DNA in a liquid-crystalline environment: Tight bends, rings, supercoils
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The entropy of tightly bent DNA is investigated in a variety of problems: closure probabilities,
hairpin formation, nicked coils, plectonemic supercoiling, all in states with liquid-crystalline order.
A new semiclassical method is presented for deriving the Green function of a tightly curved
wormlike chain. Precise estimates for the entropy arising from undulations are given for tightly bent
DNA in weak, intermediate, and strong nematic fields. A formal statistical mechanical analysis is
outlined for hairpins and supercoils. The elongation of closed DNA without twist is computed in
strong nematic fields. A scaling theory is given for a liquid crystal of untwisted DNA rings in which
nematic order and ring elongation are self-consistently coupled. The elongation of plectonemic
supercoils is evaluated for weak and strong nematic fields. The pitch of a cholesteric phase of
plectonemic or loose supercoils is shown to be directly related to their writhel99% American
Institute of Physicg.S0021-960806)50527-1

I. INTRODUCTION Section V describes the elongation and rippling of a small
DNA ring in a nematic field. In Sec. VI a suspension of such
Tight curves of double-stranded DNA are found fre- rings without twist is considered; the nematic field is induced
quently in a wide variety of circumstances: in nucleosomesby the excluded-volume effect between the rings. In Sec.
in adsorbed states, when supercoiled, and in confined isotr&/ll, twist is taken into account by studying the extension and
pic, cholesteric, and hexagonal phases. The orientationglossible rippling of a plectonemic supercoil in a nematic.
fluctuations of an unconstrained section of DNA viewed as &Recent experimerntson plasmid DNA within bacterial cells
wormlike chain, are distributed as a GausSihut the statis-  allude to an intriguing relation between DNA topology and
tical mechanics of tightly bent DNA is a far less trivial prob- cholesteric order. This connection is understood by express-
lem. A classic example of the latter is supercoiled DNAing the cholesteric pitch in terms of the writhe in a liquid-
which has routinely been studied by neglecting the entropygrystalline suspension packed with DNA supercoils.
altogethe™* Often, this may be a very good approxima-
tion. Still, in certain experiments, the undulations of the
DNA helix within supercoils do play a significant rote:°
Theoretical approaches accounting for undulations include
simulations?2"  analytical work’®®3* and scaling Il ENTROPY OF A TIGHT BEND IN THE ISOTROPIC
analyses>3% STATE
The problem of entropy becomes more acute if the DNA ] ) . ) .
is confined in an ordered state. The slight bending of a semi-  1he configuration of a simple wormlike chain of contour
flexible chain in nematf=%° and hexagonal phasd4? is lengthl is desprlbed by the u.nlt vectar(s) tangent to the
fairly well understood. The deflection lendfgoverned by ~ curve, wheres is the contour distance from one effdg. 1).
nematic order, chain elasticity, and entropy, is independerif? OUr Cartesian coordinate system,y,2), it is given in
of the deformation in this case. The opposite regime of tighferms of the polar angle&(s) and ¢(s)
bending is our interest here. Recently, the occurrence of tight
curves like hairpins has been convincingly demonstrated imi(s)=[sin 6(s)cos ¢(s), sin #(s)sin ¢(s), cosd(s)].
thermotropic polyester¥ There is now a body of theoretical (2.9
literature on hairpins, with and without the effects of
entropy?*>~>*Nevertheless, there is still a need for semiquan-The bending energy is a Hookean F§w
titative insight into the role of entropy in these and analogous
types of problems. | du\?
The object of this paper is twofold: On the one hand, to  U,= %PkBTJ ds( —) , (2.2
compute the entropy of one tight bend of DNA in an orien- o \ds
tationally ordered field in a fairly rigorous fashi¢8ec. Il));
on the other, to attempt to understand on a qualitative levelwhere a bending force constant is the product of the persis-
complicated problems involving tightly curved sections oftence lengttP and the temperaturE (kg=Boltzmann’s con-
DNA under nematic stress which may be caused by the DNAstan}. The statistical mechanical quantity of interest is the
itself (Secs. V to VII). Section IV outlines several qualita- partition function® G with both ends of the chain fixed at
tive considerations employed in the latter class of problemss=0 ands=I
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FIG. 1. One configuration of a tightly bent wormlike chain.
FIG. 2. The contouC, (z=x+iy).

u(l)=u
G(u,l ;uO,0)=J ZLu(s)18(u?(s)— 1)
HO=to Berry and Mount’ advocate the use of the following Poisson
xexp(—Up/kgT), (2.3  summation formula since it automatically accounts for the

which is the solution & Langer modification:

o0

G 1 e [ o
== 55 A,G=48(1) 8(u-up) (2.9 2 um= 2> e fo dn un—$e> M. (2.6
with A, the Laplacian on the unit sphere, so tiatis a  Here, the winding numbeM is the number of times the
Green function. classical path encircles the origin. In our case, wefisel

We would like to evaluatés for tight bends [=I1/2P ~ formally. In order to evaluate the semiclassical limit, one
<1). One option is to compute E(R.3) in the semiclassical approximates the eigenfunction within the forgn) by its
limit but how does one deal with the nontrivial functional asymptotic representation at large(i.e., in the modified
integral (2.3)? (See below. Another is to manipulate the so- WKB approximation. Wild oscillations are circumvented by
lution to Eg.(2.4) which is a bilinear expansion in terms of using the theory of functions of a complex variable. For in-
the Legendre polynomial®,(cosé). For instance, for a stance, in an intermediate regime for the problem at hand we
worm starting in thez direction we have? have’

G(ei@lllouoaq 2 1/2 T
Pn—(12(cos 0)= nsiné co nB—Z

1 c —n(n+1)L
-0 ngo (2n+1)P,(1)P,(cos f)e . (25

(n"l=p=m-n"?). @7
In the classical limitP—o or L—0 formally; hence, in the Here focus is on the cadd =0, so that
semiclassical limitFig. 1), we would like to sum the terms -
in Eq. (2.5 since the exponential decays only when ~__ 1 e(1/4)Lfoodn nt/2a—n%L
n’L=c7(1) at least. But a naive summation is analytically 473 sin 6 0
useless folP,(cosé) is a rapidly oscillating function ofi. .
X (cosn@+sinnd). (2.8

Experience with this type of summation has arisen from
semiclassical computations in quantum mechanics. A quan- |n order to integrate Eq2.8), consider the contour in-
tum particle scattered in a tight orbit is analogous to a tightlytergall, , in the complex plane
bent chain undergoing thermal undulations; the limit

Planck’s constant—0 in the former is similar to the limit | = jg dz A%ef@ 2.9
P— o in the latter. Berry and Mount have elegantly summa- e ' '
rized the complex history of semiclassical mechanics as de-

veloped by many theoreticians of repdfdn particular, the f1(2)=—LZ*+ 6zi

usual WKB approximation is often deficient because it is not 62 6i \ 2

always uniformly valid. It is rendered uniformly so with the =——— L( z— —) (2.10
help of the Langer modificatiotf,in which the angular quan- 4L 2L

tum number—in the quantum literature—is replaced by~ The integrand is analytic within the area enclosed by the
7 (in our case this number is denoted by Moreover, the rectangular contou€; (see Fig. 2 An asymptotic analysis
modified WKB approximation is also more accurate t0of |, on the upper contour is possible féf=L asR;—
higher order in most problems. This is especially importantand L— 0. With the help of Cauchy’s theorem, the leading
in our computations of the entropy of tight ber{dlse bend-  term for the partition function becomes

ing energy is of7(L 1) but it turns out that the entropy is of " 5

(L), i.e., a second order term, in the argument of exponen- G(0)~i (L) L-1 exp( _ 9_+ 1 L) 2.11)

tial terms contained in the probability functigngn the end, 47 \sin 6 o 4 ) ’
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As L—0 and#?=L, this joins smoothly to the usual Gauss-
ian distribution®® Moreover, as we approach its outer edge
of validity (§— m—LY?% |z|=(L"1), recall that the domi-
nant region in Eq(2.8) is 0<n=<L 2, we regain, to order
unity, an analytical result due to Shimada and Yamakawa

