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It is well established that many physical properties of DNA at sufficiently long length scales can be

understood by means of simple polymer models. One of the most widely used elasticity models for

DNA is the twistable worm-like chain (TWLC), which describes the double helix as a continuous elas-

tic rod with bending and torsional stiffness. An extension of the TWLC, which has recently received

some attention, is the model by Marko and Siggia, who introduced an additional twist-bend coupling,

expected to arise from the groove asymmetry. By performing computer simulations of two available

versions of oxDNA, a coarse-grained model of nucleic acids, we investigate the microscopic origin of

twist-bend coupling. We show that this interaction is negligible in the oxDNA version with symmetric

grooves, while it appears in the oxDNA version with asymmetric grooves. Our analysis is based on the

calculation of the covariance matrix of equilibrium deformations, from which the stiffness parameters

are obtained. The estimated twist-bend coupling coefficient from oxDNA simulations is G= 30± 1

nm. The groove asymmetry induces a novel twist length scale and an associated renormalized twist

stiffness κt ≈ 80 nm, which is different from the intrinsic torsional stiffness C ≈ 110 nm. This natu-

rally explains the large variations on experimental estimates of the intrinsic stiffness performed in the

past. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984039]

I. INTRODUCTION

Owing to its role as the carrier of genetic information,

DNA is of central importance in biology. In its interactions

with other biomolecules within the cell, DNA is often bent and

twisted. A good mechanical model of DNA is therefore essen-

tial to understand the complex biological processes in which

it is involved.1 A large number of experiments in the past have

shown that its mechanical response can be described using sim-

ple continuous polymer models (studies of such models can

be found, e.g., in Refs. 2–4), such as the twistable worm-like

chain (TWLC), which treats DNA as an elastic rod, exhibiting

resistance to applied bending and twisting.5 In spite of its sim-

plicity, the TWLC has proven to be surprisingly accurate in

the description of the DNA response to applied forces2,6 and

torques.7,8

As experimental techniques become more accurate, physi-

cal models are put to increasingly strict tests. Single-molecule

experiments of the past few years have reported some dis-

crepancies between the TWLC predictions and the observed

torsional response of DNA.9,10 These experiments use mag-

netic tweezers in order to apply both a torque and a stretching

force to a single DNA molecule. The measured torsional stiff-

ness as a function of the applied force turned out to deviate

from the TWLC predictions. A recent study explained these

discrepancies using an elastic DNA model, which extends

the TWLC by including a direct coupling term between the

twisting and bending degrees of freedom.11 The existence

of twist-bend coupling was already predicted by Marko and

Siggia12 in 1994. Quite surprisingly the consequence of this

coupling on the structural and dynamical properties of DNA

has only been discussed in a very limited number of papers so

far.13,14

In this paper, we investigate the elastic properties of

oxDNA, a coarse-grained model for simulations of single-

and double-stranded DNA.15 oxDNA comes in two versions:

the original version (oxDNA1) contains symmetric grooves,

while in a more recent extension (oxDNA2) distinct major

and minor grooves were introduced.16 By comparing the two

versions, we deduce the effect of an asymmetric grooving on

the elastic properties of the molecule. Our analysis shows a

clear signature of twist-bend coupling in oxDNA2, while this

interaction is absent in the symmetric oxDNA1. This con-

firms the predictions of Marko and Siggia12 and shows that

the groove asymmetry strongly affects the elastic properties of

the molecule. Our estimate of the twist-bend coupling constant

in oxDNA2 is in agreement with that obtained from a recent

analysis of magnetic tweezers data.11

II. MODELS AND SIMULATIONS

A. Elasticity models

Elastic polymer models describe double-stranded DNA

as a continuous inextensible rod. At every point along the

molecule, one defines a local frame of reference, given by

a set of three orthonormal vectors {̂e1(s), ê2(s), ê3(s)}, where

0 ≤ s ≤ L is the arc-length coordinate and L is the contour

length. The common convention is to choose ê3 as the local tan-

gent to the curve (see Fig. 1), whereas ê1 and ê2 lie in the plane

of the ideal, planar Watson-Crick base pairs.12 The vector ê1
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FIG. 1. DNA can be represented as an inextensible, twistable, elastic rod.

