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Summary  

 

Structural maintenance of chromosomes (SMC) complexes fold DNA by loop extrusion to support 

chromosome segregation, genome maintenance, and gene expression. Wadjet systems 

(JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with proposed roles in bacterial 

immunity against selfish DNA elements. Here, we show that JetABCD systems restrict 

extrachromosomal circular DNA with an upper size limit of about 100 kb, while a linear plasmid evades 

restriction. Recombinant preparations of a JetABCD complex cleave circular DNA regardless of its 

helical topology but not linear DNA; cleavage occurs at random positions and depends on ATP as well 

as the SMC ATPase. We solve a structure of the JetABCD core by cryo-EM revealing an alternative 

dimer-of-dimers configuration. The two SMC DNA motor units face in opposite orientations—rather 

than the same as observed with MukBEF—possibly representing a restriction-specific state of 

JetABCD. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and present a model 

for the activation of DNA cleavage exclusively when extrusion of an entire plasmid has been completed 

by a single JetABCD complex. The self-stalling of two opposing DNA motor units may serve as signal to 

trigger DNA cleavage. Complete extrusion by a single complex cannot be achieved on the much larger 

chromosome, explaining how self-DNA may evade cleavage. 
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Introduction 

Bacteria rely on horizontal gene transfer (HGT) by DNA conjugation, natural transformation, and 

phage transduction to quickly adapt to rapidly changing environments. Selfish genetic elements utilize 

these pathways to spread from cell to cell, often with undesired consequences on fitness, for example 

due to metabolic burden. Bacteria have evolved an armada of defense systems that counteract selfish 

elements; those systems that target DNA must be able to differentiate potentially detrimental nonself-

DNA from self-DNA to spare the host chromosome(s). CRISPR/Cas systems target specific DNA base 

sequences that are absent from the chromosome, while restriction-modification systems discriminate 

on the basis of DNA modifications. More recently, SMC and SMC-like complexes have also been 

implicated in bacterial immunity against plasmids (Doron et al., 2018; Jaskolska et al., 2022; Panas et 

al., 2014). A putatively related function in viral restriction against HBV, EBV, KSHV, and HIV-1 has been 

reported for the Smc5/6 complex in human cells (Decorsiere et al., 2016; Dupont et al., 2021; Han et 

al., 2022; Murphy et al., 2016; Yiu et al., 2022). 

SMC complexes are multi-subunit DNA motor complexes that normally fold chromosomal DNA into a 

loop or a series of DNA loops in a process called DNA loop extrusion (Yatskevich et al., 2019). They are 

found in all domains of life. In eukaryotes, three types of complexes (denoted as Smc5/6, cohesin and 

condensin) are nearly ubiquitous (Yoshinaga and Inagaki, 2021). In prokaryotes, the Smc-ScpAB 

complex is predominant; it contributes to chromosome organization and segregation in diverse 

bacteria and likely also in archaea (Gruber, 2018). Other SMC variants, named MukBEF and MksBEF 

(for MukBEF-like SMC complexes), also support chromosome organization in bacteria (Lioy et al., 

2020; Makela and Sherratt, 2020; Petrushenko et al., 2011). MukBEF is found in E. coli and related γ-

proteobacteria, while MksBEF is widely scattered over the phylogenetic tree, likely as a result of HGT 

events (Gruber, 2011; Petrushenko et al., 2011). A high divergence of Muk and Mks protein sequences 

from other SMC sequences indicates elevated rates of sequence evolution. 

Some MksBEF systems harbor an additional MksG subunit that shows sequence similarity to 

topoisomerase/primase (TOPRIM) domains (Petrushenko et al., 2011). A Mycobacterium smegmatis 

strain harboring a sporadic mutation in the SMC subunit of such a system had unknowingly been 

selected as lab strain owing to its efficient plasmid transformation, thus implicating MksBEFG in 

plasmid restriction (Panas et al., 2014). Four-membered MksBEFG systems, designated as Wadjet or 

JetABCD, have since been uncovered in multiple species and shown to restrict plasmids in B. subtilis 

and Corynebacterium glutamicum (Bohm et al., 2020; Doron et al., 2018). All systems (hereafter 

denoted as the Wadjet family of JetABCD systems) share the characteristic domain organization with 

other SMC complexes, suggesting that they support a similar biochemical activity and raising the 
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question of how DNA loop extrusion or DNA translocation may be related to the discrimination of 

plasmid and chromosome DNA. 

Wadjet systems comprise four subunits: the ‘kleisin’ JetA (MksF), the ‘kite’ JetB (MksE), the SMC JetC 

(MksB), and Wadjet-specific JetD (MksG) (Figure 1A). All four subunits appear essential for plasmid 

restriction (Doron et al., 2018). SMC subunits harbor a long intramolecular coiled coil ‘arm’ with a 

dimerization ‘hinge’ domain at one end and an ATP Binding Cassette (ABC) ATPase ‘head’ domain at 

the other (Yatskevich et al., 2019). Kite subunits associate as a homodimer with the middle segment 

of a kleisin subunit. Kleisin proteins typically connect the head of one SMC protein to the head-

proximal coiled coil of another, thus forming the typical tripartite protein ring topology (Burmann et 

al., 2013). MukF-type kleisins moreover undergo homotypic interactions via additional N-terminal 

sequences, thus generating dimer-of-dimers, with the two associating motor units presumably 

translocating in opposite direction to support two-sided symmetric DNA loop extrusion (Burmann et 

al., 2021; Fennell-Fezzie et al., 2005). Like MukF, JetA includes additional amino-terminal sequences 

implying that the JetABCD complex would also form a dimer-of-dimers (‘d-o-d’). 

DNA loop extrusion by SMC complexes can explain a multitude of DNA folding patterns detected in 

chromosomes of diverse organisms including bacteria (Yatskevich et al., 2019). DNA loop extrusion 

has been observed with purified SMC complexes (cohesin and condensin) in single-molecule 

experiments (Davidson et al., 2019; Ganji et al., 2018; Kim et al., 2019). SMC motors move in large 

steps along DNA, in one or both directions, are able to bypass obstacles on the DNA relatively easily, 

but readily stall when the tension in the translocated DNA or to-be-translocated DNA increases. These 

unique features are explained for example by the ‘DNA segment capture’ model (also called ‘hold-

and-feed’ model) where a small loop of DNA is captured between open SMC arms to be then fused 

with the previously captured DNA loop as the SMC arms close (Diebold-Durand et al., 2017; Nomidis 

et al., 2022). How DNA loop extrusion may promote the specific elimination of selfish DNA is not clear. 

