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E D I T O R I A L

DNA metabarcoding—Need for robust experimental designs to 
draw sound ecological conclusions
DNA	metabarcoding,	 especially	when	 coupled	with	 high‐through‐
put	 DNA	 sequencing,	 is	 currently	 revolutionizing	 our	 capacity	 to	
assess	 biodiversity	 across	 a	 full	 range	 of	 taxa	 and	 habitats,	 from	
soil	microbes	(e.g.,	Thompson	et	al.,	2017)	to	large	marine	fish	(e.g.,	
Thomsen	et	al.,	2016),	and	from	contemporary	to	tens	of	thousands	
year‐old	 biological	 communities	 (e.g.,	Willerslev	 et	 al.,	 2003).	 The	
breadth	 of	 potential	 applications	 is	 immense	 and	 spans	 surveys	
on	 the	 diversity	 or	 diet	 of	 species	 native	 to	 specific	 ecosystems	
to	bioindication	 (Pawlowski	 et	 al.,	 2018).	 The	 approach	 is	 also	 es‐
pecially	 cost‐effective	 and	 easy	 to	 implement,	 which	makes	DNA	
metabarcoding	one	of	the	tools	of	choice	of	the	21st	century	for	fun‐
damental	research	and	the	future	of	 large‐scale	biodiversity	moni‐
toring	programs	(reviewed	in	Bohan	et	al.,	2017;	Creer	et	al.,	2016;	
Taberlet,	 Bonin,	 Zinger,	 &	 Coissac,	 2018;	 Thomsen	 &	 Willerslev,	
2015).	However,	as	is	often	the	case	with	any	emerging	technology,	
we	feel	that	the	rise	of	DNA	metabarcoding	 is	occurring	at	a	pace	
and	in	a	manner	that	often	loses	sight	of	the	challenges	in	producing	
high‐quality	and	reproducible	data	(Baker,	2016).	DNA	metabarcod‐
ing	 is	by	essence	a	multidisciplinary	approach	building	upon	many	
complementary	 expertises,	 including	 field	 and	 theoretical	 knowl‐
edge,	 taxonomic	 expertise,	 molecular	 biology,	 bioinformatics,	 and	
computational	statistics.	Combining	all	these	within	single	studies	is	
necessary,	not	so	much	for	producing	and	analyzing	the	data	per	se,	
but	rather	for	minimizing	and	controlling	the	possible	biases	that	can	
be	introduced	at	any	step	of	the	experimental	workflow—i.e.,	from	
the	sampling	to	data	analysis—and	that	can	lead	to	spurious	ecolog‐
ical	conclusions	(reviewed	in	Bálint	et	al.,	2016;	Nilsson	et	al.,	2019;	
Dickie	et	al.,	2018;	Taberlet	et	al.,	2018).

