurface of object with signal above a low intensity threshold (entire disc). Percent 

volume was calculated by dividing the volume of isosurfaces at high intensity threshold 

by the volume of the isosurface at low intensity threshold, multiplied by 100. For each 

sample, 5 eye imaginal discs were analyzed.  (D-E) TUNEL analysis. Eye imaginal discs 

were cropped at morphogenic furrow. A small area in the middle of the eye disc (120μm 

wide by 275μm long) was analyzed. (D) An X-Y view of a confocal Z-series of eye 

imaginal disc overexpressing p53+. (E) TUNEL positive cells were marked using the 

spot function. Distribution profiles of TUNEL positive cells were constructed for 5 

imaginal wing discs of each genotype and averaged together. 
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CHAPTER III 

p53-INDEPENDENT APOPTOSIS LIMITS DNA DAMAGE-INDUCED 

ANEUPLOIDY 
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Foreword 

 

The work presented in this chapter has been submitted to Genetics.  Laura 

McNamee and Michael Brodsky are the authors for the data presented. 

 

 

 

 

Introduction 

 

 Eukaryotic cells employ diverse mechanisms to preserve the structure and 

function of their genome following chromosome damage.  Unicellular organisms rely on 

multiple DNA repair systems and cell cycle arrest to prevent propagation of genome 

damage, while multi-cellular organisms additionally activate programmed cell death 

pathways to eliminate cells following damage (Sancar et al. 2004; Roos and Kaina 2006). 

In response to double strand DNA breaks (DSBs), the MRN complex (Mre11, Rad50 and 

Nbs1) process the damage and activate the related ATM and ATR kinases. ATM and 

ATR phosophorylate many substrates including repair proteins and the downstream 

kinases Chk1 and Chk2, which regulate cell cycle arrest and apoptosis. The p53 

transcription factor plays an evolutionarily conserved role connecting the DNA damage 

signaling pathway to the core apoptotic machinery (Murray-Zmijewski et al. 2006). 
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Direct phosphorylation of mammalian p53 by ATM and Chk2 activates many targets 

genes including p21, which regulates cell cycle arrest, and pro-apoptotic Bcl-2 family 

members (Roos and Kaina 2006).  The p53 homologs p63 and p73 also contribute to p53-

dependent apoptosis by helping p53 bind NOXA and bax promoters in some, but not all 

cell types (Flores et al. 2002; Senoo et al. 2004).   

 Approximately 50% of all human cancer cells lack functional p53, therefore 

reducing their susceptibility to induction of apoptosis by theurapeutic agents that cause 

DNA damage. One mechanism to activate p53-independent apoptosis is the activation of 

p73 by the c-abl, Chk1 and Chk2 kinases following DNA damage (Yuan et al. 1999; 

Irwin et al. 2003; Urist et al. 2004; Ozaki and Nakagawara 2005)}. Although Chk1 and 

Chk2 are implicated in activation of apoptosis via p73 and E2F1 (Roos and Kaina 2006), 

other studies suggest that Chk1-mediated cell cycle arrest acts to promote survival 

following damage of p53 mutant cells by preventing cell cycle progression in the 

presence of unrepaired DNA damage. In one recent study ATM, ATR, Chk1 and 

p38MAPK/MK2 were associated with cell cycle delay and inhibition of this response 

resulting in caspase-3 activation and mitotic catastrophe (Reinhardt et al. 2007). In 

another study using zebrafish embryos and mammalian cells that lack both p53 and Chk1 

function, ATM and ATR are required to activate an unusual apoptotic response requiring 

caspase-2, but not caspase-9 or caspase-3(Sidi et al. 2008).  

 In Drosophila, G2 arrest following IR requires the ATR, ATRIP and Chk1 

homologs (Mei-41, Mus304 and Grp, respectively) (Brodsky et al. 2000b; Brodsky et al. 

2004; de Vries et al. 2005), while induction of apoptosis requires ATM, Chk2 (Tefu and 
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Mnk) and p53 (Brodsky et al. 2000a; Ollmann et al. 2000; Peters et al. 2002; Brodsky et 

al. 2004; Oikemus et al. 2004; Silva et al. 2004; Song et al. 2004). p53 activates 

expression of several pro-apoptotic genes following IR, including reaper (rpr), hid, and 

sickle (skl) (Brodsky et al. 2000a; Sogame et al. 2003; Brodsky et al. 2004). hid is 

essential for the rapid induction of apoptosis and rpr plays a smaller role (Brodsky et al. 

2004; Moon et al. 2008). rpr and hid encode proteins that induce apoptosis by directly 

binding and inhibiting DIAP1 (Drosophila Inhibitor of Apoptosis Protein 1), leading to 

activation of an initiator caspase, Dronc, and two effector caspases, Drice and Dcp-

1(Chew et al. 2004; Daish et al. 2004; Waldhuber et al. 2005; Kondo et al. 2006; Xu et al. 

2006). In addition, Hid and Rpr activity at mitochondria induces changes in 

mitochondrial ultrastructure and is required for optimal cell death after DNA damage 

(Holley et al. 2002; Olson et al. 2003; Abdelwahid et al. 2007; Goyal et al. 2007).  

 The JNK signaling pathway helps regulate apoptosis in response to DNA damage 

and in response to other cellular stresses in Drosophila. Following IR, JNK signaling is 

activated in a p53-dependent manner and inhibition of JNK signaling reduces caspase 

activation (McEwen and Peifer 2005). Following UV irradiation, JNK signaling is 

required for apoptosis, but p53 is not and instead appears to help repair UV damage 

(Jassim et al. 2003; Luo et al. 2007). JNK-dependent apoptosis can also act to eliminate 

cells with inappropriate gene expression during development. For example, the JNK 

pathway is activated in the developing Drosophila wing in response to abnormal activity 

of the morphogens Dpp or Wg (Adachi-Yamada et al. 1999; Adachi-Yamada and 

O'Connor 2002). In another example, clones of cells heterozygous for mutations in 
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ribosomal protein genes (called Minutes) are eliminated by JNK-dependent apoptosis 

(Morata and Ripoll 1975; Moreno et al. 2002a). Similar to the response to IR, activation 

of the JNK pathway by UV or cell competition activates the pro-apoptotic gene, hid (de 

la Cova et al. 2004; Carter et al. 2007). However, IR is the only activator of JNK 

signaling known to require Drosophila p53. 

 Although rapid induction of apoptosis following IR requires Drosophila p53, 

there is also evidence for a p53-independent response to chromosome damage. The high 

levels of spontaneous apoptosis associated with loss of telomere protection are only 

partly suppressed by loss of p53 (Oikemus et al. 2004; Oikemus et al. 2006).  Similarly, 

while the early apoptotic response to IR is p53-dependent, lower levels of p53-

independent apoptosis are observed at later time points (Wichmann et al. 2006).  In both 

cases, p53-independent apoptosis is associated with caspase activation, but the signaling 

pathways that act upstream of caspases have not been described. Additional p53 family 

members cannot contribute to this reduced or delayed apoptotic response since 

Drosophila only has a single p53 homolog. 

 Here, we examine the regulation and function of p53-independent apoptosis 

following IR. We show that p53-independent apoptosis requires hid, which is a target of 

IR-induced JNK signaling.  Mutations in grp or puc sensitize p53 mutant cells to IR-

induced apoptosis, suggesting that cell cycle progression and JNK signaling are critical 

for this response.  We find that this p53-independent apoptosis acts to maintain genomic 

stability by reducing the number of IR-induced aneuploid adult cells exhibiting the 

Minute phenotype.  Based on the results from this study and others, we propose a model 
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in which some cells undergoing p53-independent apoptosis are eliminated by this 

mechanism. 

 

 

Results 

 

p53-independent apoptosis requires the pro-apoptotic genes hid and dronc.  

Apoptosis was examined following irradiation of third instar Drosophila imaginal wing 

discs. For all experiments in this study, at least 5 discs were examined for every genotype 

and time point shown. Untreated wild type or p53 mutant wing discs exhibit very low 

levels of spontaneous apoptosis. Four hours after irradiation with 4000 rads of X-rays, 

there is a robust induction of apoptosis, as assayed by acridine orange and cleaved 

caspase-3 staining in wild type discs (anti-C3)(Fig. 3.1A, Fig. 3.2A, and Fig. 3.3A). p53 

or mnk mutant discs show no response at 4 hours, but a significant increase between 16 

and 24 hours (Fig. 3.1B and F; Fig. 3.3B-C), confirming previously described results 

(Wichmann et al. 2006). This study also indicated that one or more of the pro-apoptotic 

genes in the genomic region defined by the Df(3L)H99 deletion is likely to contribute to 

p53-independent apoptosis. We tested the effect of loss-of-function mutations in one of 

these genes, hid. hid single mutant wing discs fail to induce apoptosis at early time points 

(4 to 8 hours) and have reduced apoptosis compared to wild type at later time points (16 

to 24 hours; Fig. 3.1A and C; Fig. 3.3A and F), confirming that hid, a p53 target gene, is 

required for p53-dependent apoptosis at early time points (Brodsky et al. 2004). At 24 



 81

hours following IR, hid, p53 double mutant discs exhibit a significant decrease in 

apoptosis (Fig. 3.1B-D).  Quantification of anti-C3 staining in a hid, p53 mutant showed 

a 7 and 11-fold reduction in the anti-C3 staining compared to a p53 or hid single mutant 

discs, respectively, demonstrating that hid is required for p53-independent apoptosis (Fig. 

3.1E-F).   

 The requirement for hid function and induction of cleaved caspase-3 staining 

suggests that the caspase proteins acting in the core apoptotic machinery in Drosophila 

would regulate p53-independent apoptosis. Wing discs mutant for the Drosophila 

caspase-9 homolog dronc suppress most or all IR-induced acridine orange and anti-C3 

staining at both early and late time points (Fig. 3.2B and Fig. 3.3D), indicating that dronc 

is required for both p53-dependent and p53-independent apoptosis.  Similarly, in discs 

expressing the anti-apoptotic baculovirus protein p35, which binds and inhibits the 

partially redundant effector caspases, Dcp-1 and Drice (Xue and Horvitz 1995; Yoo et al. 

2002; Kondo et al. 2006; Xu et al. 2006; Baum et al. 2007; Lannan et al. 2007), no 

acridine orange staining was observed at any time point (Fig. 3.3E).  Because p35 inhibits 

effector caspases following proteolytic cleavage, cleaved caspase-3 staining should still 

be observed (Yoo et al. 2002). To compare the pattern of anti-C3 staining between cells 

that do or do not express p35, p35 was specifically expressed in the posterior half of wild 

type or p53 mutant wing discs. Following irradiation of these discs, anti-C3 staining is 

clearly induced in both halves, but the staining is more diffuse and slightly delayed in the 

p35-expressing region (Fig. 3.2C-D).  
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Figure 3.1.  hid is required for p53-independent apoptosis. (A-D) Apoptosis was 

assayed in wild type (wt), p53, hid, and p53, hid mutant imaginal wing discs at different 

time points following ionization radiation (IR) by staining with an antibody to cleaved 

caspase 3 (anti-C3). (A) A large induction of apoptosis is observed from 4 to 16 hours 

(hrs) following DNA damage in wt wing discs. (B-D) Apoptosis is delayed and reduced 

in p53 mutant wing discs compared to wild type. Apoptosis is induced in p53
 and hid 

single mutant wing discs, but not in p53, hid double mutant wing discs at 16 and 24 hours 

following IR. (E-E”) Quantification of anti-C3 staining (see methods) (E) A confocal z-

series of a imaginal wing disc stained with anti-C3. (E')  A high intensity threshold was 

used to create an isosurface for anti-C3 stained regions.  (E'') A low intensity threshold 
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was used to create an isosurface for the entire disc.  (F) The percent volume of anti-C3 

staining was quantified at 0, 16, and 24 hours after treatment with IR. Anti-C3 staining 

does not increase in hid, p53 double mutant discs.  For all discs and data points shown, at 

least five discs were analyzed.  Error bars indicate the standard error of the mean. 
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Figure 3.2. Basal and apical caspases are required for p53-independent apoptosis as 

detected by anti-C3. (A) p53-dependent apoptosis is observed 4 hours following IR. (B) 

Anti-C3 staining is not induced in wings discs mutant for the apical caspase dronc. (C 

and D) Expression of the baculovirus protein p35 (under control of the posterior-specific 

driver en-gal4) alters the timing and intensity of anti-C3 staining by blocking the activity 

of effector caspases following cleavage by apical caspases. In an otherwise wild type 

disc, the pattern of anti-C3 staining is initially altered following IR treatment and 

continues to accumulates over time. In a p53 mutant wing disc, more diffuse anti-C3 

staining accumulates by 24 hours following IR treatment.  
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Figure 3.3 
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Figure 3.3. Basal and apical caspases and Hid are required for p53-independent 

apoptosis as detected by acridine orange. (A) p53-dependent apoptosis is observed four 

hours following IR. (B and C) p53- and Mnk-independent apoptosis begins between 8 

and 16 hours following IR.  (D and E)  Acridine orange staining is not induced in wings 

discs mutant for the apical caspase dronc or expressing the baculovirus protein p35 

(under control of the ubiquitous actin-Gal4 driver), which inhibits the activity of the 

effector caspases Dcp-1 and Drice. (F and G) The pro-apoptotic gene hid is required for 

p53-dependent apoptosis at early time points and for most p53-independent apoptosis at 

late time points.   
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Discs expressing p35 were also used to examine if Hid protein is induced during 

p53-independent apoptosis. p35 expression allows cells with induced hid gene expression 

to accumulate Hid protein without undergoing cell death. Induction of Hid expression is 

observed at 16 and 24 hours following irradiation of p53 mutant cells expressing p35 

(Fig. 3.4A, posterior cells). Overall, our analysis of hid and caspase function during p53-

independent apoptosis indicates that this response to DNA damage utilizes the 

conventional Drosophila apoptotic machinery. 