Here we have first characterized the DNA substrate requirements of Wadjet systems in B. subtilis and 

E. coli indicating a limit in target DNA size and an exclusive preference for circular DNA. We then

reconstituted an ATP-dependent enzymatic reaction for a selected purified JetABCD complex, leading

to cleavage of several forms of circular plasmid DNA, but not of linear derivatives. The structure of its

dimeric core complex was solved by cryo-electron microscopy (cryo-EM), elucidating a novel dimer-

of-dimers configuration. Finally, we propose a hypothesis for the specific recognition of plasmid DNA

by the self-collision of two DNA motor units of a JetABCD complex upon completion of extrusion of

the extrachromosomal circular DNA molecule, eventually leading to DNA cleavage by the activation of

an endonuclease function.
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Results 

JetABCD systems restrict circular plasmids in B. subtilis regardless of replication type and DNA 

uptake route 

To characterize the substrate requirements of Wadjet and to uncover its limitations, we cloned three 

JetABCD operons from Bacillus species (B. cereus, B. vireti and B. thuringiensis) under the constitutive 

Psmc promoter and integrated them at the amyE locus of the B. subtilis chromosome (Figure 1A) 

(Doron et al., 2018). The resulting strains were no longer able to be transformed with an 8.3 kb theta-

replicating plasmid, pHCMC05, indicating hindrance of DNA uptake or plasmid maintenance by 

JetABCD as previously reported (Doron et al., 2018). Another plasmid, pC194, which undergoes rolling 

circle replication, did not yield colonies either when transformed into the JetABCD-harboring strains 

(Figure 1B). This was reverted when a conserved glutamic acid residue of the JetD TOPRIM domain 

was mutated to alanine (Figure 1B) (Doron et al., 2018). The lack of transformation is not due to 

defective natural competence as transformants still arose when the antibiotic resistant marker was 

integrated in the host chromosome rather than encoded on a plasmid (Figure S1A). Moreover, a larger 

65 kb conjugative plasmid, pLS20, which is naturally resident in some B. subtilis strains, failed to 

transfer itself into these recipients (Figure 1C) (Itaya et al., 2006). The findings rule out the possibilities 

that the mode of plasmid replication or the route of DNA uptake are determinants for plasmid 

restriction by JetABCD. 

Plasmid restriction by JetABCD is sequence independent but limited by DNA size 

We next wondered whether endogenously derived DNA would also be targeted by JetABCD. To test 

this, we excised DNA circles from the chromosome by homologous recombination. Briefly, we 

integrated two cassettes containing partially overlapping fragments of a kanamycin resistance gene 

(neoR) in direct orientation into the chromosome (Wu and Errington, 2002). Sporadic intramolecular 

homologous recombination events give rise to extrachromosomal circular DNA containing full-length 

neoR, a plasmid-derived replication origin as well as several essential genes, leading to loss of viability 

in case of its restriction by JetABCD (Figures 1D, S1B). Recombinants were selected by growth on agar 

plates supplemented with kanamycin. In cells expressing JetABCD, we did not obtain any kanamycin-

resistant colonies when flanks were integrated at a distance of 10 kb, indicating that the excised 10 kb 

circular DNA was efficiently restricted (Figure 1E). Similar results were observed with a 35 kb spacing 

of the DNA flanks. However, when the flanks were placed at larger distances (from 57 kb to 85 kb), 

kanamycin-resistant colonies were observed with a higher rate (Figure 1E). This suggests that plasmid 

restriction by JetABCD is efficient on smaller plasmids, and that the size threshold above which 
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restriction wanes appears to be in the range of fifty to hundred kilobases. As JetABCD can restrict 

chromosome-DNA-derived DNA circles, we conclude it does not discriminate DNA molecules based on 

DNA sequence or DNA modification. 

A linear plasmid evades restriction by E. coli JetABCD in vivo 

SMC complexes are thought to extrude DNA loops to carry out their cellular function. We hypothesized 

that linear DNA would evade restriction as loop-extruding JetABCD complexes may dislodge from DNA 

at the ends. No linear plasmids have been described for B. subtilis. We thus established plasmid 

restriction in E. coli, which can host pJAZZ, a 12.3 kb linear plasmid with DNA hairpin telomeres derived 

from E. coli phage N15 (Figure 2A) (Ravin, 2011). We recovered a JetABCD operon from environmental 

E. coli strain GF4-3 (Foster-Nyarko et al., 2021) which has limited sequence homology and a shared

operon organization to the counterpart from B. cereus (Figure 2B). The operon was placed under an

arabinose-inducible promoter (Pbad) and integrated into the E. coli K12 chromosome near the glmS

locus by mini-Tn7 transposon-based insertion (Figueroa-Cuilan et al., 2016).

Plasmid restriction appeared less robust in E. coli as transformations yielded normal numbers of

colonies despite induction with arabinose before or after transformation. However, the stability of

plasmids in cells grown for multiple generation in liquid culture in the absence of antibiotic selection

was markedly reduced when jetABCD expression was induced with arabinose. Six tested circular

plasmids with different replication origins (Table S3) were essentially eliminated from the cultures

after ten generations of growth without selection (Figure 2C). As expected, plasmid loss was neither

observed in E. coli expressing the ATPase-dead mutant JetC(E1022Q, ‘EQ’), nor JetD(E248A)

(equivalent to E226A, E295A and E298A mutations of Bacillus cereus, vireti, and thuringiensis JetD,

respectively of Figure 1B) (Figure S2A). pJAZZ, however, remained remarkably stable even after 50

generations of growth (Figures 2C, 2D), suggesting that linear DNA can indeed efficiently evade

plasmid targeting by JetABCD. Of note, no obvious effects on plaque formation upon infection with

several tested E. coli phages (T4, T6, T7, P1, and lambda) was observed (Figure S2B) as previously

found for B. subtilis (Doron et al., 2018), implying that lytic cycles are not affected by JetABCD. We

conclude that JetABCD targets smaller-sized circular DNA molecules but not linear or larger DNA

molecules, including the host chromosome(s).

Purified JetABCD cleaves circular but not linear DNA molecules 

To better understand how JetABCD recognizes a smaller circular DNA molecule and to study its fate, 

we next aimed to reconstitute the activity of a JetABCD holo-complex by recombinant expression of 

subunits in E. coli. When compared to the three Bacillus variants, JetABCD proteins from E. coli strain 
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GF4-3 supported better protein expression and purification. It was thus chosen for detailed analysis. 

Plasmids harboring wild-type (but not mutant) versions of all JetABCD components were poorly co-

transformed into E. coli strains, presumably due to JetABCD restricting its own expression plasmids. 

We thus resorted to expressing and purifying JetD separately from the other components. Affinity 

chromatography, ion exchange chromatography, and/or size exclusion chromatography (SEC) were 

used to produce preparations of untagged JetD and of JetABC complexes carrying a 10His-Twin-Strep-

tag on the N-terminus of JetA. To reconstitute the holo-complex, JetABC was mixed with JetD and 

analyzed by SEC showing that the four subunits co-eluted from the column in approximately 

stoichiometric amounts (Figure 3A, S3A). When performing initial DNA binding assays by 

electrophoretic mobility shift experiments, we noticed that the gel mobility of a large test plasmid was 

surprisingly increased upon pre-incubation with JetABCD in our agarose gel running system. The 

increased mobility approximately corresponded to the mobility of plasmid DNA linearized by a 

restriction endonuclease, indicating that the plasmid was cleaved by JetABCD. Normal mobility was 

not recovered by protein denaturation using SDS addition and heat treatment, supporting the idea of 

a covalent modification of DNA. Protein denaturation was used routinely prior to gel analysis in the 

following experiments.  

