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The entropy of tightly bent DNA is investigated in a variety of problems: closure probabilities,
hairpin formation, nicked coils, plectonemic supercoiling, all in states with liquid-crystalline order.
A new semiclassical method is presented for deriving the Green function of a tightly curved
wormlike chain. Precise estimates for the entropy arising from undulations are given for tightly bent
DNA in weak, intermediate, and strong nematic fields. A formal statistical mechanical analysis is
outlined for hairpins and supercoils. The elongation of closed DNA without twist is computed in
strong nematic fields. A scaling theory is given for a liquid crystal of untwisted DNA rings in which
nematic order and ring elongation are self-consistently coupled. The elongation of plectonemic
supercoils is evaluated for weak and strong nematic fields. The pitch of a cholesteric phase of
plectonemic or loose supercoils is shown to be directly related to their writhe. ©1996 American
Institute of Physics.@S0021-9606~96!50527-1#

I. INTRODUCTION

Tight curves of double-stranded DNA are found fre-
quently in a wide variety of circumstances: in nucleosomes,
in adsorbed states, when supercoiled, and in confined isotro-
pic, cholesteric, and hexagonal phases. The orientational
fluctuations of an unconstrained section of DNA viewed as a
wormlike chain, are distributed as a Gaussian1 but the statis-
tical mechanics of tightly bent DNA is a far less trivial prob-
lem. A classic example of the latter is supercoiled DNA
which has routinely been studied by neglecting the entropy
altogether.2–14 Often, this may be a very good approxima-
tion. Still, in certain experiments, the undulations of the
DNA helix within supercoils do play a significant role.15–20

Theoretical approaches accounting for undulations include
simulations,21–27 analytical work,28–34 and scaling
analyses.35,36

The problem of entropy becomes more acute if the DNA
is confined in an ordered state. The slight bending of a semi-
flexible chain in nematic37–40 and hexagonal phases41,42 is
fairly well understood. The deflection length43 governed by
nematic order, chain elasticity, and entropy, is independent
of the deformation in this case. The opposite regime of tight
bending is our interest here. Recently, the occurrence of tight
curves like hairpins has been convincingly demonstrated in
thermotropic polyesters.44 There is now a body of theoretical
literature on hairpins, with and without the effects of
entropy.45–54Nevertheless, there is still a need for semiquan-
titative insight into the role of entropy in these and analogous
types of problems.

The object of this paper is twofold: On the one hand, to
compute the entropy of one tight bend of DNA in an orien-
tationally ordered field in a fairly rigorous fashion~Sec. III!;
on the other, to attempt to understand on a qualitative level,
complicated problems involving tightly curved sections of
DNA under nematic stress which may be caused by the DNA
itself ~Secs. V to VIII!. Section IV outlines several qualita-
tive considerations employed in the latter class of problems.

Section V describes the elongation and rippling of a small
DNA ring in a nematic field. In Sec. VI a suspension of such
rings without twist is considered; the nematic field is induced
by the excluded-volume effect between the rings. In Sec.
VII, twist is taken into account by studying the extension and
possible rippling of a plectonemic supercoil in a nematic.
Recent experiments55 on plasmid DNA within bacterial cells
allude to an intriguing relation between DNA topology and
cholesteric order. This connection is understood by express-
ing the cholesteric pitch in terms of the writhe in a liquid-
crystalline suspension packed with DNA supercoils.

II. ENTROPY OF A TIGHT BEND IN THE ISOTROPIC
STATE

The configuration of a simple wormlike chain of contour
length l is described by the unit vectoru(s) tangent to the
curve, wheres is the contour distance from one end~Fig. 1!.
In our Cartesian coordinate system (x,y,z), it is given in
terms of the polar anglesu(s) andw(s)

u~s!5@sin u~s!cosw~s!, sin u~s!sin w~s!, cosu~s!#.
~2.1!

The bending energy is a Hookean law56

Ub5
1
2PkBTE

0

l

dsS dudsD
2

, ~2.2!

where a bending force constant is the product of the persis-
tence lengthP and the temperatureT ~kB5Boltzmann’s con-
stant!. The statistical mechanical quantity of interest is the
partition function56 G with both ends of the chain fixed at
s50 ands5 l
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G~u,l ;u0,0!5E
u~0!5u0

u~ l !5u
D@u~s!#d~u2~s!21!

3exp~2Ub /kBT!, ~2.3!

which is the solution to56

]G

] l
2

1

2P
DuG5d~ l !d~u2u0! ~2.4!

with Du the Laplacian on the unit sphere, so thatG is a
Green function.

We would like to evaluateG for tight bends (L[ l /2P
,1). One option is to compute Eq.~2.3! in the semiclassical
limit but how does one deal with the nontrivial functional
integral~2.3!? ~See below.! Another is to manipulate the so-
lution to Eq.~2.4! which is a bilinear expansion in terms of
the Legendre polynomialsPn~cosu!. For instance, for a
worm starting in thez direction we have56

G~u,w,l ;0,0,0!

5
1

4p (
n50

`

~2n11!Pn~1!Pn~cosu!e2n~n11!L. ~2.5!

In the classical limit,P→` or L→0 formally; hence, in the
semiclassical limit~Fig. 1!, we would like to sum the terms
in Eq. ~2.5! since the exponential decays only when
n2L5O ~1! at least. But a naive summation is analytically
useless forPn~cosu! is a rapidly oscillating function ofn.

Experience with this type of summation has arisen from
semiclassical computations in quantum mechanics. A quan-
tum particle scattered in a tight orbit is analogous to a tightly
bent chain undergoing thermal undulations; the limit
Planck’s constant\→0 in the former is similar to the limit
P→` in the latter. Berry and Mount have elegantly summa-
rized the complex history of semiclassical mechanics as de-
veloped by many theoreticians of repute.57 In particular, the
usual WKB approximation is often deficient because it is not
always uniformly valid. It is rendered uniformly so with the
help of the Langer modification,58 in which the angular quan-
tum number—l in the quantum literature—is replaced byl2
1
2 ~in our case this number is denoted byn!. Moreover, the
modified WKB approximation is also more accurate to
higher order in most problems. This is especially important
in our computations of the entropy of tight bends@the bend-
ing energy is ofO (L21) but it turns out that the entropy is of
O (L), i.e., a second order term, in the argument of exponen-
tial terms contained in the probability functions#. In the end,

Berry and Mount57 advocate the use of the following Poisson
summation formula since it automatically accounts for the
Langer modification:

(
n50

`

u~n!5 (
M52`

`

e2 iMpE
0

`

dn u~n2 1
2!e

2p iMn. ~2.6!

Here, the winding numberM is the number of times the
classical path encircles the origin. In our case, we set\[1
formally. In order to evaluate the semiclassical limit, one
approximates the eigenfunction within the formu(n) by its
asymptotic representation at largen ~i.e., in the modified
WKB approximation!. Wild oscillations are circumvented by
using the theory of functions of a complex variable. For in-
stance, in an intermediate regime for the problem at hand we
have57

Pn2~1/2!~cosu!.S 2

pn sin u D 1/2 cosS nu2
p

4 D
~2.7!

~n21&u&p2n21!.

Here focus is on the caseM50, so that

G.S 1

4p3 sin u D 1/2e~1/4!LE
0

`

dn n1/2e2n2L

3~cosnu1sin ṅu!. ~2.8!

In order to integrate Eq.~2.8!, consider the contour in-
tergal I 1 , in the complex plane

I 15 R
C1

dz z1/2ef1~z!, ~2.9!

f 1~z!52Lz21uzi

52
u2

4L
2LS z2

u i

2L D 2. ~2.10!

The integrand is analytic within the area enclosed by the
rectangular contourC1 ~see Fig. 2!. An asymptotic analysis
of I 1 on the upper contour is possible foru2*L asR1→`
andL→0. With the help of Cauchy’s theorem, the leading
term for the partition function becomes

G~u!;
1

4p S u

sin u D 1/2L21 expS 2
u2

4L
1
1

4
L D . ~2.11!

FIG. 1. One configuration of a tightly bent wormlike chain.