 

Regulation of p53-independent apoptosis by the JNK pathway.  Since hid is a 

target of the JNK pathway in response to some other cellular stresses, the role of JNK 

signaling on Hid induction was examined. puc is a JNK target gene that encodes a JNK 

phosphatase; it normally acts in a negative feedback loop to limit JNK signaling and can 

be overexpressed to block JNK activity(Martin-Blanco et al. 1998; Moreno et al. 2002a; 

Kanda and Miura 2004; McEwen and Peifer 2005). Overexpression of puc reduced the 

induction of Hid in irradiated p53 mutant discs (compare posterior compartments in Fig. 

3.4A-B). puc overexpression in the posterior compartment of p53 mutant discs also 

reduces anti-C3 staining following IR compared to the anterior compartment (Fig. 3.4C-

D); the ratio of posterior to anterior anti-C3 staining is 1.4 in p53 mutant discs and is 

reduced to 0.3 in p53 mutant discs overexpressing puc in the posterior. These results 

indicate that JNK regulates induction of Hid following and is required for full induction 

of p53-independent apoptosis. It is not clear whether the remaining induction of apoptosis 
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in these discs is due to incomplete inhibition of JNK activity or some JNK-independent 

apoptosis. 

 To confirm that Hid is expressed in cells with elevated JNK activity during p53-

independent apoptosis, expression of a puc-lacZ reporter, puc
A29, was examined in 

irradiated discs (Martin-Blanco et al. 1998; Kanda and Miura 2004). p53 mutant cells 

with cytoplasmic expression of Hid 24 hours following irradiation also exhibit nuclear 

lacZ staining (Fig. 3.4E). We have confirmed the results of a previous study (McEwen 

and Peifer 2005) that induction of puc-lacZ 4 hours following IR is p53-dependent (data 

not shown), but find that p53 mutant discs upregulate puc-lacZ 16-24 hours following 

irradiation (Fig. 3.5A).  These results indicate that JNK activity is both induced and 

required during p53-independent apoptosis. 
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Figure 3.4. The JNK pathway regulates p53-independent induction of Hid and 

apoptosis following IR. (A) HID protein levels are increased following irradiation of 

p53 mutant wing discs cells. The white line marks the anterior (left) /posterior (right) 

boundary. The baculovirus anti-apoptotic protein p35 is expressed in posterior cells using 

UAS-p35 and an engrailed-Gal4 driver. Scale bars = 50 μm. (B) Induction of HID 

protein by irradiation is blocked in p53 mutant cells that express the JNK inhibitor puc.  
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(C) puc expression reduces induction of p53-independent apoptosis following IR. 

Apoptosis is assayed by anti-C3 staining.  (D) Quantification of anti-C3 staining in p53- 

cells compared to p53- cells overexpressing puc in the posterior.  For each genotype, 

levels of anti-C3 staining were quantified in the anterior (A) and posterior (P) in five 

discs.  (E) At higher magnification, irradiation-induced HID (green) and Puc-lacZ (red) 

are expressed in overlapping cells in the posterior of puclacZ/+, p53 mutant wings discs 

expressing p35. Most stained cells express both Puc-lacZ and Hid (filled arrowhead). 

Some cells express Puc-lacZ, but not Hid. Scale bars = 20μm 
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puc gene dosage is rate limiting for JNK activity; cells heterozygous for puc 

exhibit hyperactivation of the JNK pathway (Martin-Blanco et al. 1998).  If the level of 

JNK activation determines the amount of p53-independent apoptosis, then p53 mutant 

discs heterozygous for puc mutations should exhibit increased apoptosis. At 16 and 24 

hours after IR, there is a 3 and 4-fold increase in anti-C3 staining in p53 mutant discs that 

are also heterozygous for puc compared to p53 single mutant discs (Fig. 3.5C-D, and G).  

Thus, the JNK pathway is also limiting for the full induction of p53-independent 

apoptosis following IR. 

 

Drosophila Chk1 is a negative regulator of p53-independent apoptosis. Unlike 

p53-dependent apoptosis, the induction of p53-independent apoptosis following 

irradiation correlates with cell cycle progression. IR-induced G2 arrest in the wing disc 

lasts up to 8 hours and requires the Drosophila Chk1 kinase homolog grp (Fogarty et al. 

1997; Brodsky et al. 2000a), even in the absence of p53 function (Fig. 3.6C- D). While 

IR-induced apoptosis in wild type discs begins during G2 arrest (within 3-4 hours), 

apoptosis in p53 mutant discs occurs following resumption of cell cycle progression. IR-

induced apoptosis is significantly increased in grp; p53 double mutant discs at 12 and 16 

hours compared to p53 single mutant discs (Fig. 3.5C, E, and H). Similarly, apoptosis is 

increased in grp, mnk double mutant wing discs compared to mnk single mutant discs 

(Fig. 3.7A, B, and E).  Previous studies have established that, unlike several other cell 

cycle checkpoint genes, mutations in mnk and grp do not affect the frequency of 

chromosome breaks following IR (Jaklevic and Su 2004; Oikemus et al. 2006), indicating 
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that the increased apoptosis is due to a defect in cell cycle arrest, not simply an increase 

in unrepaired DNA breaks.   

 In cultured mammalian cells that lack both p53 and Chk1-dependent cell cycle 

arrest, DNA damage can induce a type of mitotic catastrophe in which the mitotic marker 

phosphohistone-3 and cleaved caspase-3 are present simultaneously in the dying cells 

(Reinhardt et al. 2007). However, in irradiated p53 mutant discs, this analysis reveals two 

separate cell populations with the characteristic apical localization of mitotic cells 

marked with anti-phosphohistone-H3 and basal localization of apoptotic cells marked 

with anti-cleaved caspase-3 (Fig. 3.6E-F). These results indicate that apoptosis is not 

activated in cells that are actively progressing through mitosis.  

 Since the JNK and cell cycle arrest pathways both help regulate p53-independent 

apoptosis, the effect of grp function on induction of the JNK reporter puc-lacZ was 

examined. puc-lacZ expression is observed starting 16 hours after IR in p53 mutant discs, 

but is present at higher levels beginning at 12 hours in grp; p53 double mutant discs (Fig. 

3.5A-B). The effect of both inactivating cell cycle arrest and reducing the level of 

negative feedback signaling by puc was examined in a grp; puc/+, p53 triple mutant 

discs, which have a higher level of apoptosis than either grp; p53 or puc/+, p53 double 

mutant discs (Fig. 3.5D-F and I). Thus, while inactivation of cell cycle delay accelerates 

the formation of cells with increased JNK signaling, decreasing the negative feedback 

signal from puc can further increase the number of cells that undergo p53-independent 

apoptosis following IR.  



 93

Figure 3.5. grp and puc limit p53-independent apoptosis following IR. (A and B)  

lacZ expression is increased following irradiation of puc
A29

/+, p53 mutant wing discs. 

puc
A29 is an enhancer trap line in which the lacZ reporter is inserted in the puc locus. 

Induction of lacZ is stronger and faster in grp; puc
A29

/+, p53 mutant discs, which are 

defective for cell cycle arrest following DNA damage. (C-F) Apoptosis was assayed 

using anti-C3.  (C-E) grp; p53 and puc/+, p53
 mutant discs have increased apoptosis 

compared to p53 single mutant discs. (F) Triple mutant grp; puclacZ/+, p53 mutant discs 

have increased apoptosis compared to either puc/+, p53 or grp; p53 double mutant discs. 

(G) Quantification of anti-C3 staining in puc/+, p53 compared to p53
 mutant discs.  (H) 

Quantification of anti-C3 staining in p53 and grp; p53 mutant discs.  (I) Quantification of 

anti-C3 staining in p53 single mutant discs, puc/+, p53 or grp; p53 double mutant discs 

and grp; puclacZ/+, p53 triple mutant discs. Apoptosis was examined 24 hours following 
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IR treatment. For each disc and data point, at least five wing discs were examined.  Error 

bars indicate the standard error of the mean.   
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Figure 3.6. The checkpoint gene, grp, suppresses p53-independent apoptosis 

following irradiation. (A and B) Apoptosis was assayed in p53
  and grp; p53

 mutant 

imaginal wing discs at different time points following IR by staining with anti-C3.  grp; 

p53 double mutant discs have increased apoptosis compared to p53 single mutant discs.  

(C and D) Developing wing discs were stained after treatment with IR with anti-

phospho-Ser10 histone-3 (PH3) to detect mitotic cells.  Mitotic entry is largely blocked at 

4 and 8 hours following IR in p53 single mutant wing discs, but not in grp; p53 double 
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mutant discs. (E) X-Y view of a confocal z-series of a grp; p53 mutant wing disc, 16hrs 

after IR, stained with anti-C3 (red), PH3 (green), and DAPI (blue).  (F) X-Z cross-section 

of same wing disc viewed at position marked with yellow lines.  Little or no overlap of 

apoptotic and mitotic cells is observed. 
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Figure 3.7. The checkpoint gene, grp, suppress Mnk-independent apoptosis 

following irradiation. (A and B) Apoptosis was assayed in grp; mnk
 and mnk

  mutant 

imaginal wing discs at different time points following ionization radiation (IR) by 

staining with anti-C3.  grp; mnk double mutant discs have increased apoptosis compared 

to mnk single mutants.  (C and D) Developing wing discs were stained after treatment 

with IR with anti-phospho-Ser10 histone-3 (PH3) to detect mitotic cells.  Mitotic entry is 
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largely blocked at 4 and 8 hours following IR in mnk single mutant wing discs, but not in 

grp; mnk double mutant discs. (E) The percent volume of anti-C3 staining was quantified 

at 0, 8, 12, and 16hrs after treatment with IR. Double mutant discs lacking the cell cycle 

checkpoint gene grp have elevated irradiation-induced staining compared to single 

mutants. n = 5. Error bars indicate the standard error of the mean. 
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 p53-independent apoptosis reduces the number aneuploid cells recovered following 

IR.  Having established that JNK-dependent induction of HID regulates p53-independent 

apoptosis, the role of p53-dependent and p53-independent apoptosis in maintaining 

genomic integrity was examined using an assay based on haploinsufficiency of ribosomal 

protein genes.  A previous study used loss of heterozygosity (LOH) at individual loci to 

characterize the genetic consequences of IR or mutation of DNA repair loci; most LOH 

was accompanied by loss of multiple genetic markers and by the Minute phenotype, due 

to haploinsufficiency of ribosomal protein genes (Baker et al. 1978). These results 

indicate that LOH was largely due to induction of segmental aneuploidy (loss of large 

chromosomal regions) rather than induction of point mutations. This conclusion is 

consistent with cytological data showing that a high frequency of cells treated with IR 

enter M-phase with chromosome rearrangements (Gatti et al. 1974) that can give rise to 

aneuploidy following completion of mitosis. To probe genetic loss across the entire 

genome, we score the frequency of Minute cells following IR. Minute genes make up 

approximately 65 different loci present throughout the euchromatic genome (Marygold et 

al. 2007), meaning that for most large chromosome regions, loss of one copy is likely to 

result in the Minute phenotype. Previous studies have confirmed that diverse methods of 

inducing chromosome damage induce this phenotype, including mutations in telomere 

protection genes, (Oikemus et al. 2004; Oikemus et al. 2006), mutations in DNA damage 

response and repair genes (Brodsky et al. 2000), telomeric loss due to dicentric 

chromosomes (Ahmad and Golic 1999), and induction of DNA breaks by P-element 

mobilization (Engels et al. 1987). Thus, it is likely that the induction of Minute bristles 
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following IR is due to chromosome damage rather than other types of cellular damage. It 

is possible that a small percentage of defective bristles are not due to induction of 

aneuploidy; these events would probably reflect other types of genetic damage. 