Cleavage activity by JetABCD was observed with a variety of circular plasmid DNA substrates but not 

with linear pJAZZ (Figures 3B, 3C, S3B), mirroring what we found for plasmid restriction in vivo (Figure 

2C). We proceeded with a 1.9 kb test circular plasmid, denoted as pDonor, for subsequent 

experimentation (Taschner et al., 2021) (Figure S3C). JetABC and JetD alone did not show activity, 

indicating that all four subunits are needed for cleavage (Figure 3D).  

To characterize the nature of the DNA ends generated by JetABCD cleavage, we first incubated the 

JetABCD cleavage product with the exonuclease RecBCD (Simon et al., 2016). This resulted in the 

complete elimination of the JetABCD-cleaved DNA species but not of uncleaved plasmid DNA (Figures 

3E and S3D). We also treated JetABCD-cleaved DNA with proteinase K prior to gel analysis to remove 

any covalently attached polypeptides. No obvious alteration in the gel running behavior was detected 

(Figure S3E). These findings strongly suggest that JetABCD-generated DNA ends are not blocked by 

proteins and indicate that JetABCD may hydrolyze both strands of the DNA double helix to generate 

free DNA ends. Accordingly, JetABCD is not a suicide enzyme that remains covalently associated with 

cleaved DNA (like the distantly related TOPRIM containing protein Spo11). Notably, T4 ligase 

treatment only poorly but detectably re-circularized the JetABCD cleavage product, implying that DNA 

cleavage generated compatible ends with 5’ phosphates on some plasmid molecules (Figure 3F). No 

plasmid multimers were detected after ligation (as predominantly seen after NcoI digest) hinting at a 
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preference for intra-molecular ligation. Possibly, DNA ends generated on different DNA molecules are 

incompatible, for example due to differences in the base sequence of the overhangs.  

SMC complexes (on their own) generally do not show sequence specificity in DNA binding. To test 

whether DNA cleavage occurs with preference for certain sequence(s) or not, we combined JetABCD 

incubation with pre- or post-treatment by the BsaI restriction endonuclease which cuts at a defined 

position. As expected for random DNA cleavage by JetABCD, subsequent treatment with the 

restriction endonuclease converted the linear band species into a smear of shorter DNA fragments 

(Figure 3G). The smear was not completely uniform, indicating that JetABCD may have slight target 

site preferences. Importantly, treatment of plasmid DNA with the restriction endonuclease prior to 

incubation with JetABCD produced full-length linear DNA rather than a smear (Figure 3G), as expected 

from the specificity of JetABCD for circular DNA. 

Strict requirements for DNA cleavage by JetABCD  

We next investigated the requirements for cleavage activity by JetABCD. No DNA cleavage was 

observed without ATP (Figure 4A) indicating that DNA cleavage depends on the SMC ATPase. To test 

this more directly, we produced an ATPase mutant complex harboring JetC(EQ). Equivalent Walker B 

motif mutations are widely used in ABC-type ATPases to prevent ATP hydrolysis but permit normal 

ATP binding and ATP-head engagement. As expected, JetC(EQ) was unable to support ATP hydrolysis 

despite being well expressed and efficiently producing JetABCD holo-complexes (Figure S4A). It also 

failed to promote ATP-dependent DNA cleavage (Figure 4A). This implies that ATP binding, head 

engagement, and ATP hydrolysis are all needed (at least once) for DNA cleavage, being consistent with 

the idea that DNA cleavage requires a DNA-motor function of JetABCD. Apart from the Mg2+ that we 

normally supply together with ATP in the reaction buffer (HEPES pH 7.5 10 mM, KOAc 150 mM, MgCl2 

5 mM, ATP 1 mM, TCEP 1 mM), no addition of further divalent cations was needed for DNA cleavage, 

implying that the putative endonuclease works with Mg2+ or without divalent cation. 

Titration experiments with decreasing amounts of JetABCD indicated that the turnover number is 

relatively low. After prolonged periods of incubation (60 min), a given JetABCD complex cleaves more 

than one plasmid (Figures 4B, S4B). In contrast, somewhat lower, sub-stoichiometric amounts of JetD 

were able to support efficient cleavage, implying that JetD is not involved in the rate-limiting step of 

the process. JetD may not be bound to JetABC at all times and is able to be recruited by JetABC for the 

processing of a substrate (Figure 4C). Competition experiments using excess of linear DNA (genomic 

DNA, ‘gDNA’) however reduced the DNA cleavage activity, implying that JetABC also binds to linear 

DNA but without processing it (Figure 4D).  
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We did not observe DNA cleavage when using JetD(E248A) mutant instead of wild-type JetD (Figure 

S4E) (Doron et al, 2018). Moreover, DNA cleavage by JetABCD(WT) was inhibited by an excess of 

JetD(E248A) (Figure S4E), suggesting that JetD(E248A) can outcompete JetD binding to JetABC.  

We next investigated how plasmid DNA topology impacts cleavage by JetABCD. In proliferating 

bacterial cells, DNA is typically underwound (‘negatively supercoiled’; having a deficit in helical turns) 

due to the combined action of transcription and topoisomerases (Dorman, 2019). A relaxed 

conformation of plasmid DNA can be obtained in vitro by breaking of one of the two DNA strands 

(‘nicked’ DNA) by a nicking endonuclease. Re-ligation of the DNA nick results in a covalently closed 

circular form that is now devoid of underwinding (‘relaxed’). Four forms of plasmid DNA (supercoiled, 

linear, relaxed, nicked) can be separated by agarose gel electrophoresis in the presence of ethidium 

bromide (EtBr), whose DNA intercalation leads to local DNA underwinding and, in covalently closed 

circular molecules, to compensatory positive supercoiling. We found that neither the nicked (by 

Nt.BspQI) nor the relaxed form of pDonor evaded DNA cleavage by JetABCD (Figures 4E, S4C). Like 

cleavage of supercoiled pDonor DNA, cleavage of the nicked form required ATP, JetD as well as JetABC 

(Figure S4D). These results suggest that the helical topology of DNA is not a critical determinant of 

cleavage. Moreover, the building up of helical stress by an SMC-motor action is probably not required 

for plasmid restriction, at least in vitro, as helical stress is expected to be dissipated rapidly on nicked 

DNA (unless being constrained by JetABCD). Of note, we find that the presence of the nick does not 

obviously alter target site preference of JetABCD (comparing Figure 3G and S4D). 

Altogether, we conclude that plasmid restriction is likely mediated by DNA cleavage. JetABCD cleaves 

DNA with a high specificity for circular plasmid DNA of multiple forms, which is likely governed by a 

SMC ATPase DNA-size-and-shape-sensing mechanism and the ensuing activation of a JetD-

endonuclease reaction. 

Cryo-EM structure of the JetABC core reveals a novel DNA-motor dimer arrangement 

To better understand how the SMC motor may instruct the DNA cleavage reaction, we investigated 

the structure of (DNA-free) JetABCD by cryo-EM. The reconstituted E. coli JetABCD complex (mixed 

with ATP) was well suited for cryo-grid preparation, yielding grids with well-dispersed particles. We 

collected about 6000 micrographs on a Titan Krios, automatically picked more than 600,000 particles 

and obtained 2D class averages (Figure S5A, S5B). 

