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Abstract 13 

Single-stranded guanine rich DNA sequences can fold into four-stranded DNA 14 

structures called G-quadruplexes (G4s) that arise from self-stacking of two or more 15 

guanine-quartets. There has been considerable recent progress on the detection and 16 

mapping of G4 structures in the human genome and in biologically relevant contexts. 17 

These advancements have provided important new insights into their functions, for 18 

example in regulating transcription and genome stability, and their potential for 19 

therapeutic applications, much of which is aligned to predictions previously made in 20 

computational studies. 21 

 22 

 23 

Introduction 24 

Single-stranded guanine rich DNA sequences can fold into stable intramolecular and 25 

intermolecular four-stranded non-B DNA structures called G-quadruplexes (G4s, 26 

Figure 1)
1
. G4s arise from Hoogsteen hydrogen bonding of four guanines arranged 27 

within a planar quartet (G-quartet)
1
. Self-stacking of two or more G-quartets generates 28 

a G4 structure that is further stabilised by monovalent cations in the order 29 

(K
+
>Na

+
>NH4

+
>Li

+
) (Figure 1)

1
. G4 formation has been observed in oligonucleotide 30 

sequences derived from the human genome, particularly gene promoters and 31 

telomeres. Such studies, along with chemical biological approaches using G4 targeted 32 

small molecules or antibodies, and also computational predictions, have suggested 33 

that G4s may be important in gene regulation and telomere biology.  34 
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This article will focus on recent, significant progress in detecting and mapping G4s in 35 

the human genome and the new insights into their functions and their potential for 36 

therapeutic applications. More comprehensive reviews on functional roles of DNA G4 37 

can be found elsewhere
2,3

.  38 

 39 

Imaging and Mapping G4s 40 

 41 

Computational G4 predictions using simple algorithms have suggested that over 42 

300,000 sequence motifs (of the type G≥3N1–7G≥3N1–7G≥3N1–7G≥3) in the human 43 

genome have the potential to form a G4 structure
4,5

. A more recent algorithm has 44 

predicted the number of potential G4 sequences to be substantially higher
6
.
 
These 45 

computational studies showed that G4 motifs are enriched in telomeres, promoters 46 

and the first intron of genes, but have highlighted the need to generate explicit 47 

experimental data about the existence and function(s) of G4s in biologically relevant 48 

contexts. G4-selective probes have been developed and employed to capture G4s in 49 

cells by fluorescence microscopy and also by DNA chromatin immuno-precipitation 50 

followed by sequencing.  51 

 52 

Cellular visualisation. One approach to visualise particular DNA structures in cells is 53 

to employ structure-selective molecular probes. Antibody proteins can have exquisite 54 

specificity in their recognition of molecular structures and are widely used to bind to 55 

and visualise proteins within cells or map their binding sites in DNA or RNA. 56 

Antibodies can be generated by immunisation or via in vitro affinity selection to 57 

recognise a particular DNA structure or chemical feature. The first reported 58 

visualisation of G4 formation in a biologically relevant context used a G4-selective 59 

single-chain antibody (scFV) probe (Sty3)
7
 to show G4 formation at telomeres in the 60 

macronuclei of the ciliate Stylonychia lemnae
7
. The same antibody was used to 61 

elucidate the dynamic, formation and loss of telomeric G4 under the cooperative 62 

control of telomere-end-binding proteins, and a cell-cycle dependent phosphorylation 63 

of one of them
8
. Recently G4s have been visualised in human cells by 64 

immunofluorescence microscopy using two G4-specific antibodies BG4
9
 and 1H6

10
, 65 

each generated from separate labs, with the use of secondary and tertiary antibodies 66 

for signal sensitivity.
 