FIG. 2. The contourC1 (z5x1 iy).
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As L→0 andu2.L, this joins smoothly to the usual Gauss-
ian distribution.59 Moreover, as we approach its outer edge
of validity ~u→p2L1/2; uzu5O (L21), recall that the domi-
nant region in Eq.~2.8! is 0<n&L21/2!, we regain, to order
unity, an analytical result due to Shimada and Yamakawa29

G~p!5
1

4
p1/2L23/2 expS 2

p2

4L
1
1

4
L D . ~2.12!

They also computed various ring-closure probabilities simi-
lar in form to this expression by a discrete summation of
functional integrals like Eq.~2.3! around the classical paths.
Considerable effort has been devoted to developing semi-
classical approximations to Feynman path integrals~see, for
instance, Refs. 57, 60–62!. Gutzwiller has tried to build such
approximations from ideas imbedded in classical mechanics.
Here, the calculation of the classical path is circumvented
altogether which may be advantageous for wormlike chains.

Next, we analyze the properties of the tightly bent worm
described by Eq.~2.11!. The free energy of the orientation-
ally constrained bend may be written as

F~u!/kBT52 ln G~u!

5
u2P

2l
1 ln

2p l

P
2

l

8P
1
1

2
ln
sin u

u
. ~2.13!

Equation~2.3! yields the average bending energy

^Ub~u!&
kBT

52P
] ln G~u!

]P

5
u2P

2l
211

l

8P
~2.14!

so that the entropy is given by

kB
21S~u!5 lnS PleD1

l

4P
1
1

2
ln

u

sin u
. ~2.15!

Hence, the entropy is only a weak function of the angular
restrictionu and very close to the value it would have if it
were in the Gaussian limit, which is strictly valid foru!1.
Physically, Eq.~2.15! implies undulations are virtually unaf-
fected by the degree of curvature, at least in this orientation-
ally constrained problem. Tight bending does not freeze out
undulations in contradiction with my earlier claim.35 It is
also illuminating to inspect the average curvature~or its mo-
ments!

^R22&5
2^Ub~u!&
lPkBT

5Rc
222

2

lP
1

1

4P2 , ~2.16!

whereR is the radius of curvature of the bend andRc is its
value in the classical limit (P→`). Upon introducing an
angular fluctuation

^R22&1/2[Rc~11^Du2&! ~2.17!

we get

^Du2&.
Rc
2

lP
5

l

u2P
. ~2.18!

The curvature and the radius of curvature are weighted dif-
ferently so one expects a circular wormlike ring to shrink
when the undulations are switched on:^R&.Rc(12^Du2&).
The ring has a fuzzy diameterD.Rc^Du2&1/2 ~see Fig. 3!

^Du2&.
Rc

P
, ~2.19!

D.Rc
3/2P21/2 ~2.20!

which disagrees with Ref. 35 for obvious reasons, but agrees
with analytical work by Shimada and Yamakawa25 and
Monte Carlo simulations by Camacho, Fisher, and Singh.26

The latter authors assumed that tight bending might not in-
terfere too much with chain undulations and they went on to
derive Eq.~2.20! using fluctuation theory.

Another heuristic way of understanding Eq.~2.19! is by
supposing the undulations are caused by a tensionf c within
the ring. This ought to be related to the classical bending
energyUb5kBTlP/2Rc

252p2PkBT/ l by

f c.2
]Ub

] l
52p2kBTPl

22. ~2.21!

But there are fluctuations expressed by the angle
Du5(Du1(s),Du2(s)), where the indices denote directions
orthogonal to the local tangentu(s). Neglecting curvature as
argued above, we may write for the Hamiltonian

H5
1

2
PkBTE

0

l

dsF S dD u1
ds D 21S dD u2

ds D 2G
1
1

2
f cE

0

l

ds~Du1
21Du2

2!, ~2.22!

utilizing an expression for the effective length

FIG. 3. A tight wormlike ring has a fuzzy diameterD.
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l eff.E
0

l

dŝ cosuDuu&

. l ~12 1
2 ^Du1

2&2 1
2 ^Du2

2&!. ~2.23!

Equation~2.22! is a quantum harmonic oscillator which is
easily solved for long chains63 by assuming the fluctuations
are Gaussian

g;
a0

2p
exp2

1

2
a0Du2 ~a0@1!. ~2.24!

The total free energy becomes63

DF tot5
la0kBT

4P
1
f cl

a0
~2.25!

which upon minimization gives

a052~Pfc /kBT!1/2 ~2.26!

^Du2&5
2

a0
5

l

21/2pP
~2.27!

The latter equation shows that end effects may be safely
neglected.63 The deflection length63 is

l5P/a0. l . ~2.28!

Equation~2.28! means the ring is deformingglobally under
the influence of thermal excitations. Hence, there are large
fluctuations in the curvature. The assumption of a more or
less constant curvature implicit in Ref. 35 is erroneous.

III. TIGHT BEND IN A NEMATIC

Next we investigate how the entropy of a tight con-
strained bend is affected when it is put in a nematic liquid
crystal ~Fig. 4!. If we assume the nematic itself is unper-
turbed by the chain, which is not entirely true,46,54 we may
write for the nematic potential exerted on the chain

Un@u~s!#5
kBT

2P E
0

l

ds V~n–u~s!!,

~3.1!
V~cosu!5V~2cosu!,

where the director has been chosen to point in thez direc-
tion. The functionV is dimensionless and depends on the
nematic order of the solvent. A very convenient choice de-
pending on one parameter only is46

V5G sin2 u. ~3.2!

At low G, this is basicallyP2~cosu! whereas at highG, V
behaves essentially like a harmonic formGu2 owing to
Boltzmann weighting. In the latter case, the orientational dis-
tribution will simplify to a Gaussian;43 the order parameter
Sn is simply connected to the coupling parameterG

g;
a

4p
exp2

1

2
au2 ~a@1;0<u, 1

2p!, ~3.3!

g~u!5g~p2u! ^u2&;2a21, ~3.4!

Sn[^P2~cosu!&;123a21, ~3.5!

G5 1
4a

2. ~3.6!

Adding Eq. ~3.1! to the bending energy@Eq. ~2.2!# and
expanding the new partition function@Eq. ~2.3!#, we get

]G

] l
2

1

2P
LuG1

1

2P
VG5d~ l !d~cosu!, ~3.7!

Lu[
1

sin u

]

]u S sin u
]

]u D . ~3.8!

The Green functionG may be expanded in terms of ortho-
normal eigenfunctionswn

G~u,l ;0,0!5(
n

wn* ~1!wn~cosu!e2EnL, ~3.9!

where the eigenvalues have to be determined from

2Luwn1V~cosu!wn5Enwn . ~3.10!

A. Semiclassical limit for weak and intermediate
fields

According to the prescription of Sec. II, we first need an
appropriate asymptotic formula for the eigenfunctionwn , but
also a sufficiently accurate estimate forEn . These can be
computed in the WKB approximation provided one uses a
Langer modification.58 The reasoning used here is similar in
spirit to that adopted by Landau and Lifshitz in their semi-
classical evaluation of the Legendre polynomials.64 One first
introducesxn5wn sin

1/2 u into Eq. ~3.10!

d2xn

du2
1SEn1

1

4
1

1

4 sin2 u
2VDxn50. ~3.11!

FIG. 4. A tight bend in a nematic.
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In the semiclassical limit,L is very small so at fixed con-
straints we first focus on the regime withu2En@1 and
(p2u)2En@1. Herein, Eq.~3.11! is approximated by

d2xn

du2
1~Ēn2V!xn50, ~3.12!

where we introduce a Langer modification57,58 Ēn5En1a1
with a1 a constant supposedly independent ofV. Upon intro-
ducing the ‘‘momentum’’

p[~Ēn2V!1/2 ~3.13!

with Ēn.V for all angles, we may now write a WKB
approximation64 for xn or wn

wn5S C1

p1/2 sin1/2 u D sinF E
0

u

du p~u!1C2G , ~3.14!

whereC1 andC2 are constants independent ofV. Actually,
this expression turns out to be uniformly valid right down to
small u. For smallu, the eigenvalue equation~3.10! may be
expressed as

d2wn

du2
1
1

u

dwn

du
1~En1a2!wn50, ~3.15!

where, again, we introduce a Langer modification.64 The so-
lution to this is a Bessel functionJ0 of order zero whose
behavior at largeEn

1/2u is given by

wn;C3S 2

pnu D 1/2 sinF ~En1a2!
1/2u1

1

4
p G ~3.16!

with C3 a constant.
Equations~3.14! and ~3.16! overlap provideda15a2

andc25
1
4p.