In the resulting cryo-EM map, we observed a compact dimer-of-dimers configuration with two JetC 

motor units intimately held together by a central JetAB subcomplex. In the structure, the JetC dimers 

are oriented relative to each other in a narrow angle (roughly 30°) and with opposing orientations 

(Figure 5A). This V-shaped ‘closed’ configuration contrasts a much more ‘open’ I-shaped configuration 
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observed for MukBEF where two motors are facing in the same direction (Burmann et al., 2021) (Figure 

5D). The alternative dimer-of-dimers configuration is governed by distinct contacts formed between 

N-terminal JetA sequences and the JetC proteins (discussed further below). In isolation, all visible

domains resemble corresponding parts from other SMC complexes, particularly MukBEF (Figure S6A).

No obvious density was observed for the more distal JetC coiled coils, presumably due to intrinsic

structural flexibility, and for JetD. Notably, the hinge is also not visible in the map, suggesting that

the hinge does not come into the vicinity of the core complex as seen in several other SMC

complexes such as MukBEF, cohesin, and condensin but not in Smc-ScpAB and Smc5/6 (Burmann et

al., 2019; Lee et al., 2020; Soh et al., 2015; Taschner et al., 2021).

The JetABC dimer-of-dimers is comprised of three substructures: a JetAB center and two peripheral

JetC motor units (Figure 5A). These substructures individually resemble the matching substructures of

MukBEF (Figure 5B, C). The central JetAB subcomplex is formed from a dimer of JetA N-terminal

sequences (JetAN) as well as four JetB kite proteins. Like in MukFN, JetAN folds into a winged-helix

domain (WHD) and a helical bundle, which together form a tight homodimer (Burmann et al., 2021;

Fennell-Fezzie et al., 2005). The JetB proteins form a canonical homodimer and bind to the otherwise

unstructured JetA middle segment (Palecek and Gruber, 2015). The motor units are made up of a

JetC SMC dimer bound via one of the two head domains, the κ-JetC head, to the C-terminal JetA WHD

(Figure 5C). The heads appear in a juxtaposed, ATP-non-engaged conformation (despite the presence

of ATP during grid preparation) (Burmann et al., 2021; Diebold-Durand et al., 2017).

The overall architecture of the JetABCD structure deviates from MukBEF (Figure 5D) by a different

association of the central unit and the two motor units. In the cryo-EM structure, the JetA helical

bundle associates with the κ-JetC head-proximal coiled coil helices in a perpendicular manner (Figure

5E) with additional contacts being provided by the JetC coiled coil and the JetA WHDs. In MukBEF,

however, the MukF helical bundle is bound to the MukB head at a lower position and oriented almost

in parallel to the MukB coiled coil (Figure 5E). This large angular change results in an almost 180° re-

configuration of the two motor units in the dimer-of-dimers (Figure 5D). In the closed configuration

the JetB kite subunits are nevertheless positioned close to the head domains, possibly indicating that

they can support DNA clamping after minor reconfiguration. Thus, the closed configuration may

conceivably be competent for DNA translocation and loop extrusion. Curiously, a given JetA subunit

connects a protomer from one JetC dimer to a protomer from the other JetC dimer, rather than

forming the tripartite rings seen in other SMC complexes (Figure 5A). If true, this has potential

implications for DNA loading as the respective ring interface has been implicated in ring opening for

DNA loading in some SMC complexes. DNA loop extrusion however might not be affected by the

alternative subunit connectivity, assuming it does not require gate opening.
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We also probed JetA-JetC associations by structural predictions with AlphaFold. Using relevant 

fragments of JetA and JetC as input sequences, the predictions readily returned structural models that 

more closely resemble the MukBEF architecture than the JetABC cryo-EM structure (Figure S6C). This 

possibly suggests that the JetABC complex is also able to adopt a MukBEF-like open configuration and 

if so, it is conceivable that the open configuration supports DNA loop extrusion (as expected for 

MukBEF) while the closed configuration confers DNA cleavage. Alternatively, the AlphaFold prediction 

might be an artefact due to a bias towards the open conformation caused by the presence MukBEF 

entries in the learning dataset. The significance of these forms of JetABCD thus remains to be 

established.   

Since JetD was absent from the cryo-EM structure (despite being present during cryo-grid preparation) 

we modelled it by AlphaFold. The JetD AlphaFold model displayed highest similarity with the TOPRIM 

domain of the DNA cleavage subunit A of DNA topoisomerase VI (Figure 5F) (Corbett et al., 2007; 

Nichols et al., 1999). On the JetD TOPRIM domain, we readily recognized the DxD motif residues (D290 

and D292) and a conserved glutamate (E248) that in topoisomerase VI coordinate a Mg2+ ion for DNA 

binding and cleavage of the scissile bond (Nichols et al., 1999). The fold of the adjacent domain (a 

WHD in topo VIA) showed more limited similarities; we failed to identify a residue that is equivalent 

to the catalytic tyrosine undergoing transesterification in topoisomerase VI. The apparent absence of 

the catalytic tyrosine is consistent with the notion that JetABCD hydrolyses the DNA phosphodiester 

backbone (rather than undergoing transesterification). Other conserved JetD residues (such as K172, 

R182, E362, and E364) (PFAM: DUF2220, DUF3322) likely contribute to catalysis instead.  
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Discussion 

Self-nonself discrimination is a ubiquitous challenge in biology. We show here that JetABCD specifically 

recognizes plasmids based on their circular nature and limited size.  Canonical SMC complexes support 

a multitude of chromosome-related processes by DNA loop extrusion. The related Wadjet system 

putatively harnesses DNA loop extrusion to specifically recognize plasmids for restriction. Our finding 

that DNA cleavage requires JetC ATP hydrolysis corroborates the idea that plasmid restriction rely on 

a SMC DNA motor function. Plasmid restriction by JetABCD eliminates DNA actively by DNA cleavage 

rather than by DNA passivation through sequestration or silencing. However, DNA cleavage is a highly 

dangerous activity that requires strict control. Here, we propose a mechanism for extrachromosomal 

DNA recognition and elimination by JetABCD with possible implications for viral restriction by Smc5/6. 

A model for specific elimination of smaller circular DNA molecules 

We show here that JetABCD discriminates DNA molecules predominately on the basis of their circular 

nature and limited size, apparently regardless of DNA helical topology. To explain how JetABCD 

efficiently targets circular plasmids without endangering genome integrity by generating DNA breaks 

on the chromosome, we propose that DNA cleavage only occurs when a single JetABC(D) complex 

completes the extrusion of an entire plasmid molecule. In this situation, the two motor units of the 

respective JetABCD complex are expected to approach one another (Figure 6A, panel i), eventually 

resulting in the stalling of DNA translocation. The stalling in turn may lead to the buildup of tension 

within the motor complex and/or the remainder of the DNA possibly generating the active DNA 

cleavage unit (Figure 6A). The tension may thus serve as signal for the activation of the DNA cleavage 

reaction, for example by allowing the engagement of two JetD subunits that are otherwise kept apart 

by being bound to opposite motor units or by the reconfiguration of the dimer-of-dimers architecture. 

The tension however might not critically rely on DNA over- or underwinding since we find that nicked 

plasmid DNA is targeted by JetABCD almost as efficiently as negatively supercoiled DNA (Figure 4E, 

S4D). 