Its conformation is described by a local orthonormal frame, associated with

every point along the molecule. ê3 is the unit tangent vector, whereas ê1 is

chosen to lie on the symmetry plane of the grooves. The third vector is given

by ê2 = ê3 × ê1.

is directed along the symmetry axis of the two grooves and ê2

is obtained from the relation ê2 = ê3 × ê1. Knowing how the

set {̂e1(s), ê2(s), ê3(s)} depends on s allows one to reconstruct

the conformation of the molecule.

Any local deformation of the curve induces a rotation of

the frame {̂e1, ê2, ê3} from s to s + ds, which can be described

by the following differential equation:

d̂eµ

ds
= (Ω + ω0ê3) × êµ, (1)

where µ = 1, 2, 3 and ω0 is the intrinsic twist density of the

DNA double helix. The vector Ω + ω0ê3 is parallel to the

axis of rotation from êµ(s) to êµ(s + ds). Note that in general

Ω(s) depends on the coordinate s. Decomposing this vec-

tor along the local frame, we define its three components as

Ωµ(s) ≡ Ω · êµ(s). The case Ω = |Ω |̂e3 corresponds to a pure

twist deformation, whereasΩ = |Ω |̂e1 andΩ = |Ω |̂e2 express

bending in the planes defined by ê1 and ê2, respectively.

The lowest-energy configuration of the system is that of

zero mechanical stress Ω1 =Ω2 =Ω3 = 0, which corresponds

to a straight rod with an intrinsic twist angle per unit length

equal to ω0. Expanding around this ground state, one obtains

the elastic energy to the lowest order in the deformation

parameters Ωµ as

βE =
1

2

∫ L

0

3
∑

µ,ν=1

Ωµ(s)MµνΩν(s)ds, (2)

where β ≡ 1/kBT is the inverse temperature. The 3× 3 sym-

metric matrix Mµν , which we refer to as the stiffness matrix,

contains the elastic constants. Note that from Eq. (1) the

Ω’s have the dimension of inverse length. As the left-hand

side of Eq. (2) is dimensionless, the elements of the stiffness

matrix have the dimension of length. In this work, sequence-

dependent effects will be neglected; therefore M will not

depend on s.

Marko and Siggia12 argued that, due to the asymmetry

introduced by the major and minor grooves, the elastic energy

of DNA should be invariant only under the transformation

Ω1→−Ω1. This implies that Ω2Ω3 is the only cross term

allowed by symmetry; therefore the stiffness matrix in the

Marko-Siggia (MS) model becomes

MMS =
*.
,

A1 0 0

0 A2 G

0 G C

+/
-

, (3)

where A1 ≡ M11, A2 ≡ M22, C ≡ M33, and G ≡ M23 = M32.

A1 and A2 express the energetic cost of a bending deformation

about the local axes ê1 and ê2, respectively.17 C is the intrinsic

torsional stiffness, whereas G quantifies the twist-bend cou-

pling interaction. Note that G , 0 is a direct consequence

of the groove asymmetry in the DNA double helix. If one

neglects this asymmetry, the MS model reduces to the TWLC

model (G = 0), and the corresponding stiffness matrix becomes

diagonal12

MTWLC =
*.
,

A1 0 0

0 A2 0

0 0 C

+/
-

. (4)

Most studies5 model DNA as an isotropic TWLC, for which

A1 = A2.

B. Computer simulations with oxDNA

In this paper we investigate the elastic properties of

oxDNA, which is a model for coarse-grained computer sim-

ulations of both single- and double-stranded DNAs.15 The

model describes double-stranded DNA as two intertwined

strings of rigid nucleotides, with pairwise interactions mod-

eling the backbone covalent bonds, the hydrogen bonding, the

stacking, cross-stacking, and excluded-volume interactions.

oxDNA has been used in the past for the study of a variety

of DNA properties.15,16,18,19

We performed simulations using two available versions

of the model. The first version (oxDNA1) describes DNA

as a molecule with no distinction between major and minor

grooves,18 while the second (oxDNA2) introduces a distinct

grooving asymmetry.16 Figure 2 illustrates molecular confor-

mations of the two models, including a cross sectional view of

a single base pair. As discussed above, the presence of distinct

major and minor grooves breaks a molecular symmetry, so we

expect that oxDNA1 and oxDNA2 will be mapped onto the

TWLC [Eq. (4)] and the MS model [Eq. (3)], respectively.