Next, symmetry arguments establish the eigenvalues:
Those pertinent to the symmetric eigenfunctions
(wn(u)5wn(p2u)) obey

E
0

p

dup1/25~n1 1
2!p ~3.17!

with n even, while an identical relation withn odd holds for
antisymmetric eigenstates (wn(u)52wn(p2u)). Finally,
for ideal chains (V50), one has

LuPn~cosu!52En
~0!Pn~cosu!, ~3.18!

En
~0!5n~n11! ~3.19!

which fixes the constanta15
1
4.

Let us now compute the entropy of a tight wormlike
bend in a nematic potential given by Eq.~3.2! which is suf-
ficiently general for our purposes. Then, the eigenvalue rela-
tion @Eq. ~3.17!# is given in terms of a complete elliptic
integral65 of the second kind with modulusq

E~w![E
0

p/2

du~12w2 sin2 u!1/2, ~3.20!

~En1
1
4!
1/2E~q!5~ 1

2n1 1
4!p, ~3.21!

q25G/~En1
1
4!. ~3.22!

The accuracy of Eq.~3.21! can be gauged by comparing it, at
small q, with standard perturbation theory64 to order G
~HamiltonianH5H01V; H052Lu!

En5En
~0!1 1

2G,
~3.23!

n50,1,2, . . . ~current WKB!,

En5En
~0!1 1

2G2
G

2~4n214n23!

~3.24!
n50,1,2, . . . ~perturbation theory!,

where the following relation has been employed:48

E
21

1

dx P2~x!Pn
2~x!5

2n~n11!

~2n13!~2n11!~2n23!
.

~3.25!

The present WKB theory is very good even forn as low as 2.
There should be no problem in the semiclassical limit
(n@1).

The free energy of a semicircular bend is now evaluated
~u5p!. An analysis of Eqs.~3.9! and ~3.14! shows that we
need to consider

G~p,l ;0,0!; (
n50

`

n~21!ne2EnL. ~3.26!

At this stage, it is expedient to introduce the functionEA(q),
which has the following properties:

~i! EA(q)[E(q) for q<c4q*
with 2c4q*

,1;
q
*
2 5O (GL2) andc45O ~5! say.

~ii ! EA(q) tends to the limitE(2c4q*
) for c4q*

,q
,`; EA(q) is continuous and continuously differentiable.

~iii ! EA(z) is analytic in the entire complex plane.
Note thatEA may be useful even for intermediate nem-

atic fields, forG may be greater than unity asL becomes very
small. SinceEn is typically O (L

21), Eq. ~3.26! may be ap-
proximated by

G.2 i E
0

`

dn nenp i2LEn2~1/2!
A

, ~3.27!

where a Langer modification has been accounted for andEA

is given by Eq.~3.21!, but withEA instead ofE . Therefore,
we next focus on the contour integralI 2 in the complex plane
whereC1 is the same contour introduced in Sec. II, although
the origin need not be excluded~see Fig. 2!.

I 25 R
c1

dz zef2~z!, ~3.28!

f 2~z!5pzi2EA~z!L, ~3.29!

~EA~z!1 1
4!
1/2EA~q!5 1

2pz, ~3.30!

q25G/~EA~z!1 1
4!. ~3.31!

Note thatEA is a very slowly varying function ofz so that
terms of higher order than the second are minute in the semi-
classical limit.

1274 Theo Odijk: DNA in a liquid-crystalline environment

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996

Downloaded¬31¬Jul¬2007¬to¬130.161.132.53.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



f 2~z!5 1
4L22K ~q0!E~q0!L

211K 2~q0!L
21

2 1
2 E9~z0!L~z2z0!

21••• . ~3.32!

Here,z0 is purely imaginary

z05
2K ~q0!E~q0!i

pL
. ~3.33!

K is the complete elliptic integral of the first kind65

K ~w!5E
0

p/2

du~12w2 sin2 u!21/2. ~3.34!

q0 is a function only of the groupGL2

q0
252

L2G

K 2~q0!
~3.35!

and both elliptic integrals have been continued analytically.
Hence, the free energy of the tight bend becomes

F/kBT.4K ~q0!E~q0!Pl
2122K 2~q0!Pl

212 l /8P.
~3.36!

From the definition of the partition function, we finally get
the entropy

S5
P

T

]F

]PU
GP22fixed

2
F

T
5
lkB
4P

. ~3.37!

The entropy has thus been computed without solving the
Euler–Lagrange equation for the path of minimum energy.
To conclude, the entropy is not influenced by the nematic
field @or very weakly since several very small higher order
terms have been deleted; the first term of Eq.~2.15! is absent
because nonexponential prefactors have been disregarded
above#.

B. Strong fields

The analysis of the previous section breaks down as the
coupling constantG reachesL22. The regimeGL25O ~1! is
complicated but strong fields (GL2@1) can be handled by
WKB methods again. There now exists a range of angles for
which Ēn,V. In the quantum analogy this is called
tunneling64 because a particle does not have enough energy
to surmount the barrier in the sense of classical mechanics,
although quantum-mechanically the probability of doing so
is nonzero. Warneret al.have already discussed the nematic
hairpin as a barrier problem in the WKB approximation at
some length.47 The problem is reanalyzed for a finite bend so
as to stress several features pertinent here.

If the bend is less than a persistence length long (l,P)
the nematic coupling parameterG will be much greater than
unity. Equation~3.12! is now valid for all n including the
ground staten50, providedu.u0 @u05O ~G1/4!#. The turning
points u1 and u25p2u1 are defined by setting the momen-
tum @Eq. ~3.13!# equal to zero. We next solve Eq.~3.12! in a
WKB approximation. A possible solution can be written as
three smoothly matching approximations in three respective
regimes64

Cn5S 21/2Hp1/2 D sinF E
0

u

du p1
1

4
pG

~3.38!
~u0,u,u1 ;Ēn.V!,

Cn5S H

21/2p1/2Dexp2E
u1

u

duupu

~3.39!
~u1,u,p2u1 ;Ēn,V!,

Cn5S H

21/2p1/2D expF2E
u1

u2
duupu1 1

4p i1E
u2

u

dupG
~3.40!

~u2,u,p2u0 ;Ēn.V!,

whereH is a normalization constant. These expressions do
not represent a solution as such, forCn does not have the
requisite symmetry. Because the potential barrier is equiva-
lent to two symmetric wells, the eigenfunctions must be
symmetric and antisymmetric64

xn
s~u!5221/2~Cn~u!1Cn~p2u!!

~3.41!
n50,2,4, . . . .

xn
As~u!5221/2~Cn~u!2Cn~p2u!!

~3.42!
n51,3,5, . . . .

The splitting64 of the respective eigenvalues is exponentially
small forG@1 causing the spectrum to be almost degenerate

En
AS2En

S54Cn~
1
2p!Cn8~

1
2p!

5const.•exp2E
u1

u2
duupu. ~3.43!

The Green function@Eq. ~3.9!# in the WKB approximation is
real.

Let us focus on a tight bend with one end parallel to the
nematic director which is pointing in thez direction, and the
other end fixed at orientationu with u1,u,u2 ~Fig. 5!. For
G@1, the eigenvalues can be established in the WKB ap-

FIG. 5. A tight bend is partly rippled in a strong nematic field.
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proximation by the Bohr–Sommerfeld condition,64 pertain-
ing to a one dimensional well in the classically allowed re-
gime 0,u,u1,

E
0

u1
dup5~m1 1

2!p. ~3.44!

The casem50 corresponds to the statesn50 andn51, the
casem51 to n52 andn53, and so forth. In the limit of
strong fields, we haveu1.(Ēn/G)

1/2 and Eq.~3.44! reduces
to

En.~4m12!G1/2. ~3.45!

Accordingly, in the Green function only the two lowest
states dominate in view of the conditionGL2@1. Hence, the
free energy associated with the two Boltzmann factors is

F/kBT.2G1/2L1E
u1

u

du~G sin2 u2Ē0!
1/2. ~3.46!

