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DNA damage commonly occurs in cancer cells as a result of endogenous and tumor microenvironmental stress. In this study, we
applied immunohistochemistry to study the expression of phosphorylated Chk2 (pChk2), a surrogate marker of the DNA damage
response, in high grade and low grade of ovarian serous carcinoma. A phospho-specific antibody specific for threonine 68 of Chk2
was used for immunohistochemistry on a total of 292 ovarian carcinoma tissues including 250 high-grade and 42 low-grade serous
carcinomas. Immunostaining intensity was correlated with clinicopathological features. We found that there was a significant
correlation between pChk2 immunostaining intensity and percentage of pChk2 positive cells in tumors and demonstrated that
high-grade serous carcinomas expressed an elevated level of pChk2 as compared to low-grade serous carcinomas. Normal ovarian,
fallopian tube, ovarian cyst, and serous borderline tumors did not show detectable pChk2 immunoreactivity. There was no
significant difference in pChk2 immunoreactivity between primary and recurrent high-grade serous carcinomas. In high-grade
serous carcinomas, a significant correlation (P < 0.0001) in expression level (both in intensity and percentage) was found between
pChk2 and Rsf-1 (HBXAP), a gene involved in chromatin remodeling that is amplified in high-grade serous carcinoma. Our
results suggest that the DNA damage response is common in high-grade ovarian serous carcinomas, especially those with Rsf-1
overexpression, suggesting that Rsf-1 may be associated with DNA damage response in high-grade serous carcinomas.

1. Introduction

Ovarian carcinomas comprise a diverse group of neoplasms
that demonstrate distinct clinicopathological features and
unique molecular genetic aberrations with respect to differ-
ent histologic subtypes [1, 2]. Based on clinicopathological
and molecular genetic features, we have previously proposed
that ovarian carcinoma can be classified into two major
types, type I (low-grade serous, low-grade endometrioid,
clear cell, and mucinous carcinomas) and type II (mainly
high-grade serous carcinomas) [3]. Given the fact that
different subtypes of ovarian tumors develop along distinct
molecular pathways, we asked if the DNA damage response
(DDR) is different among high-grade and low-grade serous
carcinomas, the prototypes of type II and type I tumor,
respectively.

It has been well established that the DDR pathway is
activated by endogenous and environmental cellular stress
that is associated with DNA damage and has profound effects
on determining cell fate. DDR signaling has been reported to
be associated with several types of human cancer including
colorectal, pancreatic, and oral squamous cell carcinomas
[4–6]. Given its critical role in tumor development, it has
been proposed that harnessing the activity of DDR pathways
may improve cancer treatment outcome after cytotoxic
chemotherapy and irradiation therapy [7]. Molecularly,
DDR is initiated by the rapid recruitment of several nuclear
proteins involved in the repair process to the site of DNA
damage to form a complex, which acts to repair DNA damage
and promote cell survival. DDR is mediated by a signal
transduction cascade involving the ataxia telangiectasia
mutated (ATM-) check point kinase 2 (Chk2)-p53 axis
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Figure 1: pChk2 immunoreactivity in representative high-grade serous carcinomas. (a) A high-grade serous carcinoma shows relatively
diffuse positive staining for pChk2. In contrast, pChk2 immunoreactivity is undetectable in the adjacent fallopian tube epithelium. (b) At a
higher magnification, pChk2 immunoreactivity is exclusively present in the nuclei of tumor cells. (c) Another high-grade serous carcinoma
shows focal pChk2 staining in cancer cells. (d) A serous tubal intraepithelial carcinoma, a presumable precursor of high-grade serous
carcinoma, contains pChk2 positive cells in the lesion.

Table 1: Immunostaining intensity of pChk2 in ovarian serous tumors, normal ovaries, and fallopian tubes.

Staining intensity Low-grade High-grade High-grade SBT Serous cystadenoma Normal ovaries and FTE

SC SC (primary) SC (recurrent)

0 31 (73.8%) 47 (29.6%) 28 (30.7%) 16 (100%) 10 (100%) 5 (100%)

1+ 5 (11.9%) 37 (23.3%) 15 (16.5%) 0 0 0

2+ 3 (7.1%) 39 (24.5%) 18 (19.8%) 0 0 0

3+ 3 (7.1%) 36 (22.6%) 30 (33%) 0 0 0

SC: serous carcinoma; SBT: serous borderline tumor; FTE: fallopian tube epithelium.

