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BACKGROUND: In contrast to the technique of conventional freezing, the vitri®cation of spermatozoa requires

high cooling rates (720 000°K/min), which could be damaging for spermatozoa. The aim of our study was to com-

pare slowly frozen and vitri®ed spermatozoa in terms of their post-thaw DNA integrity and motility. METHODS:

Semen samples were prepared according to the routine swim-up technique and divided into aliquots for comparison

of fresh, conventionally frozen and vitri®ed spermatozoa from the same ejaculate in the presence or absence of cryo-

protectants. Spermatozoa motility and DNA integrity were determined. RESULTS: The motility of spermatozoa

conventionally (slowly) frozen with a cryoprotectant was similar to that recorded for spermatozoa vitri®ed in the

absence of cryoprotectant (47 versus 52%). The DNA integrity was unaffected by the cryopreservation method or

presence of cryoprotectants. CONCLUSION: The vitri®cation of human spermatozoa in the absence of conventional

cryoprotectants is indeed feasible. The DNA integrity of vitri®ed sperm is comparable with that shown by standard

slow-frozen/thawed spermatozoa, yet the method is quick and simple and does not require special cryobiological

equipment.
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Introduction

Cryopreservation is widely used presently as a method of

storing different cell types and tissues including male and

female gametes and embryos. Since the late 1930s±1940s

(Bernschtein and Petropavlovski, 1937; Polge et al., 1949;

Smirnov, 1949), it has been possible to cryopreserve the

spermatozoa of several mammalian species effectively,

particularly bovine and human sperm. This type of technique

has important applications including the preservation of

male fertility before radiotherapy and/or chemotherapy

(Sanger et al., 1992), which may lead to testicular failure

or ejaculatory dysfunction. However, due to the damage

induced by freezing, the motility of cryopreserved spermatozoa

after thawing is statistically reduced and shows wide

interindividual variability (Critser et al., 1988; Yoshida et al.,

1990). To date, the problems of cryoprotectant toxicity due to

osmotic stress during the addition and removal of cryoprotec-

tants and possible negative effects on the sperm's genetic

apparatus are unresolved (Critser et al., 1988; Perez-Sanchez

et al., 1994; Gilmore et al., 1997). Further cryo-damage may

also be attributed to the slow thawing process (Mazur et al.,

1981).

Compared with the conventional `slow' freezing method, the

newly developed techniques of vitri®cation and ultrarapid

freezing, in which cryopreservation is achieved by directly

plunging spermatozoa into liquid nitrogen [vitri®cation (cool-

ing rate ~720 000°K/min) Nawroth et al., 2002; Isachenko

et al., 2003; ultrarapid freezing (cooling rate ~300±600°C/min)

Schuster et al., 2003)], seem to have certain bene®ts. This

method of cryopreservation does not require the use of classic

permeable cryoprotectants, and thus avoids the lethal effects of

osmotic shock on the spermatozoa. Moreover, the entire

freezing or thawing process only takes a few seconds. Before

freezing, the simple `swim-up' or density gradient centrifuga-

tion procedure allows the selection of spermatozoa with

progressive motility, normal morphology or even those with

non-damaged DNA. This pre-selection has been shown to

improve sperm quality after thawing in terms of all the classic

markers of quality including DNA integrity (Perez-Sanchez

et al., 1994; Esteves et al., 2000; Sakkas et al., 2000; Donnelly

et al., 2001b; Tomlinson et al., 2001; O'Connell et al., 2003).

Indeed, we were able to report a signi®cant improvement

(11.6%; P < 0.05) in post-thaw sperm motility when vitrifying

swim-up-prepared spermatozoa with no cryoprotectant
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(Nawroth et al., 2002; Isachenko et al., 2003) over best post-

thaw results achieved after conventional freezing in the

obligatory presence of a permeable cryoprotectant (glycerol).

However, the factors `morphology', `motile sperm recovery',

`viability after freezing' and `acrosome-reacted cells' were not

statistically different for the two cryopreservation methods

(P > 0.05). According to these data, the swim-up method of

preparing the sperm resulted in a signi®cant improvement in

the quality of spermatozoa which was suf®cient to match

the ®nal results obtained using the conventional freezing

procedure.

