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Abstract: Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group
of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and
represents the sixth most common type of malignancy worldwide. Despite advances in multimodality
treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients
remains poor. HNCs are characterized by a high degree of genomic instability, which involves a
vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication
stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on
defective DDR processes for a successful response to treatment, and may play an important role in the
development of novel and more effective therapies. This review summarizes the current knowledge
on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC
pathogenesis, and the rationale behind targeting these genes and pathways for the development of
new therapies. We give particular emphasis on the therapeutic targets that have shown promising
results at the pre-clinical stage and on those that have so far been associated with a therapeutic
advantage in the clinical setting.

Keywords: head and neck cancer (HNC); head and neck squamous cell carcinoma (HNSCC);
genomic instability; DNA damage response; non-homologous end joining (NHEJ); homologous
recombination (HR)

1. Introduction

Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous
group of neoplasms which include cancers of the lip and oral cavity, the sinus and nasal
cavity, the pharynx and larynx, the salivary gland and the thyroid gland, and is associated
with poor prognosis in advanced stages [1]. The most common type of HNC is squamous
cell carcinoma (HNSCC), accounting for approximately 90% of all HNCs, as most subtypes
are derived from squamous cells of the mucosal epithelium [1]. In 2017, the Global Burden
of Disease (GBD) study estimated that HNC represents 5.3% of all cancers (excluding
nonmelanoma skin cancers), with the lip and oral cavity (LOC) cancers being the most
frequent, followed by larynx cancers [2,3]. It has also been estimated that approximately
600,000 new HNSCC cases are diagnosed annually throughout the world, with mortality
rates reaching as high as 50% [4–6].

The onset of HNC depends on an interplay between genetic factors, such as Fanconi
anemia (FA), Bloom syndrome and xeroderma pigmentosum, and environmental factors,
such as age, geographic region and various lifestyle contributors [7]. A major risk lifestyle
factor is tobacco smoking, while smoking electronic cigarettes, despite being considered
less harmful than conventional cigarettes, has also been associated with the development
of HNSCC due to their high content of substances that can cause oral mucosal lesions [2].
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Another major lifestyle risk factor is alcohol consumption, even in individuals who have
never been smokers, while combined use of alcohol and tobacco has been shown to have a
synergistic effect on tumor development [2,8,9]. Notably, a significant association, albeit
to a lesser extent compared to smoking and alcohol consumption, has also been observed
between Human papillomavirus (HPV) infection and the development of various HNCs,
especially oropharyngeal (OPC), nasopharyngeal (NPC), oral cavity (OC), and larynx
cancers [6]. To date, thirteen types of HPV have been characterized as carcinogenic by the
International Agency for Research on Cancer, with the HPV16 subtype being regarded as
the most potent contributor to the development of HNC [2,10].

The heterogeneity and diversity of anatomical sites in HNC make its treatment a
challenging task. Current approaches include a combination of surgery, radiotherapy, and
chemotherapy [11,12]. Radiotherapy (RT) combined with platinum compounds such as
cisplatin, with or without 5-fluorouracil, has been the standard of care for many years
but has, however, been associated with a modest survival advantage and significant
treatment-related mortality [13,14]. More recent chemotherapeutics include taxols and the
anti-epidermal growth factor receptor (anti-EGFR) antibody cetuximab, which, despite
having been specifically approved for recurrent and metastatic HNC, has also been as-
sociated with an improvement in response rates and increased survival in locoregional
HNSCC [15,16]. Of note, cancer immunotherapy has emerged in recent years as an addi-
tional treatment approach to HNCs, especially in the form of immune checkpoint inhibitors
(ICIs), based on the rationale that these monoclonal antibodies have the ability to inhibit
immune checkpoint receptors and, therefore, to prevent the inactivation of T-cell function
and subsequent cancer immune escape [17]. In this regard, the ICIs nivolumab and pem-
brolizumab, which specifically bind to immune checkpoint receptor programmed cell death
protein 1 (PD-1), have been approved for patients with recurrent or metastatic disease
previously treated with platinum chemotherapy, conferring a survival benefit in 20–30% of
patients [16,18,19]. However, despite advances in multimodality treatment and promising
results from administering therapeutic combinations in clinical trials, relapse rates remain
very high, and 5-year survival is still estimated at 66% [19]. This undoubtedly highlights
the need for devising new strategies that will target resistant clones and prolong survival.

As with most solid tumors, HNCs are characterized by genomic instability, which may
manifest both as chromosomal instability (CIN), in the form of chromosomal rearrange-
ments or changes in chromosomal ploidy, as nucleotide instability (NIN), in the form of
gene amplification, deletion, inversion, and base substitution or mutation, or as microsatel-
lite instability (MIN), in the form of loss or addition of oligonucleotide repeats [13,20–22].
The mechanism behind these aberrations seems to involve a vicious circle of accumulating
DNA damage, defective DNA damage repair (DDR), and replication stress [13,21,23,24].
The latter can induce the collapse of replication forks and the occurrence of DNA double-
strand breaks (DSBs), which appear to be a prominent feature of HNCs [21,25,26]. The
inability to appropriately repair these DSBs translates to inability to effectively inhibit cell
cycle progression for DNA repair or apoptosis, leading to an ever-increasing accumulation
of DNA lesions and the creation of a highly unstable genetic environment that is driven
by mutagenic stress [13]. Interestingly, a positive correlation has been identified between
the number of chromosomal arms bearing allelic loss and tumor grade, neck nodal status,
disease recurrence, metastasis, and overall survival in patients with HNC [20,27]. The
extent of DNA damage and the efficiency of DNA repair mechanisms are also significantly
associated with response to treatment, and may play an important role in the development
of novel therapies.

Even though malignant transformation results from a defective DDR mechanism and
subsequent development of genomic instability, the induction of DSBs by chemothera-
peutic agents and radiotherapy relies on defective cellular DNA repair processes for a
successful response to treatment [28]. Overall, DNA repair mechanisms for DSBs fall into
two main types: (i) the homology recombination repair (HRR or HR) mechanism, which
uses extensive homology and DNA synthesis is facilitated through a template, usually the
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sister chromatid, in order to regenerate the lost sequences, and (ii) the non-homologous
end joining (NHEJ) mechanism, which rejoins DSBs without any homology requirement
and is therefore considered an error-prone DNA repair mechanism [28–30]. HR occurs
largely during the late S and G2 phases, when the double helix on one sister chromatid
can provide sequence information to repair the damaged chromatid, while NHEJ occurs
predominantly during the G1 phase of the cell cycle, when sister chromatids are unavailable
to allow homology-directed repair, and less during S/G2; in other words, NHEJ exhibits
decreased fidelity in repairing DSBs compared to HR [30,31]. Even though defects in both
mechanisms have been shown to confer a pro-carcinogenic effect, the chemo- and radiore-
sistant properties of certain tumors appear to rely on effective DDR signaling to escape the
cell-cycle arrest and apoptotic pathways induced by DSBs [28,32–34]. Recent evidence also
highlights the existence of tumors with impaired or inactivated DDR pathways, as well
as tumors with mutated DNA repair genes that act as tumor suppressors, which may be
specifically targeted to improve therapeutic outcomes and patient survival [35–38].

This review gives an overview of the main DNA repair mechanisms involved in the
pathogenesis of HNC, including the different genes and proteins that appear to be aber-
rantly expressed or mutated in DDR pathways, and how these aberrations are differentially
implicated in cancer development and therapeutic resistance. We discuss the rationale
behind targeting these genes and pathways for the development of novel therapeutic
interventions and give a detailed account of those that have shown promising results in pre-
clinical and clinical studies and the potential to confer a therapeutic advantage or survival
benefit, either used as monotherapy or in combination with other anti-cancer therapies.

2. Genomic Instability in HNC

It has long become evident that genomic instability is implicated in tumor initiation,
progression, and survival [21,39], and that it may manifest as one of three main types: chro-
mosomal instability, nucleotide instability (NIN), and microsatellite instability [21,22,40].
CIN is the high rate of change in the structure and number of chromosomes in cancer
cells in relation to normal cells [21,22]; MIN is the addition or loss of a number of oligonu-
cleotide repeats due to defects in DNA mismatch repair (MMR) [40,41]; whereas NIN is the
increased rate of point mutations, including base substitutions, deletions, and insertions,
and is believed to occur as a result of base excision repair (BER) and nucleotide excision
repair (NER) pathway malfunctioning [40]. Even though heritable germline mutations
naturally increase the risk of cancer occurrence, hereditary cancers are also characterized
by acquired somatic mutations [41,42]. Additionally, regardless of the type of gene that is
affected by the hereditary mutation, i.e., whether the mutation occurs in an oncogene, an
onco-suppressor gene, or a gene that is related to DNA repair, the prevailing hypothesis
states that genomic instability is present in precancerous lesions and leads to tumor growth
by increasing the rate of mutations, thereby supporting the notion of a continuous mutator
phenotype (the so-called “mutator hypothesis”) [21,43,44]. Examples of hereditary HNCs
include the Gorlin–Goltz and FA syndromes, with the former arising from mutations in
the patched tumor suppressor gene (PTCH) [45,46] and the latter from mutations in genes
implicated in the Fanconi anemia pathway [47], both being characterized by increased
genomic instability [48]. On the other hand, in sporadic cancers, the mutations are acquired
spontaneously and randomly; however, they also lead to replication stress and increased
genomic instability [21,42,49,50].