2

1 ™ 1
G(m)= 7 2L 802 exr{ ——+-1L

Tl (2.12

They also computed various ring-closure probabilities simi-
lar in form to this expression by a discrete summation of
functional integrals like Eq(2.3) around the classical paths.
Considerable effort has been devoted to developing semi-
classical approximations to Feynman path integtsé=, for
instance, Refs. 57, 60—BZutzwiller has tried to build such
approximations from ideas imbedded in classical mechanics. FIG. 3. A tight wormlike ring has a fuzzy diametr.
Here, the calculation of the classical path is circumvented
altogether which may be advantageous for wormlike chains.
Next, we analyze the properties of the tightly bent worm 2

described by Eq(2.11). The free energy of the orientation- 2\ &_ I_

: - (APy= == ——. (2.18
ally constrained bend may be written as IP 6P

F(0)/kgT=—In G(6) The curvature and the radius of curvature are weighted dif-
02p oml | 1 sine ferently so one expects a circular wormlike ring to shrink
= 7+ In B " 8p + > In 5 (2.13  when the undulations are switched ¢R)=R.(1— (A 6%)).

The ring has a fuzzy diamet@& =R (A 6?)'? (see Fig. 3
Equation(2.3) yields the average bending energy

R
(Us()) _ 71 G(6) (A02>:F°, (2.19
keT JP
6°P | D=R¥?p-12 (2.20
= 7— 1+ 8_P (2.19

o which disagrees with Ref. 35 for obvious reasons, but agrees

so that the entropy is given by with analytical work by Shimada and Yamakawaand

| 1 P Monte Carlo simulations by Camacho, Fisher, and Sitfgh.

kg 'S(9)=In et s In Sno (2.15  The latter authors assumed that tight bending might not in-

terfere too much with chain undulations and they went on to
Hence, the entropy is only a weak function of the angularderive Eq.(2.20 using fluctuation theory.

restriction 6 and very close to the value it would have if it ~ Another heuristic way of understanding Hg.19) is by
were in the Gaussian limit, which is strictly valid fekc1. ~ supposing the undulations are caused by a tenkiomithin
Physically, Eq(2.15 implies undulations are virtually unaf- the ring. This ought to be related to the classical bending
fected by the degree of curvature, at least in this orientationenergyU,=KkgTIP/2RZ=27*PkgT/| by

ally constrained problem. Tight bending does not freeze out

undulations in contradiction with my earlier clafin.lt is fo %_2 2 TP|-2 (221
also illuminating to inspect the average curvat(oeits mo- SR TR ' ’
mentg
2(U(6)) But there are fluctuations e>_<pr_essed by the _angle
(R = ATRRT AO=(A0,(s),A0,(s)), where the indices denote directions
IPkgT orthogonal to the local tangents). Neglecting curvature as
, 2 1 argued above, we may write for the Hamiltonian
=R~ =+ —=7, (2.16
IP 4P I dA 6;\2 [dA 6,)\?
whereR is the radius of curvature of the bend aRd is its H= 2 PkBTJOdS[( ds ) +( ds )

value in the classical limit P—«). Upon introducing an

angular fluctuation s ch ds(A 2+ A 62), (2.22
(RTAHV2=R (1+(A %)) (2.17) 0
we get utilizing an expression for the effective length
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[
—
|eff:f dS(CO$A0|> UO —
° n
=1(1- 3 (A6 — 3 (AG3)). (2.23 0O - >
Equation(2.22 is a quantum harmonic oscillator which is
easily solved for long chaifi§by assuming the fluctuations
are Gaussian
[27)) 1 2 S
g 5 exp— 5 agA O (ag>1). (2.249
——
The total free energy beconfés U(S)
lagkgT fl

which upon minimization gives

ag=2(Pf./kgT)¥? (2.26

AG?)= 2 _ 2.2 g

(A6%)= @y 2P (2.27 u
The latter equation shows that end effects may be safely FIG. 4. A tight bend in a nematic
neglected® The deflection lengffi is o '

N=Plag=I. (2.28
Equation(2.28 means the ring is deforminglobally under I'=%a2 (3.6)

the influence of thermal excitations. Hence, there are large _ _
fluctuations in the curvature. The assumption of a more or ~Adding Eq.(3.1) to the bending energjEqg. (2.2] and
less constant curvature implicit in Ref. 35 is erroneous.  €xpanding the new partition functidieq. (2.3)], we get

G 1 1
l1l. TIGHT BEND IN A NEMATIC =~ 2p ZéCt 55 VG= o(1)é(cos ), 3.7
Next we investigate how the entropy of a tight con-
strained bend is affected when it is put in a nematic liquid o, _ 1 9 (sin P i) 3.9
crystal (Fig. 4). If we assume the nematic itself is unper- 0 sing g6 a0)" '

turbed by the chain, which is not entirely trtf>* we may

write for the nematic potential exerted on the chain The Green functiorG may be expanded in terms of ortho-

normal eigenfunctions,,

kgT [!
Unlu(s)]= 55 f ds Mn-u(s)),
’ 2P Jo G(6,1;00=2 ¢ (1)gn(cos e &, (3.9
n
V(cos 6)=V(—cosb), @D
where the director has been chosen to point inztdrec-
tion. The functionV is dimensionless and depends on the  — #,o +V(cos 6)¢,=E, ¢, . (3.10
nematic order of the solvent. A very convenient choice de-
pending on one parameter onlys

where the eigenvalues have to be determined from

A. Semiclassical limit for weak and intermediate
V=T sir? 6. (3.2 fields

At low T, this is basicallyP,(cosé) whereas at high", V According to the prescription of Sec. Il, we first need an
behaves essentially like a harmonic forfg? owing to  appropriate asymptotic formula for the eigenfunctian but
Boltzmann weighting. In the latter case, the orientational disalso a sufficiently accurate estimate f,. These can be
tribution will simplify to a Gaussiaft® the order parameter computed in the WKB approximation provided one uses a

S, is simply connected to the coupling paramdier Langer modificatior?® The reasoning used here is similar in
spirit to that adopted by Landau and Lifshitz in their semi-
g~-—exp——af?® (a>1;0<6<3im), (3.3  classical evaluation of the Legendre polynomidi€ne first
4m 2 introducesy,= ¢, sin“? ¢ into Eq. (3.10
9(0)=g(m—0) (6%)~2a"%, (3.4 . 1
S,=(P,(cos 6))~1—3a~ 1, 3.5 a2 T\ Bt gt aeiw g V)xn=0 (313
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In the semiclassical limitL is very small so at fixed con- The accuracy of Eq3.21) can be gauged by comparing it, at
straints we first focus on the regime with’E,>1 and small q, with standard perturbation theSfyto order I

(m— 6)%E,>1. Herein, Eq(3.11) is approximated by (Hamiltonian.72=.72y+V; o=—%)
X0 — E,=EQ+1r
- _ — n 24
57+ (Ea=V)xe=0, (312 (3.29

— n=0,1,2, ... (current WKB),
where we introduce a Langer modificattér® E,=E, +a,

with a; a constant supposedly independentotJpon intro- 0, 1 r
H 3 11l E = E + —F I S
ducing the “momentum NN 2 2(4n%+4n-3)

—(E. —\)Y 3.2
p:(En V)2 (3.13 n=0,1,2, ... (perturbation theory (3:24
with E!‘>V. fcilr all angles, we may now write a WKB where the following relation has been employéd:
approximatiofi* for y,, or ¢,
c, ) fl dx P P2(x) = 2n(n+1)
on= m)sin Jode p(6)+C, |, (3.14 I PP = S o T Ty 2n—3)
(3.29

whereC,; andC, are constants independent\df Actually,
this expression turns out to be uniformly valid right down to
small 6. For smallg, the eigenvalue equatiai3.10 may be