The present study was designed to compare the effects of

slow freezing and cryoprotectant-free vitri®cation on the

motility and DNA integrity of spermatozoa from fertile men.

The effects of cryoprotectants on fresh sperm and when used

during the slow freezing and vitri®cation process were also

evaluated.

Materials and methods

Samples

Ejaculates containing at least 20 3 106 spermatozoa/ml and showing

at least 50% progressive sperm motility were obtained from 18 healthy

men by masturbation, after a minimum of 48 h of sexual abstinence.

Informed consent was obtained from each donor. Semen analysis was

performed according to the guidelines published by the World Health

Organization (1999). Each ejaculate was swim-up prepared (SUP) and

divided into four aliquots for: conventional slow freezing with (CSF+)

or without (CSF±) standard cryoprotectants, and vitri®cation with

(V+) or without (V±) standard cryoprotectants. The cryoprotectants

used were glycerol/egg yolk. Swim-up was performed using a

standard medium containing 10 mg/ml of human serum albumin

(SPM; Scandinavian IVF Science, Gothenburg, Sweden) according to

the instructions published by the World Health Organization (1999).

In short, an ejaculate was washed twice by centrifugation at 380 g for

10 min in a double volume of SPM. After the second washing, 0.8 ml

of SPM were pipetted over the pellet. The samples were then

incubated for 30 min for swim-up.

Fresh SUP spermatozoa (no cryoprotectant) served as controls for

all the experimental groups.

Conventional (automated) freezing

For the conventional, programmable slow freezing method, the

cryoprotectant used was test±egg yolk±glycerol (TEYG) freezing

medium (Scandinavian IVF Science, Gothenburg, Sweden). After 1:1

dilution in TEYG (®nal glycerol concentration 6%), 0.25 ml of the

spermatozoa suspension was pipetted into standard 0.25 ml insemin-

ation straws (MTG, Altdorf, Germany) and kept at room temperature

for 10 min. The straws were then placed in a programmable freezer.

Semen samples in both groups (CSF+ and CSF±) were frozen

according to Giraud et al. (2000). The protocol for conventional

freezing was the following: cooling from 22 to 4°C at a rate of 5°C/

min; from 4 to ±30°C at a rate of 10°C/min; and from ±30 to ±140°C at

a rate of 20°C/min, followed by plunging into liquid nitrogen. After

storage of the spermatozoa in liquid nitrogen for a minimum of 24 h,

the samples were thawed by plunging the straws into a water bath at

37°C for 50 s. Next, 5 ml of SPM were added to the thawed samples

and the sperm suspension was centrifuged at 380 g for 5 min. The

supernatant was removed and the pellet was resuspended in 100 ml of

SPM.

Cryopreservation by direct plunging into liquid nitrogen
(vitri®cation)

The method of vitri®cation used was described in detail by Nawroth

et al. (2002). Brie¯y, the same concentration of TEYG as for slow

freezing was used for vitri®cation in the presence of a cryoprotectant.

Drops (20 6 2 ml) of sperm samples in both groups (V+ and V±) were

placed on copper loops of 5 mm diameter. These cryoloops were then

plunged into liquid nitrogen and stored for at least 24 h. After the

storage period, the samples were warmed by plunging the copper

loops into a 15 ml tube containing 10 ml of SPM at 37°C and mixing

thoroughly. After warming ®ve loops per tube, the tubes were placed

in a CO2 incubator for 5±10 min. The spermatozoa were then

concentrated by centrifugation at 380 g for 10 min. The pellet was

resuspended in 100 ml of SPM.

Evaluation of sperm motility and viability

Sperm motility was assessed immediately after liquefaction (conven-

tional freezing) or sample concentration by centrifugation (vitri®ca-

tion). The Makler chamber was used for motility scoring. Motility was

estimated under the light microscope using the 3400 magni®cation.

Only spermatozoa with progressive motility (WHO categories `a' and

`b') were assessed. Motility was evaluated immediately after thawing.

Recovery of motile spermatozoa was de®ned as the percentage of

post-thaw motility 3 100% divided by the percentage of pre-freezing

motility. To test the effect of the cryoprotectant on sperm motility and

DNA integrity before cryopreservation, spermatozoa suspensions

were equilibrated in TEYG for 10 min and then washed with SPM for

swim-up preparation.