To sample equilibrium fluctuations, molecular dynamics

simulations in the NVE ensemble with an Andersen-like ther-

mostat were used. This is implemented in repeated cycles in

which the system is first evolved by integrating Newton’s equa-

tions of motion in time for a given number of steps. Then the

momenta of some randomly selected particles are chosen from

a Maxwell distribution with a desired simulation temperature

(T = 295 K in our case). The cycle then repeats itself for a

large number of times.

FIG. 2. Snapshots of configurations of oxDNA1 (top) and oxDNA2 (bottom),

including a cross sectional view of the helix. While the grooves are symmetric

in oxDNA1, distinct major and minor grooves are present in oxDNA2.
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Molecular dynamics simulations were performed on 150

base pair molecules using averaged base pair interaction coef-

ficients. A total of 5 × 1010 time steps were sampled using a

numerical integration time step of 15.2 fs, and the trajectories

were recorded every 5 × 104 time steps. For all simulations,

the salt concentration was set to 0.5M. In oxDNA1 this value

is fixed, since the electrostatic interactions are implemented

through excluded-volume potentials, parametrized to mimic

high salt concentration (i.e., 0.5M). oxDNA2 improved upon

this approach by switching to a Debye-Hückel potential, which

models the ionic screening of electrostatic interactions. This

allows for the explicit selection of a salt concentration, which

we set to 0.5M, in order to achieve optimal comparability

between the two models.

C. Extraction of elastic parameters

The pivotal objective of the extraction of elastic param-

eters is to map oxDNA onto the described elastic model in

such a way that both the elastic properties at the base pair

level as well as long range behavior, such as bending and

torsional persistence lengths, are captured as accurately as pos-

sible. Establishing an appropriate one-to-one correspondence

requires the reduction of both models to the same level of

complexity. For the continuous elastic model, this implies the

discretization of the elastic free energy functional Eq. (2) to

the base pair level

βE =
a

2

N
∑

n=1

*.
,

3
∑

µ,ν=1

Ω
(n)
µ MµνΩ

(n)
ν
+/
-

, (5)

where a = 0.34 nm is the mean distance between suc-

cessive base pairs and Ω
(n)
µ ≡Ωµ(na). In the discrete case,

the finite rotation of a local frame of reference (triad)

{̂e1(n), ê2(n), ê3(n)}, associated with the spatial orientation of

the nth base pair of the molecule, into the sequentially adja-

cent triad {̂e1(n+1), ê2(n+1), ê3(n+1)}, can be represented by

a rotation vector Θ(n). The deformation parameters Ω
(n)
µ can

then be defined as the deviations of the components of Θ(n)/a

from their respective mean values,

aΩ
(n)
µ ≡ Θ

(n)
µ −

〈

Θ
(n)
µ

〉

. (6)

For oxDNA1 the mean twist angle aω0 = 〈Θ
(n)

3
〉 is found to be

34.8◦, whereas for oxDNA2 we find 34.1◦.

Accordingly, an appropriate triad has to be assigned to

each base pair of the oxDNA model. The particular choice

of those triads contains a certain degree of ambiguity, result-

ing in different mappings for different triads. Such ambi-

guity regarding the definition of the tangent vector ê3 in

coarse-grained simulations of DNA and the related impli-

cations for the extraction of the bending persistence length

has, for instance, been discussed by Fathizadeh et al.,20 who

showed that, when considering short length scales, different

definitions of the local tangent vector will usually yield sig-

nificantly different results for the bending persistence length.

However, when considering longer length scales, i.e., compar-

ing more distant tangent vectors, those discrepancies vanish

asymptotically.