The present WKB theory is very good even foas low as 2.
There should be no problem in the semiclassical limit

(n>1).
exprezssed as The free energy of a semicircular bend is now evaluated
dc¢, 1ldg, (#=r). An analysis of Eqs(3.9) and (3.14 shows that we
362 T30 T(Entaden=0, (319 need to consider
where, again, we introduce a Langer modificafidithe so- ~
lution to this is a Bessel functiod, of order zero whose G(,1;0,0~ Z n(—1)"e &t (3.29
behavior at largeE2/26 is given by n=o
2 1 At this stage, it is expedient to introduce the functiéf(q),
on~Csl —| sin(E,+tay)Y20+ = = (3.1  Which has the following properties:
mno 4 () #M@)=#(q) for g=c,q, Wwith 2c,q,<1;
with C5 a constant. q; =(I'L% andc,=(5) say.
Equations(3.14 and (3.16 overlap provideda;=a, (i) #*(q) tends to the limit#(2c,q,) for c,0,<q
andc,= im. <o; #M(q) is continuous and continuously differentiable.

Next, symmetry arguments establish the eigenvalues: (i) #*(2) LS analytic in the entire complex plane.
Those pertinent to the symmetric eigenfunctions  Note thatZ™ may be useful even for intermediate nem-

(en(0)= @, (7— 6)) obey atic fields, forl’ may be greater than unity &sbecomes very
small. SinceE,, is typically (L1, Eq. (3.26 may be ap-
deapm:(n%—%)ﬂ- (3.17)  Proximated by
0
with n even, while an identical relation with odd holds for G=i f dn né™LEL (3.27
antisymmetric eigenstatesp{(0)=— ¢,(7— 6)). Finally, 0
for ideal chains ¥=0), one has where a Langer modification has been accounted forthd

is given by Eq.(3.21), but with #* instead of. Therefore,
we next focus on the contour integtalin the complex plane
E®=n(n+1) (3.19  whereC, is the same contour introduced in Sec. Il, although
the origin need not be exclud€dee Fig. 2

Z4Pn(cos§)=—EPP, (cosb), (3.18

which fixes the constard; = 7.

Let us now compute the entropy of a tight wormlike _ 2
bend in a nematic potential given by E.2) which is suf- 1= 61dz zd2(2) (3.28
ficiently general for our purposes. Then, the eigenvalue rela-
tion [Eq. (3.17)] is given in terms of a complete elliptic fo(2)=mzi—EA(2)L, (3.29
integraf® of the second kind with modulus

a2 (EA2)+ D22 () =37z, (3.30
Zw)=|  de(1—w? sir? §)12, 3.2
W) fo (1=w*sim 6) (3:20 R=TI(EA2)+3). (3.3
(E,+ HY27(q)=(3n+ Y7 (3.21) Note that#” is a very slowly varying function of so that
A ' terms of higher order than the second are minute in the semi-
q’=T/(E,+3). (3.22  classical limit.
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fa(2)=3L—27(do) #(Qo)L ™1+ 72 (gg)L ™+

— 3 E"(zo)L(z—29)%+ - . (3.32
Here,z, is purely imaginary
2.7(do) #(do)i
9= 90 LG0T 333

2 is the complete elliptic integral of the first kifit

/2
(W)= f do(1—w? sir? 6) 12 (3.39
0
0o is a function only of the group'L?
, LT (3.39
o= T%(do) '

L ) . FIG. 5. A tight bend is partly rippled in a strong nematic field.
and both elliptic integrals have been continued analytically.

Hence, the free energy of the tight bend becomes
F/kgT=4.2(qo) #(do) P~ 1—2.%2%(qo)PI "1 —1/8P.

(3.39

From the definition of the partition function, we finally get

0 1
j0d0p+zﬂ

1/2H
\I,n: ( F]Q—) sin

— 3.3
the entropy (0o<6<01;E,>V), (339
_PoF F Ikg (3.3 H 0
TPl ooy T 4P ' ‘I’n:(m) exp- le0|p|

i i — 3.3
The entropy has thus been computed without solving the (6y< 6<7— 0, E.<V), (3.39
Euler—Lagrange equation for the path of minimum energy.
To conclude, the entropy is not influenced by the nematic H 0, L 0
field [or very weakly since several very small higher order \Pn:(ZTZPT?) ex;{ - L dé|p|+ i+ L d9p}
terms have been deleted; the first term of &j15) is absent ! 2 (3.40

because nonexponential prefactors have been disregarded (g,<g<7— ao:E_n>V),

abovd. ) o )
whereH is a normalization constant. These expressions do

not represent a solution as such, fBr, does not have the
requisite symmetry. Because the potential barrier is equiva-
lent to two symmetric wells, the eigenfunctions must be

The analysis of the previous section breaks down as th&ymmetric and antisymmetfit
i -2 i 2_ 7 i —_
coupllng constant’ reachgsi_ . 12'he regimel'L“=(1) is X3(6)=2 Y2y (6)+W (7 6))
complicated but strong fieldd'(“>1) can be handled by

B. Strong fields

WKB methods again. There now exists a range of angles for n=0,24, ... . (3.41
which E,<V. In the quantum analogy this is called AS) a —1/2

tunneling* because a particle does not have enough energy Xn (0)=2""A(Wn(0) = Wn(m—0))

to surmount the barrier in the sense of classical mechanics, (3.42

n=135, ... .
although quantum-mechanically the probability of doing so

is nonzero. Warneet al. have already discussed the nematic The splitting* of the respective eigenvalues is exponentially
hairpin as a barrier problem in the WKB approximation atsmall forI’>1 causing the spectrum to be almost degenerate
some lengti! The problem is reanalyzed for a finite bend so AS =S L o

as to stress several features pertinent here. En - En=4V,(zm) ¥ (37)

If the bend is less than a persistence length ldrgK)
the nematic coupling parametErwill be much greater than
unity. Equation(3.12 is now valid for alln including the
ground statey=0, providedé> 6, [ 6,=(I'Y]. The turning  The Green functiofEq. (3.9)] in the WKB approximation is
points 8, and 6,=7— 6, are defined by setting the momen- real.
tum[Eq. (3.13] equal to zero. We next solve E@.12 in a Let us focus on a tight bend with one end parallel to the
WKB approximation. A possible solution can be written asnematic director which is pointing in tredirection, and the
three smoothly matching approximations in three respectivether end fixed at orientatioéi with 6,<6<#6, (Fig. 5). For
regime§* I'>1, the eigenvalues can be established in the WKB ap-

[
= const: exp— f02d6|p|. (3.43
1
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— adopted which is probably often a rather severe constraint
n when applied to concentrated solutions of DREA®®Here, a
2 —~ theory for general self-consistent fields is presented which is
—— much less restrictive.

A test chain of extremely long contour lengitrhas an
orientational distributiorf (u) defined with respect to the di-
2R rector, the average direction of all the wormlike chains. The
director is assumed to be uniform and fixed in space irethe
" direction; in a nematic staté(u)=f(u-n)=f(7)=Ff(—17)
i o with u written in the form of Eq(2.1) andr=cos#. The free
energy of orientational confinement of the test chaff is

FIG. 6. A hairpin of radiusR. |kBT

Fo=—>p J duf?A, 12 (3.47

proximation by the Bohr—Sommerfeld conditi&hpertain-  The chains interact with each other in a way we need not
ing to a one dimensional well in the classically allowed re-know for the purposes of this section.fifu) may indeed be

gime 0<60<6,, viewed as a correct “order parameter,” thextensive free
6, energy of interaction may be expressed in general as a func-
f dop=(m+3) . (3.44 tional expansion
0
The casen=0 corresponds to the states-0 andn=1, the Fim=|— > f du, du,---du,
casem=1 ton=2 andn=3, and so forth. In the limit of P n=2

1 —_ 1/2
ts(:rong fields, we havé,=(E,/I")*“ and Eq.(3.44) reduces XK y(Up Uz, U F(UD) F(Uy) - F(Un). (3.48
To begin with, the reference state is isotropfe=(1/47). A
Eq=(4m+2)I""% (345 term of first order is absent becauseg is a constant and the

Accordingly, in the Green function only the two lowest distribution is normalized to unity. The first term in Eq.
states dominate in view of the conditiBiL?>1. Hence, the (3.48 is a second virial term. In general, however, 249
free energy associated with the two Boltzmann factors is need not be identified with a full virial series. The kerni€|s

p o are intensive variables signifying the complex interactions

FlkgT=2TY2_+ [ do(T sir? 6—Ey)Y2 (3.49  among the chains.