 Minute cells were scored in adults following X-ray treatment during larval 

development. If IR-induced apoptosis eliminates aneuploid cells, then blocking this 

apoptosis should increase the number of Minute cells that survive to adulthood. Because 

the X-ray dose used in our others experiments (4000 rads) is pupal lethal, a lower dose 

(1000) was used. Following irradiation of wild type larvae, approximately two percent of 

bristles exhibit the Minute phenotype (Fig. 3.8A and C). The bristle phenotype observed 

after IR is often more extreme than observed with the viable Minute mutations, 

suggesting the loss of very strong or haplo-lethal Minutes (Lindsley et al. 1972; Marygold 

et al. 2007). Other common bristle phenotypes associated with recessive or gain-of-

function mutations in non-Minute loci, such as thicker or misshapen bristles, were not 

observed. No difference in the number of defective bristles was seen in p53 mutant 

compared to wild type animals, indicating that p53-dependent apoptosis is not required to 

eliminate Minute cells following IR (Fig. 3.8C). However, when p53-independent 

apoptosis is also blocked, the frequency of IR-induced Minute bristles increased from two 

to five percent of all cells (Fig. 3.8B-C). These results indicate that in the absence of 

apoptosis, irradiation results in approximately five percent of all bristle precursor cells 

becoming aneuploid cells that will exhibit the Minute phenotype. p53-independent 

apoptosis acts to eliminate the majority (3/5ths) of these cells. If bristle precursor cells 

are representative of the approximately 50,000 cells in the developing wing disc, roughly 
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2500 (5% of 50,000) Minute cells would be induced by IR in one disc and roughly 1500 

(3%) would be eliminated by apoptosis in wild type, but not p53, hid mutant wing discs.  
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Figure 3.8. p53-independent apoptosis limits the accumulation of Minute cells 

following irradiation. (A-B) Aneuploid cells with the Minute phenotype are induced 

following irradiation of the developing wing. Some of these cells may be eliminated by 

hid-dependent apoptosis. Others survive and differentiate into adult cell types. Adult 

bristles form a stereotypic pattern on the notum of an untreated, wild type animal.  

Following irradiation, some adult bristles exhibit the Minute phenotype, shorter and 

thinner bristles. An example is indicated with an arrow.  (C) The frequency of Minute 

bristles induced by IR is higher in hid, p53 double mutant animals compared to wild type 

or p53 single mutant animals.  One hundred twenty-five animals were scored for each 

genotype in five independent experiments.  Error bars indicate standard error of the 

mean. 
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Altered brk expression following IR.  The observations that IR induces the 

formation of chromosome rearrangements in dividing larval cells (Gatti et al. 1974) and 

of adult aneuploid cells with the Minute phenotype (Fig. 3.8) suggests that the Minute 

phenotype may first appear in the irradiated larval tissue. Phenotypes associated with 

Minute cell clones induced in the developing wing include apoptosis (activated caspase-

3), JNK pathway activation (assayed by puc-lacZ) and ectopic expression of the 

transcriptional repressor brinker (brk) due to reduced signaling by the dpp pathway 

(Moreno et al. 2002a; Tyler et al. 2007). As described above, we observe increased puc-

lacZ and apoptosis following IR, but the JNK pathway is known to be activated by 

multiple cellular stresses. Because ectopic brk expression is sufficient to activate JNK-

dependent apoptosis (Martin et al. 2004), this transcriptional change could contribute to 

the elimination of Minute cells (Moreno et al. 2002a). brk expression is normally 

repressed in the center of untreated wing discs and gradually increases toward the 

anterior and posterior edges of the disc (brk-lacZ in Fig. 3.9). At 16 and 24 hours 

following IR, individual cells in the center of the disc ectopically express brk and 

expression in the lateral regions becomes more irregular (Fig. 3.9A) and inhibition of 

apoptosis by p35 expression increases this effect. An average of 9 (s.e.m. = 2.6, n = 5) 

cells ectopically express high levels of brk in the center of the wing discs expressing p35, 

while an average 2.6 (s.e.m. = 1.7, n = 5) cells ectopically express brk without p35.  

Ectopic brk expression following IR was observed in both wild type and p53 mutant 

discs, revealing that induction of the Minute mutant phenotype by IR can occur in parallel 

to p53-dependent apoptosis and is not a compensatory response to the absence of p53 
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(Fig. 3.9B-D). Although p53-dependent apoptosis is induced within 4 hour after IR 

treatment, ectopic expression of brk is not observed at this time point, even in wild type 

discs (data not shown), indicating that altered brk expression is not a secondary 

consequence of induced apoptosis. In contrast, engrailed, another gene with restricted 

expression in the developing wing disc, is not ectopically expressed following IR (data 

not shown), indicating that that ectopic expression of brk is not due to a genome-wide 

mis-regulation of genes with restricted expression patterns in the developing wing. 
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Figure 3.9. brk is ectopically expressed following irradiation. (A-D) A lacZ enhancer 

trap reporter inserted at the brk locus is used to monitor brk expression.  Without IR, brk 

expressed at higher levels in the anterior (left) and posterior (right) regions of the 

developing wing and lower levels in the central region. (A-C)  Following IR, altered lacZ 

expression is observed in brk-lacZ/+; p53- discs, brk-lacZ/+;p53- discs expressing p35  

and brk-lacZ/+ discs expressing p35.  (A) Without p35, the lacZ expression pattern is 

uneven in the lateral regions of the disc.  (B-C) With p35, ectopic expression of brk is 
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also observed in individual cells in the medial region of the developing disc near the 

anterior-posterior boundary. Scale bar = 50μm.  (D) Higher magnification of the medial 

region of the wing disc. Imaginal discs treated with IR contain cells ectopically 

expressing brk. Medial disc cells that clearly express ectopic brk were counted. Filled 

arrows mark cells in the medial region that were scored as positive for ectopic brk 

expression. Outlined arrows mark medial cells with inappropriate levels of lacZ 

expression that were not scored because they are within or adjacent to the normal brk 

expression domain. Scale bars = 20μm.  For each genotype 5 wing discs were scored. 
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Discussion 

 

While p53 plays a conserved role in metazoans connecting the DNA damage 

response pathway to the core apoptotic machinery, delayed or reduced levels of apoptosis 

following chromosome damage are still observed in the absence of p53 function. Here, 

we show that p53-independent apoptosis in Drosophila requires the pro-apoptotic gene 

hid, the apical caspase, Dronc and effector caspases inhibited by the baculovirus protein 

p35.  The JNK pathway is required and limiting for this response and acts upstream of 

HID protein expression. The cycle checkpoint gene grp and the JNK phosphatase 

puckered are both negative regulators of this response and mutations in these genes 

strongly sensitize p53 mutant cells to IR. Induction of p53-independent apoptosis is 

required to limit accumulation of aneuploid cells following IR.  Genetic data indicate that 

canonical DNA damage response pathways are not required for p53-independent 

apoptosis. We propose an alternative mechanism (Figure 3.10) in which either incorrect 

repair of chromosome breaks or loss of telomere protection generates cells with 

segmental aneuploidy and the haploinsufficiency of genes required for cell survival lead 

to apoptosis. 
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Figure 3.10. Model for p53-dependent and p53-independent apoptosis.  In response 

to DNA damage, cells sense DNA breaks and activate repair, cell cycle delay and 

apoptosis. DNA damage detection by the ATM and ATR kinases activate p53 to induce 

apoptosis (orange boxes). p53 regulates the proapoptotic genes hid and rpr, resulting in 

caspase activation (red boxes).  In parallel, grp mediates a cell cycle arrest allowing time 

for DNA repair. Incorrect repair of chromosome breaks followed by progression through 

mitosis will result in cells with reduced copy number of large chromosome regions 

(segmental aneuploidy). Haploinsufficiency of genes in these regions can induce 

apoptosis by ectopic brk expression, JNK pathway activation, and induction of hid 

expression (green boxes). 
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 Several observations indicate that apoptosis can be induced following DNA damage 

or loss of telomere function without the activity of the central components of the well-

characterized ATM/ATR/MRN DNA damage signaling pathways. In Drosophila, these 

pathways play critical roles in preventing telomere fusion. Loss of one or more 

components of these pathways leads to high levels of apoptosis, likely due to loss of 

telomere protection and frequent chromosome breaks (Sibon et al. 1999; Ciapponi et al. 

2004; Oikemus et al. 2004; Silva et al. 2004; Song et al. 2004; Ciapponi et al. 2006; 

Oikemus et al. 2006). In both tefu and nbs mutants, a significant percentage of this 

apoptosis is suppressed by mutations in p53 or mnk (Oikemus et al. 2004; Oikemus et al. 

2006), but the remaining cell death reveals an mnk- and p53-independent mechanism. It 

is possible that the components of the DNA damage signaling pathway mediate this 

response through other effector molecules. However, all combinations of double mutants 

in tefu, mus304, and nbs exhibit high levels of apoptosis, suggesting that the activation of 

apoptosis is independent of these molecules. In genetic backgrounds with normal 

telomere protection, IR can be used to induce chromosome breaks resulting in a rapid 

increase in apoptosis, which requires mnk and p53 (Brodsky et al. 2000a; Jin et al. 2000; 

Ollmann et al. 2000; Xu et al. 2001; Sogame et al. 2003; Brodsky et al. 2004; Oikemus et 

al. 2004) and a delayed response to IR in the absence of p53 or mnk (Wichmann et al. 

2006)(this study).  These results do not absolutely rule out a role for other, untested 

components of DNA damage response pathway in p53-indepdenent apoptosis. However, 

it seems likely that the signal that activates this pathway, unprotected chromosome ends, 

has mostly been removed prior to the first appearance of p53-dependent apoptosis. The 
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activation of ATM and ATR kinases following IR (as measured by phospho-H2Av 

staining) largely subsides within a few hours of IR in embryos (Kusch et al. 2004) and 

discs (unpublished results), before we observe p53-independent apoptosis, JNK target 

gene expression, or induction of HID.  

 Not only are core components of the DNA damage response pathway not required 

for apoptosis following IR or telomere fusion, mutation of some of these genes can 

increase apoptosis. Many of these genes are required for repair of IR-induced breaks, 

which could provide a simple mechanism for increased apoptosis following IR (Hari et 

al. 1995; Brodsky et al. 2000b; Oikemus et al. 2004; Wichmann et al. 2006). Unlike some 

of the upstream components of the signaling response, grp is required for cell cycle arrest 

following IR, but cells mutant for grp or for grp and mnk do not show a decreased rate of 

chromosome break repair (Brodsky et al. 2000b; Jaklevic and Su 2004; Oikemus et al. 

2006)(this study). grp, p53 and mnk, p53 double mutant discs exhibit accelerated 

activation of p53- and Mnk-independent apoptosis. The correlation of cell cycle 

progression following IR of single and double mutant discs with accelerated p53-

independent apoptosis suggests that cell cycle delay is the critical role of grp in limiting 

p53-independent apoptosis. While it remains possible that grp regulates responses 

independent of its role in cell cycle progression, such responses have yet to be described 

in Drosophila.   

 grp function also regulates induction of JNK signaling. Following IR, 

expression of the JNK reporter gene puc is rapidly induced in a p53-dependent manner 

(McEwen and Peifer 2005). Similar to induction of apoptosis, we find that p53-
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independent induction of puc by IR occurs after resumption of cell cycle progression and 

is accelerated by mutations in grp. Inhibition of JNK signaling by overexpression of puc 

substantially reduces p53-independent induction of HID protein and apoptosis, indicating 

that the majority of this response is JNK-dependent. The remaining apoptosis may reflect 

either incomplete inhibition of JNK signaling by puc overexpression or may suggest that 

an alternative pathway acts in parallel to JNK to promote a lower level of p53-

independent apoptosis.  Together, our data and previous studies supports the following 

sequence of events in p53 mutant discs following IR: activation of the DNA damage 

response pathway by chromosome breaks leads to cell cycle arrest and DNA repair; 

following completion of DNA repair, a subset of cells that reenter the cell cycle activate 

the JNK pathway leading to apoptosis due to increased expression of hid.  