In the limit of strong nematic fields, Eq.~3.6! holds. There-
fore, the first term in Eq.~3.46! is precisely the free energy
of a chain of lengthl in a Gaussian nematic field, the chain
being rippled on the scale of a deflection length.43 The con-
tour length of this section is almostl since the unrippled
bend ~u.u1! is very short~Fig. 5!. This is a result of the
requirementGL2@1 employed in the WKB approximation.
The energy of the unrippled curve is given by the second
term in Eq.~3.46!, which is that of the classical path fromu1
to u. It scales asG1/2 implying that the radius of curvature of
this bend isPG21/2. The crossover between the two regimes
is at u1.a21/2.

C. Self-consistent field theory of hairpins

The entropy can be incorporated exactly in a self-
consistent field theory of hairpin formation for infinitely long
chains~Fig. 6!. We must be prepared to neglect long-range
perturbations in the director fields46,54in this type of approxi-
mation. Khokhlov and Semenov45 first proposed a self-
consistent field theory for hairpins arising in a nematic of
hard cylindrical wormlike chains. Their theory was reana-
lyzed by Vroege and Odijk48 who gave an exact expression
for the global persistence length—a measure of the typical
distance between hairpins—in terms of the orientational dis-
tribution. In both works, the second virial approximation is

adopted which is probably often a rather severe constraint
when applied to concentrated solutions of DNA.66–68Here, a
theory for general self-consistent fields is presented which is
much less restrictive.

A test chain of extremely long contour lengthl has an
orientational distributionf (u! defined with respect to the di-
rector, the average direction of all the wormlike chains. The
director is assumed to be uniform and fixed in space in thez
direction; in a nematic statef (u)5 f (u–n)5 f (t)5 f (2t)
with u written in the form of Eq.~2.1! andt[cosu. The free
energy of orientational confinement of the test chain is45

For52
lkBT

2P E duf 1/2Du f
1/2. ~3.47!

The chains interact with each other in a way we need not
know for the purposes of this section. Iff (u! may indeed be
viewed as a correct ‘‘order parameter,’’ the~extensive! free
energy of interaction may be expressed in general as a func-
tional expansion

F int5
l

P (
n52

` E du1 du2•••dun

3Kn~u1 ,u2 ,...,un! f ~u1! f ~u2!••• f ~un!. ~3.48!

To begin with, the reference state is isotropic (f51/4p). A
term of first order is absent becauseK1 is a constant and the
distribution is normalized to unity. The first term in Eq.
~3.48! is a second virial term. In general, however, Eq.~3.48!
need not be identified with a full virial series. The kernelsKn

are intensive variables signifying the complex interactions
among the chains.

In order to compute the global persistence length, the
test chain is hypothetically strained in an external field of the
dipole type.45 The total free energy becomes

F tot@ f ~u!#5For1F int2
lhkBT

P E du t f ~u! ~3.49!

with h a coupling constant. When we minimize the total free
energy with respect tof (u!, bearing in mind the normaliza-
tion of the latter, we obtain an integrodifferential equation
which is self-consistent and nonlinear

2 1
2 f

21/2Duf
1/25E2 (

n51

` E du,du2•••dun~n11!

3Kn11~u1 ,u2 ,...,un ,u! f ~u1!

3 f ~u2!,...,f ~un!1ht. ~3.50!

Here,E is an eigenvalue. Without the external field (h50),
we insist that Eq.~3.50! describes a nematic state. Various
symmetry relations are thus required for the kernelsKn and
may easily be derived. Our model obviously does not ac-
count for the chirality of the DNA helix; the cholesteric pitch
is assumed to be large enough. The global persistence length
Pg is now derived with the help of a linear response law45

Pg5
1

2
P

]^t&
]h U

h50

. ~3.51!

FIG. 6. A hairpin of radiusR.
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Hence, we assume a regular perturbation solution for Eq.
~3.50! exists for smallh. As h→0, the distribution is written
as48

f 1/25 f 0
1/21hC1 ,

~3.52!
C1~t!52C1~2t!

and so acquires a small antisymmetric component. For anyn
we have

E du1 du2•••dunKn11~u1 ,u2 ,...,un ,u!

3 f 0~u1! f 0~u2!••• f 0~un21! f 0
1/2~un!C1~un!50 ~3.53!

for the integrand is antisymmetric under the transformation
(un ,wn)→(p2un ,p1wn). In effect, besides referring to a
nematic state,Kn is expected to be a complicated function of
usindnu, wheredn is the angle between an infinitesimal seg-
ment of orientationun and one of orientationu. With this
caveat, further analysis of Eq.~3.50! proceeds exactly along
the lines of Vroege and Odijk48 to which the reader is re-
ferred. The global persistence length is given by

Pg52pPE
0

1

dt2
@*t2

1 dt1 2t1f 0~t1!#
2

~12t2
2! f 0~t2!

, ~3.54!

which reduces to

Pg;
P

2p E
0

12e

dt
1

~12t2! f 0~t!
~3.55!

for highly oriented nematics.~The upper limit circumvents a
divergence; deletion of a subdominant term is implied!. In
the Gaussian approximation@Eq. ~3.3!#, this becomes48

Pg;
pPea

2a2 . ~3.56!

Here, the parametera has to be deduced from experiment,
for instance by measuring the usual order parameter
(a.3/(12Sn)). The free energy of a hairpin is essentially
akBT to logarithmic order. The hairpin energy for the poten-
tial at high order@Eq. ~3.2!#, in the classical limit, was com-
puted by de Gennes,46 and Williams and Warner.49 In the
Gaussian limit, it becomes identical with a highly ordered
self-consistent potential and equal toakBT. Hence, the en-
tropy of a hairpin bend must be very small.

D. Statistical mechanics of a tight supercoil in a
nematic

The twist and writhe of a DNA supercoil are connected
by White’s relation.69,97 For a helical wormlike chain which
is closed and unknotted, the torsional degrees of freedom in
the partition function can be integrated out. The statistical
analysis boils down to a consideration of a simple untwisted
wormlike chain at a given writhe,30 a problem with a topo-
logical constraint. For flexible polymers, the statistical me-
chanics of a topologically restricted chain was initiated three
decades ago.70,71Edwards later presented a convenient func-
tional representation for the partition function of a two-

dimensional flexible coil wound several times around a
point.72 The problem is equivalent to the path integral of a
charged quantum particle moving in a magnetic field.73,74We
present a formal analysis for supercoiled DNA similar to the
flexible-chain problem of Edwards.72

It is expedient to write the writhe Wr in a form advo-
cated by le Bret4

Wr52~2p!21E
0

l

dsS dw

dsD cosu1Wrz , ~3.57!

where the unit vectoru(s) is defined by Eq.~2.1! and Wrz is
the directional writhing number in thez direction. For a tight
supercoil in the semiclassical limit, undulations away from
the classical or purely mechanical configuration are small,
provided the latter is stable. Then, Wrz is constant and fluc-
tuations may be accounted for with the help of the integral in
Eq. ~3.57!.30 Following Edwards’ recipe72 we try to find a
suitable ‘‘vector potential’’A in terms of the polar angles
@Eq. ~2.1!#,

A5A~u![~2p!21~2cotg u sin w,cotgu cosw,0! ~3.58!

so that the writhe may be viewed as the ‘‘magnetic’’
interaction73,74 of a ‘‘charged particle’’ with ‘‘velocity’’ du/
ds,

DWr[Wr2Wrz52E
0

l

dsA–
du

ds
. ~3.59!

Hence, the pertinent partition function of the constrained
semiflexible chain in a nematic field may be expressed by

G~Wr;u,l ;u0,0!

5E
u~0!5u0

u~ l !5u
D@u~s!#d~u2~s!21!

3dS DWr1E
0

l

dsA–
du

dsD exp2~Ub1Un!/kBT

5
1

2p E
2`

`

dm eimDWrGm ~3.60!

with

Gm5E
u~0!5u0

u~ l !5u
D@u~s!#d~u2~s!21!

3expF2
1

2
PE

0

l

dsS dudsD 22 1

2P E
0

l

V~n–u~s!!

1 imE
0

l

ds A–
du

dsG . ~3.61!