Whether	the	starting	material	consists	of	DNA	from	bulk	sam‐
ples	 (community	DNA)	and/or	 from	environmental	DNA	 (eDNA),	
all	DNA	metabarcoding	studies	rely	on	a	deceptively	simple	suc‐
cession	of	core	experimental	steps:	(a)	sampling	and	preservation	
of	the	starting	material,	(b),	DNA	extraction,	(c)	PCR	amplification	
of	a	taxonomically‐informative	genomic	region,	 (d)	high‐through‐
put	DNA	sequencing	of	the	amplicons,	and	(e)	sequence	analysis	
using	 bioinformatic	 pipelines.	 Despite	 this	 apparent	 simplicity,	
each	 step	 can	 potentially	 introduce	 its	 own	 sources	 of	 artifacts	
and	biases	(Figure	1).	For	example,	the	sampling	design	might	not	
be	effective	for	capturing	the	full	taxonomic	diversity	or	the	eco‐
logical	processes	under	study,	an	undesired	bias	for	studies	based	
on	species	detection.	The	availability	of	DNA	in	the	samples	is	gov‐
erned	by	its	production	rate,	transport	and	persistence,	processes	
which	are	all	 largely	dependent	on	the	 targeted	organisms,	 their	
biomass,	and	the	ecosystem	considered.	A	correct	assessment	of	

an	ecological	phenomenon	based	on	DNA	metabarcoding	require	
not	 only	 implementation	 of	 standardized	 standardized,	 random‐
ized	and	repeatable	sampling	designs	and	procedures	(Dickie	et	al.,	
2018),	but	also	consideration	of	DNA	dynamics	in	the	underlying	
matrix	 (i.e.,	 in	gut,	faeces,	water	or	soil	matrices	from	tropical	or	
boreal	 organisms/ecosystems;	 Barnes	&	Turner,	 2016).	 Likewise,	
the	 community	 under	 study	 can	 be	 enriched	 on	 purpose	 or	 not	
with	specific	taxa	depending	on	how	the	sample	is	collected	(e.g.,	
filter	size	for	water	samples,	removal	of	roots	or	not	for	soils),	how	
it	is	transported/preserved,	and	how	DNA	is	extracted	(differen‐
tial	extraction	efficiencies).	PCR	amplification	 is	also	well	known	
to	be	an	 important	 source	of	biases,	 that	are	now	 fully	 revealed	
with	high‐throughput	DNA	sequencing	techniques.	The	preferen‐
tial	amplification	of	certain	taxa	over	other	ones	due	to	inappro‐
priate	primers	provides	one	such	example	of	potential	bias	(Clarke,	
Soubrier,	 Weyrich,	 &	 Cooper,	 2014;	 Deagle,	 Jarman,	 Coissac,	
Pompanon,	&	Taberlet,	2014).	Primer	biases	can	both	skew	abun‐
dance	profiles	and	lead	to	false	negatives.	PCR	amplification	can	
produce	 false	 negatives	 too	 through	 the	 presence	 of	 e.g.,	 PCR	
inhibitors,	but	also	many	false	positives	through	the	introduction	
of	replication	errors	by	the	DNA	polymerase	or	the	formation	of	
chimeric	fragments	(reviewed	in	Taberlet	et	al.,	2018).	False	posi‐
tives	can	also	be	introduced	at	any	step	of	the	experimental	work‐
flow	through	the	presence	of	reagent	contaminants	(Salter	et	al.,	
2014),	 or	 through	 samples,	 extractions	or	PCR	cross‐contamina‐
tions.	An	even	more	insidious	source	of	false	positives	pertains	to	
the	occurrence	of	“tag	jumps”,	sometimes	referred	to	as	“mistag‐
ging”,	“tag‐switching”,	or	“cross‐talks”	(Carlsen	et	al.,	2012;	Edgar,	
2018;	Esling,	Lejzerowicz,	&	Pawlowski,	2015;	Schnell,	Bohmann,	
&	 Gilbert,	 2015).	 PCR	 amplicons	 are	 indeed	 often	 tagged	 with	
unique	 short	 nucleotide	 sequences	 added	 on	 the	 5’‐end	 of	 the	
primers	 (i.e.,	 “tags”),	which	allow	pooling	all	PCRs	within	a	single	
sequencing	run	and	reducing	sequencing	costs.	Each	sequence	ob‐
tained	can	 then	be	bioinformatically	assigned	back	 to	 its	 sample	