Comet assay

The comet assay was performed using the CometAssayÔ Reagent Kit

for Single Cell Gel Electrophoresis Assay (Trevigen, Inc.,

Gaithersburg, MD) according to the manufacturer's instructions

with slight modi®cation by Donnelly et al. (2001b). Brie¯y, the

spermatozoa samples were washed twice with SPM and the sediment

was resuspended in Dulbecco's phosphate-buffered saline (Ca2+- and

Mg2+-free PBS; Bio-Wittaker, Verviers, Belgium). The samples were

then placed on ice to inhibit endogenous damage occurring during

sample preparation. During preparation, the cells were handled under

yellow light to prevent DNA damage by UV light. Some cells were

treated with 25 mmol/l KMnO4 for 20 min at 4°C, as controls for the

comet assay (sperm cells with a comet tail have disrupted DNA).

Subsequent treatment of DNA-damaged and undamaged cells was

performed as follows. Freshly prepared lysis solution supplemented

with 1% dimethylsulphoxide (DMSO) was chilled at 4°C for at least

20 min before use. The lysis solution contained 2.5 mol/l sodium

chloride, 100 mmol/l EDTA pH 10, 10 mmol/l Tris base, 1% sodium

lauryl sarcosinate and 1% Triton X-100. After mixing the spermatozoa

suspension (at ~1 3 105 cells/ml) with 1% molten low-melting point

agarose at 40°C at a ratio of 1:10 (v/v), 75 ml of suspension was

immediately pipetted onto the Trevigen CometSlideÔ, gently spread

over the slide area and placed ¯at in the dark at 4°C for 10 min. The

slides were then immersed in the pre-chilled lysis solution for 60 min

for dissolution of the cell membranes. To achieve DNA decondensa-

tion after cell lysis, the slides were incubated with 10 mmol/l

dithiothreitol (DTT; Sigma-Aldrich, Steinheim, Germany) for 30 min

at 4°C and then with 4 mmol/l 3.5-diodosalicylic acid lithium salt

(LIS, Sigma-Aldrich) for 90 min at 20°C. After tapping the slides to

remove excess solution, they were immersed in freshly prepared

alkaline solution (300 mmol/l NaOH, 1 mmol/l EDTA, pH >13) in the

dark for 20 min at room temperature. A horizontal gel electrophoresis

apparatus was ®lled with the same alkaline solution at 4°C. The slides

were placed ¯at onto a gel tray and aligned equidistant from the
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electrodes. Electrophoresis was performed at 1 V/cm adjusted to

300 mA by either raising or lowering the buffer level in the apparatus

for 10 min. After electrophoresis, the excess solution was gently

tapped from the slides, which were then dipped in 70% ethanol for

5 min with subsequent air-drying at room temperature before being

stored in an airtight desiccator. The slides were viewed using a Zeiss

IM epi¯uorescence microscope equipped with an excitation/emission

®lter of 485 nm/520 nm under 3400 magni®cation. Fluorescent

staining was performed using SYBR green stain (working concentra-

tion 1:200). In healthy cells, the ¯uorescence was con®ned to the

nucleoid: undamaged DNA is supercoiled and does not migrate very

far from the nucleoid (Figure 1). In cells that have incurred damage to

the DNA, the alkali treatment unwinds the DNA, releasing fragments

that migrate from the nucleoid (Figure 2). A total of 200 cells were

analysed per slide.

Evaluation of sperm morphology

Sperm morphology was assessed using strict criteria (Menkveld et al.,

1991). The sperm were stained using Testsimplets (Roche Diagnostics

LTD, Germany). After pre-staining slides with methylene blue and

cresyl violet acetate, 5 ml of sperm were dropped onto the centre of a

pre-stained slide and covered with a coverglass. Morphological

assessment was performed using an oil immersion microscope at

31000 magni®cation after 30 min of staining. Results were recorded

as the number of normal spermatozoa out of 100 counted on each

slide.

Statistical analysis

Treatment effects on sperm variables were assessed by ANOVA. Data

are expressed as means 6 SD. The level of statistical signi®cance was

set at P < 0.05.