 The haploinsufficient phenotype of Minute genes was used to test the role of p53-

dependent and p53-independent apoptosis on genomic stability. Because Minute genes 

have a common phenotype and are spread throughout the genome, this method provides a 

convenient functional assay for the most frequent source of genetic loss following IR, 

segmental aneuploidy. Using this assay, we examined the effect of blocking IR-induced 

apoptosis during development on the accumulation of aneuploid cells in the adult. The 

induction of p53-dependent apoptosis is often assumed to help preserve genome stability 

by eliminating cells with severe chromosome damage. Under our experimental 

conditions, we did not find evidence for this model, despite the very high levels of p53-

dependent apoptosis that are induced following IR. It is possible that the importance of 

p53-dependent apoptosis in genome stability depends on the source of chromosome 
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damage. For example, repair of DNA breaks following IR can lead to restoration of 

normal chromosome structure or to chromosome rearrangements that lead to aneuploidy; 

induction of apoptosis by the canonical DNA damage response pathway will not be able 

to distinguish between these possible outcomes. However, nearly all breaks formed 

following loss of telomere protection are likely to lead to aneuploidy; any reduction in the 

number of cells with these breaks is likely to reduce the number of aneuploid cells.  

 In contrast to the effect of only blocking p53-dependent apoptosis, there is a 

significant increase in the number of aneuploid cells recovered when p53-independent 

apoptosis is also blocked. In our experiments, approximately two percent of cells are 

Minute following IR treatment of wild type or p53 mutant cells, while this number 

increases to five percent for cells mutant for both p53 and hid. The simplest interpretation 

of these results is that five percent of bristle precursor cells become aneuploid following 

IR and that p53-independent apoptosis eliminates two-thirds of these cells. However, the 

number of adult Minute bristles may not precisely correlate with number of aneuploid 

cells produced and eliminated if the cell division rates of these precursors is altered. 

Regardless, our results clearly demonstrate that p53-independent apoptosis reduced the 

eventual number of aneuploid bristle cells by two-thirds. While our analysis was 

performed in bristle cells, there is no particular reason to suspect that these cells are not 

representative of most Drosophila cell types; bristles were chosen for this analysis solely 

because the Minute phenotype can be used in these cells to score segmental aneuploidy.  

 A key unresolved question in this study is what signal activates p53-independent 

JNK activity and apoptosis. One attractive possibility is that aneuploidy itself is the 
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signal. Our analysis of adult Minute bristles suggests that a significant number of 

aneuploid cells generated following IR are eliminated by apoptosis. Unlike the small 

bristle cell phenotype in adults, a completely specific marker is not available to 

demonstrate that aneuploid cells are present in developing wing disc during p53-

independent apoptosis. However, two changes in gene expression patterns associated 

with Minute cells in the wing disc, expression of the JNK target gene puc and ectopic 

expression of brk (Moreno et al. 2002a), are both observed following IR. Furthermore, 

previous cytological data has demonstrated that chromosome rearrangements likely to 

produce aneuploid cells following completion of mitosis are readily generated following 

similar doses of IR (Gatti et al. 1974). The correlation of p53-independent apoptosis and 

expression of puc and brk with cell cycle progression in discs with or without grp 

mutants is also consistent with a role for aneuploidy in p53-independent apoptosis. Two 

additional observations supported the hypothesis that aneuploidy induces p53-

independent apoptosis. Previous studies have shown that haploinsufficency of Minute 

genes is sufficient to induce apoptosis (Moreno et al. 2002a; Coelho et al. 2005). 

Importantly, induction of spontaneous apoptosis in Minute heterozygous animals does not 

require p53 (Figure 3.11), indicating that this mechanism would eventually be activated 

in aneuploid cells induced by IR, even in cells lacking p53 function. Nonetheless, it 

remains formally possible that some additional response to unrepaired chromosome 

damage could kill these cells before apoptosis due to aneuploidy could be activated. 

However, a recent study using targeted formation of dicentric chromosomes to induce 

p53-dependent and p53-independent apoptosis argues against this possibility; p53-
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independent apoptosis is only observed if the resulting chromosome aberrations result in 

aneuploidy (Titen and Golic, submitted to Genetics).   Thus, formation of chromosome 

breaks alone is insufficient to induce p53-independent apoptosis, indicating that 

generation of aneuploidy is required for this response. 
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Figure 3.11. Minute imaginal wing discs exhibit increased levels of JNK-signaling 

and p53-independent apoptosis.  (A-D) Imaginal wing dics stained with anti-C3.  (A 

and C) wt and p53- imaginal wing disc show no spontaneous apoptosis.  (B and D) 

rpl14
-/+ imaginal wing discs exhibit increased levels of spontaneous apoptosis that is not 

suppressed in a p53- background. (E-F) Levels of lacZ reporter in puc locus are increased 

in rps3
-/+ mutant.  
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 Haploinsufficiency of Minute genes should be sufficient to induce apoptosis in 

aneuploid cells. Minute heterozygous flies show increased apoptosis and JNK activation 

in imaginal tissues, suggesting that these cells are normally under cellular stress (Coelho 

et al. 2005)(Figure 3.11). In addition to the spontaneous apoptosis observed in 

heterozygous Minute tissues, clonal populations of Minutes are actively eliminated by 

their surrounding wild type neighbors, a phenomenon called cell competition (Morata and 

Ripoll 1975; Moreno et al. 2002a; Li and Baker 2007; Tyler et al. 2007). These clones 

ectopically express Brk, which is sufficient to induce JNK-dependent apoptosis (Adachi-

Yamada and O'Connor 2002; Moreno et al. 2002a). Aberrant expression of brk following 

IR should be sufficient to induce some apoptosis in response to aneuploidy. Extensive 

surveys of Drosophila chromosome aberrations indicate that Minute genes represent the 

primary source of loci that are haploinsufficent for normal growth and that all Minute loci 

are likely to encode either ribosomal proteins or translation initiation factors (Lindsley et 

al. 1972; Marygold et al. 2007). These observations do not rule out the possibility that the 

cumulative effect of reduced dosage for many genes in aneuploid cells could also disrupt 

normal gene expression and cell survival, but do indicate that induction of the Minute 

phenotype would be sufficient to induce apoptosis in aneuploid cells generated following 

chromosome damage.  

 Haploinsufficiency of ribosomal genes has the potential to contribute to damage-

induced apoptosis in vertebrates as well. In mice heterozygous for mutations in ribosomal 

protein genes, there is evidence for induction of both p53-dependent and p53-independent 

signaling associated with increased apoptosis and reduced growth (Danilova et al. 2008; 
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McGowan et al. 2008) (Panic et al. 2006). Diamond Blackfan anemia (DBA) is linked to 

haploinsufficiency of at least four different human ribosomal protein genes 

(Draptchinskaia et al. 1999; Gazda et al. 2006; Gazda and Sieff 2006; Cmejla et al. 2007; 

Choesmel et al. 2008) and causes a congenital hypoplastic anemia in which patients 

exhibit low numbers of erythroid precursors in the bone marrow and increased apoptosis. 

(Flygare and Karlsson 2007). As in Drosophila, mammalian ribosomal protein genes are 

widely distributed throughout the genome. Thus, genetic or environmental changes 

resulting in aneuploidy should frequenctly induce the cellular responses associated with 

ribosomal protein gene haploinsufficiency. 

 In summary, we have identified a p53-independent pathway that limits the 

formation of aneuploid cells through JNK signaling and Hid-dependent apoptosis. We 

hypothesize that rather than detect damaged chromosomes directly, this mechanism is 

activated by the reduced dosage of critical genes, such as ribosomal protein genes, in 

aneuploid cells. Our data demonstrates that loss of this response results in an increase in 

visibly defective bristle cells following DNA damage. Thus, in Drosophila, this 

mechanism helps eliminate cells that should reduce the fitness of the adult animal. 

Although other cell types are not as dramatically altered, it is possible that many other 

cell types would exhibit less robust function due to reduced ribosomal protein synthesis. 

In humans and other animals at risk for malignancies, this mechanism could also act as an 

aneuploidy sensor and help reduce the proliferation of cells with chromosome 

aberrations.  

 



 118

Materials and Methods 

 

Drosophila melanogaster genetics. All flies were raised at 25o C.  Genes and alleles are 

described in www.flybase.org. w
1118 was used as the wild type strain. The following 

mutant genotypes were used:  

 

p53
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mnk
P6 

grps
fs1

; p53
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,mnk
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actin-Gal4/+; UASp35/+ 
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/+, p53

1
 

en-Gal4/+; UASpuc, UASp35, p53
1
/+,+, p53

1
 

en-Gal4/+; puc
A29

lacZ, p53
1
/UASp35, p53

1
 

puc
A29

-lacZ/+, p53
1
 

grps
fs1

; puc
A29

-lacZ/+, p53
1
 

brk
38-20

-lacZ/+; p53
1
 

brk
38-20

-lacZ/+; en-Gal4/+;UASp35, p53
1
/+, p53

1
 

brk
38-20

-lacZ/+; en-Gal4/+;UASp35/+ 

dronc
I29

/dronc
I24

 



 119

hid
X14

/hid
05014

 

hid
X14

, p53
1
/ hid

05014
, p53
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Analysis of X-irradiation induced changes in apoptosis, cell cycle, and gene expression. 

Wandering third instar larvae were mock treated or X-irradiated with 4000 rads using a 

Faxitron RX650 X-ray cabinet system (Faxitron X-ray Corporation).  For 12, 16 and 24 

hour time points, larvae were mock treated or X-irradiated with 4000 rads as early third 

instar within Drosophila media. Wandering third instar larvae were collected for 

immunostaining. 

 Immunostaining and acridine orange staining was largely performed as described 

previously (Abrams et al. 1993; Brodsky et al. 2000b; Oikemus et al. 2004). Imaginal 

wing discs from wandering third instar larvae were dissected in 1xPBS and fixed in 4% 

formaldehyde for 30 minutes at room temperature.  Samples were washed in 250µl of 

1xPBS + 0.3% Triton-X100 5 times for 5 minutes each and incubated in blocking 

solution (1xPBS+0.3% Triton-X100+5% Normal Goat Serum) for 1hr.  Samples were 

incubated in primary antibody diluted in blocking solution overnight at 4°C.  The 

posterior expression domain in en-Gal4 experiments was marked by expression of 

endogenous En protein. The following dilutions were used for each antibody: rabbit anti-

cleaved caspase-3 (Cell Signaling Technology) 1:100; mouse anti-phospho-H3 (Cell 

Signaling Technology) 1:500; mouse anti-beta-Gal (Santa Cruz Biotechnology, Inc.) 

1:1000; mouse anti-En (Developmental Studies Hybridoma Bank at the University of 

Iowa) 1:10; guinea pig anti-Hid (Ryoo et al. 2004) (gift from Hyung Don Ryoo, N.Y.U. 
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Medical Center) 1:500.  Following primary antibody incubation, samples were washed 5 

times for 5 minutes each and incubated with secondary antibody in blocking solution for 

two hours at room temperature.  The following secondary antibodies were used: anti-

mouse Alexa 488 (Molecular Probes) 1:2000, anti-rabbit Alexa 555 (Molecular Probes) 

1:2000, anti-guinea pig Alexa 488 (Molecular Probes) 1:2000, anti-mouse FITC (Jackson 

labs, for staining with anti-phospho-histone H3 primary) 1:250, and anti-mouse Cy5 

(Jackson labs) 1:250.  Imaginal wing discs were stained with DAPI (4',6-diamidino-2-

phenylindole) and mounted in Vectashield (Vector Laboratories).  Wide field images of 

imaginal wing disc were acquired using a Zeiss Axioplan imaging fluorescence 

microscope equipped with an ORCA-ER digital camera (Hamamatsu) and Axiovision 4.5 

software. Confocal images were acquired with a Leica TCS SP2 confocal microscope.  

For each genotype and time point at least 10 wing discs were scored. 

 

Confocal microsopy and quantitative analysis of cleaved-caspase staining.  To quantify 

the amount of cleaved caspase-3 in imaginal wing discs, a z-series was taken through the 

entire disc at intervals of 1.42 µm with a 20X objective.  A 3-D reconstruction of the 

wing disc was obtained using Imaris and Imaris Measurement Pro image analysis 

software (version 5.0.1, x64, Bitplane). A high intensity threshold was used to create 

isosurfaces of regions that stained positive for cleaved caspase-3.  A low intensity 

threshold was used to create an isosurface of the background staining observed 

throughout the entire disc.  Examples of raw images, low intensity isosurfaces and high 

intensity isosurfaces are shown in Figure 1E. Percent positive for cleaved caspase-3 was 
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calculated as the total volume of high intensity isosurfaces divided by volume of the low 

intensity isosurface.  For each genotype and time point at least 5 wings were scored. 