of	origin	on	 the	basis	of	 its	 tags	 (Schnell	 et	 al.,	 2015).	However,	
the	procedures	underlying	the	preparation	of	DNA	libraries	and/
or	the	sequencing	can	introduce	these	“tag	jumps”,	when	the	tag	
assigned	to	one	particular	sample	is	in	fact	recombined	to	the	se‐
quences	belonging	to	another	sample	(Taberlet	et	al.,	2018).	This	
introduces	 additional,	 non‐negligible	 levels	 of	 sample	 cross‐con‐
taminations,	which	primarily	involve	the	most	abundant	taxa	and	
can	have	a	disproportionate	impact	on	samples	with	low	DNA	con‐
centrations	(Esling	et	al.,	2015;	Murray,	Coghlan,	&	Bunce,	2015;	
Schnell	et	al.,	2015).	Similarly,	the	Illumina	index	located	on	the	P5	
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sequencing	adaptor	can	be	subjected	 to	 “index	 jumps”,	 resulting	
in	apparent	cross‐contaminations	(Taberlet	et	al.,	2018).	This	bias	
happens	when	several	individual	Illumina	sequencing	libraries	are	
pooled	and	loaded	on	the	same	sequencing	lane	(Kircher,	Sawyer,	
&	Meyer,	2012).	Finally,	high‐throughput	DNA	sequencing	instru‐
ments	have	their	own	error	rates	(Schirmer	et	al.,	2015).	The	above	
list	of	problems	is	clearly	not	exhaustive,	and	the	interested	reader	
will	find	more	complete	reviews	elsewhere	(e.g.	Bálint	et	al.,	2016;	
Nilsson	et	al.,	2019;	Taberlet	et	al.,	2018).	Still,	 it	 illustrates	 that	
any	 po tential	 bias	must	 be	 considered	 carefully	when	 designing	
an	experimental	protocol	and	when	interpreting	the	results.	This	
is	crucial	to	limit	their	impact	on	downstream	analyses,	and	to	en‐
sure	that	the	conclusion	drawn	from	such	data	are	authentic.

There 	 is	now	an	 increasingly	diverse	 range	of	 field,	 laboratory	
(e.g.,	Caporaso	et	al.,	2011;	Taberlet	et	al.,	2018;	Valentini	et	al.,	2009)	
and	bioinformatics	 (e.g.,	Boyer	et	al.,	2016;	Caporaso	et	al.,	2010;	
Dumbrell,	Ferguson,	&	Clark,	2016)	procedures	aiming	at	reducing	
the	amount	of	both	false	negatives	(i.e.,	due	to	partial	sampling,	ex‐
traction,	amplification	or	sequencing	bias)	and	false	positives	(i.e.,	due	

to	contaminations,	“tag/index	jumps”,	or	PCR	and	sequencing	errors)	
in	DNA	metabarcoding	experiments.	However,	using	these	protocols	
does	not	necessarily	guarantee	that	the	problem	of	false	positives	or	
negatives	is	completely	under	control.	These	protocols	must	contin‐
uously	be	reconsidered,	especially	alongside	the	emergence	of	novel	
DNA	sequencing	technologies	that	provide	new	opportunities,	but	
also	 n ew	 challenges.	 Additionally,	 each	 individual	 study	 and	 each	
genomic	marker	comes	with	its	own	specificities,	and	this	often	re‐
quires	customization	of	the	above	protocols.	The	sequence	cluster‐
ing	threshold	to	be	used	to	form	Molecular	Operational	Taxonomic	
Units	 relevant	 to	 the	question	 addressed	 (e.g.,	 removing	 intraspe‐
cific	marker	 variability	when	 the	 species	 level	 is	 desired)	 provides	
such	an	example,	and	will	critically	depend	on	both	the	marker	spec‐
ificit ies	 and	PCR/sequencing	 error	 rates.	 Bioinformatics	 tools	 can	
further	fail	to	exclude	molecular	artifacts	when	the	filtering	thresh‐
olds	are	relaxed,	which	inflates	sample	diversity	estimates.	Likewise,	
they	can	also	generate	false	negatives,	for	example	when	a	genuine	
metabarcode	is	falsely	flagged	as	an	error	or	chimera,	or	when	it	is	
assigned	to	an	 incorrect	taxon	due	to	 incomplete	or	 inappropriate	