Replication stress may be induced by both endogenous and exogenous sources. In
addition to the overexpression or constitutive activation of oncogenes such as RAS, MYC,
and EGFR families, and cyclin E [51], replication stress may also arise from replication
barriers such as the presence of DNA–RNA hybrids, collisions between replication and tran-
scription complexes [52], altered chromatin compaction and hypo-acetylation, shortened
telomeres [53], repetitive sequences, early replicating fragile sites (ERFSs), and common
fragile sites (CFSs) [54–56]. Additional barriers include DNA lesions and misincorporation
of ribonucleotides, secondary DNA structures, and dormant replication origins due to
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external or internal factors of DNA damage that have not been repaired [54]. Exogenous
sources of DNA damage include environmental agents such as chemicals, ultraviolet light,
ionizing radiation, toxins, and pollutants, while major sources of endogenous DNA dam-
age include oxidative DNA damage from the presence of reactive oxygen species (ROS),
oxygen, and lipid peroxidation products (e.g., MDA-induced DNA damage derived from
lipid peroxidation, propano, and etheno adducts), hydrolytic deamination and carbonyl
stress, and several estrogen metabolites, among others [57].

Exposure to carcinogens that are produced by environmental pollution or through
lifestyle habits such as tobacco smoking and excessive alcohol consumption, and its as-
sociation with an increased risk of developing HNCs, have been widely studied [58–61].
Nitrosamines and polycyclic aromatic hydrocarbons (PAHs) that are formed during tobacco
smoking, as well as acetaldehyde production and cytochrome p450 2E1 (CYP2E1) enzyme
induction by alcohol consumption, contribute to the formation of persistent DNA adducts,
which disrupt the DNA double helix and lead to the formation of hypermutations and
chromosomal instability [62–67]. Smoking has also been implicated in the dysregulation
of antitumor immune mechanisms, and particularly in the impairment of T-cell-mediated
immune responses in patients with esophageal squamous cell carcinoma (ESCC) [68]. In
addition, betel quid chewing, due to its alkaloid ingredients, has been associated with
an increased risk of HNC development [69,70]. Current research suggests that the betel
quid ingredient, arecoline, may suppress the expression of ATM and BRCA1 genes, thereby
interrupting DDR and repair processes, ultimately leading to carcinogenesis [71].

The consequences of genomic instability in HNCs are reflected in the high hetero-
geneity of these tumors, which may influence the outcome of targeted therapy and disease
prognosis [72]. Specifically, intra-tumoral heterogeneity is associated with poor prognosis
in HNC patients [73]. HPV positive (HPV(+)) HNSCCs are significantly different in mu-
tation patterns [29,30], gene expression [74–78], protein abundance profiles, and genome
methylation [79,80], as compared to HPV negative (HPV(−)) HNSCCs [81]. For example,
most HPV(−) tumors present with mutations in the p53 gene, which is rarely mutated in
HPV(+) tumors, and are also characterized by significantly higher rates of allelic loss and
chromosomal alterations [49,82–84]. On the other hand, HPV(+) tumors seem to be driven
by E6 and E7 viral oncogenes, which may be sufficient to deregulate onco-suppressor
factors leading to carcinogenesis [49]. Several studies have revealed differences in the ex-
pression of cell cycle-related genes in HPV(+) tumors, which may further explain the faster
cell proliferation observed in these tumors in comparison with HPV(−) HNCs [49,85,86].
However, the high complexity and heterogeneity in the landscape of HNC are observed in
both HPV(−) and HPV(+) HNSCCs.

HPV-associated HNCs present with altered DNA methylation status, with genes in
HPV(+) HNSCCs being either hypo or hypermethylated as compared to HPV(−) HN-
SCCs [87]. However, the majority of HPV(+) HNCs exhibit higher DNA methylation
levels than HPV(−) HNCs, and these have been associated with immune responses on
virally infected cells and viral invasion processes [88]. Demethylation treatment with
5-azacytidine-generating DSBs seems to be effective in these cancers due to a defective
FA-dependent homologous recombination mechanism [89]. The Fanconi anemia pathway
is involved in interstrand crosslink (ICL) repair and seems to play an important role in
HNSCC prognosis and treatment response [90].

3. DDR Mechanisms—A Brief Overview

The cellular response to DNA damage and replication stress is the activation of the
DDR mechanisms, which signal the presence of DNA damage and promote its repair, or,
in some cases, lead the cell to apoptosis in order to prevent the spread of damage. Apart
from NHEJ and HR, several other DNA repair pathways are also included in the DDR
armamentarium. These are as follows:

(i) Alternative end joining (A-EJ) is a recently described mechanism that repairs DSBs
through a subset of A-EJ pathways and relies on microhomology-mediated repair.
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The best characterized Alt-EJ pathway is the microhomology end joining (MMEJ)
pathway; this requires 2 to 20 nucleotides of homologous sequence and shares the
same first steps of DDR with HR, i.e., the repair process begins with end resection
and involves many of the factors that contribute to the HR end resection machinery.
These mechanisms are considered to be error-prone and highly mutagenic as they
are associated with deletions flanking the original DSB, leading to chromosomal
rearrangements and genomic instability [91–94].

(ii) Nucleotide excision repair (NER) is a mechanism that repairs bulky DNA lesions that
distort the DNA double helix and are usually caused by external mutagens, such
as UV light and chemical carcinogenic substances [91,95]. NER is divided into two
sub-pathways: global genome NER (GG-NER), which takes place throughout the
genome, independently of transcriptional processes, and transcription-coupled NER,
which only occurs in order to repair the damage on the transcribed strand [96–98].

(iii) Mismatch repair (MMR) is a mechanism that repairs base–base mismatches, deletions,
or insertions predominantly generated during DNA replication and recombination
processes or mismatches that escape DNA polymerase proofreading activity. MMR
is considered a highly conserved biological pathway and plays an important role in
genome maintenance [91,99].

(iv) Base excision repair (BER) is a mechanism that tends to repair DNA damage (small
base lesions) that originate from endogenous sources, such as those attributed to
ROS, alkylation, deamination, and methylation, and which do not create structural
distortions of the DNA double helix [91,100]. BER is initiated by a DNA glycosylase
that recognizes and removes the damaged base, leaving an empty space that is further
processed by short-patch repair or long-patch repair to complete the repair mechanism.
A study in a Pakistani population suggested that the deregulation of genes in the BER
pathway may drive HNSCC progression [101].

Below, we discuss proteins related to DDR mechanisms that have been found mu-
tated or aberrantly expressed in HNC cell lines or patients, and their implication in the
development, prognosis, and therapy of HNCs.

4. DDR Molecules with Evidence of Implication in the Pathogenesis of HNC
4.1. DDR Signaling Kinases

In mammalian cells, the main upstream kinases orchestrating the DDR signaling
pathway are the ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related)
serine/threonine kinases, while the DNA-PKcs (DNA-dependent protein kinase catalytic
subunit) is a DDR sensor regulating a smaller number of targets and plays a primary role
in NHEJ [102,103]. However, the upstream molecules of DDR not only play a crucial part
in the repair of DNA lesions, but they are also implicated in the regulation of the cell cycle,
cell cycle arrest, and apoptosis. For this reason, DDR plays a critical role in tumor initiation
and progression, and in the response of HNCs to radiotherapy. In this respect, cell cycle
checkpoint mechanisms constitute an important part of the DNA damage response, as
they either pause the cell cycle to repair the DNA damage or, in cases where the damaged
DNA cannot be repaired, they signal programmed cell death in order to minimize the
transmission of DNA errors [104].