On the chromosome, JetABCD complexes are likely to meet other complexes or to stochastically 

dissociate from DNA prior to completing extrusion due to the larger size of chromosomal DNA (Figure 

6A, panel ii). Linear DNA molecules also hinder the generation of self-stalling motor complexes due to 

the dislodging of motor units at the DNA ends (Figure 6A, panel iii). A prediction from this hypothesis 

is that elevated levels of JetABCD may lower the target size limit due to an increased frequency of 

collisions between JetABCD complexes; preliminary results however did not support this notion 

(Figure S1C), possibly indicating that target size limitation might be mostly governed by a finite 

processivity or chromosome residence time. 
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This simple hypothesis—while being entirely speculative—readily explains self-nonself discrimination. 

It may equally well apply to viral recognition by Smc5/6 even if DNA cleavage might be replaced by a 

more passive mechanism for DNA inactivation such as the silencing of gene expression from the 

circular viral genome or a block in DNA replication.  

Differences with known SMC complexes 

Our structure of the JetABCD core provides first hints at the underlying structural mechanisms. As 

described above, the two motor units are arranged distinctly from MukBEF. The V-shaped 

arrangement of the motor units will lead to unique organization of DNA with potential implication 

for one or more steps of the activity cycle, i.e. for DNA loading, translocation, and restriction. 

The alternative geometry has potential implications for the presumed DNA motor activity of these 

SMC complexes. The open configuration of the two motors in MukBEF allows them to reel DNA in 

from the same side, rather than from opposite sides as would be expected from a stacked motor 

geometry in JetABCD (Figure 6B). We speculate that the closed configuration may be particularly 

relevant during the final stages of DNA restriction, when the two motor units approach each other, 

then stall, leading to tension in the remaining DNA. A reconfiguration from an initially open to the 

closed configuration upon the buildup of DNA tension is also possible; it might serve to activate DNA 

cleavage. Assuming that the DNA segment capture model (Diebold-Durand et al., 2017; Nomidis et al., 

2022) applies to JetABCD, we can predict the directionality of DNA transport by the JetABCD dimer 

(Figure 6B). Intriguingly, during termination, the closed configuration would lead to the formation of 

a small circle- or teardrop-shaped DNA in the remaining DNA, which conceivably may act as signal for 

DNA cleavage activation, for example, by generating a higher-affinity binding site for a JetD dimer 

(Figure 6B, right panels).  

Currently, we cannot exclude the possibility that the closed configuration is a resting state of JetABCD 

or even an artefact of recombinant protein production. It will be exciting to determine whether the V-

shaped organization of SMC motors is a unique feature of complexes with restriction functions or also 

found in DNA loop extrusion complexes. Solving the structures of other JetABCD systems, particularly 

of those with diverged sequences, will be instrumental. The comparison with other SMC complexes is 

important to conclusively determine whether the altered motor geometry is crucial for plasmid 

restriction or a byproduct of divergent evolution. At the same time, it is important to detect these 

configurations in solution at different steps of the restriction process. 

It is noteworthy that another endonuclease also displays an SMC-like architecture. Unlike JetABCD 

however, Rad50/Mre11 specifically recognizes linear DNA molecules and cleaves at the DNA ends to 
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initiate DNA repair (Kashammer et al., 2019). Remarkably, machines sensing the presence and absence 

of DNA ends, respectively, share a common ancestry. 

Evolutionary implications

Defense systems generally exhibit higher levels of sequence divergence, presumably due to elevated 

selection pressures exerted by rapidly evolving selfish DNA elements. The relatively high levels of 

divergence observed in JetABCD presumably reflects its history as defense system. It will be 

exciting to identify plasmids that evade restriction by JetABCD, to uncover the underlying 

mechanisms, and to reveal how JetABCD may adapt to counteract the evasion mechanism. 

MukBEF shows similar sequence divergence from the more canonical SMC complexes, 

despite its involvement in a housekeeping function, possibly indicating that it also underlies high 

selection pressure or more likely that it emerged from an ancestral JetABCD-like immunity system. 

Our structure and sequence analysis reveals features of JetABCD that it shares exclusively with 

MukBEF (the dimer-of-dimers configuration, reduced hinge domain size, elbow folding albeit at a 

different angle), others that are more closely related to Smc-ScpAB (arms with fewer coiled coil 

deviations, simpler joint, and some that are intermediary (such as a simplified version of the 

MukBEF larynx). These observations further support the idea that MukBEF has emerged from a 

JetABCD-like ancestor. If so, then the mechanisms of DNA extrusion by the respective defense 

and chromosome organization systems must be principally equivalent and interchangeable. 

Conceivably, JetABCD systems may even contribute to chromosome organization or segregation 

while scanning cellular DNA for the presence of foreign elements. They may thus represent dual 

function machines promoting chromosome maintenance and plasmid DNA anti-maintenance all at 

the same time. 

Possible applications 

Like other DNA-based immunity systems including R/M and CRISPR/Cas, the unique DNA cleavage 

activity of JetABCD may serve as powerful tool in research and biotechnology. We envision its 

implication in the elimination of plasmids from DNA preparations, the identification or isolation of 

DNA circles for diagnostic purposes (e.g. in cancer patients), the mutagenesis of DNA (e.g. by DNA 

insertion) at randomized positions for screening purposes. Finally, its application for the specific 

elimination of extrachromosomal circular DNA (‘plasmid curing’) from cells or from microbes are in 

principle conceivable for treatments against viral infection, cancer, antibiotic resistance, and cellular 

aging (Kumar et al., 2020; Vrancianu et al., 2020).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510915
http://creativecommons.org/licenses/by/4.0/


Acknowledgements 

We are grateful to the Dubochet Centre for Imaging in Lausanne for cryo-grid preparation and cryo-

imaging, to Kyle Muir for continuous help during initial cryo-EM data analysis, and to Michael Taschner 

for advice in recombinant protein production and purification. We thank David Adams and Melanie 

Blokesch for help and materials for E. coli genetic engineering and to Mark Pallen for kindly providing 

the E. coli strain GF4-3. This work was supported by the European Research Council (724482 to S.G.). 

HWL is supported by an EMBO Postdoctoral fellowship (ALTF 490-2021). 

 

Author contributions 

Conceptualization, S.G., H.W.L., and F.R.H; Methodology, B.B., A.M., Y.L., H.W.L., and F.R.H; 

Investigation, H.W.L., and F.R.H; Writing – Original Draft, H.W.L., and S.G.; Writing – Review & Editing, 

all authors.; Funding Acquisition, S.G.; Resources, S.G.; Supervision, S.G. 