This functional integral is now rewritten as the solution to
the following differential equation:72,74

F ]

] l
2

1

2P S ]

]u
2 imA~u! D 21 1

2P
V~u!GGm

~3.62!
5d~ l !d~u2u0!.
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Using the fact thatA is divergence-free, we express this
equation in terms of the polar angles

F ]

] l
2

1

2P SLu1
1

sin2 u S ]

]w
2
im cosu

2p D 22G sin2 u D GGm

~3.63!
5d~ l !d~cosu2cosu0!d~w2w0!.

The partition function at constant writhe has been reduced to
a form amenable to explicit analysis by the semiclassical
method outlined in Sec. III B. Such a computation is obvi-
ously complicated; moreover, it is not easy to see how vari-
ous terms have to be balanced in an approximation scheme.
Equation~3.63! is left for now and supercoiling in a nematic
field is addressed qualitatively in Sec. VII.

IV. QUALITATIVE CONCLUSIONS

The conclusions of the preceding analyses are summa-
rized in a qualitative scheme.

~1! A tight semicircular or circular bend with initial
typical radius of curvatureR0 placed in a nematic field of
strengthG, retains its integrity and does not ripple when
G&P2/R0 . This criterion holds irrespective of the orienta-
tion of the plane of the bend with respect to the director. The
singular case of a bend perpendicular to the director or nearly
so, will be disregarded.

Undulations soften the loop. The free energy of entropic
origin

Fentr..2
l

P
~4.1!

associated with this softening is~a! extensive or proportional
to the contour length of the bend;~b! independent of the
nematic field. The orientational fluctuations expressing de-
viations from the classical path at positionss and t are well
described by a Gaussian with second moment

^Du2&.
2us2tu
P

~4.2!

provideds and t are both not too close to the constrained
ends.

~2! In the regimeG*P2/R0 , the bend tightens (R,R0)
and the rest of the chain is rippled on a characteristic length
l5P/a. The resulting radius of curvatureR may be esti-
mated from either of three equivalent statements.

~i! The relevant dimensionless group must be of order
unity

GR2/P2.1. ~4.3!

~ii ! There is only one relevant scale in the complete
problem48

l5P/a.R. ~4.4!

~iii ! The orientational fluctuations within the tight bend
must match with those in the rippled sections

^Du2~pR!&bend.^u2&rip..a21. ~4.5!

An attempt is made to understand a variety of compli-
cated problems qualitatively by applying Eqs.~4.1!–~4.5! in
Secs. V to VIII.

V. RING OF UNTWISTED DNA IN A NEMATIC

A. Closure of an unrippled ring

Disregarding entropic fluctuations, Williams and
Halperin75 have discussed the cyclization of wormlike chains
in nematic solvents. In another direction, Shimada and Ya-
makawa gave a quantitative description of ring formation for
DNA with and without twist in the isotropic state.29 Their
theory is of considerable use in interpreting the closure of
DNA.76,77 The analysis of Sec. III A provides a means for a
simple interpolation between these two theories, at least for
ring closure without twist.

The closure probability proposed has the form

Jc.28L25e2F , ~5.1!

F .7L212 1
2L1 1

2GL. ~5.2!

In an isotropic solvent~G50!, these two expressions are sim-
ply Eq. ~75! of Ref. 29: The first term in Eq.~5.2! is a
bending energy; the second is an extensive entropic term
physically similar to the one computed in Sec. II, which
describes the undulatory softening of the chain. When the
nematic field is switched on~G.0!, the entropic term re-
mains unaltered as argued in Sec. III A. The additional nem-
atic energy is estimated assuming the closed chain is basi-
cally a circle. Thus the numerical coefficients of the first and
third terms are not precise for generalG but the scaling struc-
ture of Eq.~5.2! is correct below the transition to a rippled
state (GL2&1).

The maximum probability of ring closure occurs when

Lm5
52@25214~12G!#1/2

~12G!
. ~5.3!

In an isotropic solvent,Lm.1.7 as found by Shimada and
Yamakawa.29 Note thatLm is quite insensitive to the nematic
field for G5O ~1!, an effect arising from the entropy. In the
regime 1!G!L22 for L!1, entropy is unimportant and we
regain the analysis by Williams and Halperin.75 In that case,
the optimal radiusRm.p21PLm is given by

Rm.
P

G1/2.
P

a
. ~5.4!

Hence,F is essentiallyO ~G1/2!. The prefactor in Eq.~5.1! is
related to the decrease in orientational and translational en-
tropy involved in forcing two DNA ends to meet. This
should depend onG, but anyG dependence is reduced to
minor logarithmic significance forG.1. Equations~5.1! and
~5.2! are semiquantitatively correct in the entire unrippled
regime (L&4,GL2&1).

B. Ring in a strong nematic field

In Sec. III B, we saw that the arm or two arms of a tight
bend will ripple at sufficiently high fields. A closed circle of
untwisted DNA ought to look like the elongated ring in Fig.
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7 in this case. The two tightly bent sections are approximated
by semicircles of radius of curvatureR. The two rippled
sections have a total lengtht5 l22pR where l is the con-
tour length of the entire DNA chain which may be as long as
one wishes but for the formation of hairpins.78 The total free
energy of the chain consists of the following contributions.

~a! The two semicircles have a nematic energy

Fn /kBT. 1
2 pGRP21. 1

8 pa2RP21 ~5.5!

since in the rippling limitG5 1
4a

2.
~b! They have a bending energy

Fb /kBT.pPR21. ~5.6!

The entropy of Sec. III A is entirely negligible in the case
when rippling occurs~G@1; see below!

~c! The free energy of the rippled sections is

F rip /kBT.G1/2t/P

5at/2P. ~5.7!

See Sec. VIII of Ref. 43. Note that it consists of two equal43

contributions, one coming from the orientational entropy and
the other from the interaction of the DNA with the nematic
field.

The total free energy is

F tot /kBT5~Fb1Fn1F rip!/kBT

5
pP

R
1

pa2R

8P
1

a l

2P
2

paR

P
. ~5.8!

The last term bearing a minus sign arises because the DNA
has a finite size. The optimal radius of the semicircular sec-
tions is found by minimizing Eq.~5.8!

R5
P

a S 8

128a21D 1/2. ~5.9!

This makes sense only ifa.8, a condition stemming from
the finite length of the DNA. The chain is partly rippled only
if a.8 and if, in addition,l.2pR. For a<8, the chain is
simply a circle, to a first approximation, with

F tot /kBT5
pa2R

8P
1

pP

R
, ~5.10!

R5
81/2P

a
~5.11!

in agreement with Ref. 75. The latter equation bears a formal
similarity to Eq.~5.4! in view of the unimportance of entropy
for ring closure at high fields. The free energy of the elon-
gated ring attains the form

F tot /kBT;
a l

2P
1221/2pa ~5.12!

at very high fields~a*20,a l@P!. In practice, there remains
a substantial end correction arising from the two end hair-
pins.

VI. NEMATIC OF UNTWISTED DNA RINGS

The preparation of nicked circular DNA or closed circu-
lar DNA without twist has become fairly routine.79 What
happens if we pack untwisted DNA rings together in solu-
tion? A naive expectation would be to regard a ring as a disc,
more or less. The disk diameter would be 2R—the ring ra-
diusR is less thanP, say—and its diameterd, the~effective!
diameter of the DNA helix. We might then formulate a
criterion80,81 for the onset to a nematic state

R2v*
d2

.1, ~6.1!

wherev*
is a critical DNA volume fraction. It can be argued

that this relation is probably valid despite the possibility of
the rings deforming and rippling under the influence of the
topological excluded-volume effect, which in turn depends
on the orientational order.

ConsiderN rings of contour lengthl and diameterd
packed in an aqueous solution of volumeV . The DNA vol-
ume fraction isv5(p/4)ld2NV 21. The nematic state is de-
fined by the Gaussian parametera ~a@1! and a second varia-
tional parameterh is introduced,

h[
2pR

l
~6.2!

for the rings possibly deforming under the nematic stress,
into elongated rippled rings capped by approximately semi-
circular ends of radiusR ~Fig. 8!. The contour length is short
enough to neglect hairpin formation.78 Now the rings cannot
sample the complete configurational space in view of their
topology.69,71For instance, two test rings cannot be linked as
in Fig. 9. In the isotropic state their topological excluded
volume scales asR3. For unelongated rings, this is modified

FIG. 7. An elongated ring in a strong nematic field.