4.1.1. Ataxia Telangiectasia Mutated (ATM)

ATM is a well-characterized serine-threonine kinase, primarily activated upon DSBs,
which are considered the most deleterious DNA lesions invoked by replication stress [102].
A key regulator of ATM activation upon the formation of DSBs is the MRN complex
(MRE11-RAD50-NBS1), which is usually responsible for the rapid localization of ATM
to DSBs [102]. Although there is enough evidence to support that MRN acts as a DSB
sensor, the way that it activates the ATM and ATR kinases has not been completely eluci-
dated [102]. ATM is able to autophosphorylate, a property that promotes its association
with Mdc1 and its accumulation at DSBs [102,105,106]. The activation of ATM is followed
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by phosphorylation of downstream molecules such as H2AX, BRCA1, Chk2, p53, and Chk2,
among others, promoting DNA repair via HR, or leading the cell to apoptosis [102,107–110].
Germline inactivation of ATM leads to Ataxia–Telangiectasia Syndrome, an inherited disor-
der characterized by DNA repair defects and subsequent genomic instability [111]. These
patients have been associated with an increased risk (one in three affected individuals) of
developing HNSCC and gynaecological squamous cell carcinomas, with the onset of the
disease usually occurring during early adulthood [112,113]. In addition, in certain tumors,
ATM gene aberrations usually involve somatic mutations [114], while ATM promoter hy-
permethylation is also evident in a significant proportion of HNCs (25%), with the resulting
downregulation of ATM expression being associated with poor prognosis [71,115,116].
Recent evidence also suggests that an impaired ATM-orchestrated DNA damage response,
irrespectively of ATM expression levels, might be responsible for the radiosensitivity of
HPV(+) HNSCCs, even though the exact molecular mechanism remains unknown [100].
Indeed, the interaction between ATM and the E7 viral oncoprotein has been described to
induce the phosphorylation and activation of the DNA damage protein kinase CHK2 in
HPV(+) cells, which is required for HPV differentiation and genome amplification [117].

4.1.2. ATM- and Rad3-Related (ATR)

In contrast to ATM, ATR responds to a wide variety of DNA damage, in addition to
DSBs [102,111]. ATR, along with its partner, ATRIP, are localized to sites of single-stranded
DNA (ssDNA), and this may constitute the trigger that induces the ATR response in DSBs
generated during the S and G2 phases of the cell cycle, i.e., resected DSBs or DSBs associated
with stalled replication forks [102,111,118]. Additionally, ATR appears to be implicated in a
mechanism that prevents the premature onset of mitosis, while it is activated by replication
origins arising during the S phase [119]. Due to the plausible role of ATR in mammalian cell
DNA integrity, mutation rates in this gene are quite low, with the exception of a rare genetic
syndrome, the Seckel syndrome, which is characterized by biallelic ATR mutations [111].
Nonetheless, it has been estimated that 4.36% of patients with HNC present with ATR
gene mutations [120].

4.1.3. Chk1 and Chk2

Control of the cell cycle mainly involves two checkpoint kinases, Chk1 and Chk2, both
of which are serine/threonine kinases. Chk2 is involved in all three main cell cycle check-
points, i.e., the G1/S checkpoint, the intra-S checkpoint, and the G2/M checkpoint [121]. It
is mainly activated by ATM upon DNA double-strand breakage, and activation involves
autophosphorylation and dimerization [121]. Chk1 is not as stable as Chk2; its activation is
restricted to the S and G2 phases [122] with the involvement of ATR in single-strand breaks
(SSBs) [123]. However, ATM is also required for the activation of Chk1 in response to DSBs
and for repair through homologous recombination [123].

4.1.4. p53-Binding Protein 1 (53BP1)

53BP1 also participates in the activation of Chk1 and Chk2 and in the repair pro-
cess [124]. Specifically, 53BP1 is rapidly recruited to DSBs and mediates their repair in
mammalian cells. In addition, it is actively implicated in the protection of the replication
forks during cellular replication stress responses, as defective ATR-Chk1-p53 signaling
and caspase 3-mediated cell death are observed in the absence of 53BP1 [125]. During
the G1 phase, 53BP1 has been reported to promote the repair of DSBs through the NHEJ
mechanism and, in this way, to counteract repair via HR, i.e., through DNA end resection.
Rap1-interacting factor 1 (RIF1) and Pax transactivation domain-interacting protein (PTIP)
have been shown to interact with 53BP1 in an ATM-dependent manner and to act as key
effectors that allow 53BP1 to block DSB resection in G1 and to promote NHEJ [126–128].
In contrast, during the G2-S phase, BRCA1 and CtIP have been shown to antagonize the
actions of 53BP1-RIF1 and 53BP1-PTIP in order to promote HR repair; BRCA1 appears
to recruit CtIP to DSBs and to promote DNA end resection, but the exact mechanism
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has not been elucidated yet [129,130]. Overall, it is generally accepted that 53BP1-RIF1
and 53BP1-PTIP protein complexes guide the decision toward the NHEJ repair process,
whereas the BRCA1-CtIP protein complex guides the decision toward the initiation of the
HR process [130].

Research on human HNC samples has also revealed a perturbed activation of DDR, or
rather a defect in the synchronization of the cell cycle during DDR activation, as evidenced
by elevated expression of Ki-67, a protein marker for cell proliferation, and localization of
53BP1 foci in the nucleus [131]. The researchers proposed 53BP1 expression as a potential
biomarker for estimating the genomic instability invoked by DSBs or by abnormally acti-
vated DDR in oral squamous epithelial lesions [131]; this is in agreement with the results of
another study highlighting the potential usefulness of 53BP1 IF analysis as a diagnostic
tool for Thyroid Follicular Tumors [132]. Preclinical data have also demonstrated that
53BP1 can regulate cell cycle arrest through the modulation of TP53, CHK1, and CHK2 gene
expression in ESCC; specifically, targeted downregulation of the 53BP1 protein has been
shown to cause a reduction in p53 gene expression, but to be negatively correlated with
CHK1 and CHK2 gene expression [133].

4.2. Molecules of the Homologous Recombination (HR) Mechanism

In patients with HR-related defects, such as BRCA1 and BRCA2 deficiency, or in
patients with FA syndrome, chromosomal instability is usually observed [48,134]. When
the HR process is impaired, chromosomal translocations appear when two DSBs from
different chromosomes (i.e., four DNA-free ends) are aberrantly joined via NHEJ, leading to
genomic rearrangements that are associated with high genomic instability and cancer [135].
Additionally, chromothripsis, which results from multiple DSBs in a single chromosome,
may be followed by chromosomal segments rejoined via NHEJ, driving carcinogenesis
through the loss of tumor suppressor genes or the activation of oncogenes. Thus, the
error-prone nature of NHEJ and HR impairment can lead to genomic rearrangements and
carcinogenesis [135]. However, there is substantial evidence to suggest that certain genetic
deficiencies are associated with a higher frequency of HR, and can therefore lead to genomic
instability and increase the possibility of cancer occurrence [136].

4.2.1. FA Genes

Fanconi Anemia is a genetic disorder caused by the germline inactivation of one or
more genes, and patients may present with bone marrow failure and a high predisposition
to cancer [137]. The FA pathway is involved in ICL repair through HR-mediated mecha-
nisms [90]. In this context, FA proteins act as DNA integrity factors through the stabilization
of replication forks and the regulation of cytokinesis, in addition to their canonical role
in ICL repair [90]. In FA patients, HNSCC is considered the most common type of solid
cancer, associated with a 700-fold increased risk [137].

Defects in HR repair are not only implicated in the initiation of tumorigenesis, but
are also associated with secondary and subsequent stages of carcinogenesis and tumor
progression [136]. In sporadic HNSCC, this is evidenced by the downregulation of FA-
related genes and FANCF gene silencing. Indeed, functional defects in DNA crosslink
repair have been observed in a significant proportion of HNSCC cell lines, in terms of
MMC-hypersensitivity, G2-blockade, and olaparib (PARP-inhibitor) hypersensitivity [138].
The mono-ubiquitylation of FANCD2 protein, a necessary prerequisite for the activation of
the FA pathway, also appears to be compromised in certain HNC cell lines, while FA/HR-
related gene variants are present in 19% of HNSCC tumors and in 24% of cell lines, and
defects are associated with worse prognosis [138].

The carcinogen acetaldehyde has been shown to activate the ATR-Chk1-dependent
damage response mechanisms leading to S and G2/M cell cycle arrest in esophageal
epithelial cells (keratinocytes), followed by FA pathway activation-directed repair [139].
In this context, depletion of FANCD2 protein has been associated with excessive DNA
damage and apoptotic cell death, suggesting that it is an important contributor to the



Int. J. Mol. Sci. 2023, 24, 2760 8 of 29

repair of acetaldehyde-induced DNA damage in these cells [139]. Such data highlight
potential mechanisms of excessive alcohol consumption-related tumorigenesis, as well as
mechanisms implicated in genomic instability that increase the risk of developing SCCs
in FA patients. Future studies will determine whether these mechanisms also apply to
HNSCC tumors.