 

Declaration of Interests 

The authors declare that they have no competing interests. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510915
http://creativecommons.org/licenses/by/4.0/


References 

 

Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and Adams, P.D. 
(2018). Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct 
Biol 74, 531-544. 10.1107/S2059798318006551. 
Bao, Y., Lies, D.P., Fu, H., and Roberts, G.P. (1991). An improved Tn7-based system for the single-copy 
insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109, 167-168. 
10.1016/0378-1119(91)90604-a. 
Bohm, K., Giacomelli, G., Schmidt, A., Imhof, A., Koszul, R., Marbouty, M., and Bramkamp, M. (2020). 
Chromosome organization by a conserved condensin-ParB system in the actinobacterium 
Corynebacterium glutamicum. Nat Commun 11, 1485. 10.1038/s41467-020-15238-4. 
Burmann, F., Funke, L.F.H., Chin, J.W., and Lowe, J. (2021). Cryo-EM structure of MukBEF reveals DNA 
loop entrapment at chromosomal unloading sites. Mol Cell 81, 4891-4906 e4898. 
10.1016/j.molcel.2021.10.011. 
Burmann, F., Lee, B.G., Than, T., Sinn, L., O'Reilly, F.J., Yatskevich, S., Rappsilber, J., Hu, B., Nasmyth, 
K., and Lowe, J. (2019). A folded conformation of MukBEF and cohesin. Nat Struct Mol Biol 26, 227-
236. 10.1038/s41594-019-0196-z. 
Burmann, F., Shin, H.C., Basquin, J., Soh, Y.M., Gimenez-Oya, V., Kim, Y.G., Oh, B.H., and Gruber, S. 
(2013). An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat Struct Mol Biol 20, 371-379. 
10.1038/nsmb.2488. 
Corbett, K.D., Benedetti, P., and Berger, J.M. (2007). Holoenzyme assembly and ATP-mediated 
conformational dynamics of topoisomerase VI. Nat Struct Mol Biol 14, 611-619. 10.1038/nsmb1264. 
Davidson, I.F., Bauer, B., Goetz, D., Tang, W., Wutz, G., and Peters, J.M. (2019). DNA loop extrusion by 
human cohesin. Science 366, 1338-1345. 10.1126/science.aaz3418. 
Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall, W.B., 
3rd, Snoeyink, J., Richardson, J.S., and Richardson, D.C. (2007). MolProbity: all-atom contacts and 
structure validation for proteins and nucleic acids. Nucleic Acids Res 35, W375-383. 
10.1093/nar/gkm216. 
Decorsiere, A., Mueller, H., van Breugel, P.C., Abdul, F., Gerossier, L., Beran, R.K., Livingston, C.M., Niu, 
C., Fletcher, S.P., Hantz, O., and Strubin, M. (2016). Hepatitis B virus X protein identifies the Smc5/6 
complex as a host restriction factor. Nature 531, 386-389. 10.1038/nature17170. 
Diebold-Durand, M.L., Lee, H., Ruiz Avila, L.B., Noh, H., Shin, H.C., Im, H., Bock, F.P., Burmann, F., 
Durand, A., Basfeld, A., et al. (2017). Structure of Full-Length SMC and Rearrangements Required for 
Chromosome Organization. Mol Cell 67, 334-347 e335. 10.1016/j.molcel.2017.06.010. 
Dorman, C.J. (2019). DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell 
Biol 20, 26. 10.1186/s12860-019-0211-6. 
Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., and Sorek, R. (2018). 
Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359. 
10.1126/science.aar4120. 
Dupont, L., Bloor, S., Williamson, J.C., Cuesta, S.M., Shah, R., Teixeira-Silva, A., Naamati, A., 
Greenwood, E.J.D., Sarafianos, S.G., Matheson, N.J., and Lehner, P.J. (2021). The SMC5/6 complex 
compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr. Cell Host Microbe 29, 792-
805 e796. 10.1016/j.chom.2021.03.001. 
Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta 
Crystallogr D Biol Crystallogr 66, 486-501. 10.1107/S0907444910007493. 
Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., 
Yim, J., et al. (2022). Protein complex prediction with AlphaFold-Multimer. bioRxiv. 
Fennell-Fezzie, R., Gradia, S.D., Akey, D., and Berger, J.M. (2005). The MukF subunit of Escherichia coli 
condensin: architecture and functional relationship to kleisins. EMBO J 24, 1921-1930. 
10.1038/sj.emboj.7600680. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510915
http://creativecommons.org/licenses/by/4.0/


Figueroa-Cuilan, W., Daniel, J.J., Howell, M., Sulaiman, A., and Brown, P.J. (2016). Mini-Tn7 Insertion 
in an Artificial attTn7 Site Enables Depletion of the Essential Master Regulator CtrA in the 
Phytopathogen Agrobacterium tumefaciens. Appl Environ Microbiol 82, 5015-5025. 
10.1128/AEM.01392-16. 
Foster-Nyarko, E., Alikhan, N.F., Ravi, A., Thomson, N.M., Jarju, S., Kwambana-Adams, B.A., Secka, A., 
O'Grady, J., Antonio, M., and Pallen, M.J. (2021). Genomic diversity of Escherichia coli isolates from 
backyard chickens and guinea fowl in the Gambia. Microb Genom 7. 10.1099/mgen.0.000484. 
Ganji, M., Shaltiel, I.A., Bisht, S., Kim, E., Kalichava, A., Haering, C.H., and Dekker, C. (2018). Real-time 
imaging of DNA loop extrusion by condensin. Science 360, 102-105. 10.1126/science.aar7831. 
Gruber, S. (2011). MukBEF on the march: taking over chromosome organization in bacteria? Mol 
Microbiol 81, 855-859. 10.1111/j.1365-2958.2011.07764.x. 
Gruber, S. (2018). SMC complexes sweeping through the chromosome: going with the flow and against 
the tide. Curr Opin Microbiol 42, 96-103. 10.1016/j.mib.2017.10.004. 
Han, C., Zhang, D., Gui, C., Huang, L., Chang, S., Dong, L., Bai, L., Wu, S., and Lan, K. (2022). KSHV RTA 
antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-
proteasome system. PLoS Pathog 18, e1010744. 10.1371/journal.ppat.1010744. 
Itaya, M., Sakaya, N., Matsunaga, S., Fujita, K., and Kaneko, S. (2006). Conjugational transfer kinetics 
of pLS20 between Bacillus subtilis in liquid medium. Biosci Biotechnol Biochem 70, 740-742. 
10.1271/bbb.70.740. 
Jaskolska, M., Adams, D.W., and Blokesch, M. (2022). Two defence systems eliminate plasmids from 
seventh pandemic Vibrio cholerae. Nature 604, 323-329. 10.1038/s41586-022-04546-y. 
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, 
R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. 
Nature 596, 583-589. 10.1038/s41586-021-03819-2. 
Kashammer, L., Saathoff, J.H., Lammens, K., Gut, F., Bartho, J., Alt, A., Kessler, B., and Hopfner, K.P. 
(2019). Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex. Mol Cell 76, 
382-394 e386. 10.1016/j.molcel.2019.07.035. 
Kim, Y., Shi, Z., Zhang, H., Finkelstein, I.J., and Yu, H. (2019). Human cohesin compacts DNA by loop 
extrusion. Science 366, 1345-1349. 10.1126/science.aaz4475. 
Kumar, P., Kiran, S., Saha, S., Su, Z., Paulsen, T., Chatrath, A., Shibata, Y., Shibata, E., and Dutta, A. 
(2020). ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci 
Adv 6, eaba2489. 10.1126/sciadv.aba2489. 
Lee, B.G., Merkel, F., Allegretti, M., Hassler, M., Cawood, C., Lecomte, L., O'Reilly, F.J., Sinn, L.R., 
Gutierrez-Escribano, P., Kschonsak, M., et al. (2020). Cryo-EM structures of holo condensin reveal a 
subunit flip-flop mechanism. Nat Struct Mol Biol 27, 743-751. 10.1038/s41594-020-0457-x. 
Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., 
Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using X-rays, neutrons and 
electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861-877. 
10.1107/S2059798319011471. 
Lioy, V.S., Junier, I., Lagage, V., Vallet, I., and Boccard, F. (2020). Distinct Activities of Bacterial 
Condensins for Chromosome Management in Pseudomonas aeruginosa. Cell Rep 33, 108344. 
10.1016/j.celrep.2020.108344. 
Makela, J., and Sherratt, D.J. (2020). Organization of the Escherichia coli Chromosome by a MukBEF 
Axial Core. Mol Cell 78, 250-260 e255. 10.1016/j.molcel.2020.02.003. 
Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold: 
making protein folding accessible to all. Nat Methods 19, 679-682. 10.1038/s41592-022-01488-1. 
Murphy, C.M., Xu, Y., Li, F., Nio, K., Reszka-Blanco, N., Li, X., Wu, Y., Yu, Y., Xiong, Y., and Su, L. (2016). 
Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell Rep 16, 
2846-2854. 10.1016/j.celrep.2016.08.026. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510915
http://creativecommons.org/licenses/by/4.0/