 

Minute assay.  Newly laid eggs were collected for 48 hours.  Seven days after beginning 

egg collections, larvae in Drosophila media dispersed on a petri dish were X-irradiated 

with 1000 rads or mock treated and then transferred to new vials. Wandering third instar 

larvae were picked out of the vials over the next 48 hours.  One week later, adults were 

scored for the number of bristles each contained.  For each genotype and treatment at 

least 125 flies were scored.  Data from 5 different irradiation experiments were pooled. 
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CHAPTER IV  

DISCUSSION 
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 This chapter will discuss the experimental design and caveats to the experiments 

in chapters II and III.   The conclusions of the experiments, as well as the contributions 

and future directions of the field will also be discussed. 

 

 

Sumoylation of Drosophila p53 

 

Apoptosis is an irreversible process and therefore needs to be tightly controlled.  

Because p53 is an important mediator of apoptosis, it also is tightly regulated through 

extensive post-translational modifications. Although the functional significance of these 

modifications in vivo is not well understood, these modifications are thought to regulate 

the activity of p53.  Mammalian p53 is modified by SUMO on the C-terminal domain, 

however the functional consequence of this modification is unclear. Cell culture studies 

have shown that sumoylation of mammalian p53 can increase, decrease, or not change 

the transcriptional activity of p53.  In Chapter II, we show that sumoylation of p53 is 

conserved from Drosophila to mammals.  In contrast to mammals, Drosophila p53 is 

sumoylated on two sites, one N-terminal and one C-terminal.  In Drosophila S2 cells, 

mutation of both sumoylation sites reduces the transcriptional activity of p53.  A key 

finding in this study is that the two sumoylation sites of Drosophila p53 are required for 

the efficient induction of damage-induced apoptosis in the eye imaginal disc.  This result 

is the first in vivo evidence that the sumoylation sites of p53 are required for optimal p53 

function and its ability to induce apoptosis. 
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Functional Significance of Drosophila p53 at Nuclear Bodies.  In mammals, the 

promyelocytic leukaemia (PML) tumor suppressor protein acts as a scaffold protein to 

properly assemble PML-nuclear bodies.  PML-nuclear bodies contain many proteins 

including p53, and have been implicated in a variety of cellular functions including 

apoptosis (Takahashi et al. 2004; Bernardi and Pandolfi 2007).  In our study, we found 

that Drosophila p53 localizes to nuclear bodies that are similar to mammalian PML 

bodies.  Possible functions of Drosophila p53 at nuclear bodies are discussed below. 

Like mammals, Drosophila p53 forms nuclear dots that colocalize with human 

PMLIV, SUMO, and the Drosophila homolog of Daxx (DLP).  In mammals, PML is 

considered the organizer of nuclear bodies (Takahashi et al. 2004; Bernardi and Pandolfi 

2007). Although flies do not have a PML homolog, the fact that p53, SUMO, DLP, and 

human PML IV all colocalize to nuclear bodies suggests that some aspects of these 

nuclear bodies are conserved.  Mammalian p53 is recruited to PML bodies, regardless of 

its sumoylation status.  In contrast to mammals, our experiments showed that localization 

of Drosophila p53 to nuclear bodies does appear to depend on sumoylation.  It is 

tempting to speculate that in the absence of a PML homolog, sumoylation is required to 

localize p53 to these nuclear bodies.  However it is difficult to make these conclusions 

because both SUMO and p53 were highly overexpressed in our experiments. 

A key unresolved question in this study is what is the function of p53 in these 

nuclear bodies.  In mammals, studies have shown that many proteins that are sumoylated 

are found in PML bodies.  In general, sumoylation does not appear to be required for 

recruitment to PML bodies, rather sumoylation may be a consequence of localizing to 



 125

nuclear bodies (Takahashi et al. 2004).  There is also evidence to suggest that other post-

translational modifications of p53 take place in PML bodies.  In response to DNA 

damage, Chk2 is recruited to PML bodies, where it enhances phosphorylation of p53, 

resulting in increased protein stability (Yang et al. 2002).  Other studies have shown that 

in response to oncogenic stress, p53 and the acetyltransferase CBP are recruited to PML 

bodies, which is required for the efficient acetylation of p53, leading to an increase in its 

transcriptional activity (Pearson et al. 2000). These results suggest that PML bodies serve 

as centers for enzymatic modifications including sumoylation, acetylation, and 

phosphorylation (Takahashi et al. 2004).  Therefore, one potential function of these 

nuclear bodies is to regulate p53 activity by coordinating post-translational modifications.   

PML nuclear bodies are not only associated with enzymatic modification, but also 

may be sites of transcriptional regulation.  Several lines of evidence indicate that PML 

bodies can positively regulate transcription, including the fact that PML bodies lie near 

highly acetylated chromatin, nascent RNA has been detected near PML bodies, and many 

transcription factors colocalize to nuclear bodies (Boisvert et al. 2000; Zhong et al. 2000; 

Tashiro et al. 2004).  There is also evidence that PML bodies can repress transcriptional 

activity, such as co-repressors and heterochromatic protein-1 (HP-1) localize to nuclear 

bodies (Seeler et al. 1998; Zhong et al. 2000; Tashiro et al. 2004).  Because the content of 

PML nuclear bodies is always changing, PML bodies may positively or negatively 

regulate transcription depending on the cellular context (Bernardi and Pandolfi 2007).   

Therefore, it is possible that transcriptional activity of Drosophila p53 could be either 

positively or negatively regulated in these bodies depending on the cellular context and 
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the content of these nuclear bodies.  We speculate that in the context of DNA damage, 

p53 may be positively regulated in two different ways.  First, Drosophila p53 may be 

sumoylated and phosphorylated in these bodies.   Secondly, these bodies may contain 

other coactivators that synergize with p53 to facilitate the transactivation of pro-apoptotic 

genes.  Additionally, it is possible that in the absence of cellular stress p53 may be 

repressed in these bodies.  Evidence for this hypothesis is the fact that the Drosophila 

homolog of Daxx (DLP), a transcriptional repressor, also colocalizes to these bodies and 

has also been shown to physical interact with Drosophila p53 (Bodai et al. 2007). 

 

 Sumoylation sites are required for optimal transcriptional activity of p53 in 

Drosophila S2 cells.  We demonstrate that mutation of both sumoylation sites of 

Drosophila p53 reduces its transcriptional activity, but not its ability to bind DNA. 

Interestingly, mutation of a single site does not significantly reduce the transcriptional 

activity of p53.  These results suggest that both sumoylation sites of p53 are required for 

optimal transcriptional activity. However, there are a few limitations to these assays.  

First, the reporter assay and the DNA binding assay were performed on plasmid DNA, 

rather than genomic DNA.  These assays would give more direct insight into the function 

of sumoylation if they were performed using genomic DNA.  Secondly, it is unclear if 

this altered transcriptional activity is actually due to the inability of p53 to be sumoylated 

or undergo another post-translational modification at that same site, such as methylation 

or acetylation.  To address this concern, we fused SUMO to p53KRKR to try and rescue 

transcriptional activity.  However, a caveat to this experiment was that fusing SUMO to 
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the wild-type p53 protein also hindered its transcriptional activation, thus making it 

difficult to interpret the results of this experiment.   

There are a few possible ways sumoylation of Drosophila p53 could affect its 

transcriptional activity.  First, sumoylation of p53 could alter the ability of p53 to act on a 

promoter.  For example, binding of Drosophila p53 to an irradiation responsive enhancer 

region upstream of the rpr gene is required for rpr expression and apoptosis after 

treatment with IR (Brodsky et al. 2000a).  Recently, this irradiation responsive enhancer 

region was also shown to be required for the induction of the adjacent gene, hid (Zhang et 

al. 2008).  Perhaps, sumoylation of p53 could be required for p53 to act either on the hid 

or rpr promoter.  Examination of the transcriptional differences between wild type p53 

and p53KRKR in vivo will provide insight into how sumoylation affects transcriptional 

activity of p53.  Secondly, sumoylation of p53 could cause a conformational change and 

allow it to bind a coactivator, thus altering activity on a promoter. Immunoprecipitation 

experiments could be performed to identify factors that bind to the sumoylatable form of 

p53.  These factors could be required to enhance p53 transcriptional activity. 

 

Sumoylation sites of Drosophila p53 affect in vivo function.  We also examined 

the affects of mutating the sumoylation sites of Drosophila p53 in vivo.  p53KRKR 

showed reduced expression levels compared to wild-type p53, when overexpressed using 

an eye specific promoter.  We examined several independent insertions of p53KRKR 

transgene and found that they all showed reduced expression levels of nuclear p53 

compared to the wild-type trangene, indicating that decreased levels of p53 is not due to 
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the position of the genomic insertion.  These results suggest that the sumoylation sites are 

required for optimal stability of p53 or nuclear localization of p53.  There are a few 

examples of sumoylation affecting stability of p53 family members.  For instance, 

sumoylation of p63α and p73α decreases its stability (Minty et al. 2000; Ghioni et al. 

2005).  Similarly, neddylation, another ubiquitin-like modification, decreases levels of 

activated of p53 in C. elegans (Gao et al. 2008).   Future studies should focus on how 

sumoylation of Drosophila p53 affects its stability because this could be an important 

aspect for p53 to be able to induce apoptosis. 

Changes in the induction of apoptosis were observed between wild-type p53 and 

p53KRKR.  Overexpression of p53KRKR showed delayed induction of apoptosis 

compared to wild-type p53.  Based on our studies in Drosophila S2 cells, the delay in 

apoptosis could be occurring due to decreased transcriptional activity.  However, the 

delay could also be due to reduced expression levels of p53KRKR.  Additionally, we 

tried to rescue damage-induced apoptosis in a p53 mutant by mildly overexpressing wild-

type p53 and p53KRKR.  Wild-type p53 rescued damage-induced apoptosis to normal 

levels.  p53KRKR was able to induce some apoptosis after damage, but it was 

significantly decreased compared to wild type. Because we are able to detect the presence 

of transgenic p53KRKR, but not endogenous levels of p53, we speculate that there are 

sufficient levels of p53 to induce apoptosis after DNA damage.  Therefore, we believe 

that this decrease in damage-induced apoptosis is due to reduced transcriptional activity 

of p53KRKR; rather than reduced expression levels of p53KRKR.   
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Finally, we made another observation about Drosophila p53 that was not 

discussed in detail in Chapter II. We observed an increase in p53 levels after IR in the 

developing eye by immunofluorescence (Figure 2.2).  This is inconsistent with a previous 

result, which showed by western blot analysis that p53 levels were not increased after 

damage in the Drosophila embryo (Brodsky et al. 2004). The increase in Drosophila p53 

levels in the eye is independent of the ability of p53 to be sumoylated. This result raises 

the possibility that, like mammals, Drosophila p53 protein levels are increased after DNA 

damage.  It will be interesting to determine if p53 is stabilized at the protein level or 

induced at the mRNA level following IR.  Although the Drosophila genome contains no 

Mdm-2 homolog, it is worth examining if Drosophila p53 is ubiquinated and if the 

proteosomal degradation pathway is required to regulate p53 protein levels.   

Previous studies about the sumoylation of p53 were performed in cell culture, 

where proteins were highly overexpressed.  Cell culture studies have many conflicting 

reports about how sumoylation affects p53 function (Hay 2005).  Additionally, mouse 

models where the C-terminal lysine residues have been mutated show surprisingly mild 

effects on DNA damage responses, suggesting that post-translational modifications are 

not critical for p53 function in vivo (Feng et al. 2005; Krummel et al. 2005). It is possible 

that these mild effects are due to other p53 family members compensating for loss of p53 

function or other sites are being modified and both sites need to be mutated to observe 

significant changes.  Our study shows the first in vivo evidence that the sumoylation sites 

of p53 are required for optimal levels damage-induced apoptosis.  We speculate that we 

observe such a dramatic effect for two reasons. First, Drosophila contains a single p53 
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homolog.  Secondly, we mapped two sumoylation sites and our data suggests that it 

requires that both of them need to be mutated in order to observe effects on p53 function.   

Our study of Drosophila p53 and sumoylation has demonstrated that Drosophila 

provides a good model system for studying the regulation and post-translational 

modifications of p53 in vivo. We demonstrated that the sumoylation sites of Drosophila 

p53 are required for efficient transactivation function and optimal ability to induce 

apoptosis.  Future studies should focus on how sumoylation of p53 alters transactivation 

function and what the function of p53 at nuclear bodies is in vivo .  Ultimately, how 

signaling pathways regulate the sumoylation of p53 and under what circumstances p53 is 

sumoylated in vivo should be determined.  Development of new reagents such as an 

antibody that can detect endogenous p53 will be required for understanding this process.  