[8, 9]. In this cascade, Chk2 plays a pivotal role; ATM
phosphorylates Chk2 to generate pChk2, the active form of
Chk2, which then activates several downstream pathways,
leading to cell cycle arrest through p53, BRCA1, Cdc25A,
and Cdc25C phosphatase [10, 11]. Because threonine 68 of
Chk2 is phosphorylated at sites of DNA strand breaks and the
specific antibody that binds pChk2 at threonine 68 is avail-
able [12], pChk2 immunoreactivity has been used in many
studies as a surrogate tissue biomarker for DDR [4–6, 13,
14]. In fact, it has been reported that Chk2 with Thr 68
phosphorylation was detected in more than 50% of primary
untreated lung and breast tumor specimens [15].

In this study, we address three main questions: whether
there is a difference in the level of DDR between high-
grade and low-grade serous carcinoma; whether recurrent
high-grade serous carcinomas have an altered DDR as
compared to their primaries; whether there is a significant
correlation in the expression levels between pChk2 and Rsf-1
(HBXAP), a gene that is frequently upregulated in high-
grade serous carcinoma and participates in generating DNA
damage. The Rsf-1 gene, located at ch11q13.5, is frequently
amplified, and its expression is upregulated in most high-
grade serous carcinomas but not in type I tumors [16–18].
Here we applied pChk2 immunohistochemistry to assess
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Figure 2: Box plot for the correlation of pChk2 immunostaining
intensity and percentage of tumor cells showing pChk2 staining
among 206 ovarian tumor tissues. The percentage of pChk2 positive
cells correlates with intensity grade: percent pChk2 positive cells in
3+ cases > 2+ cases > 1+ cases (P < 0.0001, nonparametric one-way
ANOVA test).

the levels of DDR in high-grade serous carcinoma, low-
grade serous carcinoma, serous borderline tumor, and serous
cystadenoma. Comparing the levels of DDR in cancer
cells should help understand the pathogenesis of different
subtypes of ovarian serous carcinoma.

2. Methods

An antibody specific for threonine 68 (Thr 68) of Chk2 (Cell
Signaling, Danvers, Mass) was used for immunohistochem-
istry on ovarian carcinoma tissues at a dilution of 1 : 200.
Phosphorylation of Chk2 at Thr 68 is a prerequisite for full
activation by ATM (3). The specificity of the antibody was
reported in a previous study [19]. A total of 292 ovarian
carcinomas were analyzed, including 250 high-grade serous
carcinomas (159 primary and 91 recurrent tumors) and 42
low-grade serous carcinomas. In addition, normal ovaries
and fallopian tubes from 5 patients, 10 serous cystadenomas,
and 16 serous (atypical proliferative) borderline tumors were
also analyzed. All the ovarian tumors tissues except 14 low-
grade serous tumors were arranged in tissue microarrays in
triplicate (1.5 mm core) to facilitate immunohistochemistry.
pChk2 immunoreactivity was semiquantitatively scored by
two pathologists using a four-tiered grading system (0 to
3+) for intensity and percentage for prevalence of positive
cells. Correlations of intensity and percentage of pChk2
with clinical data including grade (Chi square), disease-
free interval, and overall survival (Kaplan-Meier curves) were
determined. A monoclonal anti-Rsf-1 antibody, clone 5H2/
E4 (Upstate, Lake Placid, NY), was used for immunostaining
in 75 high-grade ovarian serous carcinomas arranged in
tissue microarrays. Rsf-1 immunoreactivity was semiquan-
titatively scored by two pathologists independently using a
five-tier grading system (0 to 4+) as previously described
[17]. A nonparametric Kruskal-Wallis test was used to
determine the statistical significance of correlation between

pChk2 expression (both intensity and percentage) and Rsf-1
immunostaining intensity.