These independent and complementary studies were each 67 

performed on in situ fixed nuclei and showed punctate staining of G4 in genomic 68 

DNA in the nuclei of a range of human cell lines. Cell synchronisation experiments 69 
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revealed cell cycle dependent G4 dynamics with the quantity of G4s reaching a 70 

maximum during the S-phase
9
. Immunofluorescence staining of metaphase 71 

chromosome spreads revealed G4s at telomeres with the majority of foci occurring 72 

away from the telomeres
9
. The number of detected G4-antibody foci increased after 73 

exposure of live human cells to G4 ligands, that include PDS, PhenDC3 and TMPyP4, 74 

demonstrating that such ligands do indeed trap out G4 structures once they form in 75 

cells (Figure 2b)
9,10

. The number of G4 foci in the presence of G4-stabilising ligand 76 

telomestatin in DT40 chicken cells was higher when FANCJ, a G4-specific helicase, 77 

was deficient, consistent with FANCJ controlling the susceptibility of G4s as 78 

molecular targets for ligands (Figure 2f)
10

. BG4 Immunofluorescence has shown 79 

colocalisation of human telomerase with a subset of endogenous telomeric G4 80 

structures in cells, suggesting telomerase might be recruited to G4 to extend telomeres 81 

during meiosis
11

 and presenting a alternative perspective to the earlier views that 82 

telomeric G4 structure may preclude telomerase recognition and action
12

. Synthetic 83 

small molecules that recognise G4s have also been employed to detect these DNA 84 

structures. A derivative of the G4-ligand Pyridostatin (PDS) called PDS- enabled 85 

nuclear detection of G4s by bio-orthogonal ligation of a fluorophore to the ligand after 86 

cellular incubation and formaldehyde fixation
13

. PDS- staining was significantly 87 

colocalised with the G4-helicase Pif1 in osteosarcoma (U2OS) cells, by super high-88 

resolution spectroscopy, consistent with Pif1 processing of G4 structures in human 89 

cells
13

. The intrinsically fluorescent G4 ligands BMVC and DAOTA-M2, have also 90 

been used to visualise G4s suggesting higher G4 prevalence in some cancer cell lines 91 

compared to normal cells
14,15

. These studies have complemented earlier work that 92 

visualised accumulation of a radiolabeled small molecule G4 ligand at telomeres in 93 

human cells
16

. Be they antibodies or small molecules, it is a fundamental consequence 94 

that probes that bind to particular DNA structures can alter the intrinsic stability of 95 

those structures by the very act of binding. Thus, molecular probes can alter the 96 

apparent lifetimes of these dynamic structures, from their natural states. Probe-based 97 

observations of natural biological dynamics (e.g. during the cell cycle)
8,9

 or 98 

perturbation experiments (by ligands or manipulation of key enzymes)
9,10,17

, are 99 

helpful to visualise changes that are unlikely to be attributed to the binding effect of 100 

the probes.  101 

 102 
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Genome mapping. A method for combining G4-dependent DNA polymerase stalling 103 

and next-generation sequencing, called G4-seq, has been developed to map G4 104 

structures in purified, single-stranded DNA on a human genome scale
18

. Typically, 105 

genomic DNA isolated from cells, is sequenced first under conditions that do not 106 

favour G4 structure formation, then the same DNA fragments are re-sequenced under 107 

conditions that stabilize G4 structure formation, either by addition of K
+
 or the G4-108 

ligand PDS. G4-specific polymerase stalling is detected at specific sites during the 109 

second sequencing run by a precipitous loss of sequencing data quality, as compared 110 

to the first sequencing run. G4-seq identified over 700,000 G4s in the human genome, 111 

the majority (70%) of which comprised extra-long loops and/or bulges in their G-112 

tracts, which precluded their prediction by earlier algorithms, e.g. (G≥3N1–7G≥3N1–113 

7G≥3N1–7G≥3)
4
. Together with other studies

6
, this suggests the breadth and number of 114 

potential G4s is greater than originally envisaged. The G4s were enriched in 115 

regulatory regions that included promoter, 5’UTR, splicing sites and were also 116 

overrepresented in cancer-related genes and in somatic copy number alterations 117 

(SCNAs) amplified in cancer genomes
18

. There are now a number of G4 predictor 118 

algorithms available that vary considerably in the details and the types of G4s that are 119 

captured. While, computational predictors and G4-seq provide a framework for 120 

understanding the potential for G4 structures to form in genomes, it is important to 121 

experimentally consider the profile and genome dynamics of G4 DNA in a biological 122 

context. A step towards this is to employ probes that bind to and enrich G4s from 123 

chromatin, followed by sequencing (e.g. Chromatin Immuno Precipitation 124 

Sequencing; ChIP-seq). An early attempt was to map the sites of DNA double-strand 125 

breaks (DSBs) induced by the G4-targeting ligand PDS in human immortalized 126 

fibroblast (MRC5-SV40) cells by ChIP-seq using an antibody for the DSB marker 127 

H2AX in fixed chromatin
13

. A significant enrichment of DSBs was observed in 128 

particular genomic regions rich in computationally predicted G4 motifs consistent 129 

with the G4-ligand binding to G4 target structures and causing DSBs at those sites
13

.
 