For a detailed discussion of different triad definitions, we

refer to the supplementary material. All results presented in

the main text are calculated with a triad definition employing

local tangents ê3 obtained from the mean vector of the intrinsic

orientation of the two nucleotides in each base pair, provided

by the oxDNA output. The unit vector ê2 is obtained from

the projection of the connecting vector between the centers of

the two nucleotides y onto the orthogonal space of ê3. Having

identified ê3 and ê2, the remaining vector in the right-handed

triad is now uniquely defined as ê1 = ê2× ê3. This corresponds

to Triad II in the supplementary material.

In order to infer the stiffness matrix from simulations, we

used the standard procedure (see, e.g., Ref. 13) which relies

on the equipartition theorem21

〈

Ω
(n)
µ

∂ βE

∂Ω
(n)
ν

〉

= δµν , (7)

where 〈·〉 indicates the thermal average. Then we introduced

the 3 × 3 covariance matrix with elements

Λµν ≡
〈

Ω
(n)
µ Ω

(n)
ν

〉

, (8)

where the index n was dropped from Λ, as we neglect

sequence-dependent effects. Combining (5) and (7) we get

M =
1

a
Λ
−1. (9)

Thus, the stiffness parameters contained in M can be extracted

from the correlation matrix Λ, obtained from equilibrium

fluctuations [Eq. (8)].

This procedure is based on the elastic energy being given

by Eq. (5), which in turn assumes that there are no correla-

tions between different sets ofΩ’s. To investigate the effect of

correlations, we introduce the matrix

Ξµν(m) ≡ 〈


n+m−1
∑

k=n

Ω
(k)
µ





n+m−1
∑

l=n

Ω
(l)
ν

 〉. (10)

If correlations beyond neighboring bases are weak, the cross

terms in the previous expression can be neglected and we

obtain

Ξµν(m) ≈

n+m−1
∑

k=n

〈

Ω
(k)
µ Ω

(k)
ν

〉

= mΛµν . (11)

Finally we define the mstep stiffness matrix as

M(m) ≡
m

a
[Ξ(m)]−1, (12)

from which the mstep elastic constants can be obtained. In

absence of correlations, this matrix will not depend on m.

III. RESULTS

We present here the results of the simulations highlight-

ing the differences in elastic properties between oxDNA1 and

oxDNA2.

A. Probability distributions

Qualitative evidence of the presence of a non-zero twist-

bend coupling in the energy functionals can already be inferred

from the distribution of the off-diagonal terms Ω
(n)
µ Ω

(n)
ν with

µ , ν. Figure 3 shows histograms of these quantities, obtained

from simulations of oxDNA1 and oxDNA2. The data are aver-

aged over all base pairs along the DNA contour; hence we drop

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-003721
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-003721
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FIG. 3. Histograms of cross-diagonal terms ΩµΩν for

oxDNA1 and oxDNA2. The histograms for Ω1Ω2 and

Ω1Ω3 are quite similar for the two models, while there is

a marked difference for Ω2Ω3. The asymmetric shape of

the histogram in oxDNA2 is a signature of the presence

of twist-bend coupling.

the position index n. While the distribution ofΩ1Ω2 andΩ1Ω3

is symmetric and very similar in oxDNA1 and oxDNA2, there

is a marked difference between the two models in the histogram

ofΩ2Ω3. In oxDNA1 the distribution appears to be symmetric,

whereas in oxDNA2 there is a clear asymmetry, suggest-

ing the existence of a coupling between those deformation

parameters.

B. Stiffness matrix

In order to quantify the observed twist-bend coupling

interaction, we computed the mstep stiffness matrix M(m),

as defined in Eq. (12), for both models and for different

summation lengths m. At both chain-ends, 5 base pairs were

excluded from this calculation, since those boundary segments

are found to exhibit a significantly higher flexibility than seg-

ments located in the center of the chain. The results are shown

in Fig. 4, where the elements of M(m) are plotted as a func-

tion of m. In both models the diagonal elements A1, A2, and

C, as defined in Eqs. (3) and (4), have distinct, non-vanishing

values. There is, however, a remarkable difference between

oxDNA1 and oxDNA2 in the values of the off-diagonal

elements G, M12, and M13. In particular, all off-diagonal

elements in oxDNA1 are orders of magnitude smaller

than the diagonal ones. On the other hand, although M12

and M13 remain negligibly small, the twist-bend coupling

G in oxDNA2 becomes comparable in magnitude to the

diagonal terms, which clearly has to be attributed to the

asymmetry of the helical grooves. These results are in line

with the predictions of Marko and Siggia12 and remain valid

regardless of the exact choice of coordinate systems (see the

supplementary material).