3. Results

pChk2 immunoreactivity was exclusively localized in the
nuclei of tumor cells (Figure 1). In general, the intensity of
pChk2 and the percentage of pChk2 positive cells varied
among tumor samples (Figures 1(a)–1(c)) but were highly
correlated. The percentage of positive cells in 3+ cases was
greater than that in 2+ cases which in turn was higher
than that in 1+ cases (P < 0.0001, nonparametric one-way
ANOVA test) (Figure 2). For example, among high-grade
serous carcinomas, using a percentage of 30% as an arbitrary
cutoff, 77% of 3+ tumors, 33% of 2+ tumors, and 21% of
1+ tumors contained pChk2 positive cells in more than 30%
of cells. The pChk2 immunoreactivity in different types of
ovarian serous tumors and normal tissues was summarized
in Table 1. Comparing low-grade to high-grade carcinomas,
we found that 66 (26.4%) of 250 high-grade serous car-
cinomas, including primary and recurrent tumors, showed
intense pChk2 immunoreactivity (3+) while only 3 (7.1%) of
42 low-grade serous carcinomas had immunostaining scores
of 3+. If the cutoff of <2 versus ≥2 was used, 123 of 250
(49.2%) type II carcinomas and 6 (14.2%) of 42 low-grade
serous carcinomas had scores ≥2. As compared to low-grade
carcinomas, high-grade serous carcinomas demonstrated a
statistically higher frequency of intense staining with an
intensity score >2 (P = 0.0002, Chi-square, two-sided).
In high-grade serous carcinomas, no significant difference
in staining intensity or percentage was observed between
recurrent and primary tumors based on different cutoffs of
intensity score and percentage of pChk2 positive cells. In
contrast to carcinoma tissues, ovarian surface epithelium,
ovarian surface inclusion cysts, serous cystadenomas, serous
borderline tumors, and tumor stromal tissues showed unde-
tectable levels of pChk2 immunoreactivity (Figure 3). There
was no significant association of pChk2 expression (intensity
or percentage) and clinical outcome, including disease-free
survival and overall survival, based on Kaplan-Meier survival
analysis in high-grade serous carcinomas (data not shown).

We then tested the correlation between the expression
levels of pChk2 and Rsf-1 (HBXAP), because we have
recently shown that amplification and overexpression of Rsf-
1 (HBXAP) contribute to chromosomal instability by induc-
ing DNA strand breaks [20]. Rsf-1 immunostaining results
were available in 75 primary high-grade serous carcinomas
from our previous study [17], enabling correlation with
pChk2 data. Because Rsf-1 immunoreactivity is usually ho-
mogenous, we used intensity scores for Rsf-1 expression as
previously described [17]. Rsf-1 immunostaining intensity
significantly correlated with both percentage (P < 0.0001)
and intensity (P < 0.0001) of pChk2 (Figures 4(a) and 4(b)).
Representative immunostained tumor sections of pChk2 and
Rsf-1 from the same tissues are shown in Figure 4(c).

4. Discussion

It has been well established that DNA damage in cancer cells
and associated DNA damage response pathway activation
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Figure 3: pChk2 immunoreactivity in ovarian tissues and different histologic subtypes of ovarian carcinomas. (a) pChk2 staining is
undetectable in ovarian surface epithelium (OSE), cystadenoma (Cyst), normal fallopian tube (NFT). (b) serous borderline tumor (SBT)
and low-grade serous carcinoma (LGSC), are negative for pChk2 staining. In contrast, a high-grade serous carcinoma (HGSC) is diffusely
positive for pChk2.

play an important role in chromosomal instability and tu-
mor development [21–24]. The results from this study
underscore the fundamental molecular differences between
high-grade and low-grade serous carcinomas in terms of
DDR activation. We have previously proposed that high-
grade and low-grade serous carcinomas develop along
distinct pathways [3]. Low-grade serous carcinoma develops
from the precursor lesion, serous borderline tumor, tends to
present at early stages, and is slow growing. In contrast, high-
grade serous carcinoma, which has been generally referred
to as ovarian cancer, behaves in a highly aggressive fashion,
almost always present at advanced stages, and is associated
with a dismal clinical outcome. They are typically not asso-
ciated with borderline tumors, and in fact, a growing body
of evidence has supported the view that many high-grade
serous carcinomas develop from serous tubal intraepithelial
carcinomas and involve the ovary secondarily [25–29]. At
the molecular genetic level, low-grade serous carcinomas
are characterized by frequent somatic sequence mutations
in genes that are involved in signal transduction including
KRAS, BRAF, ERBB2, and PIK3CA [1, 30–33]. In contrast,
mutations in those genes are rarely detected in high-grade
serous carcinomas; however, almost all high-grade serous
carcinomas harbor TP53 mutations. In addition to unique

sequence mutations, high-grade serous carcinomas and low-
grade serous carcinomas (the prototype of type I tumors)
have distinct transcriptome and methylation profiles [3, 34,
35].