01 In order to compute the global persistence length, the
In the limit of strong nematic fields, Eq3.6) holds. There- testchain is hypothetically strained in an external field of the
fore, the first term in Eq(3.46) is precisely the free energy diPole type® The total free energy becomes
of a chain of length in a Gaussian nematic field, the chain lhkgT
being rippled on the scale of a deflection lenjtthe con- Fiod f(U)]=F o+ Fini— 5 j du 7f(u) (3.49
tour length of this section is almostsince the unrippled
bend (6> 6,) is very short(Fig. 5. This is a result of the with h a coupling constant. When we minimize the total free
requirement’L?>1 employed in the WKB approximation. energy with respect té(u), bearing in mind the normaliza-
The energy of the unrippled curve is given by the secondion of the latter, we obtain an integrodifferential equation
term in Eqg.(3.46), which is that of the classical path frotlh  which is self-consistent and nonlinear
to 6. It scales a2 implying that the radius of curvature of »
Fhistt;end 15,521“’1’2. The crossover between the two regimes — Lfol2p fY—po E du,dus:--du,(n+1)
is at 6;=a '~ n=1

XKn+1(U1,U2,...,Un vu)f(ul)

The entropy can be incorporated exactly in a self- X T(Ug), o F(Un) 07 (350
consistent field theory of hairpin formation for infinitely long Here,E is an eigenvalue. Without the external fieki<0),
chains(Fig. 6. We must be prepared to neglect long-rangewe insist that Eq(3.50 describes a nematic state. Various
perturbations in the director fieltfs>*in this type of approxi- symmetry relations are thus required for the kerrilsand
mation. Khokhlov and Semen®¥ first proposed a self- may easily be derived. Our model obviously does not ac-
consistent field theory for hairpins arising in a nematic ofcount for the chirality of the DNA helix; the cholesteric pitch
hard cylindrical wormlike chains. Their theory was reana-is assumed to be large enough. The global persistence length
lyzed by Vroege and Odiff who gave an exact expression P4 is now derived with the help of a linear response faw
for the global persistence length—a measure of the typical 1«
distance between hairpins—in terms of the orientational dis- Py=5 P—— .
tribution. In both works, the second virial approximation is 2 dh h=0

C. Self-consistent field theory of hairpins

(3.5)
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Hence, we assume a regular perturbation solution for Eqdimensional flexible coil wound several times around a
(3.50 exists for smalh. As h—0, the distribution is written  point.”?> The problem is equivalent to the path integral of a
ag® charged quantum particle moving in a magnetic fiéldtWe
F12_ §124 oy pre;ent a fqrmal analysis for supercoiled DNA similar to the
0 L flexible-chain problem of Edwards.
Vi (r)=—W,(—1) (3.52 It is expedient to write the writhe Wr in a form advo-

. . _ cated by le Brét
and so acquires a small antisymmetric component. Fomany

we have (', [de
Wr=—(2) f ds ds cos 6+ Wr,, (3.57
0
fdul duy---duyK; 4 1(Ug,Up, ... Up L)
where the unit vectou(s) is defined by Eq(2.1) and W, is
X fo(ul)fo(uz)...fo(un_l)fé/z(un)\lfl(un):0 (3.53 the dlreqtlpnal erthln_g number in fchedwectlo_n. For a tight
i . ) ) _ supercoil in the semiclassical limit, undulations away from
for the integrand is antisymmetric under the transformationne classical or purely mechanical configuration are small,
(6n,¢n)— (7= 6h, 7+ ¢y). In effect, besides referring 10 a provided the latter is stable. Then, s constant and fluc-
nematic state, is expected to be a complicated function of yations may be accounted for with the help of the integral in
sin 8|, where g, is the angle between an infinitesimal seg- Eq. (3.57.%° Following Edwards’ recip® we try to find a

caveat, further analysis of E8.50 proceeds exactly along [gq, (2.1)],

the lines of Vroege and Odiff to which the reader is re-

ferred. The global persistence length is given by A=A(u)=(2m)~*(—cotg 6 sin ¢,cotg # cos¢,0) (3.58
1 [Jrdry 2rfo(m)]? so that the writhe may be viewed as the “magnetic”
PQZZWPJ dry ——— , (3.54 interactiori®>"*of a “charged particle” with “velocity” du/
0 (1=m35)fo(72) ds,
which reduces to | du
P (l-e 1 AWr=Wr—Wr,=— | dsA- Js (3.59
Py~ — f dr ———— (3.59 0 S
9 27 Jo (1=7)fo(7)

Hence, the pertinent partition function of the constrained

for highly oriented nematicgThe upper limit circumvents a semiflexible chain in a nematic field may be expressed by
divergence; deletion of a subdominant term is implidd

the Gaussian approximatigfq. (3.3)], this become® G(Wr;u,l;up,0)
wPe* uh=u 5
Py~ . (3.56 =f lu(s)]6(u(s)—1)
2a u(0)=ug

Here, the parametex has to be deduced from experiment,

for instance by measuring the usual order parameter X 6
(a=3/(1-S,)). The free energy of a hairpin is essentially

akgT to logarithmic order. The hairpin energy for the poten- 1 (= ,
tial at high ordefEq. (3.2)], in the classical limit, was com- =5 | du eHAWiG (3.60
puted by de Genné$, and Williams and Warné¥ In the o

Gaussian limit, it becomes identical with a highly orderedwith

self-consistent potential and equal d&gT. Hence, the en-

I du
AWr+ f dsA-d—S) exp— (U, + U )/kgT
0

A u(l)y=u .
tropy of a hairpin bend must be very small. G,= f Su(s)]8(u%(s)—1)
u :UO
D. Statistical mechanics of a tight supercoil in a 1 I du\2 1 !
nematic X ex 3 P 0ds sl " 2p 0V(n-u(s))

The twist and writhe of a DNA supercoil are connected | d
by White’s relatior®®” For a helical wormlike chain which +iw | ds A
is closed and unknotted, the torsional degrees of freedom in 0 ds
the partition function can be integrated out. The statisticall.
analysis boils down to a consideration of a simple untwistec{
wormlike chain at a given writh& a problem with a topo-

: (3.61)

his functional integral is now rewritten as the solution to
he following differential equatio’*

logical constraint. For flexible polymers, the statistical me-[ 9 1 [ 9 2 1
chanics of a topologically restricted chain was initiated three 5|~ 5p @"MA(U) top V() |G,
decades agl"* Edwards later presented a convenient func- (3.62

tional representation for the partition function of a two- =5(1)S(u—up).