4.2.2. BRCA1 and BRCA2

As mentioned earlier, BRCA1 and BRCA2 have essential functions in the HR repair
pathway, and breast and ovarian tumors with defects in these genes can be successfully
treated with PARP inhibitors [140]. Molecular profiling of HNSCC patient samples has
identified BRCA1 and BRCA2 mutations with a frequency of 5.75% and 9.2%, respectively,
which seem to co-exist with TP53 and PI3KCA pathway mutations [141]. However, the
clinical significance of most detected variants remains to be determined.

4.2.3. RAD51

The RAD51 protein has essential roles in successful DSB repair via homologous
recombination; it binds to ssDNA near the repair sites and exhibits DNA-dependent
ATPase activity [142,143]. By catalyzing the recognition of homology and strand ex-
change, RAD51 contributes to re-synthesizing the lost sequence [144]. Xrcc3 (X-ray repair
cross-complementing group 3; 14q32.3) is responsible for the accumulation of RAD51
at sites of DSBs in the cell nucleus and for the enzymatic resolution of the resulting
Holliday junction [145].

Two RAD51 single nucleotide polymorphisms (SNPs) have been identified as potential
regulators of mRNA stability, altered translational efficiency, and the potential to induce
carcinogenesis: 135GC (rs1801320) and 172GT (rs1801321) [146]. A case study revealed
a possible association of RAD51 (135GC genotype) and XRCC3 (722CT and 722TT geno-
types) gene polymorphisms with an increased risk of HNSCC occurrence in the Polish
population [147]. The RAD51 135GC polymorphism, in particular, already associated with
an increased risk of developing breast cancer and acute myeloid leukemia, has also been
linked to an increased risk of developing HNC in other populations, especially among
smokers and drinkers [148]. Interestingly, a meta-analysis revealed that whereas the RAD51
135GC polymorphism is associated with a high susceptibility to HNC and esophageal can-
cer among Caucasians, the G172T polymorphism appears to confer a potential protective
effect against HNC among the same population, as it is associated with a decreased risk of
HNC occurrence [146,149].

In OSCC patients, RAD51 protein expression levels are significantly increased com-
pared to healthy individuals [150]. Notably, among OSCC patients, those with lymphatic
metastases appear to have significantly higher RAD51 gene expression, suggesting that
the respective protein may be involved in lymph node metastasis. Additionally, RAD51
expression has been related to the stage of malignancy, with significantly higher levels being
observed in poorly differentiated tissues, as compared to moderately or well-differentiated
tissues, further highlighting its potential to be used as a biomarker for OSCC staging [150].

Increased RAD51 mRNA expression levels are correlated with worse prognosis in
HPV(+) HNSCC tumors; the combination of a RAD51 inhibitor with a Wee1 inhibitor has
been shown to significantly inhibit tumor growth in mice with HPV(+) HNSCC tumors,
as compared to mice with HPV(−) HNSCC, suggesting that HPV(+) tumors may be more
dependent on DDR mechanisms in order to counteract the effects of increased replication
stress (due to the transformation by the viral oncogenes E6 and E7) [151]. In the same
context, the inhibitors B02 and AZD1775 have been shown to act as radiosensitizers to
HPV(−) HNSCC tumors in vitro and in vivo [151].



Int. J. Mol. Sci. 2023, 24, 2760 9 of 29

4.3. Molecules of the Non-Homologous End Joining (NHEJ) Mechanism
4.3.1. DNA-Dependent Protein Kinase (DNA-PK)

DNA-PK is a serine/threonine-protein kinase that possesses a catalytic subunit (DNA-
PKcs) and a Ku heterodimer, consisting of the Ku70 and Ku80 subunits; it is implicated in
DDR mechanisms and other processes that are associated with the maintenance of DNA
integrity, such as cell cycle progression, transcription, and telomere maintenance [152]. As
with the ATM kinase, DNA-PK mainly responds to DSBs and mediates their repair. In
particular, the Ku heterodimer recognizes and binds to the DSB and recruits and activates
the DNA-PKcs to form the active DNA-PK complex, in this way promoting the NHEJ
DNA repair mechanism [135]. Recent evidence suggests that DNA-PK is also involved in
a complex regulatory network for the pathway choice between HR and NHEJ [152,153],
while phosphorylation of T2609 and T3950 residues is implicated in radioresistance [153].
Interestingly, while mutational inactivation of DNA-PKcs has been shown to impair NHEJ,
subsequently leading to DNA repair through HR, drug inhibition of DNA-PKcs has been
shown to impair both pathways [152,154]. Overall, DNA-PKcs is implicated in cancer
progression and metastasis [155]. In the context of HNCs, DNA-PK overexpression appears
to be significantly associated with decreased survival in NPC patients, suggesting that it
may be used as a prognostic biomarker for this particular HNC subtype [156]. In addition,
DNA-PKcs overexpression has been associated with poor outcomes in patients with NPC
undergoing intensity-modulated radiotherapy, suggesting an additional role in predicting
response to therapy [157]. Notably, DNA-PK expression has been shown to increase
following irradiation of OSCC, with the rate of increase being directly correlated with
therapeutic resistance [158], and for this reason, several DNA-PK inhibitors are currently
being investigated for their radiosensitizing properties [159].

4.3.2. Ku Protein

When HR mechanisms are not available, as for example outside of the S and G phases
of the cell cycle or due to defects in key repair proteins, DSBs are predominantly repaired
via the NHEJ mechanism. The Ku protein constitutes an essential player in this process,
being a nuclear DNA-binding protein that recognizes DSBs and facilitates their repair [160].
Ku consists of two subunits, one that is approximately 70 kDa and another that is 80 kDa
(Ku70 and Ku80, respectively) [161]. Overexpression of Ku80 is associated with an adverse
prognosis in ESCC [162], a cancer type that is not classified as HNC but which is often
accompanied by head and neck second primary tumors (in approximately 7% of ESCCs
patients) [163]. In vitro experiments on both radiosensitive and radioresistant HNC cell
lines have revealed that ku70/80 gene overexpression is associated with radioresistance
and may therefore have some utility as a potential predictive marker of radioresistance in
HNCs [160]. Additionally, siRNA-silencing of β-catenin in the radiosensitive AMC-HN-9
cell line has been shown to impair the radiation-induced overexpression of Ku80 in an
AMPK signaling pathway-dependent manner [164]. Ku80 mRNA expression has also been
negatively associated with the expression of checkpoint molecule PD-L1 (programmed cell
death-1 ligand) in many cancer types, including HNCs, following irradiation [165]. Such
observations provide substantial evidence that the NHEJ mechanism is implicated in the
repair of DNA damage invoked by radiation and emphasize the necessity of discovering
new NHEJ targets for chemotherapeutic radiosensitization of head and neck tumors.

4.3.3. PARP Molecules

PARP1 (Poly (ADP-ribose) polymerase-1) is another sensor known to detect DSBs;
however, despite being involved in many cellular processes, such as cell proliferation,
differentiation, the repair process of the SSBs and DSBs through different repair pathways,
the stabilization of DNA replication forks and in the modification of chromatin structure,
its implication in NHEJ is not fully understood [161]. Nonetheless, it has been observed
that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than
other DSB sensors, that PARP1 competes with the Ku70/80 complex at the DSBs in the
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S/G2 phases, and that the Ku complex can be replaced by PARP1 at DSB sites [166]. On
the contrary, the Ku70/80 complex appears to occupy the DSB sites exclusively in the G1
phase, thereby suggesting that each sensor recognizes DSBs at different stages of the cell
cycle; in addition, it has been postulated that PARP 1 may act as a regulator of the Ku70/80
complex in DSBs in the S/G2 phases, as it has been shown to enzymatically remove the Ku
complex from these sites [166].

In addition, PARP5A and PARP5B are PARP molecules that also catalyze poly (ADP-
ribose) PAR chains, but their role in cancer is still not fully deciphered. While PARP5B
downregulation has been observed in prostate, breast, and HNCs [167,168], recent data
demonstrate that null PARP5B tumor cells are characterized by an impairment of the NHEJ
mechanism, and that treatment with a PARP5B inhibitor combined with low doses of etopo-
side drives SCC human cell lines into senescence and apoptosis [169]. The latter seems to
be dependent on the actions of the NBS1 protein, which constitutes an essential component
of the MRN (MRE11-RAD50-NBS1) complex; by accumulating the MRN complex at dam-
aged sites, NBS1 amplifies ATM activation, which in turn activates and orchestrates DSB
repair [170]. In another study, the consequential reduction in NSB1 expression following
PARP5B inhibition was associated with the activation of ATR signaling, which in turn led to
senescence and apoptosis, highlighting PARP5B as a potential target for chemotherapeutic
intervention in HNSCC [169].