130 

The binding sites of endogenous cellular proteins that can bind or resolve G4s in vitro, 131 

such as human ATRX
19

 and XPB/ XPD
20

 and yeast PIF-1 (an inactive mutant form)
21

 132 

and RIF-1
22

, have been mapped by ChIP-seq to regions that comprise predicted G4 133 

motifs that occur for example at telomeres and gene promoters (Figure 2g). Whilst the 134 

proteins that feature in such studies may also be capable of binding to other sequences 135 
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or structures, the data are consistent with hypotheses linking their biological functions 136 

to G4 structures or genomic regions that are enriched in G4 motifs. The mapping of 137 

G4 structures in chromatin was recently achieved using the G4 antibody BG4 as a G4 138 

structure-specific ChIP-seq probe (G4 ChIP-seq) to map endogenous G4 structures in 139 

fixed chromatin in normal (NHEK) and spontaneously immortalized pre-cancerous 140 

(HaCaT) human epidermal keratinocyte cells (Figure 2e)
17

. In this study, about 10,000 141 

and 1,000 G4s were detected in HaCaT and NHEKs, respectively, which is only ~1% 142 

of those identified by G4-seq, and by G4 predictors. This suggests G4 structure 143 

formation is largely suppressed in the context of chromatin, possibly due to 144 

chromatin-associated proteins and other proteins that control the duplex vs. non-145 

duplex folded states of DNA. Most G4s observed were in regulatory, nucleosome-146 

depleted chromatin regions that that were on average highly transcribed
17

 and also 147 

significantly overlapped with G4 predicted sequences enriched in earlier ChIP-Seq 148 

mapping of the transcriptional helicases XPB/XPD
20

. Furthermore, endogenous G4s 149 

are enriched in promoter and 5’UTR regions of cancer-related genes and genes 150 

strongly associated with somatic copy number aberrations in cancer, such as MYC
23

. 151 

A perturbation experiment using the histone deacetylase inhibitor Entinostat, caused 152 

dynamic reprograming of the G4 landscape by G4 ChIP-seq with the loss and 153 

emergence of G4s showing, on average, a coupling to transcriptionally active 154 

chromatin
17

. The observation of G4 dynamics goes some way towards addressing the 155 

possibility that the G4s may be an artifact of antibody stabilization, which was 156 

discussed earlier in relation to antibody imaging of G4s. It will nonetheless be 157 

important to consider orthogonal approaches to detect G4 structures in chromatin and 158 

in cells to further consolidate these findings.  159 

 160 

Biological Significance and Therapeutic Opportunities  161 

 162 

Much of the early work on G4s focused on biophysical studies and functional studies 163 

on telomeres and telomerase. This section will focus primarily on some of the insights 164 

that recent imaging and G4 mapping has provided on the biology of G4s in non-165 

telomeric regions. Such observations suggest a broader number of biological 166 

processes and the associated possibilities for therapeutic intervention.  167 

 168 

Transcription, Replication and Intrinsic function(s). There have been a number of 169 

cellular studies describing G4 targeting ligands that alter levels of mRNA transcripts 170 
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for genes that have G4 motifs in their upstream (promoter) elements, for example the 171 

proto-oncogenes MYC
23

 and KRAS
24

. Recent studies on zebrafish embryos 172 

demonstrated the use of G4-targeting small molecules or synthetic oligonucleotides to 173 

target conserved G4 motifs in promoters of developmental genes to lower 174 

transcription of the targeted genes and cause the expected phenotypic change
25

. 175 

Further work is needed to confirm and fully elucidate the mechanistic details of cause 176 

and effect in such studies. That genes physically targeted by the small molecule PDS, 177 

as judged by localised DNA damage, cause a concomitant reduction in transcript 178 

levels
13

, suggests the relationship between G4 ligands and transcriptional changes at 179 

proximal genes may, at least for some cases, be more complex than a simple 180 

reversible binding mechanism. Recent data that includes G4 ChIP-seq
17

, the genomic 181 

binding sites of proteins XPB, XPD
20

 and SP1
17

, the colocalization of G4-antibodies 182 

BG4 or 1H6 with transcriptionally active regions (marked by RNA polymerase II and 183 