J. Chem. Phys., Vol. 105, No. 3, 15 July 1996

Downloaded-31-Jul-2007-t0-130.161.132.53.=Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



1278 Theo Odijk: DNA in a liquid-crystalline environment

Using the fact thatA is divergence-free, we express this An attempt is made to understand a variety of compli-

equation in terms of the polar angles cated problems qualitatively by applying E¢4.1)—(4.5) in
g 1 1 9 i cos6)? . Secs. V to VIII.
— ,‘/;9+T —— ———| —I'sirf 6||G,
g 2P sSin® 0 \de 27 V. RING OF UNTWISTED DNA IN A NEMATIC
3.6
=6(1)6(cos 6—cos p) 5(¢— ¢p). (3.63 A. Closure of an unrippled ring

The partition function at constant writhe has been reduced to Disregarding entropic fluctuations, Williams and
a form amenable to explicit analysis by the semiclassicaHalperin® have discussed the cyclization of wormlike chains
method outlined in Sec. Ill B. Such a computation is obvi-in nematic solvents. In another direction, Shimada and Ya-
ously complicated; moreover, it is not easy to see how variimakawa gave a quantitative description of ring formation for
ous terms have to be balanced in an approximation schemBNA with and without twist in the isotropic staté.Their
Equation(3.63 is left for now and supercoiling in a nematic theory is of considerable use in interpreting the closure of
field is addressed qualitatively in Sec. VII. DNA.’®"7 The analysis of Sec. Ill A provides a means for a
simple interpolation between these two theories, at least for
ring closure without twist.

The closure probability proposed has the form

J.=28L %7, (5.1

IV. QUALITATIVE CONCLUSIONS

The conclusions of the preceding analyses are summa-
rized in a qualitative scheme. F=TL 1= +3IL. (5.2

(1) A tight semicircular or circular bend with initial |, a1, isotropic solventi'=0), these two expressions are sim-
typical radius of curvaturd}, placed in a nematic field of ply Eq. (75 of Ref. 29: The first term in Eq(5.2) is a

strengzjthl“, retains its integrity and does not ripple when ponqing energy; the second is an extensive entropic term
I'=sP“/Ry. This criterion holds irrespective of the orienta- physically similar to the one computed in Sec. II, which

tion of the plane of the bend with respect to the director. Thejescribes the undulatory softening of the chain. When the
singular case of a bend perpendicular to the director or nearly, natic field is switched of’>0), the entropic term re-

so, will be disregarded. _mains unaltered as argued in Sec. Ill A. The additional nem-
Undulations soften the loop. The free energy of entropiCyjic energy is estimated assuming the closed chain is basi-

ongin cally a circle. Thus the numerical coefficients of the first and
| third terms are not precise for genefabut the scaling struc-
Fentr=— P (4. ture of Eq.(5.2) is correct below the transition to a rippled
state {L?<1).
associated with this softening (g extensive or proportional The maximum probability of ring closure occurs when

to the contour length of the bendb) independent of the 5-[25- 141-T)]2

nematic field. The orientational fluctuations expressing de- Ly (5.3
viations from the classical path at positiongndt are well (1-I)
described by a Gaussian with second moment In an isotropic solvent.,=1.7 as found by Shimada and
2|s—t| Yamakawa® Note thatl ,, is quite insensitive to the nematic
(AG?y=——— (4.2  field for '=(1), an effect arising from the entropy. In the

P regime 1<I'<L "2 for L<1, entropy is unimportant and we

provideds andt are both not too close to the constrained regain the analysis by Williams and Halpefihin that case,

ends. the optimal radiuRR,,= 7 'PL,, is given by
(2) In the regimel’=P?/R,, the bend tightensR<R,) PP
and the rest of the chain is rippled on a characteristic length R =~ —Ip=—. (5.9
A=P/a. The resulting radius of curvatuf® may be esti- I @
mated from either of three equivalent statements. Hence,7 is essentiallW(Fllz). The prefactor in Eq(5.1) is
(i) The relevant dimensionless group must be of ordefelated to the decrease in orientational and translational en-
unity tropy involved in forcing two DNA ends to meet. This
I'R%/P2=1. 4.3 should depend o', but anyI" dependence is reduced to
minor logarithmic significance for>1. Equationg5.1) and
(i) There is only one relevant scale in the complete(5.2) are semiquantitatively correct in the entire unrippled
problenf?® regime L<4TL%<1).
N=Pla=R. (4.9

B. Ring in a strong nematic field
(i) The orientational fluctuations within the tight bend

must match with those in the rippled sections In Sec. Il B, we saw that the arm or two arms of a tight

bend will ripple at sufficiently high fields. A closed circle of
(A O3(7R)Ypend=(Phip=a . (4.5  untwisted DNA ought to look like the elongated ring in Fig.
J. Chem. Phys., Vol. 105, No. 3, 15 July 1996
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— %

N \f/vt,\
=57

FIG. 8. Congested nematic rings forming a nematic state.

: a—’/z
81/2P
R=

a

2R

2R

(5.11

FIG. 7. An elongated ring in a strong nematic field.

in agreement with Ref. 75. The latter equation bears a formal
similarity to Eq.(5.4) in view of the unimportance of entropy

7 in this case. The two tightly bent sections are approximateP" 1ing closure at high fields. The free energy of the elon-
by semicircles of radius of curvatur@. The two rippled 9ated ring attains the form

sections have a total length=1—27R wherel is the con- a

tour length of the entire DNA chain which may be as long as ~ Ftot/KsT~ ﬁ"‘z_l/zm! (5.12
one wishes but for the formation of hairpiffsThe total free

energy of the chain consists of the following contributions. at very high field{a=20, «I>P). In practice, there remains

(@) The two semicircles have a nematic energy a substantial end correction arising from the two end hair-
pins.
FnlkgT=3 7TRP 1=} 7a’RP! (5.5
since in the npp“ng ||m|ﬂ“:%a/2 VI. NEMATIC OF UNTWISTED DNA RINGS
(b) They have a bending energy The preparation of nicked circular DNA or closed circu-
Fo/kgT=mPR L, (5.6) lar DNA without twist has become fairly routin.What

_ ) o happens if we pack untwisted DNA rings together in solu-
The entropy of Sec. Ill A is entirely negligible in the case tjon? A naive expectation would be to regard a ring as a disc,

when rippling occurgl>1; see below o more or less. The disk diameter would bB-2the ring ra-
(c) The free energy of the rippled sections is diusR is less tharP, say—and its diametet, the (effective
an/kBT:Fm’[/P digmgterog the DNA helix. We m!ght then formulate a
criteriorf®®L for the onset to a nematic state
= at/2P. (5.7 5
R,
See Sec. VIII of Ref. 43. Note that it consists of two edtial 2z ~L (6.1)

contributions, one coming from the orientational entropy and ) N )
the other from the interaction of the DNA with the nematic Wherev, is a critical DNA volume fraction. It can be argued

field. that this relation is probably valid despite the possibility of
The total free energy is the ringls deforming and rippling under _the .influence of the
topological excluded-volume effect, which in turn depends

Fiot/keT=(Fp+ Fn+Fyip)/kgT on the orientational order.