Preclinical data from HNSCC cell lines and mouse models have demonstrated that
NSB1 gene downregulation is associated with disruption of HR and increased sensitivity to
PARP inhibitors; in addition, co-inhibition of the MRN complex and PARP has been shown
to induce DSB accumulation, telomere shortening, and ultimately cell death [167]. Such
observations indicate that simultaneous inhibition of genes/molecules that participate in
two or more DNA repair pathways may induce a cytotoxic response that has been described
as synthetic lethality [167,171]. The latter only happens in the presence of another specific
defect, in this case, a defect in a DNA repair gene, and is best exemplified with the use
of PARP inhibitors in cancer cells carrying defects in BRCA1 or BRCA2 genes [172]. In
the context of BRCA1/BRCA2 deficient cells, PARP inhibition tends to accumulate SSBs
arising during normal cellular activity and to result in DSBs that are formed through the
collision of SSBs with a DNA replication fork; these DSBs require HR repair that cannot take
place in the absence of fully functional BRCA1/BRCA2 proteins and ultimately induce cell
death [172,173]. Interestingly, the observation that PARP inhibition in HR deficient cells can
still lead to synthetic lethality but may not be necessarily accompanied by SSB accumulation
has led to the conclusion that PARP1 must also be actively implicated in the Alt-NHEJ repair
process, which is believed to take place in HR- and/or NHEJ-defective cancer cells [94].
This could have tremendous implications for the development of therapeutic synthetic
lethality approaches in malignancies carrying defects in the two major DSB repair pathways,
including HNCs [174,175].

4.4. Molecules of the Nucleotide-Excision Repair (NER), Base-Excision Repair (BER), and
Mismatch Repair (MMR) Mechanisms
4.4.1. NER-Associated Genes

These are genes that appear to be downregulated in HNSCC patients and include
ERCC1, ERCC2/XPD, XPA, and XPC [11]. Low expression levels of ERCC3 and XPA
in lymphoblastoid cells and low levels of XPB in lymphocytes are commonly observed
in HNSCC patients and have been associated with an increased risk of developing the
disease [176]. In addition, NER-associated genes have been proposed as biomarkers with
potential value in predicting treatment efficacy and outcome in HNSCC [177]. However,
while certain studies have found an association between ERCC1 and XPA upregulation
with poor OS in patients with OSCC, others have noted better OS [178]. Notably, these
genes have been proposed as a biomarker for the prediction of 5-FU and cisplatin-based
chemotherapy in HNSCC patients [179,180].
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4.4.2. BER-Associated Genes

APEX1 and XRCC-1 have recently been found to be downregulated in patients with
HNSCC [11]. Overexpression of these genes has been correlated with better clinical staging
and negative lymph node metastasis in patients with OTSCC [179,181].

4.4.3. MMR-Associated Genes

Downregulation of MLH1, MSH2, MLH3, and PMS2 genes, all key molecules of the
MMR mechanism, has been associated with reduced DNA repair capacity, development of
malignant lesions in OSCC, and tobacco-induced methylation in smokers [179].

Interestingly, a prognostic 13-DNA-repair-gene signature has recently been identi-
fied and shown to accurately and independently predict the clinical outcome of patients
with HNSCC [182]; the signature includes the MORF4L2, COPS2, USP10, WAS, UVSSA,
PRRX1, ZBTB1, DCLRE1C, MSH5, DOT1L, ZBTB7A, POLR2C, and MORF4L1 genes, known
to be involved in a variety of DNA repair pathways, including NER, BER, MMR, and
DSB repair [182,183].

Figure 1 schematically represents the DNA repair pathways that are implicated in
the pathogenesis of HNC and the proteins that have been found to be deregulated in
these pathways.
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Figure 1. Schematic representation of the main DNA repair pathways, the proteins involved in each
pathway that are deregulated in HNCs, and the inhibitors that are being investigated as targeted
therapeutics. The clarification of the complex interactions between DDR genes with altered expression
in HNC can reveal potential biomarkers for predicting clinical outcome and for guiding therapy
selection. The investigation of the complex interplay between the different DNA repair mechanisms,
and how these are affected by the altered expression of key proteins in HNC, can significantly
contribute to the development of new inhibitors for targeted therapy. APEX1: Apurinic/Apyrimidinic
Endodeoxyribonuclease 1; ATM: Ataxia Telangiectasia Mutated; ATR: Ataxia Telangiectasia and
Rad3-related; BER: Base Excision Repair; BRCA1: Breast Cancer gene 1; BRCA2: Breast Cancer gene 2;
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CDKi: Cyclin-Dependent Kinase inhibitor; CHK1: Checkpoint kinase 1; CHK2: Checkpoint ki-
nase 2; DDR: DNA damage response; DNA-PKi: DNA-dependent Protein Kinase inhibitor; DSBs:
double-strand breaks; ERCC1: Excision Repair Cross-Complementing Rodent Repair Deficiency,
Complementation Group 1; ERCC2: excision repair cross-complementing rodent repair deficiency
Gene 2; ERCC3: excision repair cross-complementing rodent repair deficiency Gene 3; FA-genes:
Fanconi Anemia genes; FANCD2: Fanconi Anemia Complementation Group D2; HNC: head and neck
cancer; HNSCC: Head and Neck Squamous Cell Carcinoma; HR: Homologous Recombination; MLH1:
MutL protein homolog 1; MMR: Mismatch Repair; MSH2: MutS homolog 2; MSH3: MutS Homolog 3;
NER: Nucleotide Excision Repair; NHEJ: Nonhomologous End Joining; PARP1/2: Poly(ADP-Ribose)
Polymerase 1/2; 2PARPi: Poly (ADP-ribose) Polymerase inhibitor; PMS2: Postmeiotic Segregation
Increased 2; SSBs: single-strand breaks; XPA: Xeroderma pigmentosum complementation group A;
XPB: xeroderma pigmentosum, complementation group B; XPC: Xeroderma pigmentosum, com-
plementation group C; XPD: Xeroderma Pigmentosum, complementation Group D; XRCC1: X-ray
Repair Cross Complementing protein 1.

4.5. Genes That Have Been Functionally Related to HPV(+) HNSCCs

HPV oncogenes E6 and E7 are responsible for tumor initiation and immortalization,
and are known to deregulate the onco-suppressor gene TP53 and retinoblastoma protein
(pRb), thereby leading to deregulation of the cell cycle and inhibition of apoptosis [184–186].
Relevant information from the TCGA database indicates that a great proportion of oropha-
ryngeal and tonsil tumors are HPV(+) without TP53 gene mutations, while HNSCCs in
other sites are more prone to developing TP53 mutations and appear to have lower rates
of HPV infection [82]. This inverse relationship may reflect the important role of the viral
oncoproteins E6 and E7 in oropharyngeal and tonsil HPV-related tumorigenesis [82]. On
the other hand, TP53 gene mutations are implicated in HPV(−) HNC tumorigenesis, as
evidenced through experiments in HNC cell lines and animal models; E7 has been shown
to increase the radiation-induced DNA damage, to decrease the sub-lethal DNA damage
repair, and to lead to overexpression of the HR-related protein RAD51 [187].

In addition, current evidence suggests that HPV-associated tumors exhibit higher
radiosensitivity as compared to HPV(−) cell lines through a DDR-dependent manner.
Specifically, Jonathan E. Leeman et al. demonstrated that the HPV16 E7 oncoprotein leads
to the suppression of cNHEJ and promotes the MMEJ mechanism, which is considered
to be error-prone and highly mutagenic [78]. In addition, HPV(+) HNSCCs appear to
be deficient in TGF-β signaling, which is associated with a perturbed HR function and
increased reliance on Alt-NHEJ for repair [188].