H3K4me3)
17

, support that G4 structures form in transcriptionally active chromatin in 184 

human cells. Dysfunctional mutations in WRN and BLM helicases cause altered 185 

regulation of genes that are enriched in predicted G4 motifs, consistent with a link 186 

between G4s and transcription
26-28

. It is noteworthy that in D. mel. G4 structure 187 

formation has actually been observed in the heterochromatin of polytene 188 

chromosomes during embryonic development, by immuno-gold labeling using 1H6 189 

and microscopy
29

, revealing differences in this very different genome, from 190 

mammalian systems. Overall, the weight of recent data from mammalian cells is 191 

consistent with a functional and dynamic link between G4 structures and 192 

transcription. Further studies are needed to elucidate the mechanistic details of this 193 

link, including the specific roles of proteins associated with transcription, such as SP1 194 

or XPB/XPD, and their interaction(s) with loci where G4 structures have been 195 

observed to exhibit dynamic formation or unfolding.  196 

 197 

DNA replication is a carefully regulated process and is initiated at many thousands of 198 

sites called DNA replication origins. Conserved DNA structures have been found at 199 

origin of replications sites in prokaryotes
30

. Recently, locations of human replication 200 

origins have been mapped via deep sequencing of short nascent strands and predicted 201 

to contain G4-motifs
31

. In addition, the human origin recognition complex (ORC) has 202 

been shown to bind G4-forming DNA and RNA sequences in vitro
32

. Such studies 203 

have led to the hypothesis that G4 DNA structures may somehow be involved in the 204 
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mechanism of initiating replication origins. Further studies that experimentally 205 

support G4 structure formation at origins more directly are necessary to advance our 206 

understanding of these findings. 207 

 208 

Genomic Instability. In the absence of helicases that resolve G4 structures in DNA, 209 

stable G4 structures can pose an impediment for DNA polymerase progression, 210 

leading to replication stalling, DNA-damage and genomic instability (Figure 3a). 211 

Quantitative assays have been used to monitor G4 induced genome instability in S. 212 

cerevisiae, to show that Pif1 and Rrm3 helicases are essential to supress and prevent 213 

G4-induced DNA strand breakage
33,34

. The RTEL1 helicase has been shown to 214 

resolve telomeric G4 to maintain telomere integrity in mouse cells
35

.
 
Similarly, 215 

FANCJ, BLM and WRN helicases have been shown to recognise and unwind G4 216 

structures in vitro
36

. Mutations causing dysfunction in these helicases have been 217 

associated with premature ageing and predisposition to cancer development, though 218 

since the helicases also operate on duplex DNA the extent to which this is a G4-219 

related effect must be further elucidated. Regulators of DNA synthesis, such as REV1 220 

or PrimPol, affect gene expression by a mechanism proposed to ordinarily maintain 221 

epigenetic stability at replicated G4 DNA, which when compromised, e.g. by REV1 222 

deficiency, leads to gene activation
37

 or repression
38

 depending on the location of the 223 

predicted G4-forming sequence. 224 

Ligands that stabilise G4 structures can induce DNA breakage in humans
13

 as well as 225 

insertion and deletions at predicted G4 motifs in yeast
33,34

. In S. cerevisiae the G4 226 

ligand PhenDC3 triggers G4-induced
39

 and G4-stability
40

 dependent genomic 227 

instability, as measured by the increased genetic insertion and deletion at a level 228 

comparable to when Pif1 function is impaired. Interestingly, the yeast system 229 

provided a useful platform in which G4 stability could be systematically varied by 230 

mutagenesis to demonstrate a clear correlation between G4 stability and DNA 231 

instability at CEB-1 microsatellite, with short G4 loops (≤4 nt) causing higher levels 232 

of genome instability
40

. Given that G4-seq
18 

and G4 ChIP-seq
17

 both show G4s are 233 

enriched in SCNA-amplifications associated with cancer and that a similar association 234 

has been reported by computational analysis of SCNA associated breakpoints
18

, it 235 

appears that G4 structures also represent vulnerable regions in the genome (Figure 236 