Results

Effect of the cryopreservation method on sperm motility

Table I shows sperm quality parameters determined in fresh

ejaculates and SUP sperm in the absence and presence of

cryoprotectant before cryopreservation. These data show a

slight (12%) reduction in the motility of SUP spermatozoa after

10 min of incubation with TEYG (P > 0.05), indicating a

detrimental effect of the cryoprotectant. However, this effect

could not be correlated with a change in DNA integrity

(Figure 2, P > 0.05).

Figure 1 indicates that slow freezing with no cryoprotectant

gives rise to a 29.1-fold decrease in sperm motility compared

with slow freezing with a cryoprotectant (P < 0.001). In

contrast, sperm motility was 2.87 times lower when vitri®ca-

tion was conducted in the presence of cryoprotectant compared

with vitri®cation with no cryoprotectant (Figure 1, P < 0.05).

The highest motility rates after vitri®cation were achieved

using SUP spermatozoa on copper loops with no cryoprotectant

(51.5 6 4.5%), though these rates were similar to those shown

by sperm slowly frozen using the cryoprotectant (46.7 6 4.1%;

P > 0.5).

Effect of cryopreservation method on sperm DNA integrity

We observed no signi®cant differences in the DNA integrity of

prepared spermatozoa related to the freezing method or

presence of a cryoprotectant (Figure 2; P > 0.5). The

proportions of sperm showing undamaged DNA were 85.09

and 89.51%, respectively, for fresh sperm treated or not treated

with the cryoprotectant, 84.62 and 83.53%, respectively, for

the slowly frozen sperm with or without cryoprotectant, and

87.24 and 84.66%, respectively, for the vitri®ed sperm with or

without cryoprotectant.

Discussion

Sperm cryopreservation is routinely used presently in the

management of human male infertility (Holt, 1997; Donnelly

et al., 2001b). Despite this, the current cryo-techniques used for

human spermatozoa are still imperfect. To date, nearly all

cryobiological investigations on spermatozoa or routine freez-

ing involve the use of conventional (programmable or standard

vapour) freezing. The effectiveness of the cryo-technique is

associated with permeable and non-permeable cryoprotectants.

These are used to prevent the formation of ice crystals during

freezing and, thus, avoid structural damage and motility loss

after cryopreservation.

The decline in spermatozoa motility after cryopreservation

is a topic of current research since it is one of the factors that

are ®rst affected (Critser et al., 1987b; Watson, 1995).

However, the mechanism through which motility is decreased

is still unclear. This mechanism may be mechanical or of a

physical±chemical aetiology. Permeable cryoprotectants play a

leading role, while the non-permeable protective agents play a

supporting role and, in most cases, cannot protect the cells in

the absence of a permeable cryoprotectant. The properties of

permeable cryoprotectants are directly related to osmotic and

toxic damage with concurrent cell saturation before cooling

(Sherman, 1973; Watson, 1979; Gao et al., 1997) and/or

removal after thawing (Watson, 1995; Gao et al., 1995, 1997).

In conventional freezing, mechanical cell injury could occur by

rapid freezing leading to intracellular or extracellular ice

crystal formation and signs of osmotic damage (Watson, 1995;

Gao et al., 1995, 1997). Conventional freezing causes exten-

sive chemicalÐphysical damage to the extracellular and

intracellular membranes of the sperm that are attributable to

Table I. Characteristics of fresh ejaculated and swim-up-prepared spermatozoa before cryopreservation

Concentration after
ejaculation (3106l/ml)

Morphology after
ejaculation/liquefying
(%)

Motility after
ejaculation/liquefying
(%)

Concentration after
swim-up (3106/ml)

Motility after swim-up
without cryoprotectants
(%)

Motility after swim-up
with cryoprotectants

(%)

107.7 6 10.9 10.7 6 1.6 51.7 6 6.1 44.8 6 7.8 89.5 6 7.1a 77.5 6 8.9b

a,bThe differences between the parameters (motility after swim-up without cryoprotectants) and (motility after swim up with cryoprotectants) was signi®cant
(P < 0.05).

E.Isachenko et al.