Nichols, M.D., DeAngelis, K., Keck, J.L., and Berger, J.M. (1999). Structure and function of an archaeal 
topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J 18, 
6177-6188. 10.1093/emboj/18.21.6177. 
Nomidis, S.K., Carlon, E., Gruber, S., and Marko, J.F. (2022). DNA tension-modulated translocation and 
loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 50, 
4974-4987. 10.1093/nar/gkac268. 
Palecek, J.J., and Gruber, S. (2015). Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved 
Across Bacteria, Archaea, and Eukaryotes. Structure 23, 2183-2190. 10.1016/j.str.2015.10.004. 
Panas, M.W., Jain, P., Yang, H., Mitra, S., Biswas, D., Wattam, A.R., Letvin, N.L., and Jacobs, W.R., Jr. 
(2014). Noncanonical SMC protein in Mycobacterium smegmatis restricts maintenance of 
Mycobacterium fortuitum plasmids. Proc Natl Acad Sci U S A 111, 13264-13271. 
10.1073/pnas.1414207111. 
Petrushenko, Z.M., She, W., and Rybenkov, V.V. (2011). A new family of bacterial condensins. Mol 
Microbiol 81, 881-896. 10.1111/j.1365-2958.2011.07763.x. 
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. 
(2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 
25, 1605-1612. 10.1002/jcc.20084. 
Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and Ferrin, 
T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. 
Protein Sci 30, 70-82. 10.1002/pro.3943. 
Punjani, A., and Fleet, D.J. (2021). 3D variability analysis: Resolving continuous flexibility and discrete 
heterogeneity from single particle cryo-EM. J Struct Biol 213, 107702. 10.1016/j.jsb.2021.107702. 
Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for rapid 
unsupervised cryo-EM structure determination. Nat Methods 14, 290-296. 10.1038/nmeth.4169. 
Ravin, N.V. (2011). N15: the linear phage-plasmid. Plasmid 65, 102-109. 
10.1016/j.plasmid.2010.12.004. 
Scheres, S.H. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure 
determination. J Struct Biol 180, 519-530. 10.1016/j.jsb.2012.09.006. 
Simon, M.J., Sokoloski, J.E., Hao, L., Weiland, E., and Lohman, T.M. (2016). Processive DNA Unwinding 
by RecBCD Helicase in the Absence of Canonical Motor Translocation. J Mol Biol 428, 2997-3012. 
10.1016/j.jmb.2016.07.002. 
Soh, Y.M., Burmann, F., Shin, H.C., Oda, T., Jin, K.S., Toseland, C.P., Kim, C., Lee, H., Kim, S.J., Kong, 
M.S., et al. (2015). Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol
Cell 57, 290-303. 10.1016/j.molcel.2014.11.023.
Taschner, M., Basquin, J., Steigenberger, B., Schafer, I.B., Soh, Y.M., Basquin, C., Lorentzen, E., Raschle,
M., Scheltema, R.A., and Gruber, S. (2021). Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA
substrate binding. EMBO J 40, e107807. 10.15252/embj.2021107807.
Vrancianu, C.O., Popa, L.I., Bleotu, C., and Chifiriuc, M.C. (2020). Targeting Plasmids to Limit
Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 11, 761.
10.3389/fmicb.2020.00761.
Wu, L.J., and Errington, J. (2002). A large dispersed chromosomal region required for chromosome
segregation in sporulating cells of Bacillus subtilis. EMBO J 21, 4001-4011. 10.1093/emboj/cdf393.
Yatskevich, S., Rhodes, J., and Nasmyth, K. (2019). Organization of Chromosomal DNA by SMC
Complexes. Annu Rev Genet 53, 445-482. 10.1146/annurev-genet-112618-043633.
Yiu, S.P.T., Guo, R., Zerbe, C., Weekes, M.P., and Gewurz, B.E. (2022). Epstein-Barr virus BNRF1
destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep
38, 110411. 10.1016/j.celrep.2022.110411.
Yoshinaga, M., and Inagaki, Y. (2021). Ubiquity and Origins of Structural Maintenance of Chromosomes 
(SMC) Proteins in Eukaryotes. Genome Biol Evol 13. 10.1093/gbe/evab256.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510915doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510915
http://creativecommons.org/licenses/by/4.0/


0

100

200

300

400

500

C
ol

on
y 

nu
m

be
r

(T
ra

ns
fo

rm
an

ts
)

pHCMC05 (8.3 kb)

JetABCD - Bc Bv Bt Bc Bv Bt

E2
26

A
E2

95
A

E2
98

AJetD WT

0

50

100

150

200
pC194 (2.9 kb)

- Bc Bv Bt Bc Bv Bt
E2

26
A

E2
95

A
E2

98
AJetD WT

500

1000

1500

2000

C
ol

on
y 

nu
m

be
r

(C
m

R
Te

tR
 c

on
ju

ga
nt

s)

pLS20 (65.8 kb)

Donor
only

- Bc Bv Bt

oriC

ter

10-85
kb

HR

KanR

Chromosome
(B. subtilis)

10kb 35kb 57kb 85kb

- Bc Bt
0

50

100

150

200

- Bc Bt
0

200

400

600

800

1000

- Bc Bt
0

100

200

300

400

500

- Bc Bt
0

100

200

300

DNA circle size

JetABCD system

C
ol

on
y 

nu
m

be
r (

Ka
nR

)

DNA circle

JetABCD (Wadjet)

JetC

JetA

JetB

JetD

Organisation of jetABCD systems

B. cereus (Bc)

B. vireti (Bv)

B. thuringiensis (Bt)

A

B C

D E

conj.