As discussed in Sec. III A, in the absence of correlations

between different sets of Ω’s, the elements of M(m) are

expected to be independent of m. The results of Fig. 4, how-

ever, show that this is not exactly true, which is a signature of

the influence of correlations between base pairs separated by

more than one nucleotide (though the convergence to a limiting

value for increasing m is quite rapid).

When comparing the results among different choices of

frames, we find that, despite the different values for m = 1,

at large m all values are close to each other (see the supple-

mentary material). We, thus, consider these limiting values to

be good estimates for the stiffness parameters of the elastic

model, onto which oxDNA is mapped. Table I summarizes the

estimated values of the elastic parameters, averaged over the

different choices of local frames, where the error bars reflect

the uncertainty from estimates obtained from four different

definitions of frames. The first two rows in Table I are data

obtained from oxDNA simulations in this work, while the last

row shows the parametrization obtained from fits of the MS

model to magnetic tweezers data.11 oxDNA2 data for C and

G are consistent with the latter, while some differences are

found in A1 and A2. It should be noted, however, that the fitting

FIG. 4. Elastic parameters, obtained

from the mstep stiffness matrix, as a

function of the base pair distance m. The

remarkable difference between these

two sets is the appearance of a signif-

icant twist-bend coupling term G for

oxDNA2, in contrast to its negligible

value in oxDNA1. This is in agreement

with the original prediction of Marko

and Siggia.12

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-003721
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-003721
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-003721
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TABLE I. Values of the stiffness coefficients for oxDNA1 and oxDNA2

obtained in this work (expressed in nm). The last line shows the values obtained

from fitting the MS model to magnetic tweezers data.

A1 A2 C G

oxDNA1 84(14) 29(2) 118(1) 0.1(0.2)

oxDNA2 81(10) 39(2) 105(1) 30(1)

Nomidis et al.11 66 46 110(5) 40(10)

procedure used in Ref. 11 was not very sensitive to the specific

choice of A1 and A2, as other choices fitted the experimental

data equally well. The overall quantitative agreement between

the oxDNA2 parameters and those from this recent study sup-

ports the choice of the plateau values in Fig. 4 as an estimate

for the elastic parameters.

The value obtained for C is in good agreement with previ-

ous estimates for oxDNA, which were obtained from methods

not involving the calculation of the stiffness matrix. From two

independent measurements,22,23 the value C = 115 nm was

reported for oxDNA1. In oxDNA2 a fit of torsional stiffness

data16 gives C = 93–98 nm, which is slightly lower than our

current estimate.

C. Persistence lengths

Any twistable polymer model is characterized by two

distinct persistence lengths, related to bending and twisting

fluctuations. The bending persistence length can be obtained

from the decay of the correlation between tangent vectors

〈

ê3(n) · ê3(n + m)
〉

≡ 〈cos θ(m)〉 ∼ e−ma/lb , (13)

where θ(m) is the angle formed by the two vectors. As the

exponential decay is valid asymptotically in m, we can estimate

the bending persistence length from the extrapolation at large

m of the quantity

lb(m) ≡ −
ma

log 〈cos θ(m)〉
. (14)

Analogously, we can define the twisting persistence length

from the decay of the average twist angle,

lt(m) ≡ −
ma

log
〈

cos
∑n+m−1

k=n
Ω

(k)

3

〉 . (15)

Equations (14) and (15) can be compared to some analyt-

ical expressions. In the TWLC, the bending persistence length

lb is the harmonic mean of the two bending stiffnesses,24,25

lb =
2A1A2

A1 + A2

, (16)

while the twist persistence length is just twice the torsional

stiffness (see, e.g., Ref. 26),

lt = 2C. (17)

The same quantities have been calculated for the MS model,11

lb = 2A1

A2 − G2/C

A1 + A2 − G2/C
(18)

and

lt = 2C

(

1 −
G2

A2C

)

. (19)

From the last two expressions, one recovers the TWLC limit

upon setting G = 0.