The higher pChk2 expression levels in high-grade serous
carcinomas suggest that DDR is prominent in high-grade
serous carcinomas as compared to low-grade serous carci-
nomas. This is likely due to frequent DNA damage in high-
grade serous carcinomas. The pronounced DDR in high-
grade serous carcinomas may be related to DNA replication
stress due to activation of oncogenes and telomere short-
ening among several others [36, 37]. Furthermore, high-
grade serous carcinomas usually have higher proliferative
activity than low-grade serous carcinomas, precipitating the
effects of DNA replication stress. On the other hand, tumor
microenvironmental changes such as oxidative stress, hyp-
oxia, and the presence of cytotoxic agents may potentiate
DNA damage. Furthermore, recent evidence has suggested
that excessive remodeling of chromosomal structures can
be related to DNA strand breaks followed by DDR. In fact,
we have recently shown that overexpression of a chromatin
remodeling gene, Rsf-1 (HBXAP), leads to DNA double-
strand breaks and DDR, resulting in p53-depdenent cell cycle
arrest and apoptosis in TP53 wild type, nontransformed
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Figure 4: Correlation of the expression levels of pChk2 and Rsf-1 (HBXAP). (a) Scatter plots showing the distribution of pChk2 (percentage)
and Rsf-1 (HBXAP) (immunostaining intensity) in 75 high-grade serous carcinomas. The correlation between the percentage of pChk2
positive cells and Rsf-1 immunostaining intensity was significant (P < 0.0001). Horizontal bars: means. (b) Scatter plots showing the
distribution of pChk2 intensity scores and Rsf-1 (HBXAP) intensity scores in the same set of high-grade serous carcinomas. The correlation
between immunostaining intensity of pChk2 and Rsf-1 was significant (P < 0.0001). Horizontal bars: means. (c) Four representative cases
of high-grade serous carcinomas showing different staining patterns of pChk2 and Rsf-1. The intensity scores are shown in the left upper
corner of each panel.

cells [20]. DNA damage goes unchecked, and cells continue

proliferating in the presence of DNA strand breaks if TP53

is mutated, as what occurs in the great majority of high-

grade serous carcinomas. Thus, the result from the current

immunohistochemistry study further supports the biological

link between Rsf-1 upregulation and DDR in ovarian cancer

tissues either by aberrant chromatin remodeling or by

oncogene/replicative stress. As TP53 mutation represents one
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of the very early event in the development of high-grade
serous carcinoma, it is currently not clear if DNA damage
occurs before or after TP53 mutations, although it has been
suggested that activation of Chk2 and other DDR members
may precede p53 inactivation in human epithelial tumors
[22, 38].

It has been demonstrated that high-grade serous carci-
noma, as compared to low-grade serous carcinoma, exhibits
a higher level of chromosomal instability as reflected by
abnormal mitosis, DNA copy number alterations, and kary-
otypic abnormalities [39, 40]. Thus, the increased pChk2
immunoreactivity in high-grade serous carcinoma raises a
possibility that in high-grade serous carcinoma cells, DDR
may not be fully capable of repairing DNA damage and
maintaining genomic integrity, as the DNA damage may
overwhelm the DNA repair capacity. As a result, clonal
selection favors tumor cells harboring sustained DNA dam-
age at a level that allows cells to survive but at the same time
causes chromosomal instability, serving as the driving force
in the evolution of highly aggressive tumor cell species. The
finding of pChk2 expression in the majority of high-grade
serous carcinomas implies that it may serve as a therapeutic
target because inhibiting Chk2 may reduce DNA repair and
increase genomic instability to a level that is not compatible
with cellular survival and ultimately leads to tumor cell
death. Indeed, it has been recently reported that a newly
developed Chk2 small compound inhibitor could poten-
tiate the cytotoxicity effect of PARP inhibitors, a finding
supporting this view [41].

The majority of low-grade serous carcinomas do not
contain prominent pChk2 immunoreactivity. Although our
favored view is that less DNA damage is present, and, thus,
attenuated DDR occurs in those tumors, other interpreta-
tions should also be pointed out. For example, the lack of
pChk2 immunoreactivity might be a consequence of inacti-
vation of upstream components in the DDR pathway [36].
As a result, ineffective DDR is present despite DNA damage
in tumor cells. However, this scenario is less likely because
unchecked and unrepaired DNA damage is generally detri-
mental to cells and is incompatible with sustained survival
and proliferation in tumor cells.