934

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/19/4/932/2913678 by guest on 21 August 2022



changes in the lipid phase transition and/or increased lipid

peroxidation (Alvarez and Storey, 1992, 1993; Mossad et al.,

1994) during cooling or after thawing, with the consequence of

a decrease both in sperm velocity and in the percentage of

motile spermatozoa (Critser et al., 1987a,b; Keel et al., 1987;

Mossad et al., 1994; Watson, 1995; Lef¯er and Walters, 1996).

It has been established that the production of reactive oxygen

species leads to increased lipid peroxidation after cryopreserv-

ation (Alvarez and Storey, 1992) and is signi®cantly associated

with a loss of sperm motility (Aitken et al., 1989; O'Connell

et al., 2002). As previously suggested (Alvarez and Storey,

1992, 1993; Chatterjee and Gagnon, 2001), the injury to human

spermatozoa induced by cryopreservation mainly occurs

during thawing. This damage could, at least in part, be related

to reduced antioxidant defence activity during cooling and/or

structural damage to the cytoskeleton and/or antioxidant

enzymes during cryopreservation (Alvarez and Storey, 1992,

1993). All these ®ndings suggest that the slow freezing of

Figure 1. Motility of spermatozoa according to treatment and cryopreservation method. Results are given as values after thawing, compared
to pre freezing values. Each bar represents the median, 25th and 75th percentile, minimum and maximum values. Bars with different letters
within each treatment group indicate a signi®cant difference (P < 0.001).

Figure 2. DNA integrity of spermatoza according to treatment and cryopreservation method. Each bar represents the median, 25th and 75th
percentile, minimum and maximum values. Bars with different letters within each treatment group indicate a signi®cant difference (P < 0.05).

DNA integrity of vitri®ed spermatozoa
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sperm, aside from ice crystal formation, is intrinsically

deleterious. Egg yolk, a natural complex mixture of choles-

terol, phospholipids and antioxidants, has been used in sperm

cryopreservation for many years to reduce the negative effects

of osmotic shock. How this protective effect is produced is not

entirely clear, since egg yolk is such a complex mixture, but it

may play a role in reducing the deleterious effects of

hyperosmotic salt solutions on membrane structures during

rapid cooling (Watson, 1976, 1995; Ostashko, 1978, 1995;

Pursel et al., 1978; Holt et al., 1988, 1992; Katkov et al., 1996).

However, its most important role could be forti®cation of the

cell membrane by the lipid components of the egg yolk

(Ostashko, 1978). Some of these components (low-density

lipoprotein fraction, glycolipids, cholesterol) may also become

incorporated into the membranes, reducing their tendency to

gel during cooling, as described for sperm and erythrocytes

(Watson, 1976; Parks and Lynch, 1992; Ostashko 1978).

Further, Chatterjee and Gagnon (2001) demonstrated that egg

yolk±Tris±glycerol cryoprotectant medium (EYTG) is an

ef®cient scavenger of NO±, O2
± and H2O2 radicals. Thus, we

may be dealing with a dual action whereby the cell membrane

becomes coated and isolated from direct contact with the

cryoprotective agents while preserving its ¯uidity and ¯exi-

bility at a lower temperature, thereby reducing cytoskeletal

damage. In a previous study (Isachenko and Nayudu, 1999), we

showed that by combining the two factors, an increased

temperature and the inclusion of egg yolk in both the

vitri®cation and dilution media, the survival of mouse germinal

vesicle oocytes was signi®cantly improved after warming. The

inclusion of egg yolk in the vitri®cation/dilution medium also

improved the maturation rate and the proportion of normal

metaphase forms, suggesting a major effect on reducing

internal cell damage. However, the effectiveness (avoiding

intracellular ice formation) of permeable and non-permeable

cryoprotectants during conventional freezing is only revealed

when we use a slow cooling rate (Gao et al., 1997). All these

negative effects of freezing on cells can also lead to chromatin

damage. The assessment of sperm nucleus integrity due to such

causes is very important, since, as recently described (Spano

et al., 1999; Sakkas and Tomlinson, 2000), chromatin

abnormalities affect sperm quality and male fertility status.

Fraga et al. (1991) correlated damaged sperm DNA with

mutagenic effects. It has also been shown that, besides having

signi®cant effects on sperm morphology and membrane

integrity, freezing/thawing the sperm of fertile and infertile

men also leads to signi®cant chromatin damage (Royere et al.,

1988, 1991; Hammadeh et al., 1999; Donnelly et al., 2001a,b).