3a). These associations are consistent with the immunohistochemistry observations 237 

from matched normal and cancerous gut/stomach tissues using BG4 revealed higher 238 
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apparent levels of G4 in the cancerous state
41

. This empirical data suggests, at least 239 

for some cases, that there are aspects of a cancer genome that exhibit more G4 240 

structures, which immediately suggests G4s may have potential as both a cancer-241 

biomarker and as a therapeutic target. 242 

 243 

Therapeutic Opportunities. The data supporting concepts that link G4s with telomere 244 

biology, transcription regulation (of cancer genes) and trigger points for instability 245 

and DNA strand breakage, have stimulated rationales for targeting G4s with small 246 

molecules for therapeutics. Several small molecule ligands with high selectivity, as 247 

determined biophysically, for G4 relative to double-stranded DNA have been 248 

designed and evaluated for their therapeutic potential. Recent examples include the 249 

tetra-substituted naphthalene diimide MM41 caused an 80% decrease in tumour 250 

growth in MIA PaCa-2 pancreatic cancer xenograft
42

.  While this may be explained in 251 

part by the accompanied strong reduction of KRAS and BCL-2 gene expression, there 252 

may be other G4-related modalities that also contribute to its efficacy. The G4-ligands 253 

PDS and RHPS4 trigger an ATM-dependent DNA damage response (DDR), DNA 254 

double strand breaks (DSB) and activation of DNA repair pathways, such as 255 

Homologous Recombination (HR) and Non Homologous End Joining (NHEJ), and 256 

signalling of single-strand DNA breaks by the synthesis of poly ADP-ribose chains 257 

(PARs) by PAR protein (PARP)
13,43

. This has inspired the application of G4 ligands 258 

in combination with DNA-PK (NHEJ) or PARP inhibitors, as well as with G4 259 

helicases (WRN) inhibitors for a greater effect (i.e. synergy) than the observed sum of 260 

the individual effects. Exposure of HeLa and U2OS cancer cells to the WRN inhibitor 261 

NSC-19630 sensitize the cells to the G4 ligand telomestatin, showing exacerbated S 262 

phase prolongation and DNA damage response
44

. Similarly, treatment of HT29 263 

human colon cancer xenografts with the G4 ligand RHPS4 in combination with the 264 

PARP1 inhibitor GPI resulted in a 50% reduction of tumor weight and an increase of 265 

45% of mice survival, significantly higher of what could be obtained by treating the 266 

mice with either RHPS4 or GPI individually
43

. Equally, by inhibiting NHEJ repair 267 

with the DNA-PK inhibitor NU7441, a significant sensitization to the G-quadruplex 268 

ligand PDS can be observed in human HT1080 fibrosarcoma cells (~ 45% synergy, as 269 

calculated by a Bliss independent score model)
13,45

. Furthermore, HCT116 colon 270 

cancer cells deficient in HR (BRCA2
-/-

) displayed a ~10 fold increase in sensitivity 271 

against PDS compared to their isogenic counterpart that is HR-proficient 272 
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(BRCA2
+/+

)
45

. DNA repair deficiencies have been further demonstrated to stimulate 273 

sensitization to the G4 ligand PDS in DLD1 human cells BRCA2
-/-

, as well as human 274 

HEK-293T subjected to knock-down of the DNA repair proteins BRCA1 and 275 

RAD51
45,46

. PDS sensitization is further retained in HR deficient cells after they have 276 

acquired resistance to the drug Olaparib, highlighting the potential of G4 ligands as 277 

therapeutic agents against HR compromised tumors with acquired drug resistance 278 

(Figure 3b)
46

. These recent findings indicate clear potential for G4-ligands to be 279 

considered as cancer therapeutics especially for tumours genetically deficient in 280 

DNA-repair machinery such as HR
45,46

.  281 

 282 

 283 

Conclusions and Perspectives 284 

Recent advances have provided a substantial body of new data to support the 285 

existence of G4 structures in the genomes of human cells. There is now more explicit 286 

experimental data to show G4s form throughout the human genome and in regulatory 287 

regions, largely aligned to previous computational predictions. These findings have 288 

provided new insights into the fundamental biology of G4 structures, suggesting roles 289 

in marking regulatory chromatin, whilst also being hotspots for genome instability 290 

particularly in cases where there are specific genetic/functional deficiencies. 291 