In summary, using pChk2 immunoreactivity as a surro-
gate marker for DDR, we found that high level DDR was
detected more frequently in high-grade serous carcinomas
than in low-grade serous carcinoma. This finding provides
further support to the view that both tumors are molecularly
distinct and develop along different molecular pathways. The
significant correlation of expression between pChk2 and Rsf-
1 (HBXAP) suggests that excessive chromatin remodeling
activity as a result of upregulation of Rsf-1 (HBXAP) is asso-
ciated with DDR in high-grade serous carcinoma tissues, a
result supporting our previous observations that Rsf-1 up-
regulation contributes to DNA strand breaks and subsequent
DDR. Future studies should aim at deciphering the mech-
anisms responsible for prominent DNA damage in high-
grade serous carcinomas as compared to low-grade serous
carcinomas and perhaps other type I tumors. Although our
current study did not demonstrate an association of pChk2
expression levels with overall survival and disease-free sur-

vival, future clinical studies should be conducted to assess the
biological significance of pChk2 in ovarian cancer patients.
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[29] S. Salvador, B. Gilks, M. Köbel, D. Huntsman, B. Rosen, and
D. Miller, “The fallopian tube: primary site of most pelvic

high-grade serous carcinomas,” International Journal of Gyne-
cological Cancer, vol. 19, no. 1, pp. 58–64, 2009.

[30] G. Singer, R. J. Kurman, H. W. Chang, S. K. R. Cho, and
I. M. Shih, “Diverse tumorigenic pathways in ovarian serous
carcinoma,” American Journal of Pathology, vol. 160, no. 4, pp.
1223–1228, 2002.

[31] G. Singer, R. Oldt III, Y. Cohen et al., “Mutations in BRAF
and KRAS characterize the development of low-grade ovarian
serous carcinoma,” Journal of the National Cancer Institute, vol.
95, no. 6, pp. 484–486, 2003.

[32] K. Nakayama, N. Nakayama, R. J. Kurman et al., “Sequence
mutations and amplification of PIK3CA and AKT2 genes
in purified ovarian serous neoplasms,” Cancer Biology and
Therapy, vol. 5, no. 7, pp. 779–785, 2006.

[33] S. Jones, T. L. Wang, I. M. Shih et al., “Frequent mutations
of chromatin remodeling gene ARID1A in ovarian clear cell
carcinoma,” Science, vol. 330, no. 6001, pp. 228–231, 2010.

[34] I. Meinhold-Heerlein, D. Bauerschlag, F. Hilpert et al.,
“Molecular and prognostic distinction between serous ovarian
carcinomas of varying grade and malignant potential,” Onco-
gene, vol. 24, no. 6, pp. 1053–1065, 2005.

[35] I.-M. Shih, L. Chen, C. C. Wang et al., “Distinct DNA methy-
lation profiles in ovarian sreous neoplasms and their implica-
tions in ovarian carcinogenesis,” American Journal of Obstetrics
& Gynecology, vol. 203, no. 6, pp. 584.e1–584.e22, 2010.

[36] C. Kerzendorfer and M. O’Driscoll, “Human DNA damage
response and repair deficiency syndromes: linking genomic
instability and cell cycle checkpoint proficiency,” DNA Repair,
vol. 8, no. 9, pp. 1139–1152, 2009.

[37] D. Lydall, “Taming the tiger by the tail: modulation of DNA
damage responses by telomeres,” EMBO Journal, vol. 28, no.
15, pp. 2174–2187, 2009.

[38] T. D. Halazonetis, V. G. Gorgoulis, and J. Bartek, “An
oncogene-induced DNA damage model for cancer develop-
ment,” Science, vol. 319, no. 5868, pp. 1352–1355, 2008.

[39] K. T. Kuo, T. L. Mao, Y. Feng et al., “DNA copy numbers
profiles in affinity-purified ovarian clear cell carcinoma,”
Clinical Cancer Research, vol. 16, no. 7, pp. 1997–2008, 2010.

[40] K. T. Kuo, B. Guan, Y. Feng et al., “Analysis of DNA copy
number alterations in ovarian serous tumors identifies new
molecular genetic changes in low-grade and high-grade car-
cinomas,” Cancer Research, vol. 69, no. 9, pp. 4036–4042, 2009.

[41] V. E. Anderson, M. I. Walton, P. D. Eve et al., “CCT241533 is
a potent and selective inhibitor of CHK2 that potentiates the
cytotoxicity of PARP inhibitors,” Cancer Research, vol. 71, no.
2, pp. 463–472, 2011.



Submit your manuscripts at

http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 

Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment

AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 

Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