7P wa’R  al  waR ConsiderN rings of contour lengti and diameterd
=—t—F = —. (5.8  packed in an aqueous solution of volurrié The DNA vol-
R gp 2P P ume fraction isv = (7/4)ld>°N2"1. The nematic state is de-
The last term bearing a minus sign arises because the DNAned by the Gaussian parametefe>1) and a second varia-
has a finite size. The optimal radius of the semicircular sectional parametem is introduced,

tions is found by minimizing Eq(5.8) 27R
p 8 1/2 =T (6.2
=— —1) (5.9
a\l-8a for the rings possibly deforming under the nematic stress,

This makes sense only #>8, a condition stemming from into elongated rippled rings capped by approximately semi-

the finite length of the DNA. The chain is partly rippled only Circular ends of radiug (Fig. 8). The contour length is short
if >8 and if, in addition|>2R. For a<8, the chain is enough to neglect hairpin formatidh Now the rings cannot

simply a circle, to a first approximation, with sample tg%lcomplete configurationgl space in vievx_/ of their
) topology.® ' For instance, two test rings cannot be linked as

E kg TeR TP (5.10 N Fig. 9. In the isotropic state their topological excluded

tot" 7B 8P R’ ' volume scales aR®. For unelongated rings, this is modified
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I\ vn(1-b,n)?
3_| L
2a _<d) a7 (6.5
32 PZa'? — 2
= — iz + d v(1—4b,7n+3by7n7). (6.6)

We conclude the following from these expressions:
(i) The casdv/d=c(1). If we let| <2#P, then a solu-
tion v2v, [Eq. (6.1)] is feasible witha=7(1) and 7=3.
This is stretching the scaling analysis to its limit of validity.
FIG. 9. A forbidden state of linked rings. Accordingly, a naive disk picture seems not unreasonable at

these very low volume fractions & 10 %). But the rings are

probably not completely stiff, but rippled a bit in the nematic
in the nematic by a factorr '/ because the orientational Phase coexisting with the isotropic at the transition.
excluded volume scales, in the main, lijsin 4/, wherey is (i) The caselv/d>1. There appears to be a remote
the angle between the normals to the planes of the two ring®0ssibility of a solution to Egs.(6.5 and (6.6 with
We write the total free energy of a possible nematic in the?” —¢(lv/d) and »=3, say, depending on the exact value

second virial approximation as of b2_. However, the free energy of thi_s statg would be sub-
e 92 iniD stantially higher than that of the nematic defined by a second
E. kT = (I=27R+Db,R)“RN i (1—7)71°dN solution to these equations with<1, where the rings are
e 7 a*? 7al? markedly elongated
RZdN2 (1-»)IR dN?> (1—7p)laN
PRA +( 77? ‘ +( n)la . pPéd2  pAd*
7 a 7 P = TEr = e (6.7)
[®v |®v
PN
+ ? . (63) . PZU_ PSU

Here, most of the numerical coefficients have been deleted

and the meaning of the terms is as follows: : . .
g Note that in these expressions, topology, nematic order,

(1) The first is the topological excluded volume where bending, and orientational entropy are inextricably com-
the elongation of the rings is taken into accodtie coeffi bined. The result is that the nematic order increases fairly

cientb;<2m); (2) the second term represents the usual ex- . !
cIudedlvqume between rippled stranpds of length-G)! weakly with the DNA volume fraction, and never becomes

very high(a=<15).

(3) thg third term is the excluded volume between semi- Torbet and Di Capd have found that nicked circular
circles; (4) the fourth term signifies a cross interaction be-

tween the rippled strands and the semicircles; it is indeperﬁzgirggi)r:gl?rr_?hz lrli?1uIs_c(j:giitiilallln?)(j'é?)tr?]eaaw?r\leAel\g:::
dent of @ to a first approximation;(5) the fifth term . 9 y

represents the free energy of orientational confinement of thgtaa;[teedéthigr'g2§r£ehEXgAO%c;TCS%nfﬁzgn'bzherle'gﬂlri CtLyostjzl o
rippled strands{6) the sixth term is the bending energy of ppear: e 9 Y P P
. X ¢pmpare their “radius” with the theoretical onB= 7l/27,
the semicircles; the entropy of these may be safely neglecte . e
(Sec. IV) given by Eq.(6.7). Nevertheless, an identification of the ex-

Next, it is convenient to rewrite Eq6.3) in terms of a perimental Bragg spacirgs with R~v** is not devoid of

= , 7 interest: Torbet and Di Capua definitely rule dug~v 2
scaled volume fraction=Puv/d, a variable occurring in the . . ; . .
theory of lyotropic polymer liquid crystafs. V\{hlch would hold if the slengler DNA r|nqsl/2ad fixed dimen-
sions, but neither does their curiig;~v seem a con-
P Fiot B I\ 1 2 — 11 5 vincing fit to the data. A realistic exponent must lie in be-
NikgT \d)%¢ 7(1=bym) +va "H1-7) tween 3 and 3. Therefore, there is a bit of evidence, albeit
— 4o — - very tenuous, for the validity of the qualitative picture pre-
tva T nptton(l-n)+a(l-n)+PYl%y sented here. Note that even if the phase of Ref. 82 definitely
turns out to be hexagonal, this does not preclude the possible
va Y2p(1—-byn)?+a(l—5)+ P22y (6.4  and likely existence of nematicholesterig states.
Theoretically, there are several issues that should be in-
with a numerical coefficienb,<<1. At high salt, the aspect vestigated. A biaxial phase may be possible for intermedi-
ratio|/d is larger than about 30, at least in practiésp itis  ately elongated rings. The feasibility of a hexagonal phase
a good idea to delete the three ordinary excluded-volumeould be analyzed along the lines of recent thedtié3Fur-
terms as the topological term is dominant. Order and elonthermore, the long-range nematic interactiohetween the
gation are strongly coupled in E@6.4). The equilibrium  semicircular defects has been disregarded in the analysis
state is found by minimizingr,, with respect ton and c. above.
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- 27p, psl
¢ Wr= ———-. (7.5
. 2m(ri+pd)
C/\/_/\/ For convenience, both- and Wr are here taken to be posi-
tive.
re Inserting Eqs.(7.2), (7.4), and (7.5 into Eq. (7.1), we
- get the total energy for substantial superhelical pitch

(ps>rg), the case of interest if a nematic field is to exert

FIG. 10. Plectonemic supercoil in a nematic. S
some influence

Pr2 1 2
Ut/ 1k T=—S+—C(a) PR -

VII. PLECTONEMIC DNA IN A NEMATIC ORI 2(rz+pd2 27N (ri+pd)

A purely qualitative analysis will be given of the uncoil- Fr§ _ Pfg 1
ing of plectonemic DNA by a nematic field. In reality, the + 2P(r2+pd) 2—p§+§Ct(woa— Ps ™)
long-range electrostatic repulsion between DNA segments 5
couples strongly to entropy to give rise to undulation- N I'rg 76
enhanced forc&% [J. Ubbink and T. Odijk(manuscript in 2PpZ’ (7.6

preparatiol]. Marko and Siggi& recently balanced entropy L ) )
and repulsive forces in a theory of supercoils with and with-On MinimizingU o with respect t@s, we find that the bend-

out tension. Still, it is of methodological interest to study theind term is negligible in view oC;="(P). The elongation

case where the diameter of the plectoneme is assumed cof@Ctor is

strained by a solely electrostatic exclusibwithout electric Ps

twist.®> Moreover, there is some evidence that the superheli- —=(1+.7"), (7.7
cal diameter is more or less constant in certain regithé. s0

As seen in Sec. IlI D, a formal analysis of the entropy is  pso=1/wgo, (7.9
complicated, but it will be dealt with approximately, after an )

introduction of the case without undulations. = I'rs

. . 7.9
We neglect end effects and branching: the slender plec- - CP (7.9

tqpingc heI|_|>_<h|s supptt)_setd unlfo_rmtwnh a dlamr?tteg ?nd h The nematic coupling parameter” may be of order unity in
pitch 2ps. The nemalic torque IS strong enough to afign etypical circumstances(e.g., r;=0.2P=10 nm; wy=1.8
superhelical axis along the directar of the nematic field

—1. . . . 2
L ) : . nm - 0=0.1;C;=P=50 nm;a=10; I'=a/4=25). The pa-
gg;?r;xS‘:]r:t(i:gggisizé?\./e?by-rhe total energy in an elastic rametera has been measured recently in concentrated solu-

tions of linear DNA, a persistence length lor?§28 and
U/ IKeT= PR 2+1C,Q 2+ TP (1—(n-u)?). seems difficult to increase much beyorid10). At present,
(7.1)  the degree of orientational order in suspensions of plectone-
. . mic DNA is unknown®? On the whole, considerable nematic
Here, R is the radius pf curvature anidthe total contour unwinding (/' >1) may be rarén the classical limit
length of the DNA chain. The effect of undulations is now investigated qualita-
tively in the case of weak and intermediate nematic fields in
(7.20  the sense of Sec. Ill A. At small pitchp(<r), the plec-
Fs toneme is basically a stack of almost parallel rings. A wind