The presence of HPV infection in HNCs has also been correlated with overexpression
of the p16 gene, and this may result from pRb inactivation via the E7 HPV protein [189].
P16 protein constitutes an important cell cycle regulator, acting as a CDK inhibitor, and
for this reason, alterations in p16 gene expression are frequently observed in several ma-
lignancies [189]. Nonetheless, HPV(−) malignancies characterized by p16 overexpression
have also been identified [190]. Currently, the evaluation of p16 expression is used as a
surrogate marker for HPV infection in HNCs, but the data regarding its diagnostic value are
rather contradictive. While a great proportion of oropharyngeal squamous cell carcinomas
(OPSCCs), especially tonsillar and tongue base carcinomas (TSCC/BOTSCC), appear to
contain the HPV genome and evaluation of p16 gene expression has successfully been
used for the estimation of prognosis and recurrence of the disease [191], some researchers
propose the cautious use of p16 expression status for the diagnosis of HPV(+) HNSCCs
in non-tonsillar, non-base of tongue oropharyngeal cancers [192]. In OSCCs such as oral
tongue cancers, for example, HPV infection and p16 overexpression do not seem to coin-
cide [193]. Other studies indicate that HPV infection in OSCCs does not affect the survival
outcome of the disease [194] and that p16 overexpression may be the result of other path-
ways or cellular mechanisms and not the consequence of HPV infection [193]. However,
additional large-scale studies need to be performed in order to draw conclusions on the
diagnostic role of p16 expression in the different types of HNCs.
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Table 1 summarizes the genes involved in the DDR pathways and how these are
deregulated in the pathogenesis of HNC.

Table 1. List of genes that are deregulated in the DDR pathways in HNC and related clinical effects.

Gene Pathway Abnormal
Expression/Alteration Clinical Effect Reference

Ku70/80 NHEJ Overexpression Radioresistance [160]

PARP5B NHEJ Downregulation/null Impairment of NHEJ [169]

DNA-PKcs NHEJ Overexpression

Decreased survival in NPC
patients/poor outcomes in NPC
patients undergoing
intensity-modulated
radiotherapy—potential biomarker for
prediction of the response to therapy

[156,157]

RAD51 HR Overexpression
Lymph node metastasis, poorly
differentiated tissues, worse prognosis
in OSCC

[150]

BRCA2 HR Deficiency Sensitivity to the PARP inhibitors [195]

BRCA1 HR Downregulation Poor outcome [71]

FANCF and
FA-related genes Fanconi anemia/HR Silencing or

downregulation

MMC-hypersensitivity, G2-blockade,
and olaparib (PARP-inhibitor)
hypersensitivity

[138]

ATM DNA repair (HR, NHEJ),
cell cycle arrest, apoptosis Downregulation Poor prognosis [71]

ATR
DNA repair (HR, NHEJ),
cell cycle progression,
apoptosis

Mutation Unknown [120]

TP53
p53 pathway
HR
NHEJ

Deficiency
Short survival time and tumor
resistance to radiotherapy and
chemotherapy in HNSCC patients

[82]

XPB NER Downregulation Increased risk for HNSCCs [176]

ERCC1 NER Upregulation Enhanced response to chemotherapy [179]

XPA and ERCC1 NER Upregulation
Poor OS in patients with
OSCC/exhibited better OS in patients
with oropharyngeal SCC

[178]

XRCC1 BER Upregulation Better clinical staging of OTSCC and
negative lymph node metastasis [181]

MLH1, MSH2,
MLH3 and PMS2 MMR Downregulation Reduced DNA repair capacity

in OSCCs [179]

ATM: Ataxia Telangiectasia Mutated; ATR: Ataxia Telangiectasia and Rad3-related; BER: Base Excision
Repair; BRCA1: Breast Cancer gene 1; BRCA2: Breast Cancer gene 2; DDR: DNA damage response;
DNA-PK: DNA-dependent Protein Kinase; ERCC1: Excision Repair Cross-Complementing Rodent Repair Defi-
ciency, Complementation Group 1; FA-genes: Fanconi Anemia genes; FANCF: Fanconi Anemia Complementation
Group F; HNC: head and neck cancer; HR: Homologous Recombination; MLH1: MutL protein homolog 1; MMR:
Mismatch Repair; MSH2: MutS homolog 2; MSH3: MutS Homolog 3; NER: Nucleotide Excision Repair; NHEJ:
Nonhomologous End Joining; PARP1/2: Poly(ADP-Ribose) Polymerase 1/2; PMS2: Postmeiotic Segregation In-
creased 2; XPA: Xeroderma pigmentosum complementation group A; XRCC1: X-ray Repair Cross Complementing
protein 1.

5. Novel Therapeutic Targets: Preclinical and Clinical Evidence

The significant inter- and intratumoral heterogeneity of HNSCCs make targeted ther-
apy a real challenge. Current treatment approaches include surgery, radiation therapy,
chemotherapy, targeted therapy, and immunotherapy or combinations of these treatment
modalities [196]. One of the most common treatment options is photon-based radiother-
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apy (XRT), either alone or with chemotherapy agents such as methotrexate, platinum
compounds with or without 5-fluorouracil, and cisplatin [196–198]. However, treatment
approaches often have severe side effects with unfavorable patient outcomes (i.e., the 5-year
overall survival rate after XRT treatment does not exceed 40% for HPV(−) OSCC stages
III to IV) [199]. Successful treatment is usually impeded by tumor-related mechanisms
which repair the radiotherapy- and/or chemotherapy-induced DNA damage, leading to
radioresistance and/or chemoresistance of the tumor [196]. Consequently, there is a need
for new effective treatment strategies with the lowest possible toxicity. When it comes
to DNA damage response mechanisms, efforts for successful therapy have concentrated
on the design of new targeted drugs and on the identification of appropriate drug and
radiotherapy combinations, based on specific molecular characteristics of the tumor, in
order to generate lethal DNA damage, such as DSBs, and prevent their repair, leading
to cell death. Table 2 includes a list of DDR inhibitors that are currently being tested in
clinical trials, whereas Table 3 includes the DDR inhibitors that are being investigated at
the pre-clinical stage.

Table 2. List of DDR inhibitors currently being tested in clinical trials.

Inhibitors Target
Combination with
Chemo or
Radiotherapy

Cancer Type Clinical Trial Clinical Trial
Stage

Veliparib
(ABT-888) PARP Carboplatin +

Paclitaxel
Locoregionally
advanced HNSCCs NCT01366144 Phase I

Olaparib PARP Radiation SMAD4-negative
HNSCC NCT02229656 Phase I

Niraparib +
Dostarlimab PARP + PD-1 Recurrent/metastatic

HNSCC NCT04681469 Phase I
(recruiting)

Niraparib +
Dostarlimab PARP + PD-1 Recurrent/metastatic

HNSCC NCT04313504 Phase II

Olaparib +
Cetuximab PARP + EGFR Radiation Heavy smokers with

locally advanced HNC NCT01758731 Phase I

Panitumumab EGFR Platinum Advanced HNSCC NCT02643056 Phase II

Afatinib +
Pembrolizumab EGFR + PD-1 Recurrent or metastatic

HNSCC NCT03695510 Phase II

AZD1775 Wee1 Cisplatin + Docetaxel Locally advanced
HNSCC NCT02508246 Phase I

MSC2490484A DNA-PK Radiation + Cisplatin Locally advanced
solid tumors NCT02516813 Phase I

CC-115 Dual mTOR/
DNA-PK inhibitor Advanced solid tumors NCT01353625 Phase Ia/Ib

BAY 1895344 +
Pembrolizumab ATR + PD-1 Radiation Recurrent HNC NCT04576091 Phase I

ATR: ataxia telangiectasia and Rad3-related; DNA-PK: DNA-dependent Protein Kinase; EGFR: Epidermal Growth
Factor Receptor; HNC: head and neck cancer; HNSCC: head and neck squamous cell carcinoma; mTOR: mam-
malian target of rapamycin; PARP: Poly (ADP-ribose) Polymerase; PD-1: Programmed Death-1, SMAD4: SMA-
and MAD-related protein 4.
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Table 3. List of DDR inhibitors currently being investigated pre-clinically.

Inhibitor Target Concomittant Administration
of Radio and/or Chemotherapy Cancer Type

NU7441 + Olaparib DNA-PK + PARP Radiotherapy HPV(−) HNSCC cell lines/
mouse models

AZD1775 (Adavosertib) Wee1 - TP53-mutated or HPV(+) tumors

CC-115 Dual mTOR/
DNA-PK inhibitor Radiotherapy HPV(+) and HPV(−) HNSCC cell lines

AZD6738 ATR Radiotherapy + Cisplatin HPV(+) and HPV(−) HNSCC cell lines

AZD0156 ATM Radiotherapy HPV(+) and HPV(−) HNSCC cell lines

GSK635416A + Olaparib ATM + Olaparib Radiotherapy HNSCC cell lines

ATR: ataxia telangiectasia and Rad3-related; ATM: ataxia telangiectasia mutated; DNA-PK: DNA-dependent
protein Kinase; HNSCC: head and neck squamous cell carcinoma; HPV(−): HPV-negative; HPV(+): HPV-positive;
mTOR: mammalian target of rapamycin; PARP: Poly (ADP-ribose) Polymerase.