FIG. 8. Congested nematic rings forming a nematic state.
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in the nematic by a factora21/2 because the orientational
excluded volume scales, in the main, likeusingu, whereg is
the angle between the normals to the planes of the two rings.
We write the total free energy of a possible nematic in the
second virial approximation as

F tot /kBT5
~ l22pR1b1R!2RN2

V a1/2 1
~12h!2l 2 dN2

V a1/2

1
R2 dN2

V a1/2 1
~12h!lR dN2

V
1

~12h!laN

P

1
PN

R
. ~6.3!

Here, most of the numerical coefficients have been deleted
and the meaning of the terms is as follows:

~1! The first is the topological excluded volume where
the elongation of the rings is taken into account~the coeffi-
cient b1,2p!; ~2! the second term represents the usual ex-
cluded volume between rippled strands of length (12h) l ;
~3! the third term is the excluded volume between semi-
circles; ~4! the fourth term signifies a cross interaction be-
tween the rippled strands and the semicircles; it is indepen-
dent of a to a first approximation;~5! the fifth term
represents the free energy of orientational confinement of the
rippled strands;~6! the sixth term is the bending energy of
the semicircles; the entropy of these may be safely neglected
~Sec. IV!.

Next, it is convenient to rewrite Eq.~6.3! in terms of a
scaled volume fractionv̄[Pv/d, a variable occurring in the
theory of lyotropic polymer liquid crystals.63

PFtot
NlkBT

.S ldD v̄a21/2h~12b2h!21 v̄a21/2~12h!2

1 v̄a21/2h21 v̄h~12h!1a~12h!1P2/ l 2h

.S ldD v̄a21/2h~12b2h!21a~12h!1P2/ l 2h ~6.4!

with a numerical coefficientb2,1. At high salt, the aspect
ratio l /d is larger than about 30, at least in practice,79 so it is
a good idea to delete the three ordinary excluded-volume
terms as the topological term is dominant. Order and elon-
gation are strongly coupled in Eq.~6.4!. The equilibrium
state is found by minimizingF tot with respect toh anda.

2a3/25S ldD v̄h~12b2h!2

~12h!
, ~6.5!

a3/252
P2a1/2

l 2h
1S ldD v̄~124b2h13b2h

2!. ~6.6!

We conclude the following from these expressions:
~i! The casel v̄/d5O ~1!. If we let l&2pP, then a solu-

tion v̄, v̄* @Eq. ~6.1!# is feasible witha5O ~1! and h.1
2.

This is stretching the scaling analysis to its limit of validity.
Accordingly, a naive disk picture seems not unreasonable at
these very low volume fractions (v.1023). But the rings are
probably not completely stiff, but rippled a bit in the nematic
phase coexisting with the isotropic at the transition.

~ii ! The casel v̄/d@1. There appears to be a remote
possibility of a solution to Eqs.~6.5! and ~6.6! with
a3/25O ( l v̄/d) andh.1

2, say, depending on the exact value
of b2 . However, the free energy of this state would be sub-
stantially higher than that of the nematic defined by a second
solution to these equations withh!1, where the rings are
markedly elongated

h5.
P6d2

l 8v̄2
.
P4d4

l 8v
, ~6.7!

a5/2.
P2v̄
ld

.
P3v
ld2

. ~6.8!

Note that in these expressions, topology, nematic order,
bending, and orientational entropy are inextricably com-
bined. The result is that the nematic order increases fairly
weakly with the DNA volume fraction, and never becomes
very high ~a&15!.

Torbet and Di Capua82 have found that nicked circular
pUC8 plasmids form a liquid-crystalline state at DNA vol-
ume fractionsv!1. The rings definitely become more elon-
gated, the higher the DNA concentration. The liquid crystal
state appears to be hexagonal so it may be presumptuous to
compare their ‘‘radius’’ with the theoretical one,R5h l /2p,
given by Eq.~6.7!. Nevertheless, an identification of the ex-
perimental Bragg spacingDB with R;v22/5 is not devoid of
interest: Torbet and Di Capua definitely rule outDB;v21/2

which would hold if the slender DNA rings had fixed dimen-
sions, but neither does their curveDB;v21/3 seem a con-
vincing fit to the data. A realistic exponent must lie in be-
tween 1

2 and
1
3. Therefore, there is a bit of evidence, albeit

very tenuous, for the validity of the qualitative picture pre-
sented here. Note that even if the phase of Ref. 82 definitely
turns out to be hexagonal, this does not preclude the possible
and likely existence of nematic~cholesteric! states.

Theoretically, there are several issues that should be in-
vestigated. A biaxial phase may be possible for intermedi-
ately elongated rings. The feasibility of a hexagonal phase
could be analyzed along the lines of recent theories.41,83Fur-
thermore, the long-range nematic interaction53 between the
semicircular defects has been disregarded in the analysis
above.

FIG. 9. A forbidden state of linked rings.
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VII. PLECTONEMIC DNA IN A NEMATIC

A purely qualitative analysis will be given of the uncoil-
ing of plectonemic DNA by a nematic field. In reality, the
long-range electrostatic repulsion between DNA segments
couples strongly to entropy to give rise to undulation-
enhanced forces83 @J. Ubbink and T. Odijk~manuscript in
preparation!#. Marko and Siggia84 recently balanced entropy
and repulsive forces in a theory of supercoils with and with-
out tension. Still, it is of methodological interest to study the
case where the diameter of the plectoneme is assumed con-
strained by a solely electrostatic exclusion11 without electric
twist.85 Moreover, there is some evidence that the superheli-
cal diameter is more or less constant in certain regimes.17,82

As seen in Sec. III D, a formal analysis of the entropy is
complicated, but it will be dealt with approximately, after an
introduction of the case without undulations.

We neglect end effects and branching: the slender plec-
tonemic helix is supposed uniform with a diameter 2r s and
pitch 2pps . The nematic torque is strong enough to align the
superhelical axis along the directorn of the nematic field
~the z direction Fig. 10!. The total energy in an elastic
approximation86 is given by

U tot / lkBT5 1
2PR

221 1
2CtV

221 1
2GP

21~12~n–u!2!.
~7.1!

Here,R is the radius of curvature andl the total contour
length of the DNA chain.

R5
r s
21ps

2

r s
. ~7.2!

Ct is a persistence length pertaining to twist and the local
excess twist is defined with respect to the intrinsic twistv0 of
undisturbed DNA. The total molecular twist

Tw5
1

2p E
0

l

ds~v01V! ~7.3!

is connected with the writhe Wr and linking number Lk by
White’s relation Lk5Wr1Tw. In general, the backbone he-
lix of supercoiled DNA is twisted at a specific linking
difference79 s5~Lk2Lk0!/Lk0 with Lk05lv0/2p. Hence,
the local excess twist is given by

V5v0s22p l21Wr ~7.4!

for the supercoil may be assumed homogeneous, if end ef-
fects are neglected. For a left-handed helix, the writhe is6,87

Wr5
psl

2p~r s
21ps

2!
. ~7.5!

For convenience, boths and Wr are here taken to be posi-
tive.

Inserting Eqs.~7.2!, ~7.4!, and ~7.5! into Eq. ~7.1!, we
get the total energy for substantial superhelical pitch
(ps.r s), the case of interest if a nematic field is to exert
some influence

U tot / lkBT5
Prs

2

2~r s
21ps

2!2
1
1

2
CtS v0s2

ps
~r s

21ps
2! D

2

1
Gr s

2

2P~r s
21ps

2!
.
Prs

2

2ps
4 1

1

2
Ct~v0s2ps

21!2

1
Gr s

2

2Pps
2 . ~7.6!

On minimizingU tot with respect tops , we find that the bend-
ing term is negligible in view ofCt5O (P). The elongation
factor is

ps
ps,0

.~11N !, ~7.7!

ps,051/v0s, ~7.8!

N [
Gr s

2

CtP
. ~7.9!