C, is a persistence length pertaining to twist and the locaPehaves typically like a fuzzy ring described in Sec. Il with a

: —R¥2p-12_ppr < .
excess twist is defined with respect to the intrinsic twggof ~ small fuzzy thickness R=R"*P""*<R;R=r;<P). En
undisturbed DNA. The total molecular twist tropy, then, is important in the opposite limip{>rs). In

particular, we require the supercoil to be well defined with

1 ! respect to the classical limit without undulations. The angle
w=s fods(“’OJrQ) (73 of the classical tangent vector with regard to thaxis is
aboutr /p. We insist that orientational fluctuations between
is connected with the writhe Wr and linking number Lk by adjacent winds be less than this number. These fluctuations
White’s relation Lk=Wr+Tw. In general, the backbone he- conform to a Gaussian layBec. V).
lix of supercoiled DNA is twisted at a specific linking

2 2
R P

2
differencé® o=(Lk—Lko)/Lko With Lko=lwg/2. Hence, (E) _ 2mPs. (7.10
the local excess twist is given by Ps P
QO =weo— 2l ~wr (7.4 This sets a fairly severe restriction on the valud'ofia Eq.

(7.7). Clearly, at a certaift, , Eqg.(7.6) may become dubious
for the supercoil may be assumed homogeneous, if end efn view of the neglect of undulations. In Sec. Il A, we con-
fects are neglected. For a left-handed helix, the writhé’is cluded that the entropy of a tight bendkigl /4P, an exten-
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2 Finally, Marko and Siggia have published certain conclu-
—_— sions concerning plectonemes and solenoids under
m tension®®®* a problem which is of course related to the one
C/\_/\"\/ discussed here. In their wofkthere may be a regime at low
n ionic strength where is constrained by strong electrostat-
- v a* ics, andpg is quite large, which apparently corresponds to
the classical limit discussed here. Without doubt, the prob-
FIG. 11. Rippled supercoil in a strong nematic field. lem of undulationgand the hexagonal phaseill have to be

reinvestigated within a more complete undulation thédry.

sive term, so it should apply to a long tight plectoneme as;;;; piTcH OF CHOLESTERIC SUPERCOILS
well (A supercoil will have a certain winding numbét in

Eq. (2.6). An exponential factor expL will again appear in A Tight supercoils

the Green function analogous to the one given by E). Tight plectonemic DNA forms a liquid crystal because
It is independent of the linking number and the nematic orthe superhelices are stiff. In a regime dominated by entropy,
der, provided the radius of curvature is small enoughthe superhelical persistence lendgty may be estimated by

(T'Y"R<P), a condition often less stringent than E@.10.  ysing the angular fluctuations of one witgke Secs. IV and
Hence, the invalidation of Eq7.10 signals a first possible v/))

breakdown of the classical limit with minor undulations. N
Next, we go to the opposite extreme: a supercoil must (A 0%~ 2m(rg+ps)

ripple if the nematic field is strong enoudRig. 11). From P @1
Sec. IV, we know the criterion for this to happen
p 2mPs 2psP 8.2
a= E: Prs (7.10 S (A0 (ri+pd)M '

R rZ+p? , -
The numerical coefficient 2 has been added si¢enust be

In this limit, orientational order competes only with entropy. twice the backbone persistence length for two chains at zero
Note that the end effect discussed in Sec. V does not applyrithe. Eq.(7.2) is definitely an underestimate judging from
here, since the plectomene is very long. As soon as the somputer simulatiori8 and experiment€?° on tightly inter-
percoil becomes tangibly elongated by nematic streldSg@s  wound DNA. This is not difficult to understand since the
(7.7], there is a chance that it starts to ripple. A completefluctuations are actually smaller than the ideal undulations
understanding of this process clearly requires a full quantitainherent in Eq.(8.1), in view of interchain repulsion within
tive analysis. Ultimately, the resulting rippled supercoil will the superhelix. Marko and Siggia have attempted to model
still possess a writhe and twist depending on the nematiehis effect by a harsh power Idfvand recently by electro-
order. statics without undulation enhanceméhiThe electrostatic

In summary, it may be possible to unwind a plectonemicrepulsion between DNA chains decays exponentially and ex-
supercoil in an intermediate nematic field, with the entropicerts a twist® we expect undulation enhancement of the kind
undulations playing only a minor role. At some stage, enformulated in Ref. 83 to occur within the superhelix, a topic
tropy does enter the picture and ultimately the DNA superwe are currently addressirid. Ubbink and T. OdijkKmanu-
coil should ripple at a certain level of the nematic order. Thescript in preparatio)].
calculations presented here, bear indirectly on the experi- In a liquid crystal of plectonemes, the DNA superhelices
ments by Torbet and Di Captfawho prepared liquid crys- may act like rod® or super-wormlike chairé depending on
tals from plectonemic plasmid DNAs. For concentrations upthe value of the deflection lendthy ;= P/ a; the value ofP
to 80 mg/ml, the supercoils seem to be arranged in hexagonahs to be estimated from simulation or experiment, for now.
fashion and the superhelical pitch appears to be independeNext, it is evidently feasible to set up conditions such that
of the DNA concentration. Setting,=8 nm3 C,=75 nm  the superhelical threads are neither perturbed nor rippled by
and P=50 nm, one would require a Gaussian parametethe nematic field, whatever its origin, at least to a first ap-
a=<5 from Eq.(7.9), were we to tentatively assign a nematic proximation[see Eq(7.9)]. This is the case we focus on here
torque exerted by the hexagonal packing. Such low valuefor a discussion of the cholesteric phase.
for a would be compatible with the low volume fractions ) ) :
v =Pu/d=c(1). X-ray diffraction of fibers containing the 1. The superhelices are effective rods (- 3I=Xs)
superhelices seems to indicate that the supercoils are In the virial theory?°® of the pitch of a cholesteric sus-
stretched at high concentratidAgv> 1, purportedly imply-  pension of chiral rods, there is a vector ker@e(u, ,us) for
ing a>1) but unfortunately the interpretation of the diffrac- two test rods of orientations, andu,, within the virial term
tion experiments is not unambiguous. Yevdokimenval®®  of first order. For two supercoiled threads, the following
have also investigated liquid crystalline phases of variousorm is proposed:
types of superhelical DNA. They express uncertainty as to .
the precise nature of their phaséholesteric, nematic or Celug,Uz) =] (rs WI/NdIZ ro(uy Xup) (ug-Up). 8.3
hexagonal an issue that evidently warrants further study.This is plausibly argued as follows: It is proportiona?%3*
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(i) the excluded volumelzrS between two supercoils of
length 3l and diameter £.

(i)  The thickness of the superhelical threads, i.e., the dis-
tance between the two DNA chains.

(iii) The orientational pani; X u, of the excluded volume.

(iv)  The angular factou;-u,, for C is zero in the crossed
configuration; note that C.(uy,u,)=—C.(u,,u;)
and C¢(uy,up) =Cc(u3—Uy)=Ce(—Uy,Up).

(v) A dimensionless functioj depending on the super-
helical chirality r Wr/l. The total contour length of
the DNA is| and the length of a plectoneme is about
31. As the writhe tends to zerg,goes to zero.

FIG. 12. A loose supercoil displaying a chiral excluded-volume effect.

action which seems to bear on recent experimental VoK.

scaling relation is given between the cholesteric pitch and the

writhe, a measure of the handedness of a supercoil. For loose

o dl 8.4 supercoils, the liquid crystal is a solution of interacting de-

Torglj(rs Wr|” ' flection segments so the qualitative analyses below should
2 hold even if the supercoils branch.

a=(lv/ry)", (8.5 Consider, first, one long supercoil of backbone contour

wherev is the DNA volume fraction. length| and helix diameted in a nematic medium whose

properties will be discussed below. The supercoil is viewed

] o . .as a sequence ofe slender rodlets, each of lengdie>d).