5.1. PARP Inhibitors

The most attractive therapeutic targets are poly (ADP-ribose) polymerases (PARPs),
as these are implicated in the regulation of more than one DNA repair pathway (BER,
NER, Alt-NHEJ, NHEJ, MMEJ) [200]. As mentioned earlier, PARP inhibition was first
described in cancer cells with defective BRCA1/BRCA2 protein function, and then clinical
trials confirmed the effectiveness of PARP inhibitors as monotherapy in patients with
BRCA1(−/−) and BRCA2(−/−) tumors [196]. PARP inhibition was the first targeted
therapy of synthetic lethality, based on the observation that inhibition of the BER mechanism
leads to the formation and accumulation of SSBs and to the collapse of replication forks
in highly replicating cancer cells, with subsequent development of DSBs that cannot be
repaired through the high-fidelity HR mechanism in homozygous BRCA-defective cells,
leading to apoptosis [195,196,201]. However, more recent studies indicate a potential role
of PARPs in NHEJ, and propose that it is the deregulation of NHEJ that leads to synthetic
lethality in BRCA2-deficient tumors, as experimental inhibition of key BER proteins in these
tumors did not appear to have the same effect on PARP inhibition [202–205]. In addition
to tumors with BRCA mutations, cells bearing HR protein deficiencies, for example ATM
deficiency, also appear sensitive to PARP inhibition [196]. This observation supports the
notion that PARP inhibitors may be effective in tumors bearing a variety of deficiencies in
HR and other DDR mechanisms, which are estimated to constitute approximately 40% of
HNC tumors [196].

Interestingly, PARP inhibitors are currently being tested in combination with chemother-
apeutic agents, as well as with other inhibitors (i.e., EGFR inhibitors, as a great percentage
of HNCs accumulate EGFR mutations) and with radiotherapy. Preclinical testing of the
PARP inhibitor veliparib (ABT-888) in HNC cell lines and an HPV(+) patient xenograft has
produced encouraging results; HPV(+) HNSCC cell lines that were deficient for BRCA2 and
DNA-PK proteins, both key molecules of HR and NHEJ, exhibited sensitivity to the PARP
inhibitor, as evidenced by a decreased survival rate in vitro and a delay in tumor growth
in vivo [206]. Recently, the results of a phase I trial evaluating the maximum tolerated dose
(MTD) and safety of veliparib in combination with carboplatin and paclitaxel induction
chemotherapy (IC) for locoregionally advanced HNSCC demonstrated that veliparib is well
tolerated, with promising survival data following an adequate follow-up interval [207].

On the other hand, HNSCC cell lines with SMAD4 homozygous deletion have been
shown to exhibit sensitivity to olaparib, a well-studied PARP inhibitor, which appears to
increase DNA damage and cell death in combination with RT in vivo [208]. In a phase
I clinical trial, five out of six SMAD4-negative HNSCCs and four out of eight SMAD4-
positive HNSCCs responded to standard treatment plus olaparib [208]. A recent study has
highlighted the importance of PARP-1 in regulating the repair of complex DNA damage
(CDD) induced by high-LET radiation by demonstrating that high-LET proton-induced
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CDD and concomitant inhibition of PARP-1 (with olaparib) leads to cell death in the
HPV(−) HNSCC cell line UMSCC74A [209].

Another study on two HPV(+) and two HPV(−) HNSCC cell lines revealed that
the PARP inhibitor niraparib enhanced their sensitivity to both photon and proton radio-
therapy and increased the relative biological effectiveness (RBE) of protons, possibly by
inhibiting DDR [210]. In addition, the combination of niraparib with the Chk1 inhibitor
MK-8776 has been shown to enhance the radiosensitivity of HPV(+) HNSCC cells, whereas
co-administration with the Wee1 inhibitor MK-1775 seems to further enhance the radiosen-
sitivity of HPV(−) HNSCC cells in vitro [211]. An ongoing phase II study is currently
evaluating the combination of niraparib with PD-1 blockade (dostarlimab) in patients with
recurrent/metastatic HNSCC, with primary endpoints including stable disease, partial or
complete response, and secondary endpoints including adverse events, progression-free
survival (PFS) and overall survival (OS) [212].

5.2. Immune Checkpoint Inhibitors

PD-1 and its associated ligand, PD-L1 (Programmed death ligand 1), both consti-
tute immune checkpoint molecules expressed on the surface of T-cells and cancer cells,
respectively. The binding of PD-1 to PD-L1 produces a negative signal that leads to the
inactivation of T cells and allows immune evasion of tumor cells, leading to treatment
failure; therefore, inhibition of these molecules with specific antibodies (ICIs), represents
an attractive therapeutic strategy [213]. A recent meta-analysis revealed that the use of
anti-PD-1 monoclonal antibodies is more effective in smokers and in HPV(−) patients,
whilst anti-PD-L1-based therapy appears to be more efficient in female patients with locally
recurrent HNC and in HPV(+) patients [214]. Despite the fact that this type of immunother-
apy appears to offer a therapeutic advantage in terms of tumor progression control and
OS compared to chemotherapy, only a small subset of HNSCC patients really benefit from
ICI treatment [214]. Current data demonstrate that despite the PD-L1 protein being over-
expressed in over 50% of HNSCC tissues, only 15% of patients will respond to PD-1/PD-L1
inhibitors [214]. Nonetheless, such strategies may provide an alternative solution in cases
of advanced disease where traditional therapy is not effective or where the therapeutic
effect may be enhanced through a combination with other treatment approaches.

As mentioned earlier, EGFR is another molecular target for which monoclonal anti-
bodies have been developed. The EGFR is a cell surface protein that binds to the Epidermal
Growth Factor, activating downstream signaling cascades leading to DNA replication, cell
proliferation, and differentiation [215]. Abnormal EGFR gene expression is associated with
tumor progression in HNC, with overexpression being observed in approximately 90% of
HNSCCs [196,216]. EGFR protein signaling is actively implicated in DDR mechanisms,
while deregulation of this process has been linked to resistance to chemo and/or radio-
therapy [217]. As a result, monoclonal antibodies against EGFR aim to downregulate its
overexpression; cetuximab is currently the only FDA-approved anti-EGFR agent used for
HNC treatment, whereas panitumumab, another EGFR-specific antibody, is under clinical
evaluation for its effectiveness in patients with advanced HNSCC [218]. The response rate
of HNSCCs to cetuximab has been estimated at approximately 20%, regardless of HPV
status and EGFR overexpression [219]. Current investigations are focused on combination
treatments that include EGFR and PARP inhibitors. The combination of cetuximab and ola-
parib with radiation seems to induce an increase in DNA lesions, senescence, apoptosis, and
control of tumor growth both in vitro and in vivo [220]. The proposed mechanism behind
these observations is that the combination inhibits the NHEJ-mediated DNA repair and
induces senescence through p21 signaling in BRCA1/2 proficient HNSCC cells. The safety
of this triple combination has previously been evaluated in a phase I clinical trial [221].

5.3. Tyrosine Kinase Inhibitors

Targeted therapy against EGFR can also be accomplished with Tyrosine Kinase In-
hibitors (TKIs), which antagonize ATP binding to the tyrosine–kinase intracellular domain



Int. J. Mol. Sci. 2023, 24, 2760 17 of 29

of EGFR [222]. In HNC clinical trials, reversible EGFR TKIs, such as gefitinib and erlotinib,
do not seem to confer a therapeutic benefit either as monotherapy or in combination with
radiation treatment, with the response rate of erlotinib estimated at 10–15% in HNSCC pa-
tients [223]; on the other hand, multitarget TKIs such as lapatinib (reversible dual EGFR and
HER2 TKI), afatinib, and dacomitinib (both irreversible EGFR, HER2, and HER4 pan-HER
TKIs) have shown promising results in clinical trials, in terms of improving the objective
response rate in patients with HNSCC [216,224,225]. As HNSCC is a highly heterogeneous
disease and targeted EGFR monotherapy has produced moderate results in treatment
efficacy, and in some cases has even led to therapeutic resistance [196,216], future studies
are expected to concentrate on the development of combination therapies. Despite the het-
erogeneous mutational landscape of HNSCCs, the TP53 gene is mutated in approximately
72% of tumors according to the TCGA database, thereby highlighting the respective p53
protein as a potential biomarker and a promising target for more effective treatment. In this
context, it has already been reported that NHSCCs with TP53 mutations or HPV(+) tumors
with aberrant TP53 expression are sensitive to a Wee1 inhibitor, AZD1775, either used as a
single agent or in combination with other chemotherapeutic agents [226]. A recent phase I
clinical trial investigating AZD1775 in combination with CDDP (cisplatin) and docetaxel
in HNSCC patients has so far produced encouraging anti-tumor efficacy in patients with
defects in TP53 gene expression [227].