F I G U R E  1  Summarized	workflow	of	DNA	metabarcoding	and	biases	in	the	data	production	process,	with	the	potential	associated	
controls	to	assess	data	quality.	Expectations	on	the	local	community,	either	from	a	priori	knowledge	on	the	site	or	organisms	targeted,	or	
obtained	through	e.g.,	visual	census,	specimen	collection,	or	building	of	a	local	reference	database,	constitute	a	first	assessment	of	the	DNA	
metabarcoding	experiment	success.	Pilot	experiments	are	essential	for	optimizing	the	whole	experimental	design,	from	the	sampling	strategy	
(e.g.,	number	of	biological	replicates)	to	the	entire	technical	approach.	Field,	extraction,	PCR,	and	tagging‐system	negative	and	positive	
controls	should	be	sequenced	along	with	biological	samples.	They	all	aim	at	identifying	(i)	potential	contaminants	that	could	be	introduced	at	
any	experimental	step,	and	(ii)	potential	experimental	artifacts	due	to	the	DNA	extraction,	PCR,	and	sequencing	steps.	Field	negative	controls	
consists	of	extracting	DNA	from	storage/extraction	buffers	brought	to	the	field	or	used	to	clean	sampling	instruments.	Tagging‐system	
negative	controls	can	only	be	implemented	when	amplicons	are	identified	by	a	unique	combination	of	tags	attached	to	the	5′	end	of	each	
amplification	primer,	and	where	one	or	several	tag	combinations	remain	unused	in	the	experimental	design.	In	such	conditions,	tagging‐
system	controls	can	be	performed	at	the	bioinformatics	analysis	step,	by	monitoring	the	number	of	sequences	harbouring	unexpected	tag	
combinations.	This	number	is	actually	a	direct	measurement	of	the	tag‐jump	rate.	“Index	jumps”	are	more	difficult	to	evaluate,	and	can	be	
controlled	either	by	indexing	both	library	adapters	(P5	and	P7)	or	when	the	libraries	sequenced	together	have	identifiable	sequences	that	
could	indicate	their	origin.	The	positive	controls	(constructed	using	either	synthetic	DNA	with	the	primer	target	sequences	on	both	sides,	
DNA	extracted	from	a	mock	community,	or	known	environmental	samples),	as	well	as	prior	expectations	on	the	taxa	that	should	occur	in	
the	system	can	be	used	to	evaluate	the	effectiveness	of	the	data	production	process,	the	impact	of	contaminants	on	the	retrieved	ecological	
signal	and	the	adequacy	of	bioinformatics	filtering	procedures	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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reference	databases	(Alsos	et	al.,	2018;	Coissac,	Riaz,	&	Puillandre,	
2012).	This	can	be	especially	problematic	when	the	question	inves‐
tigated	strongly	relies	on	species	detection.	It	is	therefore	crucial	to	
include	several	types	of	experimental	controls	so	as	to	facilitate	the	
exclus ion	of	 spurious	 signal	 and	 support	 the	 reliability	of	 the	bio‐
logica l	conclusions	 (Figure	1).	Amongst	 these	controls,	conducting	
pilot	experiments	 is	particularly	helpful	 to	assess	how	appropriate	
the	 sa mpling	 design	 is	 (Dickie	 et	 al.,	 2018).	We	 also	 recommend	
that	 b oth	biological	 replicates	 (i.e.,	multiple	 independent	 samples)	
and	technical	replicates	(i.e.,	multiple	extractions/PCR	of	the	same	
sample	and/or	extract)	are	included	in	the	experimental	workflow	to	
disentangle	the	effect	of	both	the	biological	and	technical	variances	
(Ficetola	et	al.,	2015).	These	replications	are	necessary	because	both	
sampling	and	PCR	can	introduce	biases	in	a	stochastic	manner,	es‐
pecially	when	the	concentration	of	the	target	DNA	is	low.	It	is	also	