Figure 5 shows a comparison of the persistence lengths,

as obtained from Eqs. (14) and (15), with the analytical

expressions of the TWLC [Eqs. (16) and (17)] and the MS

model [Eqs. (18) and (19)]. There is a good overall agree-

ment between the direct computation of the persistence lengths

and Eqs. (18) and (19) (with the plateau values of Fig. 4),

for both oxDNA1 and oxDNA2. In particular, the predic-

tion of the twisting persistence length is excellent in both

models, whereas some small deviations are observed for lb
(smaller than 10%). This suggests that there are some features

of oxDNA which are not fully captured by the “projection”

to an inextensible elastic model, as described by Eq. (2).

Note that lb in oxDNA2 exhibits a damped oscillatory behav-

ior at short lengths m with the helix periodicity, suggesting

that the tangent vectors are systematically misaligned. The

value of the bending persistence length calculated here is in

agreement with previous published oxDNA1 and oxDNA2

data.16,22,23

IV. DISCUSSION

Owing to its chirality, DNA has been found to possess

some remarkable mechanical properties, such as twist-bend12

and twist-stretch coupling.27 Although the latter has been

investigated in several studies,28–32 the effect of twist-bend

coupling remains to date largely unexplored. Motivated by

some recently resurgent interest,11 we have investigated the

origin of this interaction in oxDNA, a coarse-grained model

of nucleic acids. Twist-bend coupling is a cross-interaction

FIG. 5. Blue lines: plots of lb and

lt/2 obtained from oxDNA simula-

tions using Eqs. (14) and (15). Orange

and green lines: analytical predictions

for the same quantities in the TWLC

[Eqs. (16) and (17)] and in the MS

model [Eqs. (18) and (19)], where the

m-dependent stiffnesses of Fig. 4 were

used. The values obtained from the

plateau values of the elastic parameters

are indicated by the dashed black lines.
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TABLE II. Elements of the stiffness matrix (expressed in nm) for different base pairs, obtained from all-atom simulations (courtesy of Lankaš and Dršata). In

order to facilitate the readout, we have included the tilt, roll, and twist nomenclature, which corresponds to our definition of Ω1, Ω2, and Ω3, respectively.

CG CA TA AG GG AA GA AT AC GC Average

A1 (tilt-tilt) 47.6 50.6 44.5 67.3 70.7 60.9 69.9 73.6 75.0 70.0 63.0

A2 (roll-roll) 27.7 31.4 24.5 41.0 44.4 42.2 38.7 45.1 46.1 47.3 38.8

C (twist-twist) 32.7 34.0 57.6 57.9 58.9 49.5 46.6 77.7 65.1 51.7 53.2

G (roll-twist) 3.7 5.8 14.1 6.7 7.4 10.5 15.7 11.9 13.4 13.0 10.2

M12 (tilt-roll) 2.8 1.3 0.1 −5.3 −1.7 3.6 −0.2 0.4 4.0 −0.5 0.4

M13 (tilt-twist) 4.4 −1.5 −1.1 −3.9 0.9 6.7 0.0 −0.7 −0.6 −0.7 0.4

between twist and bending degrees of freedom. In the context

of DNA, the existence of such an interaction was predicted by

Marko and Siggia,12 who argued that twist-bend coupling fol-

lows from the groove asymmetry, a characteristic of the DNA

molecular structure.