These results will be critical for understanding the regulation of p53 and how it induces 

apoptosis.  
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p53-independent apoptosis limits DNA damage-induced aneuploidy 

 

While p53 plays a conserved role in metazoans connecting the DNA damage 

response pathway to the core apoptotic machinery, delayed or reduced levels of apoptosis 

following chromosome damage are still observed in the absence of p53 function.  In 

Chapter III, we show that p53-independent apoptosis in Drosophila requires the pro-

apoptotic gene hid, the apical caspase, Dronc and effector caspases inhibited by the 

baculovirus protein p35.  The JNK pathway is required and limiting for this response and 

is required for induced expression of HID protein following IR. The cycle checkpoint 

gene grp and the JNK phosphatase puckered are both negative regulators of this response 

and mutations in these genes act additively to sensitize p53 mutant cells to IR. Induction 

of p53-independent apoptosis is required to limit accumulation of aneuploid cells 

following IR. We propose that p53-independent and p53-dependent apoptosis act to 

eliminate cells with defective genomes.  The ATM/Chk2/p53-dependent pathway 

terminates cells with broken chromosomes.  We speculate that p53-independent apoptosis 

eliminates cells that no longer have broken chromosomes, but have been repaired 

incorrectly.  We propose this mechanism acts to eliminate unfit cells from a tissue.  In 

flies, we demonstrated that it eliminates defective bristle cells.  In mammals, it may act to 

eliminate cells with genomic instability that could lead to transformation (Figure 4.1). 
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Figure 4.1. Model for p53-dependent and p53-independent apoptosis.  In response to 

DNA damage, cells sense DNA breaks and activate repair, cell cycle delay and apoptosis. 

DNA damage detection by the ATM and ATR kinases activate p53 to induce apoptosis 

(orange boxes). p53 regulates the proapoptotic genes hid and rpr, resulting in caspase 

activation (red boxes).  In parallel, grp mediates a cell cycle arrest allowing time for 

DNA repair. Incorrect repair of chromosome breaks followed by progression through 

mitosis will result in cells with reduced copy number of large chromosome regions 

(segmental aneuploidy). Haploinsufficiency of genes in these regions can induce 

apoptosis by ectopic brk expression, JNK pathway activation, and induction of hid 

expression. 
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Conclusions  

  

 This section reviews the conclusions in Chapter III and the limitations to the 

experimental design.  Experiments to better understand the model for Drosophila p53-

independent apoptosis will also be discussed. 

 

 Initial observations and apoptotic assays.  Our first observation that p53-

independent apoptosis occurred in Drosophila was through studies of the DNA damage 

response protein ATM.  Mutation of atm causes high levels of telomere fusions and 

spontaneous apoptosis in imaginal wing discs (Oikemus et al. 2004; Silva et al. 2004; 

Song et al. 2004).  The spontaneous apoptosis can mostly be suppressed by a second 

mutation in p53, however some apoptosis still remains, indicating that there is some p53-

independent apoptosis occurring (Oikemus et al. 2004). We examined if we could 

generate p53-independent apoptosis in response to IR.  We observed that p53-dependent 

apoptosis occurs at 4hrs after treatment with IR, while p53-independent apoptosis occurs 

between 16 and 24hrs, as assayed by cleaved caspase-3, TUNEL, and acridine orange.  

From this experiment, we concluded there are two apoptotic responses after treatment 

with IR, a p53-dependent response that occurred early, and a p53-independent response 

that occurred later.  We were interested in studying the mechanism by which p53-

independent apoptosis was occurring.  The conclusions of that study and the experimental 

design and limitations are discussed below. 
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To test the role of other genes in p53-independent apoptosis we developed a 

standard for examining the apoptotic response as well as a quantitative apoptotic assay.  

We primarily measure the induction of apoptosis using the cleaved caspase-3 antibody. 

Cleaved caspase-3 is an activated form of the caspase-3 protein that can cleave numerous 

downstream substrates to induce apoptosis and is thought to serve as terminal marker for 

cells undergoing apoptosis (Bao and Shi 2007).  The cleaved caspase-3 antibody 

recognizes the activated form of caspase-3 and cross reacts with Drosophila effector 

caspases (anti-cleaved caspase-3, Cell Signaling Technology).   Although some studies in 

Drosophila embryos have implied that the cleaved caspase-3 antibody can detect other 

caspases and possibly other apoptotic proteins (Xu et al. 2005; Xu et al. 2006), it is an 

accurate marker for Drice (functional homolog of mammalian caspase-3) activation in 

irradiated imaginal wing discs (Muro et al. 2006).  Additionally, we examined apoptosis 

using two additional assays, acridine orange and the TUNEL assay (not shown), to ensure 

the apoptotic response we are measuring is accurate. 

 To be able to accurately detect differences in the level of p53-independent 

apoptosis due to various genetic manipulations, we developed a quantitative apoptotic 

assay. For this assay, we quantified the levels of apoptosis by calculating the percent 

volume of the wing disc staining positive for cleaved caspase-3 (Figure 3.1).  One caveat 

to this method is that depending the stage of apoptosis a cell is in, the volume of cleaved 

caspase-3 staining may be different.  For instance, in a cell that has recently activated 

apoptosis, the cleaved caspase-3 staining will likely be larger because the cell has not 

started to condense.  A cell in late stages of apoptosis will be condensed and have a 
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smaller volume of cleaved caspase-3 staining.  This difference in cleaved caspase-3 

volume could make some experiments difficult to interpret, especially when there is only 

a slight difference in volume of cleaved caspase-3 between genotypes.  An ideal assay for 

quantifying apoptosis would be to compare the number of cells in an imaginal wing disc 

to the number of cells staining positive for an apoptotic marker, such as TUNEL.   We 

have made several attempts at performing this type of assay.  One problem has been 

being able to accurately count the number of cells in an imaginal wing disc because they 

are so tightly compact.  Future work should focus on optimizing this type of assay. 

 

Requirement of Drosophila hid, and initator and effector caspases during p53-

independent apoptosis.  p53-independent apoptosis requires the initiator caspase, dronc 

(functional homolog of mammalian caspase-9) and effector caspases, inhibited by the 

baculovirus protein p35.  We observed no apoptosis in dronc mutant wing discs at late 

and early time points, suggesting that dronc is required for all damage-induced apoptosis. 

Similarly, in discs expressing the anti-apoptotic baculovirus protein p35, which inhibits 

the partially redundant effector caspases, Drice and Dcp-1 (functional homologs of 

mammalian caspase-3)(Xue and Horvitz 1995; Kondo et al. 2006; Xu et al. 2006; Baum 

et al. 2007; Lannan et al. 2007), no TUNEL or acridine orange staining was observed, 

suggesting effector caspases are required for p53-independent apoptosis. Because p35 

inhibits effector caspases following proteolytic cleavage, cleaved caspase-3 can be 

observed in cells expressing p35 (Yu et al. 2002).  We observed increased accumulation 
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of cleaved caspase-3 at late time points in a p53 mutant overexpressing p35, suggesting 

that these cells would undergo death in the absence of p35.  

p35 could potentially be inhibiting other caspases required for damage-induced 

apoptosis.  To directly determine if the effector caspases, drice and dcp-1, are required 

for p53-independent apoptosis, mutants of drice and dcp-1 should be examined.  Because 

drice and dcp-1 double mutants are lethal (Xu et al. 2006), it is not possible to examine 

the role of the double mutant during p53-independent apoptosis.  Although it has been 

suggested that these caspases are partially redundant in function (Xu et al. 2006), only 

drice is required for damage-induced apoptosis in the imaginal wing (Muro et al. 

2006)(Kondo et al. 2006).   Therefore, it is possible that drice is the only effector caspase 

required for any damage-induced apoptosis in the wing. To directly test this hypothesis, 

we should examine levels of p53-independent apoptosis in a drice mutant. 

The pro-apoptotic gene, hid is required and upregulated during p53-independent 

apoptosis.  We were unable to detect HID during p53-independent apoptosis under 

normal conditions, likely due to HID only being expressed for a short period of time 

during apoptosis.  To be able to detect HID protein expression, we expressed p35 during 

p53-independent apoptosis.  By expressing p35, cells were able to enter the apoptotic 

pathway, but not die, thus apoptotic proteins can accumulate.  Under these conditions, we 

observed HID accumulating in p53 mutant cells 16 and 24hrs after treatment with IR.  

We speculate that cells upregulating HID are the cells that are undergoing apoptosis for 

two reasons.  First, hid mutants show almost no p53-independent apoptosis at late time 

points, suggesting that hid is required for this response. Additionally, we observe an 
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accumulation of HID colocalizing with cells accumulating cleaved caspase-3, suggesting 

that these cells are dying (data not shown).  Because hid mRNA can be expressed in 

living cells (Bergmann et al. 1998), future experiments should also examine if hid mRNA 

is also increased during p53-independent apoptosis.  This result would provide further 

insight into the regulation of hid during p53-independent apoptosis. 

Taken together, the requirement of hid, dronc, and effector caspases suggests that 

Drosophila p53-independent apoptosis is acting through a core apoptotic pathway.  These 

results are unlike some p53-independent apoptotic pathways that have been described in 

cell culture models and zebrafish, where caspase-2 is activated and bypasses the core 

apoptotic response in mammals (Sidi et al. 2008).   

 

 The JNK pathway is required and limiting for p53-independent apoptosis.  We 

were interested in testing the role of the JNK pathway during p53-independent apoptosis 

for two reasons.  First, in response to certain cellular stresses JNK has been shown to 

target hid (Luo et al. 2007).  Additionally, some studies have suggested that 

overexpression of the JNK inhibitor, puckered, inhibits apoptosis due to loss of a Minute 

gene (Moreno et al. 2002a).  From our study, we conclude that the JNK pathway is both 

required and limiting for p53-independent apoptosis.  We also demonstrate that JNK 

directly targets the upregulation of HID during this process.  However, there were some 

limitations to the reagents used to test the role of the JNK pathway in this response.  First, 

to measure JNK pathway activation we examined levels of puckered (puc-lacZ), a 

transcriptional target of the JNK pathway. However, it is possible that other signaling 
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pathways could also target puckered.  A more direct test of JNK pathway activation 

would be to examine levels of phospho-JNK, using a phospho-JNK antibody. 

Additionally, when the JNK pathway was inhibited by overexpression of puckered, some 

apoptosis still remained.   There are two possible reasons why some p53-independent 

apoptosis was still occurring.  First, it is possible that other signaling pathways are 

upregulating pro-apoptotic genes to induce apoptosis.  Secondly, overexpression of 

puckered may not be able to completely inhibit JNK activity.  Evidence for this 

hypothesis is that we still observed some JNK pathway activation, by increased levels of 

puc-lacZ, when puckered is overexpressed. Another caveat to this experiment is that 

overexpression of puckered could potentially act to inhibit other MAPK pathways.  To 

address this concern, more direct reagents, such as a transgene expressing a JNK RNAi 

construct or JNK mutant clones, should be used to inhibit JNK and test the requirement 

of the JNK pathway during p53-independent apoptosis. 

 

The role of the DNA damage response proteins during p53-independent 

apoptosis.  Previously described mechanisms of p53-independent apoptosis rely on 

signaling from upstream DNA damage response proteins (Urist et al. 2004; Reinhardt et 

al. 2007; Sidi et al. 2008).  Therefore, we hypothesized that it was upstream DNA 

damage response proteins that were activating JNK.  To test for the requirement of DNA 

damage response proteins during Drosophila p53-independent apoptosis we examined 

p53-independent apoptosis in various double and triple mutant combinations of the 

upstream DNA damage response proteins.  Surprisingly, we found that p53-independent 
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apoptosis was unaffected by these mutations, suggesting that the DNA damage response 

proteins are not required for this response and that this response may not be activated by 

DNA damage. These results do not absolutely rule out a role for other, untested 

components of DNA damage response pathway in p53-independent apoptosis, but this is 

unlikely because the damage signal has subsided long before p53-independent apoptosis 

begins to occur (unpublished result).  

 Not only are core components of the DNA damage response pathway not required 

for apoptosis in response to IR or unprotected telomeres, mutation of some of these genes 

can increase apoptosis. Many of these genes contribute to repair of IR-induced breaks, 

which could provide a simple mechanism for increased apoptosis following IR (Hari et 

al. 1995; Brodsky et al. 2000b; Ciapponi et al. 2004; Ciapponi et al. 2006; Oikemus et al. 