A B C D

D

A B C D

A B C

motor unit

C
ol

on
y 

nu
m

be
r

(T
ra

ns
fo

rm
an

ts
)

JetABCD

JetABCD

dimer-of-dimers
Type I

Type II

Type III

Figure 1
Figure 1. Determinants for plasmid restriction by Bacillus JetABCD in vivo. A) Left panel: Architecture of a dimer-of-
dimers (‘d-o-d’) of JetABCD, with each JetC dimer comprising a motor unit. Right panel: Operon organization for the 
studied Bacillus JetABCD systems. B) Plasmid transformations. Counts of antibiotic-resistant colonies for the indicated B. 
subtilis backgrounds after transformation with the indicated plasmids. Bc: B. cereus; Bv: B. vireti; Bt: B. thuringiensis. 
Means and standard deviations from three independent experiments are shown. C) Plasmid conjugation. Counts of 
chloramphenicol-, tetracycline-resistant transconjugants for the denoted B. subtilis recipients (TetR) after conjugation from a 
donor (CmR) with pLS20(cat). Means and standard deviations from three independent experiments are shown. D) 
Concept of chromosomal excision. E) Chromosome excision. Counts of kanamycin-resistant (containing DNA circles) 
denoted B. subtilis strains. Means and standard deviations from three independent experiments are shown. See Figure S1 
for further experiments and a more detailed scheme for the chromosome excision assay.
See also Figure S1.
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Figure 2. A linear plasmid can evade restriction by E. coli JetABCD. A) Schematic of pJAZZ with its DNA 
hairpin end depicted in the blowout. B) Operon organization for the GF4-3 E. coli JetABCD. For comparison the 
organization of the Bc system is also shown (Figure 1A). C) Graph showing the percentage of plasmid-containing E. 
coli cells (‘plasmid+’) in a cell population after ten generations without selection, with/without JetABCD induction by 
arabinose addition. Means and standard deviations from three independent experiments are shown. D) Graph showing 
the percentage of pJAZZ-containing E. coli cells in a population for up to 50 generations without selection, with/without 
JetABCD induction by arabinose addition. Means and standard deviations from three independent experiments are 
shown.
See also Figure S2.
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Figure 3. Purified JetABCD cleaves circular but not linear DNA molecules. A) Reconstitution of JetABCD. 
Left panel: Elution profiles for analytical SEC of  JetABC and  JetD. Right: Peak fractions of the JetABCD elution 
analysed by SDS-PAGE and Coomassie Brilliant Blue (‘CBB’) staining. ‘TS’, 10His-Twin-Strep-Tag. B) 
Schematic of circular test plasmid pDonor used for cleavage experiments. See Figure S3C for more detailed 
schematic. C) Plasmid DNA cleavage reactions with JetABCD. JetABCD was reconstituted by mixing 12.5 nM 
of JetABC dimer-of-dimers and 25 nM of JetD (final concentrations). pDonor (8.5 nM) or pJAZZ (3.75 nM) 
were mixed with ATP (1 mM) and incubated with JetABCD for 15 minutes at 37°C. The reaction was stopped by 
SDS/heat treatment and the products analyzed by ethidium bromide (‘EtBr’)- agarose gel electrophoresis. D) 
Plasmid DNA cleavage assay with JetABC, JetD, and JetABCD. E) Treatment of the JetABCD cleavage 
products with the exonuclease RecBCD. Note that Streptavidin-blockage of DNA ends on a linear DNA molecule 
hindered degradation by RecBCD (Figure S3D). F) Ligation of JetABCD cleavage products with T4 ligase. Only a 
small fraction of the cleaved product is converted to covalently closed circular DNA (relaxed DNA). G) Post-treatment 
(but not pre-treatment) of JetABCD cleavage products with the restriction endonuclease BsaI results in a DNA 
smear. All gels shown are representative examples from at least two independent experiments. 
See also Figure S3.
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Figure 4. Requirements for plasmid DNA cleavage by JetABCD. A) Plasmid DNA cleavage by JetABCD in presence 
or absence of ATP with JetC(WT) and JetC(EQ) mutant complexes. B) Plasmid DNA cleavage with limiting amounts 
of JetABCD; incubation for 60 min at 37°C. C) Plasmid DNA cleavage with limiting amounts of JetD. ‘d’, dimer. D) 
Competition assay for plasmid cleavage by the addition of increasing amounts (up to 7-fold excess over plasmid DNA) 
of linear genomic DNA (gDNA) prepared from B. subtilis. Note that the large gDNA fragment migrate near the top of 
the gel. E) JetABCD cleavage assays with supercoiled and nicked forms of pDonor plasmid. Plasmids were pre-
treated with the nicking endonuclease Nt.BspQI (‘Nicked’) or mock-treated (‘Supercoiled’). After heat inactivation and 
tenfold dilution into assay buffer, the samples were incubated with JetABCD. JetABC(D) concentrations are denoted 
for the dimer-of-dimers (d-o-d) complex.
See also Figure S4.
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Figure 5. Cryo-EM structure of the JetABC core reveals a novel DNA-motor dimer arrangement. A) i, Density 
map of JetABC (global resolution: 3Å) showing its dimer-of-dimers architecture with JetA subunits in yellow and 
orange colours, JetB subunits in green colours and JetC in blue colours. ii, Pseudo-atomic model of the core of the 
JetABC dimer-of-dimers with schematic in corresponding colours. iii, a side view (90-degree-rotated along the y-axis) 
showing a V-shaped motor unit arrangement. B) Comparison of JetAN dimer (top panel) and MukFN dimer (bottom 
panel,  PDB: 7nz4). Side views of JetA and MukF bound to two dimers of JetB and MukE, respectively, are shown. See 
Figure S6B for top view. C) Comparison of JetC-JetAC interaction with MukB-MukFC (PDB: 7nz4). D) Top: Schematic 
and structures of MukBEF oriented by aligning MukEF like JetAB in Figure 5A. E) Comparison of the JetAN to 
JetC and MukFN to MukB association revealing a large angular change and shift in JetC position and JetA binding 
subunit (front in JetA; back in MukF). F) Alphafold structure predictions of JetD and comparison with topoisomerase 
VI-A subunit. From left to right: i, JetD predicted by AlphaFold, ii, Superimposition with TopoVIA crystal structure 
(PDB: 1d3y) guided by the shared TOPRIM domain. Inset: Note that residues coordinating Mg2+ ions in the 
mjTopoVIA TOPRIM domain (E197, D249, and D251) are conserved in JetD (E248, D290, and D292). See also Figure 
S5 for the cryo-EM pipeline and S6 for more structural comparisons between JetABC and MukBEF.
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Figure 6. Model of plasmid restriction by JetABCD. A) JetABCD randomly binds to its target DNA (top panel), 
with the following consequences depending on DNA type: i) Smaller plasmids: JetABC self-collision occurs when all 
DNA has been extruded, resulting in DNA tension that could trigger conformational changes, resulting in JetD 
recruitment or activation and thereby DNA cleavage. ii) Larger plasmids and chromosomes: Complete loop extrusion 
is less/not permissive, no JetABC self-collision occurs and therefore restriction by cleavage cannot occur. iii) Linear 
plasmids: complete loop extrusion and JetABC self-collision cannot occur as the complex would be dislodged from DNA. 
B) Schematic of how the contrasting MukBEF (green) and JetABCD (blue) motor unit arrangements results in different 
conformations of extruding plasmid DNA loops. For JetABCD, two DNA double-helices would thread through in an 
overlapping, cross-shaped manner while they would be parallel to each other for MukBEF. Just prior to loop extrusion 
completion, JetABCD would create a teardrop-shaped DNA loop, the shape or tension of which could serve as a signal 
for downstream JetD-mediated cleavage.
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