The superconed thregds are semiflexible, and stat|§t|The DNA helix must be straight, or approximately so, on the
cally speaking, may be viewed as a sequence of deflectiogegle ofe. The achiral rodlets interact with each other via an
segments of length (see Ref. 68 As in Ref. 93,3 in Eas.  gycluded-volume effect. But the average interaction is chiral
(8.4) and(8.5 should be replaced by;=P4/« (butnote that ¢y it is topological, because the rodlets are connected into
Wr~1). one supercoi(Fig. 12. Following previous work?*3we can
d7*pls write the increase in the free energy of chiral interaction as

Equation (8.3) leads to a pitc? 2 of the cholesteric
phase of rodlike supercoils

2. Semiflexible plectonemes ( 3I=\y)

7T (r Wil 89
~ o —1
a=(Pyr wld?)?? 6.7 Fan=kaT 2 2 <7/ ! f f dunlty Fn-u)
Equation(8.6) predicts a fairly low pitch for the cholesteric
phase, at least if the writhe is not too small. The chirality of X Ce(uj,uy)-VE(n-u;) ). (8.9

the DNA helix itself has been disregarded in Eg.3). This

may be reasonable, for the global superhelical chirality maydere,n is the director which reflects some cholesteric orga-
be thought to dominate when two plectonemes collide. Herenization owing to the perturbative presence of the supercoil,
we have neglected branching and end effects. Neverthelesk,is the orientation distribution depending implicitly on po-
note that in the semiflexible case, all branches will alignsitionr via n(r), u; andu; are the unit vectors pointing along
along the director in view of the strong cholesteric torque, saodletsi andj, and7j; is the characteristic volume sampled
the liquid crystal is a suspension of deflection segments anBy rodleti if we keepj fixed. The average is over all con-

our scaling analysis may remain valid. figurations of the supercoil. The vect@, was defined ear-
lier [Eq. (8.3)] but is now formally define¥f in terms of a
B. Loose supercoils Mayer function® (u; ,u; ,&;) whereg; is the vector between

A cholesteric suspension of DNA supercoils that arethe centers of the rodletsand]

nontight—rippled or not—has a pitch because of three ef-

fects: (i) the DNA double helix itself is chiralii) the super- Celu;,Up) = _f d&; &P (u;,uj,&)). (8.9
coils are chiral objects interacting with each oth@i;) the

average interaction between the segments of one supercoil|i1'§)r overlapping rodlets, we approximate the Mayer function
chiral. For loose supercoils, the first effect is very similar toby the form

that involved in a suspension of linear DNA molecules. Stra-

ley’s theory? as modified by the authd?, might be useful DU UL E)=D(U; Uy, — &) =& tu XU -& (U uy)
here although only at fairly low volume fractions. At high b ' e e 811
concentrations, DNA approaches the hexagonal phase so the (8.10

pitch becomes anomalot% One recent theory quantifies and zero otherwise. This would be compatible with the vec-
the competition between braiding and chirality for close-tor C, for screws chosen earlier by Stralf&y.

packed chiral macromolecul&Here, we leave these prob- Next, we compute the chiral free energy in the con-
lems aside and concentrate on the third type of chiral intertinuum limit, adopting a scaling Ansaﬁ’] =7
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! | with hg=2m/wy=3.4 nm. If there is a contribution from the
Fen=kgTe fodslfodszf dU(Sl)f dU(Sz)f d§; intrinsic chirality of the DNA itself, which would lead to a
pitch #,,, then the total pitch would be

u(s;) xu(s,)-

><<(—( 1) gs( 2 §12)f(n-U(sl)) ;5_12 e | L | (8.19
12 2 o7 T
VEn-u(sy) ). (8.19) 'rl'ehse chpicg of the. sign depends on the handedness of the
pective interactions.

To zero order,(u;-u)=1, by way of the generally high The excluded volume effect for DNA is influenced by

. RN ' ) screened electrostatics so we have to deal, provisionally at
order in lyotropic systems. Introducing a further preaveragy . with an effective diametaf .. Considerations con-
ing approximation consistent with a scaling analysis, we nov‘éerni,ng the twist moduld8 imply ?frf];at d in Eq. (8.19 be
integrate only one p.arF of the integrand owrands, in replaced byd2d., andd in Eq. (8.16 be replaé:edl byl
order to extract a writhing numbEr®’ from Eq. (8.11) The pitch is modified to

i I u(sy) Xu(sy) - &1 142
Wr= 47 J'OdSlJOd32 T (612 S= diﬁv|<Wr)|' (8.20

The integral overé;, for overlapping rodlets yields an ex-
cluded volume contributios®d. Accordingly, Eq.(8.11) re-
duces to

It is stressed that the expressions for the pitch are merely
scaling estimates in view of the rather severe approximations
employed. There is some recent evidence of considerable

interest for a direct relation between supercoiling and cho-
Feni= kBTd|<Wr>|f dulf du, f(n-uy|Vi(n-uy)|, lesteric organization. Reictet al>® have found that within
(8.13  bacteria, congested interwound supercoils of plasmid DNA
form cholesteric phases. The circular dichroism spectra were
a sensitive monitor of the superhelical density of the DNA.
In one measurement at a volume fraction-0.015 and a
specific linking differencec=—0.06, they determined a
pitch =6 um which compares favorably with the rough
estimate of 4um given by Eq.(7.18. It is hoped that the

which is independent of the rodlet size

We are finally in a position to calculate the piteh For
a highly ordered cholesteric, we hd¥éV f|=aqn-Vxn|.
Let there beN supercoils enclosed in a volun#. Then the
free energy density is

Feni! 7 =kgT dN 7 XY (Wr)||n-V xn]. (8.14  pitch will be measured as a function ofin future experi-
Hence, the pitch is given in terms of the DNA volume frac- ments.
tion
) IX. CONCLUDING REMARKS
P K|n-V xXn|7 Kwld

= 72 . (8.19 The main purpose of this work has been to try to grasp,
FChi kBTU o | (WI’) | . . . . .

in a qualitative way, the behavior of congested DNA in prob-

A relation between the pitch and the twist elastic constanfems of biophysical interest. A fairly severe drawback of our
Kw has been usedA large factor of 2r has been deleted. computations is the cavalier attitude toward the interactions
It is possible to simplify Eq(8.19 a bit further by sup-  between the DNA molecules. This is especially true in Sec.
posing the supercoils are in a more or less rippled s&&e  VI|I. We hope to come back to the issue of electrostatic in-
Sec. VII. The orientational order is then determined mainlyteractions in the near future. The principal focus here has
by the interactions between DNA segments. In that case, Wgeen the often intricate relation between entropy, order, cur-

may use the approximatidh*® vature, and topology. The analysis of Secs. V to VIII is
KeT /2 strictly qualitative, numerical coefficients not always of or-
Kw= & g (8.16  der unity, having been deleted either for the sake of simplic-

ity or because they are unknown. A complete quantitative
so the pitch may be expressed in a seductively simple fastireatment of congested supercoils seems no mean task as
ion does an implementation of Monte Carlo simulations of such
suspensions given the current status of simulated nematic
S I_ @817  worms™
v[(Wr) For tight DNA curves, entropy appears to be important
This seems quite plausible after the fact. For very longnostly in closure problems as discussed in Sec. V A. En-
chains, one expectdVr)=ALk even in a cholesteric phase. oPY does play a major role when the external field is strong,
Hence, we would have a useful relation between the pitctfausing the DNA chain to ripple; but then the rippled sec-

and the specific linking difference tions undulate along the director and so are bent only
weakly. However, the possibility is left open that undulations
P ho 8.18 may well be frozen out for curved DNA in a strong field with

~ v|o] positional order as occurs in a nucleosome particle.
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