2006). However, unlike some of the upstream components of the signaling response, grp 

is required for cell cycle arrest following IR, but cells mutant for grp or for grp and mnk 

do not show an increased frequency of chromosome breaks following IR (Jaklevic and Su 

2004; Oikemus et al. 2006), suggesting that it may be grp role in cell cycle arrest that is 

suppressing p53-independent apoptosis. 

 Our results demonstrated that mutation of grp accelerated JNK pathway activation 

and apoptosis, suggesting cell cycle progression is correlated with p53-independent 

apoptosis.  This result raises two important questions.  First, do these cells exit mitosis 

before undergoing cell death or do they undergo mitotic catastrophe.   Mitotic catastrophe 

has many definitions, however we define it as cells dying in a mitotic state.  Some 

mechanisms of mammalian p53-independent apoptosis occurs through mitotic 
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catastrophe, as assayed by colocalization of cleaved caspase-3 and the mitotic marker 

phospho-histone-3 (Reinhardt et al. 2007).  Although we cannot definitively state these 

cells are not dying in mitosis, we did not observe colocalization of phospho-histone-3 and 

cleaved caspase-3 in our experiments, suggesting that Drosophila p53-independent 

apoptosis is not occurring through the same pathway as previously described.  

Additionally, studies in Drosophila embryos have shown that mitotic catastrophe is chk2-

dependent (Takada et al. 2003), and p53-independent apoptosis is not dependent on chk2.   

Secondly, to determine if cell cycle progression is required for p53-independent 

apoptosis, we tried to both genetically and chemically inhibit the cell cycle in imaginal 

wing discs.  Unfortunately, inhibition of the cell cycle resulted in the induction of 

apoptosis and we were unable to measure the p53-independent apoptosis in those 

experiments.  

   

p53-independent apoptosis limits aneuploid cells as assayed by the Minute 

phenotype.  Because cell cycle progression correlated with p53-independent apoptosis, 

we hypothesized that cells with segmental aneuploidy were being generated, and these 

cells were being eliminated by this mechanism.  An assay that can measure aneuploid 

cells is the Minute assay.  Using this assay, we were able to observe how many 

segmentally aneuploid cells were being generated and how many were being eliminated 

by this mechanism.  This section will describe how the Minute assay provides a marker 

for cells with segmental aneuploidy and the conclusions from this assay. 
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DNA damage-induced chromosome rearrangements or large deletions followed 

by cell cycle progression result in cells that are haploid for a large part of their genome, 

which is known as segmental aneuploidy or damage-induced aneuploidy.    Because 

Minute genes are scattered all throughout the genome, almost any large deletion would 

likely result in deletion of a Minute gene.  Therefore, the Minute bristle phenotype 

provides a marker for cells with segmental aneuploidy.  Previously, it has been shown 

that larvae treated with IR produce adults with Minute bristle and these Minute bristles 

are due to large deletions (Baker et al. 1978). However, there are other ways that the 

Minute phenotype could potentially be generated in response to DNA damage.  For 

instance, a gain of function mutation in an inhibitor of bristle development or a loss of 

function mutation in both copies of a gene that positively regulates bristle development 

could generate the Minute phenotype.  However, we believe these types of mutations 

would be less likely to occur.  Additionally, if these types of mutations were generating 

the Minute phenotype, then it would be just as likely that gain of function mutations in 

genes positively regulating bristle development or loss of function mutations in 

suppressors of bristle development would occur and should result in longer bristles or 

flies with extra bristles.  Neither of these phenotypes were observed in our analysis, 

suggesting that those types of mutations are not contributing to the Minute bristle 

phenotype.  Lastly, the Minute phenotype could be generated due to damaged ribosomal 

proteins.  Although this is formally possible, we speculate that protein damage occurs so 

early in larval development that it would be repaired or replaced by the time bristles were 

being synthesized.  The Minute assay does provide a read out for cells with segmental 
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aneuploid, however we recognize the limitations of this assay.  Ultimately, the 

development of a more direct assay to measure large deletions across the entire genome 

in the imaginal wing disc is essential for understanding how cells with damage-induced 

aneuploidy are eliminated. 

We examined the contribution of p53-dependent and p53-independent apoptosis 

for eliminating cells with segmental aneuploidy using the Minute assay. We observed an 

increase in the amount of Minute bristles recovered after treatment with IR, when p53-

independent apoptosis is inhibited.  This result demonstrates that p53-independent 

apoptosis acts to limit the formation of damage-induced aneuploid cells.  Interestingly, 

we observed no increase in the amount of Minute cells in a p53 mutant compared to wild 

type after treatment with IR.  These results suggest that p53-dependent apoptosis is not 

essential for eliminating aneuploid cells; rather p53 is activated in response to breaks and 

cannot distinguish between breaks that would be repaired correctly or incorrectly. Taken 

together, these results suggest that in flies that p53-independent apoptosis is essential for 

maintaining genomic stability, where as p53-depenent apoptosis is not essential for 

eliminating this type of genomic instability after DNA damage.  The contribution of p53 

in maintaining genomic stability in mammals will be discussed later in this chapter. 

 

Role of brinker during p53-independent apoptosis. Previously, it has been shown 

that clones of Minute cells in a wild-type background ectopically express brinker 

(Moreno et al. 2002a).  In addition, wild-type clones in a wing disc overexpressing myc, 

upregulate brinker (Moreno and Basler 2004).  In these previously published 
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experiments, ectopic expression of brinker results in JNK-dependent apoptosis  (Adachi-

Yamada and O'Connor 2002; Moreno et al. 2002a; Moreno and Basler 2004).  

Additionally, clonal populations can survive if ectopic expression of brinker is 

suppressed, suggesting that the cells upregulating brinker are dying (Moreno et al. 2002a; 

Moreno and Basler 2004).   We tested the role of brinker during p53-independent 

apoptosis. Consistent with the recovery of Minute bristles in the adult fly and the 

requirement of JNK during p53-independent apoptosis, we observed increased expression 

of brinker in the imaginal wing disc after treatment with IR.  However, we could not 

show colocalization of brinker with HID or other markers of p53-independent apoptosis, 

we speculate it is because brinker is transiently expressed during p53-independent 

apoptosis.   Additionally, we tried to suppress p53-independent apoptosis by suppressing 

ectopic expression of brinker.  However, we were unable to interpret the results of those 

experiments because expression of transgenes that suppress ectopic expression of brinker 

induced significant amounts of apoptosis. 

Upregulation of brinker after treatment with IR was observed in both wild type 

and p53 mutant imaginal discs at late time points only.  The fact that brinker is not 

induced at early time points in a wild-type wing disc suggests that upregulation of brinker 

is not a non-specific consequence of cells undergoing damage-induced apoptosis.  It is 

tempting to speculate that brinker is a marker for the Minute cells being generated in 

response to DNA damage.  If we assume that the cells upregulating brinker are 

undergoing p53-independent apoptosis, then these results suggest that p53-independent 

apoptosis does not depend on the absence of p53 to occur.  Essentially, both p53-
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dependent and p53-independent apoptosis are occurring after damage in a wild-type wing 

disc.  We speculate that both these pathways act to eliminate different types of damage 

after treatment with IR in a wild-type wing disc. 

 

How does segmental aneuploidy trigger p53-independent apoptosis? 

 

An interesting question that arises from this study is what is the upstream signal 

that activates p53-independent apoptosis.  Results from Titen and Golic demonstrate that 

significant aneuploidy is required for p53-independent apoptosis in response to 

generation of dicentric chromosomes (Titen and Golic 2008).  Additionally, our results 

suggest that p53-independent apoptosis limits the formation of cells with segmental 

aneuploidy.  Therefore, we speculate that there is something about a cell being segmental 

aneuploid that activates JNK to induce apoptosis.  Potential hypotheses for how 

segmental aneuploidy induces apoptosis and experiments to test those hypotheses will be 

discussed below. 

There are a few possible ways that segmental aneuploidy could trigger apoptosis.  

One possible way is that it is a cumulative effect of reduced dosage of many genes. For 

instance, loss of a chromosome arm or several large deletions containing essential genes 

may not be tolerable to the cell, thus committing it to death.   Another possible way 

segmental aneuploidy triggers apoptosis is through loss of a Minute gene.  Minute genes 

are located throughout the genome and clones of Minute cells undergo apoptosis due to 

competition with their wild-type neighbors (Moreno et al. 2002a; Marygold et al. 2007).  
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Therefore, we hypothesized that chromosomal rearrangements followed by mitosis will 

likely result in a daughter cell that is missing at least one Minute gene, which could 

potentially act as the for trigger p53-independent apoptosis.  Experiments to address this 

model will be discussed below. 

Experiments from Titen and Golic suggest that p53-independent apoptosis is due 

to generation of significant aneuploidy.    They observed p53-independent cell death 18-

30 hours after dicentric chromosomes were generated.  Interestingly, p53-indepdendent 

cell death was only observed when dicentrics were generated on the X or autosomal 

chromosomes.  The Y chromosome, which is only essential for male fertility, did not 

show p53-independent apoptosis when dicentrics were generated.  However, generation 

of dicentrics on Y chromosome with a duplication of the 4th chromosome on the tip did 

induce p53-independent apoptosis (Titen and Golic 2008).  Interestingly, the 4th 

chromosome contains a single Minute gene, rps3A.  Therefore, if p53-independent 

apoptosis was due to loss of rps3A, then apoptosis should be suppressed by a transgene 

expressing rps3A. Although this experiment would give some insight into the signal for 

p53-independent apoptosis, it would not be definitive in the case of DNA damage or 

telomere fusions on autosomes, where many different rearrangements are being induced. 

For instance, when dealing with severe amounts of telomere fusions or DNA damage 

both loss of a Minute gene and cumulative loss of several genes could both be 

contributing to p53-independent apoptosis.  Additional experiments to distinguish 

between these two models will be discussed below. 
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Previous experiments showed that clones of Minute cells were eliminated in a 

wild-type wing disc (cell competition)(Morata and Ripoll 1975). However, Minute clones 

could survive in the adult wing if they were induced in a Minute background of similar 

strength (Simpson and Morata 1981). These results suggested that cell competition was 

due to the growth differential, and once there was no growth differential these cells could 

survive.  Additionally, the developmental delay in flies transheterozygous for two Minute 

genes is the same as the delay as the more severe Minute, indicating that Minute 

mutations are not additive (Schultz 1929). Therefore, we originally thought if IR-induced, 

p53-independent apoptosis was occurring due to loss of a Minute gene, then we should be 

able to suppress it in a Minute background.  However, there are several caveats to this 

experiment.  First, original experiments demonstrating that competition could be 

suppressed by growing clones in a Minute background only compared Minutes of a 

similar strength (Simpson and Morata 1981).  It is unknown how well clones of a severe 

Minute would survive in a less severe Minute background.  This result is of particular 

importance for our experiment, because IR could be inducing a number of chromosomal 

rearrangements, leading to loss of strong or haplolethal Minutes.  Secondly, it is not 

known how Minute cells respond to IR.  For instance, these cells may not contain the 

translational capacity to initiate the appropriate responses to DNA damage.  These cells 

may inefficiently repair damaged DNA or may not be able to induce the appropriate pro-

apoptotic signals, making the results of these experiments difficult to interpret.  

 Lastly, Minute flies show an increase in JNK signaling and spontaneous 

apoptosis, indicating these cells are normally under stress, even when they are not in a 
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competitive environment (Coelho et al. 2005)(L.M. McNamee, unpublished 

result)(Figure 3.11).  We have termed this non-competitive apoptosis. This result is still 

consistent with the idea that loss of a ribosomal protein gene is sufficient to induce 

apoptosis.  It will be important to determine if non-competitive and competitive apoptosis 

are induced through the same signaling pathway, and then determine if those pathways 

are required for p53-independent apoptosis. Similar to competitive apoptosis, our data 

shows that JNK signaling is increased in Minute wing discs, indicating the JNK may be 

playing a role in non-competitive apoptosis.  Additionally, non-competitive apoptosis 

appears to be independent of p53, and so far no one has reported that p53 is required for 

competitive apoptosis (Figure 3.11).   It is possible that competitive and non-competitive 

cell death occurs through the same signaling pathway and perhaps competitive cell death 

has increased kinetics due to surrounding wild-type neighbors.  

 Other genes that are required for cell competition should also be tested for their 

requirement in non-competitive apoptosis.  For instance, engulfment genes, draper, wasp 

and phosphatidylserine receptor are required to induce competitive cell death.  Wild-type 

cells begin engulfing Minute cells to activate the apoptotic program (Li and Baker 2007). 