Other studies have demonstrated (Balhorn et al., 1988;

Manicardi et al., 1995) that any defects in sperm chromatin

structure in infertile men with increased DNA instability are

sensitive to denaturing stress. This denaturing stress may be

induced by a treatment such as freezing. Despite all this, the

oocyte is able to repair a small amount of sperm DNA damage

(>8%; Ahmadi and Ng, 1999), though this repair seems to be

insuf®cient to support subsequent embryo development

(Ahmadi and Ng, 1999) and can lead to decreased conception

rates or failed conception (Hunter, 1976; Royere et al., 1988).

Proportions of spermatozoa with fragmented DNA have been

negatively correlated with fertilization rates in IVF (Sun et al.,

1997) and ICSI (Lopes et al., 1998).

In contrast to slow freezing, vitri®cation as a rule involves

the use of very high concentrations (3.5±8 mol/l) of permeating

cryoprotectants and high cooling rates (up to 1013°K/min).

According to the literature, the critical cooling speed for the

vitri®cation of pure water varies dramatically depending on the

method used, from 107 to 1013°K/min (for references see

Figure 9 in Karlsson and Cravalho, 1994). Given that high

concentrations of cryoprotectants have a marked toxic effect

(Fahy, 1986; Pegg and Diaper, 1988; Shaw et al., 2000), it is

possible to decrease this toxicity using a combination of two

cryoprotectants (e.g. ethylene glycol and DMSO), and/or to

expose cells to pre-cooled concentrated solutions in a stepwise

manner (Fahy et al., 1984; Fahy, 1986). Another strategy is to

reduce the amount of cryoprotectant and simultaneously

increase the cooling and warming rates (Liebermann and

Tucker, 2002).

Luyet (1937) ®rst mentioned the possibility of using the

vitri®cation technique (a small specimen cooled very rapidly

was vitri®ed without substantial loss of viability (for references

see, for example, Fahy, 1988). The following year, Luyet and

Hodapp (1938) reported the survival of frog spermatozoa

vitri®ed in liquid nitrogen, and a few years later, Schaffner

(1942) successfully vitri®ed fowl spermatozoa using a modi-

®cation of Luyet technique. Nevertheless, all subsequent

attempts to vitrify mammalian spermatozoa using this

approach resulted in low or null survival (Hoagland and

Pincus, 1942; Smith, 1961) mostly because of the critical speed

of freezing and warming, which is very high for low

concentrations of cyroprotectants. Such high speeds were

unattainable by investigators at this time. Unfortunately, the

high concentrations of cryoprotectants (30±50% compared

with 5±7% for slow freezing) used in classic vitri®cation

cannot be applied to spermatozoa due to their lethal osmotic

effects (Holt, 1997; Katkov et al., 1998; Mazur et al., 2000).

However, it has been established as dogma that the vitri®cation

of large cells, tissues and even organs can only be achieved

using high concentrations of combinations of permeable and

impermeable cryoprotectants (Fahy, 1988). The total concen-

trations of such substances must be at least 50% (w/w) (if

vitri®cation is conducted at atmospheric pressure) to reach the

zone of stable vitri®cation. Concurrently, the speed of cooling

and warming should be relatively low. These conditions can be

very damaging for cells and lead to subsequent biochemical

alterations and lethal osmotic injury (Fahy, 1984), although

some of the deleterious effects of cryoprotectants on mamma-

lian sperm can be avoided by adopting optimal regimes of

addition and removal of the cryoprotectant (Sherman, 1973;

Watson, 1979; Critser et al., 1988; Gao et al., 1995; Lef¯er and

Walters, 1996; Katkov et al., 1998; Katkov, 2002). These

regimes are, however, ineffective for human and animal

spermatozoa treated with high concentrations of cryoprotect-

ants. Thus, at present, the only alternative to this is the use of

very rapid cooling and warming rates along with a very small

specimen size. Such were the conditions used in the present

study. The sample size can be minimized using different

carrier systems [open-pulled straws (OPS; Vajta et al., 1997),

E.Isachenko et al.
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¯exipet-denuding pipette (FDP; Oberstein et al., 2001;

Liebermann et al., 2002), micro drops (Papis et al., 2001),

electron microscopy copper grids (Martino et al., 1996; Hong

et al., 1999), hemi-straw system (Kuwayama and Kato, 2000),

small nylon coils (Kurokawa et al., 1996), nylon mesh

(Matsumoto et al., 2001) or cryoloop (Oberstein et al.,

2001)] such that the duration of solidi®cation of the liquid

phase during freezing is reduced.