Fundamental insights into endogenous G4 function(s) enabled by advances in 292 

experiments with probe molecules that bind G4s suggest rationales for therapeutic 293 

strategies against cancer that may provide the window of selectivity that would be 294 

required for future clinical development. Whilst there is much more to be understood 295 

about the mechanistic details relating to DNA G4s in biology, the developments of the 296 

past five or so years would appear to have moved the field substantially closer to the 297 

realm of functional biology.  298 

 299 
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 414 

 415 

Figure 1: G-quadruplex structures. G-quadruplex structures can be generated from 416 

one DNA strand (unimolecular) or multiple DNA strands coming together (e.g. bi- or 417 

tetra molecular).  G4 structures can be classified by the relative strand orientations: 418 
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parallel G4s have the same strand orientation within the structure whereas antiparallel 419 

G4s have alternating strand orientations. a, Structural (left) and schematic (right) 420 

representations of a G-tetrad that makes up the core of G-quadruplex structures. b, 421 

Schematic representation of unimolecular parallel G4s c, Schematic representation of 422 

a tetramolecular G4s . d, Schematic representation of an antiparallel intramolecular G-423 

quadruplex structure e, Schematic representation of an antiparallel intramolecular G-424 

quadruplex structure containing a bulge. 425 

 426 

 427 

Figure 2: Visualisation and mapping of G-quadruplex structures. a, Schematic 428 

representation of a single chain antibody (scFv) as used to probe G4s, such as the 429 

BG4 or 1H6. b, Chemical structures of the selective G4 ligands pyridostatin (PDS) 430 

and telomestatin. c, Visualization of G4 structure can be achieved using G4 antibodies 431 

(e.g. BG4 or 1H6) together with secondary or tertiary antibodies that carry a 432 

fluorescent label. d, Schematic representation of the G4-seq method. DNA templates 433 

are sequenced a first time under non G4-stabilising conditions and a second time after 434 
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the addition of G4 stabilising agents (e.g. K
+
 or PDS). Only DNA templates 435 

containing a G4 forming sequence will cause stalling of sequencing polymerase under 436 

G4-stabilising conditions, enabling selective detection of G4-forming genomic 437 

sequences. e, Schematic representation of G4 ChIP-seq: isolated chromatin is 438 

immuno-precipitated with BG4 and G4 structures detectable in chromatin are 439 

enriched and detected by sequencing. f, BG4 and 1H6 foci (red) detected in the 440 

nucleus of human cells (blue) are markedly increase in upon treatment with 441 

pyridostatin (PDS), telomestatin and FANCJ knock-down, and after immortalisation 442 

of normal human epidermal keratinocytes. g. Schematic representation of a typical 443 

ChIP-Seq of endogenous G4 binding proteins: isolated chromatin is immuno-444 

precipitated using a selective antibody against the protein of interest (e.g. ATRX, 445 

PIF1, XPB/XPD). DNA sequences associated with those proteins are detected by 446 

sequencing. 447 

 448 

 449 

 450 

 451 
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 452 

 453 

Figure 3: Therapeutic opportunities. a, Schematic representation of DNA damage 454 

response and genomic instability events that can be triggered by DNA G-455 

quadruplexes either by stabilization with small molecules or by impairment of 456 

helicases that resolve G-quadruplexes. b, G-quadruplex ligands have been explored 457 

for their potential as cancer therapeutic agents. Representative scheme illustrating one 458 

the possible rationale behind the use of G4 ligands in combined therapies. DNA 459 

damage is triggered by exposure to a G4 ligand: sensitivity to ligand exposure can be 460 

obtained in cells genetically impaired in BRCA1/2 and RAD51, which regulate one of 461 

the two DNA repair pathway (HR). Selective killing of BRCA1/2 and RAD51 462 

impaired cells can be achieved by combined treatment with G4-ligands and a 463 
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chemical inhibitor of the kinase DNA-PK that regulates the alternative DNA repair 464 

pathway (NHEJ).  465 

 466 