The nematic coupling parameterN may be of order unity in
typical circumstances~e.g., r s50.2P510 nm; v051.8
nm21; s50.1;Ct.P550 nm;a.10;G5a2/4525!. The pa-
rametera has been measured recently in concentrated solu-
tions of linear DNA, a persistence length long,68,88 and
seems difficult to increase much beyondO ~10!. At present,
the degree of orientational order in suspensions of plectone-
mic DNA is unknown.82 On the whole, considerable nematic
unwinding ~N @1! may be rarein the classical limit.

The effect of undulations is now investigated qualita-
tively in the case of weak and intermediate nematic fields in
the sense of Sec. III A. At small pitch (ps,r s), the plec-
toneme is basically a stack of almost parallel rings. A wind
behaves typically like a fuzzy ring described in Sec. II with a
small fuzzy thickness (D.R3/2P21/2!R;R.r s!P). En-
tropy, then, is important in the opposite limit (ps.r s). In
particular, we require the supercoil to be well defined with
respect to the classical limit without undulations. The angle
of the classical tangent vector with regard to thez axis is
aboutr s/ps . We insist that orientational fluctuations between
adjacent winds be less than this number. These fluctuations
conform to a Gaussian law~Sec. IV!.

S r spsD
2

*
2pps
P

. ~7.10!

This sets a fairly severe restriction on the value ofG via Eq.
~7.7!. Clearly, at a certainG

*
, Eq.~7.6! may become dubious

in view of the neglect of undulations. In Sec. III A, we con-
cluded that the entropy of a tight bend iskBl /4P, an exten-

FIG. 10. Plectonemic supercoil in a nematic.
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sive term, so it should apply to a long tight plectoneme as
well ~A supercoil will have a certain winding numberM in
Eq. ~2.6!. An exponential factor exp14L will again appear in
the Green function analogous to the one given by Eq.~2.8!.
It is independent of the linking number and the nematic or-
der, provided the radius of curvature is small enough
(G1/2R,P), a condition often less stringent than Eq.~7.10!.
Hence, the invalidation of Eq.~7.10! signals a first possible
breakdown of the classical limit with minor undulations.

Next, we go to the opposite extreme: a supercoil must
ripple if the nematic field is strong enough~Fig. 11!. From
Sec. IV, we know the criterion for this to happen

a*
P

R
5

Prs
r s
21ps

2 . ~7.11!

In this limit, orientational order competes only with entropy.
Note that the end effect discussed in Sec. V does not apply
here, since the plectomene is very long. As soon as the su-
percoil becomes tangibly elongated by nematic stresses@Eq.
~7.7!#, there is a chance that it starts to ripple. A complete
understanding of this process clearly requires a full quantita-
tive analysis. Ultimately, the resulting rippled supercoil will
still possess a writhe and twist depending on the nematic
order.

In summary, it may be possible to unwind a plectonemic
supercoil in an intermediate nematic field, with the entropic
undulations playing only a minor role. At some stage, en-
tropy does enter the picture and ultimately the DNA super-
coil should ripple at a certain level of the nematic order. The
calculations presented here, bear indirectly on the experi-
ments by Torbet and Di Capua82 who prepared liquid crys-
tals from plectonemic plasmid DNAs. For concentrations up
to 80 mg/ml, the supercoils seem to be arranged in hexagonal
fashion and the superhelical pitch appears to be independent
of the DNA concentration. Settingr s58 nm,82 Ct.75 nm
and P550 nm, one would require a Gaussian parameter
a&5 from Eq.~7.9!, were we to tentatively assign a nematic
torque exerted by the hexagonal packing. Such low values
for a would be compatible with the low volume fractions
v̄5Pv/d5O ~1!. X-ray diffraction of fibers containing the
superhelices seems to indicate that the supercoils are
stretched at high concentrations82 ~v̄@1, purportedly imply-
ing a@1! but unfortunately the interpretation of the diffrac-
tion experiments is not unambiguous. Yevdokimovet al.89

have also investigated liquid crystalline phases of various
types of superhelical DNA. They express uncertainty as to
the precise nature of their phases~cholesteric, nematic or
hexagonal!, an issue that evidently warrants further study.

Finally, Marko and Siggia have published certain conclu-
sions concerning plectonemes and solenoids under
tension,36,84 a problem which is of course related to the one
discussed here. In their work,84 there may be a regime at low
ionic strength wherer s is constrained by strong electrostat-
ics, andps is quite large, which apparently corresponds to
the classical limit discussed here. Without doubt, the prob-
lem of undulations~and the hexagonal phase! will have to be
reinvestigated within a more complete undulation theory.83

VIII. PITCH OF CHOLESTERIC SUPERCOILS

A. Tight supercoils

Tight plectonemic DNA forms a liquid crystal because
the superhelices are stiff. In a regime dominated by entropy,
the superhelical persistence lengthPs may be estimated by
using the angular fluctuations of one wind~see Secs. IV and
VII !

^Du2&.
2p~r s

21ps
2!1/2

P
~8.1!

Ps.
2pps
^Du2&

.
2psP

~r s
21ps

2!1/2
. ~8.2!

The numerical coefficient 2 has been added sincePs must be
twice the backbone persistence length for two chains at zero
writhe. Eq.~7.2! is definitely an underestimate judging from
computer simulations90 and experiments17,20on tightly inter-
wound DNA. This is not difficult to understand since the
fluctuations are actually smaller than the ideal undulations
inherent in Eq.~8.1!, in view of interchain repulsion within
the superhelix. Marko and Siggia have attempted to model
this effect by a harsh power law14 and recently by electro-
statics without undulation enhancement.84 The electrostatic
repulsion between DNA chains decays exponentially and ex-
erts a twist;85 we expect undulation enhancement of the kind
formulated in Ref. 83 to occur within the superhelix, a topic
we are currently addressing@J. Ubbink and T. Odijk~manu-
script in preparation!#.

In a liquid crystal of plectonemes, the DNA superhelices
may act like rods80 or super-wormlike chains91 depending on
the value of the deflection length63 ls5Ps/a; the value ofPs

has to be estimated from simulation or experiment, for now.
Next, it is evidently feasible to set up conditions such that
the superhelical threads are neither perturbed nor rippled by
the nematic field, whatever its origin, at least to a first ap-
proximation@see Eq.~7.9!#. This is the case we focus on here
for a discussion of the cholesteric phase.

1. The superhelices are effective rods ( 1
2l&ls)

In the virial theory92,93 of the pitch of a cholesteric sus-
pension of chiral rods, there is a vector kernelCc(u1,u2! for
two test rods of orientationsu1 andu2, within the virial term
of first order. For two supercoiled threads, the following
form is proposed:

Cc~u1 ,u2!5 j ~r s Wr/ l !dl2 r s~u13u2!~u1–u2!. ~8.3!

This is plausibly argued as follows: It is proportional to92,93

FIG. 11. Rippled supercoil in a strong nematic field.
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~i! the excluded volume; l 2r s between two supercoils of
length 1

2l and diameter 2r s .
~ii ! The thickness of the superhelical threads, i.e., the dis-

tance between the two DNA chains.
~iii ! The orientational partu13u2 of the excluded volume.
~iv! The angular factoru1–u2, for Cc is zero in the crossed

configuration; note that Cc(u1,u2!52Cc(u2,u1!
andCc(u1,u2!5Cc(u12u2!5Cc(2u1,u2!.

~v! A dimensionless functionj depending on the super-
helical chirality r sWr/l . The total contour length of
the DNA is l and the length of a plectoneme is about
1
2l . As the writhe tends to zero,j goes to zero.

Equation ~8.3! leads to a pitch93 P of the cholesteric
phase of rodlike supercoils

P.
dl

r svu j ~r s Wr/ l !u
, ~8.4!

a.~ lv/r s!
2, ~8.5!

wherev is the DNA volume fraction.

2. Semiflexible plectonemes ( 1
2l*ls)

The supercoiled threads are semiflexible, and statisti-
cally speaking, may be viewed as a sequence of deflection
segments of lengthls ~see Ref. 63!. As in Ref. 93,12l in Eqs.
~8.4! and~8.5! should be replaced byls5Ps/a ~but note that
Wr;l !.

P.
d7/3Ps

1/3

r s
5/3v5/3u j ~r s Wr/ l !