Wee1 normally acts as an inhibitor of CDK1 and CDK2, playing a crucial role in the
G2/M checkpoint of the cell cycle. In addition, Wee1 may be implicated in the cell-size
checkpoint, in the sense that it prevents entry into mitosis before the cells have reached a
specific size [228]. Upon excessive DNA damage, this may lead to a prolonged G2 phase, as
the G2 checkpoint is responsible for repairing DNA damage [229]. Consequently, inhibition
of Wee1, the principal gatekeeper of this checkpoint, represents a promising strategy for
the treatment of HNSCC, as it may lead to overactivation of CDK1/2, increased replication
stress, abrogation of DNA damage checkpoints and cleavage of stalled replication forks
by the abnormally activated MUS81 and SLX4 endonuclease complex [228,230]. Recent
data support the notion that the effectiveness of Wee1 inhibitors relies on an interplay
between replication stress and cell cycle checkpoint failure, as evidenced through combined
inhibition of PARP and Wee1, which appears to confer tumor-specific radiosensitization of
HPV(+) HNSCC cells [174].

5.4. CDK Inhibitors

CDK inhibitors, by preventing or counteracting tumor resistance mechanisms to
chemo- or radiotherapy, may also provide an efficacious alternative targeted therapy to
HNC patients. Even though pan-CDK inhibitors have not been approved for clinical use
due to severe side effects and low specificity, selective CDK inhibitors are currently being
used in clinical practice or are under clinical evaluation [189,231]. Ribociclib, a CDK4/6i,
has been shown to be effective in an HNSCC HPV(−) cell line, whereas cancer cells with
endothelial mesenchymal transition (EMT) features and low expression of Rb appear to
be less sensitive to it [232]. Additionally, both ribociclib and palbociclib (another CDK4/6
inhibitor) have been shown to enhance radiosensitivity in HNSCCs [189], and are therefore
currently being investigated in combination with other inhibitors in recurrent, metastatic,
and chemotherapy-resistant HNCs [233,234]. Further optimization is required for both
pan- and selective CDK inhibitors in order to diminish unwanted side effects, and in this
process it is essential to identify predictive biomarkers of effective CDK inhibition as well
as optimum treatment combinations.

5.5. DNA-PK Inhibitors

DNA-PK inhibitors constitute another promising target for achieving more effective
cancer treatment. As mentioned earlier in this review, in addition to actively contributing
to the NHEJ process, DNA-PKcs is implicated in many cellular processes, such as innate
immunity, pro-inflammatory signaling, metabolism, and other tumor-associated processes.
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To date, pre-clinical evaluation of DNA-PK inhibitors has produced more promising results
in the radiosensitization of HNSCC lines, as compared to the clinically available PARP1
inhibitors, while the combination of PARP1 and DNA-PK inhibitors has been shown to
enhance HPV(−) HNSCC inhibition in both mouse xenografts and cell culture, highlighting
a potential clinical application in patients with HPV(−) HNSCC [235]. Indeed, combined
administration of a DNA-PK inhibitor (NU7441) with olaparib and radiotherapy has been
shown to inhibit tumor cell proliferation both in vivo and in vitro, further suggesting that
the combination of these agents may be responsible for the inhibition of the CDK and
ERK pathway-related kinases [235]. In addition, combined administration of the dual
mTOR/DNA-PK Inhibitor CC-115 and radiotherapy has been shown to inhibit tumor
growth and significantly reduce the migration rate in HNSCC cell lines [236].

5.6. ATM and ATR Inhibitors

Based on the role of ATM and ATR in DDR responses, inhibitors of these molecules are
currently being investigated in several preclinical and clinical studies [175,237]. The ATR
inhibitor AZD6738 appears to promote cisplatin sensitization and to increase apoptosis
signaling, DNA damage, and radiosensitization that is correlated with CHK1-mediated
abrogation of G2/M-arrest in HPV(+) and HPV(−) HNSCCs, as shown in both in vivo and
in vitro studies [238,239]. The ATR inhibitor BAY 1895344 has also been shown to confer
radiosensitization in preclinical studies of HNSCC, by enhancing radiotherapy-induced
inflammation in the tumor microenvironment [240]. This process may be driven by the
actions of NK cells and can be further enhanced through combination treatment with
TIGIT and PD-1 targeted immunotherapy [241]. Such data emphasize the importance of
clinical trials in validating the safety and efficacy of BAY 1895344 in clinical practice [242].
On the other hand, inhibition of ATM has been shown to reduce cell migration [243],
while concomitant administration of AZD0156 (ATM inhibitor) and radiotherapy appears
to reduce tumor growth and migration rate in both HPV(+) and HPV(−) HNSCC cell
lines [236]. Additionally, the novel ATM inhibitor GSK635416A, in combination with
olaparib, seems to effectively radiosensitize HNSCC cell lines, whereas GSK635416A as
monotherapy effectively inhibits HR and is less cytotoxic to normal fibroblasts as compared
to olaparib [244]. Such observations highlight GSK635416A as a potential radiosensitizing
drug, and additional studies are warranted in order to confirm its clinical significance.

Figure 2 summarizes the DDR process in HNC and how this may result in therapeutic
resistance or successful therapy, through the targeting of specific DDR molecules.
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Figure 2. Overview of the DDR process in HNC pathogenesis, therapeutic resistance, and successful
treatment. Genomic instability in HNC is believed to result from the interplay between genetic
and environmental factors, and is evidenced by an ever-increasing accumulation of DNA damage,
impairment of the DDR mechanism, and a highly unstable genetic environment that is driven by
mutagenic stress. On the other hand, tumors that are able to effectively repair the DNA lesions (SSBs
and DSBs) induced by chemotherapy and radiation are resistant to these types of treatment and exhibit
altered DDR profiles. The identification of these altered DDR-related genes and pathways holds the
key to overcoming resistance mechanisms and improving therapeutic outcomes in HNC. Anti-EGFR:
Epidermal Growth Factor Receptor antibody; Anti-PD-1: Programmed Death-1 antibody; ATRi: ataxia
telangiectasia and Rad3-related inhibitor; ATMi: ataxia telangiectasia mutated inhibitor; CDKi: Cyclin-
Dependent Kinase inhibitor; DDR: DNA damage response; DNA-PKi: DNA-dependent Protein
Kinase inhibitor; DSBs: double-strand breaks; EMT: endothelial mesenchymal transition; HNC: head
and neck cancer; PARPi: Poly (ADP-ribose) Polymerase inhibitor; SSBs: single-strand breaks.

6. Conclusions

The complexity of HNC mandates a multidirectional approach for effective treatment.
Pre-clinical and clinical studies are required to improve our understanding of the mecha-
nisms implicated in HNC initiation and progression. In this regard, the investigation of
the mechanisms underlying the development of chemo- and radio-resistance is expected
to shed new light on alternative therapeutic combinations that will help to overcome the
obstacles that arise from traditional anti-cancer modalities.

Among the best-known tumor-related mechanisms of resistance to therapy are en-
hanced DNA repair of the lesions invoked by chemo- and radiotherapy, gene amplification,
inhibition of cell death, and resistance to apoptosis, as well as by alterations in cell cycle
regulation and immune evasion. These obstacles can be overcome through the introduction
of DDR inhibitors and of synthetic lethality treatments that will prevent the activation of
alternative pathways. Similarly, the mechanisms employed by tumors to achieve immune
evasion can be counteracted with the use of ICIs.

The increasing amount of data regarding the DDR pathways that are implicated in
cancer development and progression, along with the investigation of gene polymorphisms
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associated with tumor initiation and progression, and the identification of specific gene
mutations that correlate with therapeutic resistance, aim toward the establishment of
reliable biomarkers for the timely prediction of tumor response to therapy. However, the
development of new and effective treatment combinations demands not only the acquisition
of new information through continuous research, but also the appropriate implementation
of this information with existing knowledge in the field. Inhibitors that do not appear to
be therapeutically beneficial as monotherapy could still offer a therapeutic advantage in
combination treatments for a number of patients with specific tumor characteristics.

With the mechanisms of tumorigenesis, tumor resistance, and metastasis continuously
being unraveled, research efforts are gradually shifting toward biomarker-based patient
selection for anticancer therapy. Improved understanding and clarification of the DNA
repair efficiency in HNC hold enormous potential for efficient identification and characteri-
zation of the genomic instability biomarkers that will guide therapeutic development and
improve responses in cases with metastatic or resistant disease.
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