oxDNA is particularly suited to investigate the origin of

twist-bend coupling, as it comes in two different versions

(oxDNA1 and oxDNA2). The double helical grooves are sym-

metric in oxDNA1 and asymmetric in oxDNA2, with widths

reproducing the average B-DNA geometry. Our simulations,

sampling equilibrium conformations of both oxDNA1 and

oxDNA2, show that only the latter model has a significant

twist-bend coupling term (Fig. 4). This is in agreement with

the symmetry argument by Marko and Siggia.12

The estimated twist-bend coupling coefficient from

oxDNA2 is G = 30 ± 1 nm, which agrees with the value

G= 40± 10 nm, obtained from fitting magnetic tweezers

data.11 An earlier estimate of G ≈ 25 nm was obtained from

the analysis of structural correlations of DNA wrapped around

histone proteins.14 It is worth noting that all-atom simula-

tions also support the existence of a twist-bend coupling

term,13,24,33 although those studies are restricted to short frag-

ments (≈20 bp). Table II contains the elements of one-step

stiffness matrices, obtained by Lankaš et al.24 from all-atom

simulations.

Although the original analysis included various stretching

deformations, here we only show the rotational coordinates,

while the translational degrees of freedom are integrated out.

The data in Table II refer to deformations between neighboring

base pairs; hence they are the counterparts of the m = 1 data of

Fig. 4 and cannot be used as reliable estimates of asymptotic

values of the elastic parameters. Nonetheless, the averages over

all possible sequence combinations (last column of Table II)

show that twist-bend coupling is much larger than the other

off-diagonal terms, i.e., G ≫ M12, M13.

One of the most remarkable effects of twist-bend cou-

pling in DNA is the appearance of a novel twist length scale11

[Eq. (19)] with an associated twist stiffness κt = lt/2, which

differs from the intrinsic value C. We refer to κt as the renor-

malized twist stiffness. In the MS and TWLC models, a pure

twist deformation (Ω1 = Ω2 = 0, Ω3 , 0) has an associated

intrinsic stiffness C. In the presence of bending fluctuations

(〈Ω2
1
〉, 〈Ω2

2
〉 > 0), however, the two models behave differently.

While the torsional stiffness of the TWLC remains the same,

in the MS model, twist deformations are governed by a lower

stiffness κt < C. In other words, twist-bend coupling allows

for the relief of twist strain by means of induced bending,

therefore, making the DNA molecule torsionally softer. In

other words, in the presence of bending fluctuations, twist-

bend coupling makes the DNA molecule torsionally softer.

From oxDNA2 simulations, we estimate κt = lt/2 ≈ 83 nm

(see Fig. 5). This is close to the value κt = 75 nm, recently

obtained from fitting the MS model to magnetic tweezers

data.11 The above effect naturally explains11 some reported

discrepancies in the experimental determination of C.

Having shown that the twist-bend coupling is a relevant

interaction in DNA, one can ask in which limits and for which

quantities the TWLC can still be considered a good DNA

model. Our work shows that one can map freely fluctuat-

ing DNA onto a TWLC using C ≈ 80 nm as the twist elastic

parameter, which incorporates the effect of twist-bend cou-

pling. However some care needs to be taken in the presence

of a stretching force, as the suppression of bending fluctua-

tion will influence the twist stiffness. At high forces, DNA

will then be mapped onto an effective TWLC with a higher

value of C. Finally, it will be important to investigate the effect

of twist-bend coupling in cases where the DNA behavior is

influenced by its mechanics as in DNA supercoiling34,35 or in

DNA-protein interactions.36,37

SUPPLEMENTARY MATERIAL

See supplementary material for the different triads which

are defined and the corresponding stiffness parameters which

are presented. Furthermore we elaborate on how to obtain

the rotation vector Ω from subsequent triads. Moreover, we

explored sequence-dependent effects, by investigating some

specific sequences with oxDNA. Finally, we extended the

analysis of the main text to oxRNA.
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T. E. Ouldridge, R. Tsukanov, E. Nir, and A. A. Louis, “Introducing

improved structural properties and salt dependence into a coarse-grained

model of DNA,” J. Chem. Phys. 142, 234901 (2015).
17H. Salari, B. Eslami-Mossallam, S. Naderi, and M. Ejtehadi, “Extreme bend-

ability of DNA double helix due to bending asymmetry,” J. Chem. Phys.

143, 104904 (2015).
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