Although engulfment has been shown to contribute to cell death (Hoeppner et al. 2001; 

Reddien et al. 2001), these results indicate that engulfment is required during cell 

competition and the cell-autonomous cell-death program is insufficient to remove M/+ 

cells by itself (Li and Baker 2007).  Therefore, if engulfment genes were required for 

both competitive and non-competitive apoptosis, then requirement for engulfment genes 

in p53-independent apoptosis would provide further evidence that these cells are being 
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eliminated due to loss of a Minute gene.   

Finally, identification of new genes in competitive and non-competitive apoptosis 

could identify signals that are specific to the induction of apoptosis in a Minute cell.  A 

genetic screen, identifying new genes affecting cell competition, found a mutation on the 

3rd chromosome that is homozygous viable and maps to the cytogenetic location 69C2-

70D1 (Tyler et al. 2007).  It should be determined if this mutation is also required for 

non-competitive apoptosis and what gene is affected by this mutation.  If this gene were 

specific to death of a Minute cell, then it would be useful in determining if p53-

independent apoptosis was occurring due to loss of a ribosomal protein gene.  

 

Aneuploidy and haploinsufficiency of ribosomal protein genes in mammals 

 

 This section will highlight what is known about responses to aneuploidy and 

haploinsufficiency of ribosomal protein genes in mammals.  Additionally, how our model 

for p53-independent apoptosis could apply to mammalian DNA damage responses is 

discussed.     

  

   In principle, there are two different ways a cell can become aneuploid.  First, 

errors in cell division that result in loss or gain of an entire chromosome.  Secondly, large 

deletions and rearrangements followed by mitosis results in daughter cells that are 

missing a large portion of a chromosome, which is referred to as segmental aneuploidy.  
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Typically, these types of rearrangements are a result of unprotected telomeres or DNA 

damage (Geigl et al. 2008). 

 In mammals, responses to aneuploidy and polyploidy have largely been described 

in terms of loss or gain of an entire chromosome.  Cell culture experiments have 

demonstrated that p53 and p73 act to limit aneuploid and polypoid cells.  Deletion of both 

p53 and p73 results in deregulated cell cycle activity and a defective G2/M checkpoint, 

indicating that p53 and p73 suppress aneuploidy and polyploidy by inhibiting mitosis 

(Talos et al. 2007; Tomasini et al. 2008).  These results suggest that p53 and p73 play a 

role in maintaining genomic stability, at least in terms of loss or gain of an entire 

chromosome.  Due to the lack of technology, there is no assay to accurately analyze 

segmental aneuploidy throughout the entire genome, thus how cells deal with these types 

of chromosome rearrangements is largely unanswered (Geigl et al. 2008).   

Although it is unclear how cells deal with segmental aneuploidy, it is well 

established in zebrafish and mice that haploinsufficieny of a ribosomal protein gene 

activates p53-dependent apoptosis (Panic et al. 2007; Danilova et al. 2008; McGowan et 

al. 2008).  Mice that are haploinsufficient for rps6 die at embryonic day 5.5 due to 

increased levels of apoptosis.  Deletion of p53 in rps6
-/+ mice can delay apoptosis and 

death until embryonic day 12.5, but the animal will eventually be terminated, suggesting 

that there are also p53-independent mechanisms for eliminating these cells (Panic et al. 

2006).  These results raise the possibility that p53 detects and eliminates cells that have 

lost a ribosomal protein gene before there is a phenotype, and that p53-independent 
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mechanisms are activated in response to cellular defects due to loss of a ribosomal 

protein gene.  

As in Drosophila, mammalian ribosomal protein genes are widely distributed 

throughout the genome.  Therefore, haploinsufficiency of a ribosomal protein gene may 

be the trigger for apoptosis in response to damage-induced aneuploidy.  If we assume that 

loss of a ribosomal protein activates apoptosis in response to damage-induced 

aneuploidy, then p53 would likely be required for the efficient response in mammals.  

However, in the absence of p53, loss of one or several ribosomal protein genes due to 

damage-induced aneuploidy may elicit delayed p53-independent apoptosis.   

 

Aneuploidy, haploinsufficiency of ribosomal protein genes, and tumorigenesis 

 

This section will focus on potential consequences of not eliminating aneuploid 

cells and how segmental aneuploidy and loss of a ribosomal protein gene could 

potentially lead to cancer.  Lastly, I speculate on what types of cancers might arise due to 

loss of a ribosomal protein gene and propose experiments that may aid in identifying if 

loss of a ribosomal protein gene can lead to cancer if these cells are not eliminated. 

 

  One of the most important questions in this study is what is the consequence of 

not eliminating cells with aneuploidy or segmental aneuploidy.  Aneuploidy is often 

observed in cancer, however it is controversial whether or not aneuploidy drives the 

formation of tumors.  Some argue it is required for initiation, while others believe it is 
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necessary for progression, and others hypothesize it is merely a side effect of a tumor.  

Alternatively, cells that have rampant aneuploidy do not appear to contribute to 

tumorigenesis because they die after 6 divisions due to the severe loss of chromosomes 

(Weaver and Cleveland 2006).  

Although it is controversial whether aneuploidy leads to cancer, segmental 

aneuploidy is a well-established cause of tumor development (Weaver and Cleveland 

2006).  It has previously been shown that telomere dysfunction leading to non-reciprocal 

translocations results in epithelial cancers in p53 mutant mice (Artandi et al. 2000).  This 

result suggests that segmental aneuploidy can drive tumorigenesis and p53 can be critical 

for suppressing the formation of these tumors. Thus providing some evidence that p53 

may be able to detect and eliminate cells with this type of genomic instability in 

mammals.   

What still remains unclear is what is it about a cell being segmental aneuploid that 

drives tumorigenesis and could haploinsufficiency of a ribosomal protein gene be 

contributing to this response.  One potential model is that transformation that resulted 

from segmental aneuploidy would not show loss of a ribosomal protein gene.  Cells 

lacking a ribosomal protein gene would not have the growth potential to lead to cancer 

and would likely be eliminated by p53-dependent or p53-independent apoptosis. This 

model would predict that it would only be rearrangements that did not lose a ribosomal 

protein gene. These rearrangements would likely result in loss of tumor suppressors 

genes or gain of function mutations in oncogenes to promote tumorigenesis. 
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Another model about how segmental aneuploidy could lead to transformation is 

through loss of a ribosomal protein gene.  We speculate that tumors could arise from 

segmental aneuploidy that did show reduced copy of a ribosomal protein gene if 

accompanied by other mutations, such as deletion of other pro-apoptotic genes or gain of 

function in oncogenes. This is an interesting hypothesis because many human diseases 

that are caused by haploinsufficiency of a ribosomal protein gene show increased risk of 

developing cancers (Flygare and Karlsson 2007; Ebert et al. 2008).  How these cancers 

arise due to lack of a ribosomal protein gene is not understood.  Perhaps, loss of a 

ribosomal protein gene might further promote tumorigenesis because these cells may be 

defective in DNA repair and tumor suppression, thus allowing the cell to further 

destabilize the genome and lead to transformation.  Additionally, loss of a ribosomal 

protein gene accompanied by gain of function mutations in an oncogene could lead to 

accelerated growth, even in the absence of optimally functioning translation machinery. 

One way to determine if loss of ribosomal protein genes drives tumor formation is 

to examine genome content of tumors.  Examination of genome content in tumors could 

help identify how frequently loss of a ribosomal protein gene occurs.  One possible result 

would be that loss of a ribosomal protein gene would frequently be seen in tumors, 

suggesting that this event could be driving tumorigenesis.  Alternatively, loss of a 

ribosomal protein gene would not be observed at a high frequency, indicating that 

maintaining normal copy number of ribosomal protein genes may be essential for driving 

tumor formation.  Lastly, there might be no correlation between loss of a ribosomal 
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protein gene in tumors, suggesting that there is another aspect about segmental 

aneuploidy that drives tumor formation.   

It is possible that loss of a ribosomal protein gene may only lead to certain types 

of cancer.  For instance, patients with Diamond Black Fan anemia exhibit high levels of 

leukemias and osteosarcomas (Flygare and Karlsson 2007).  Additionally, zebrafish 

haploinsufficient for several different ribosomal protein genes usually die early due to 

lymphomas and malignant peripheral nerve sheath tumors (Amsterdam et al. 2004).  One 

possible reason for increases in leukemias and lymphomas could be because these cells 

proliferate at a high rate and require increased amounts of protein synthesis.  Defects in 

DNA repair and other cellular functions combined with increased need to proliferate 

could lead to cancer.  Leukemias and lymphomas may be good candidates to screen 

genome content to see if loss of a ribosomal protein gene is frequently observed.   

 

DNA damage-induced aneuploidy in mammals and potential therapeutic targets 

 

This section will focus on experiments to address if segmental aneuploidy and 

loss of a ribosomal protein gene play a role in mammalian DNA damage responses.  

Based on our studies in Drosophila, potential therapeutic targets for sensitizing cells with 

segmental aneuploidy will also be discussed. 

 

Going forward it should be determined what pathways contribute to the 

elimination of cells with damage-induced aneuploidy.  An assay that can detect 
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segmental aneuploidy throughout the genome will be essential for identifying the signal 

that activates apoptosis due to segmental aneuploidy.  This type of assay will also be 

essential for identifying the circumstances in which segmental aneuploidy leads to 

cancer.  In flies, loss of a Minute gene provides an assay to detect segmental aneuploidy.  

Unfortunately, in mammals there is currently no way to detect segmental aneuploidy in 

cells.  Development of a technology that could detect loss of a ribosomal protein gene 

may also provide a useful read out for segmental aneuploidy in mammals.  Ultimately, 

the development of a technology that can detect and measure all different types of 

changes in genome content in a single cell would be the most informative. 

Another way to determine if loss of a ribosomal protein gene triggers apoptosis in 

response to damage-induced aneuploidy is to identify the signaling pathway that induce 

apoptosis in response to haploinsufficiency of a ribosomal protein gene. If we identify the 

components of the pathway that are specific to the elimination of these cells, then we can 

ask if that pathway contributes to damage-induced apoptosis.  One potential approach for 

identifying the genes required for induction of apoptosis in response to 

haploinsufficiency of a ribosomal protein gene would be to perform an shRNA screen.  

Once the genes required for the apoptotic pathway have been identified, genetic 

experiments can be performed to determine the order of the pathway.  We hope that we 

would identify components of the pathway that are specific to the elimination of a cell 

that is haploinsufficient for a ribosomal protein gene.  If these components also 

contributed to damage-induced apoptosis, then it would provide strong evidence that 

haploinsufficiency of a ribosomal protein gene triggers some damage-induce apoptosis . 
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A better understanding of the mechanism that eliminates cells with damage-

induced aneuploidy could result in potential therapeutic targets to sensitize tumor cells to 

DNA damage.  In our model, we identified that mutation of genes involved in cell cycle 

arrest and inhibitors of JNK pathway sensitize cells undergo p53-independent apoptosis 

in flies.  Therefore, targeting JNK pathway activation and cell cycle progression in 

mammals may provide potential therapeutic targets to sensitize tumors that are normally 

resistant to damage-induced apoptosis.  In mammals, mutation of Chk1 has been shown 

to sensitize cells to damage-induced apoptosis and many Chk1 inhibitors are in clinical 

trials (Tse et al. 2007).  The JNK pathway has been shown to have opposing roles in 

promoting tumorigenesis.  Some have reported that mutation of an upstream kinase, 

MK4, in the JNK pathway is frequently observed in certain types of tumors, whereas 

JNK1 deficiency has been shown to reduce proliferation and vascularization in other 

tumor types (Johnson and Nakamura 2007).  Therefore, hyperactivation of the JNK 

pathway may only be beneficial in certain tumor types.  It is tempting to speculate that 

tumors that arise from loss of a ribosomal protein gene might be more susceptible to this 

type of treatment. 

How cells respond to segmental aneuploidy is clearly an important area of study.  

It seems that subtle changes in genome content can drive tumorigenesis.  Unfortunately, 

in mammals there is no technology that can detect segmental aneuploidy throughout the 

genome.  This obstacle has made it difficult to understand how cells react to damage-

induced aneuploidy.  Our study and results from Titen and Golic demonstrate that cells 

effectively deal with damage-induced aneuploidy by activating p53-independent 
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apoptosis.  Future studies should focus on how damage-induced aneuploidy triggers 

apoptosis in mammals because this could be an important mechanism for inhibiting 

transformation and developing therapies to treat cancer cells. 
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