When the conditions of vitri®cation are: a very high speed of

cooling [up to 720 000°K/min in the initial phase of cooling, as

theoretically calculated (Isachenko et al., 2003)], a short

cooling time (5±8 s) and a small specimen size (20 ml), not

many nuclei of crystallization form and these seem to be

insuf®ciently large to damage human spermatozoa. In these

conditions, the probability of substantial devitri®cation (re-

crystallization) of the vitri®ed solution is also low due to the

high speed and short time of warming (direct dissolution in a

large volume of agitated warm water), and the small size of the

specimen (extracellular recrystallization) and cells (intra-

cellular recrystallization). The substantial compartmentaliz-

ation of intracellular compounds may contribute to the

successful survival of spermatozoa.

Moreover, it has been established that the amount of

osmotically inactive water is higher in spermatozoa, where it

is bound to several macromolecule structures such as DNA,

histones, hyaluronidase, etc., than in oocytes or embryos.

According to our calculations (see mathematical equation in

Isachenko et al., 2003), amounts of high molecular weight

components can be 6±8 times higher than in embryos and this

will invariably affect the viscosity and glass transition

temperature of the intracellular cytosol in sperm, but the

probability of lethal ice formation during cooling/warming

would be higher for embryos. There is indirect evidence to

show that the intracellular components of sperm may act as

natural cryoprotectants, including the fact that mice spermato-

zoa, among the most osmotically fragile of all species (Katkov

et al., 1998), can be frozen successfully in the absence of

permeable cryoprotectants, using only protein- and sugar-rich

skimmed milk and raf®nose as extracellular non-permeable

cryoprotectants (Yokoyama et al., 1990; Nakagata and

Takeshima, 1992; Koshimoto et al., 2000). Our estimations

for albumin indicate that, in general, during cooling and

especially during rewarming/resuscitation, the small amount of

specimen and cells, high viscosity of the solution and high

speed of cooling and warming (Isachenko et al., 2003) used

would avoid devitri®cation (especially intracellular) (Karlsson

and Cravalho, 1994; Karlsson, 2001). Seemingly, the presence

of relatively high concentrations of albumin, which is highly

ef®cient at inhibiting lipid peroxidation (Karow, 1997), and

sugars substantially raised the viscosity of the solution,

especially at the lower temperatures. In addition, the small

sample size and number of cells made vitri®cation stable

during both cooling and warming, leading to good results after

warming. It would be logical to suppose that sperm DNA

would be damaged using such an extreme cryo-protocol for

sperm preservation. However, Evenson et al. (1991) found no

difference in their SCSA results for non-cryopreserved or

cryopreserved sperm, and slowly or ¯ash-frozen sperm. Duty

et al. (2002) con®rmed these ®ndings and reported that ¯ash

freezing in liquid nitrogen with no cryoprotectants most closely

reproduced the results of a freshly obtained human ejaculate.

These authors assumed that the particular DNA packaging of

human sperm protects the DNA from intracellular ¯uid shifts

and ice crystal formation during cryopreservation. All these

data were con®rmed by our results.

In conclusion, our results show that the vitri®cation of

human spermatozoa in the absence of conventional cryo-

protectants is indeed feasible. The DNA integrity of vitri®ed

sperm is comparable with that shown by standard slow-frozen/

thawed spermatozoa, yet the method is quick and simple and

does not require special cryobiological equipment.

We presently are conducting studies to determine: how the

different stages of vitri®cation compare with those of slow

freezing in terms of inducing lipid cell membrane peroxidation;

and the roles played by the different cryoprotective (glycerol,

ethylene glycol, DMSO) and supporting (egg yolk and human

serum albumin) agents in preventing damage to the cyto-

skeleton and/or antioxidant enzymes in the presence of reactive

oxygen species during slow freezing or vitri®cation.
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