, ~8.6!

a.~Psr sv/d
2!2/3. ~8.7!

Equation~8.6! predicts a fairly low pitch for the cholesteric
phase, at least if the writhe is not too small. The chirality of
the DNA helix itself has been disregarded in Eq.~8.3!. This
may be reasonable, for the global superhelical chirality may
be thought to dominate when two plectonemes collide. Here,
we have neglected branching and end effects. Nevertheless,
note that in the semiflexible case, all branches will align
along the director in view of the strong cholesteric torque, so
the liquid crystal is a suspension of deflection segments and
our scaling analysis may remain valid.

B. Loose supercoils

A cholesteric suspension of DNA supercoils that are
nontight—rippled or not—has a pitch because of three ef-
fects:~i! the DNA double helix itself is chiral;~ii ! the super-
coils are chiral objects interacting with each other;~iii ! the
average interaction between the segments of one supercoil is
chiral. For loose supercoils, the first effect is very similar to
that involved in a suspension of linear DNA molecules. Stra-
ley’s theory92 as modified by the author,93 might be useful
here although only at fairly low volume fractions. At high
concentrations, DNA approaches the hexagonal phase so the
pitch becomes anomalous.94,95 One recent theory quantifies
the competition between braiding and chirality for close-
packed chiral macromolecules.96 Here, we leave these prob-
lems aside and concentrate on the third type of chiral inter-

action which seems to bear on recent experimental work.55 A
scaling relation is given between the cholesteric pitch and the
writhe, a measure of the handedness of a supercoil. For loose
supercoils, the liquid crystal is a solution of interacting de-
flection segments so the qualitative analyses below should
hold even if the supercoils branch.

Consider, first, one long supercoil of backbone contour
length l and helix diameterd in a nematic medium whose
properties will be discussed below. The supercoil is viewed
as a sequence ofl /e slender rodlets, each of lengthe(e@d).
The DNA helix must be straight, or approximately so, on the
scale ofe. The achiral rodlets interact with each other via an
excluded-volume effect. But the average interaction is chiral
for it is topological, because the rodlets are connected into
one supercoil~Fig. 12!. Following previous work,92,93we can
write the increase in the free energy of chiral interaction as

Fchi.kBT((
iÞ j

K V i j
21E E duiduj f ~n–ui !

3Cc~ui ,uj !–“ f ~n–uj !L . ~8.8!

Here,n is the director which reflects some cholesteric orga-
nization owing to the perturbative presence of the supercoil,
f is the orientation distribution depending implicitly on po-
sition r via n~r !, ui anduj are the unit vectors pointing along
rodletsi and j , andV i j is the characteristic volume sampled
by rodlet i if we keep j fixed. The average is over all con-
figurations of the supercoil. The vectorCc was defined ear-
lier @Eq. ~8.3!# but is now formally defined92 in terms of a
Mayer functionF(ui ,uj ,ji j ) whereji j is the vector between
the centers of the rodletsi and j

Cc~ui ,uj !52E dji jji jF~ui ,uj ,ji j !. ~8.9!

For overlapping rodlets, we approximate the Mayer function
by the form

F~ui ,uj ,ji j !5F~uj ,ui ,2ji j !.j i j
21ui3uj–ji j ~ui•uj !

~8.10!

and zero otherwise. This would be compatible with the vec-
tor Cc for screws chosen earlier by Straley.92

Next, we compute the chiral free energy in the con-
tinuum limit, adopting a scaling Ansatzj i j

3.V i j

FIG. 12. A loose supercoil displaying a chiral excluded-volume effect.
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Fchi.kBTe22E
0

l

ds1E
0

l

ds2E du~s1!E du~s2!E dji j

3K S u~s1!3u~s2!–j12
j12
3 D f ~n–u~s1!!

j12
j12

–“ f ~n–u~s2!!L . ~8.11!

To zero order,^ui•uj&.1, by way of the generally high
order in lyotropic systems. Introducing a further preaverag-
ing approximation consistent with a scaling analysis, we now
integrate only one part of the integrand overs1 and s2 in
order to extract a writhing number69,97 from Eq. ~8.11!

Wr[
1

4p E
0

l

ds1E
0

l

ds2
u~s1!3u~s2!–j12

j12
3 . ~8.12!

The integral overj12 for overlapping rodlets yields an ex-
cluded volume contributione2d. Accordingly, Eq.~8.11! re-
duces to

Fchi.kBTdu^Wr&u E du1E du2 f ~n–u1!u“ f ~n–u2!u,

~8.13!

which is independent of the rodlet sizee.
We are finally in a position to calculate the pitchP . For

a highly ordered cholesteric, we have93 u“ f u.a1/2un–“3nu.
Let there beN supercoils enclosed in a volumeV . Then the
free energy density is

Fchi /V .kBT dN V 21a1/2u^Wr&uun–“3nu. ~8.14!

Hence, the pitch is given in terms of the DNA volume frac-
tion

P.
K twun–“3nuV

Fchi
.

K twld

kBTva1/2u^Wr&u
. ~8.15!

A relation between the pitch and the twist elastic constant
K tw has been used.~A large factor of 2p has been deleted.!

It is possible to simplify Eq.~8.15! a bit further by sup-
posing the supercoils are in a more or less rippled state~see
Sec. VII!. The orientational order is then determined mainly
by the interactions between DNA segments. In that case, we
may use the approximation37,40

K tw.
kBTa1/2

d
~8.16!

so the pitch may be expressed in a seductively simple fash-
ion

P.
l

vu^Wr&u
. ~8.17!

This seems quite plausible after the fact. For very long
chains, one expectŝWr&.DLk even in a cholesteric phase.
Hence, we would have a useful relation between the pitch
and the specific linking difference

P.
h0
vusu

~8.18!

with h052p/v053.4 nm. If there is a contribution from the
intrinsic chirality of the DNA itself, which would lead to a
pitch P int , then the total pitch would be

P tot5U PP int

P6P int
U. ~8.19!

The choice of the sign depends on the handedness of the
respective interactions.

The excluded volume effect for DNA is influenced by
screened electrostatics so we have to deal, provisionally at
least, with an effective diameterdeff . Considerations con-
cerning the twist modulus98 imply that d in Eq. ~8.15! be
replaced byd2deff

21 , andd in Eq. ~8.16! be replaced bydeff .
The pitch is modified to

P.
ld2

deff
2 vu^Wr&u

. ~8.20!

It is stressed that the expressions for the pitch are merely
scaling estimates in view of the rather severe approximations
employed. There is some recent evidence of considerable
interest for a direct relation between supercoiling and cho-
lesteric organization. Reichlet al.55 have found that within
bacteria, congested interwound supercoils of plasmid DNA
form cholesteric phases. The circular dichroism spectra were
a sensitive monitor of the superhelical density of the DNA.
In one measurement at a volume fractionv.0.015 and a
specific linking differences.20.06, they determined a
pitch P.6 mm which compares favorably with the rough
estimate of 4mm given by Eq.~7.18!. It is hoped that the
pitch will be measured as a function ofs in future experi-
ments.

IX. CONCLUDING REMARKS

The main purpose of this work has been to try to grasp,
in a qualitative way, the behavior of congested DNA in prob-
lems of biophysical interest. A fairly severe drawback of our
computations is the cavalier attitude toward the interactions
between the DNA molecules. This is especially true in Sec.
VII. We hope to come back to the issue of electrostatic in-
teractions in the near future. The principal focus here has
been the often intricate relation between entropy, order, cur-
vature, and topology. The analysis of Secs. V to VIII is
strictly qualitative, numerical coefficients not always of or-
der unity, having been deleted either for the sake of simplic-
ity or because they are unknown. A complete quantitative
treatment of congested supercoils seems no mean task as
does an implementation of Monte Carlo simulations of such
suspensions given the current status of simulated nematic
worms.99

For tight DNA curves, entropy appears to be important
mostly in closure problems as discussed in Sec. V A. En-
tropy does play a major role when the external field is strong,
causing the DNA chain to ripple; but then the rippled sec-
tions undulate along the director and so are bent only
weakly. However, the possibility is left open that undulations
may well be frozen out for curved DNA in a strong field with
positional order as occurs in a nucleosome particle.35
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