essential	to	analyze	a	sufficient	number	of	negative	controls	at	the	
field	sampling,	DNA	extraction,	PCR,	and	sequencing	steps,	as	well	
as	pos itive	 controls	 consisting	of	mock	communities,	 known	DNA	
samples,	or	even	synthetic	sequences	reflecting	the	attributes	of	the	
targeted	products	(Figure	1).	All	these	controls	must	be	sequenced	
along	the	biological	samples,	as	they	facilitate	the	detection	of	spo‐
radic	contaminations	and	tag	or	index	jumps	while	helping	adjusting	
filter ing	and	clustering	thresholds.	Ultimately,	 they	will	be	a	token	
of	the	reliability	of	the	whole	data	curation	process	(De	Barba	et	al.,	
2014).	We	also	encourage	careful	consideration	of	the	bioinformat‐
ics	workflow	itself,	since	the	filtering	steps	necessary	to	curate	the	
data	will	critically	depend	on	the	experimental	design	and	the	eco‐
logical	question	under	study.	Typically,	sequences	of	low	abundance	
in	a	g iven	sample	may	be	genuine	or	artifacts	deriving	from	PCR/
sequencing	errors	or	tag/index	jumps.	The	retained	filtering	thresh‐
old	for	taxon	presence	is	thus	dependent	on	the	underlying	rates	of	
artifacts,	as	well	as	on	the	sequencing	depth.	As	 the	different	ex‐
perimental	controls	provide	direct	measurements	of	these	artifacts,	
they	w ill	 therefore	 allow	better	 tuning	of	 the	 filtering	 thresholds.	
All	of 	 these	 technical	 considerations	 should	be	precisely	 reported	
within 	 publications	 together	with	 relevant	 illustrations	 and	 statis‐
tics	characterizing	the	workflow,	as	they	are	necessary	to	assess	the	
relevance	and	quality	of	the	data	underpinning	specific	conclusions.	
A	last ,	a	most	obvious	example	of	control	consists	in	assessing	the	
plausibility	of	the	taxonomic	composition	based	on	a	priori	knowl‐
edge	of	the	system	or	taxa	studied.	Such	knowledge	can	be	derived	
from	data	obtained	with	complementary	sensing	approaches	such	
as	visual	observations.	In	this	case,	building	exhaustive	local	refer‐
ence	databases	of	 the	genomic	marker	used	from	 local	specimens	
will	secure	the	taxonomic	assignment	step	(e.g.,	Alsos	et	al.,	2018).	
When	local	information	is	unavailable,	typically	when	studying	mi‐
croorganisms,	it	remains	possible	to	assess	whether	the	community	
is	composed	of	clades	that	are	expected	to	occur	in	the	system	sur‐
veyed	or	not,	as	for	example	soils,	sediments,	and	gut	environments	
harbour	highly	different	bacterial	phyla	(e.g.,	Thompson	et	al.,	2017).

As	users,	readers,	referees	or	editors,	we	realize	that	the	above	
mentioned	 issues	 remain	 too	 often	 overlooked.	 This	 problematic	
stance	can	lead	to	unsubstantiated	claims	and	undermine	scientific	

advances	if	not	resolved.	Inappropriate	practices	such	as	estimating	
species	richness	from	fingerprint	profiles	(Bent	et	al.,	2007),	the	ab‐
sence	of	biological	replicates	(Prosser,	2010),	or	that	of	contaminant	
controls	 (Perez‐Muñoz,	 Arrieta,	 Ramer‐Tait,	 &	Walter,	 2017)	 have	
been	 repeatedly	 criticized	 in	 the	 field	of	microbial	 ecology,	 and	 in	
the	 latter	 case,	 they	contribute	 to	 the	 rising	debate	about	 the	ex‐
istence	 or	 not	 of	 a	 womb	microbiota.	 Ancient	 DNA	 research	 has	
also	developed	 rigorous	 standards	 to	 tackle	 issues	 related	 to	con‐
tamination,	 sequencing	 errors,	 and	 data	 reproducibility	 (Poinar	 &	
Cooper,	 2000).	We	 believe	 that	 the	 community	 of	DNA	metabar‐
coding	users	has	now	come	of	age	and	learnt	from	its	past	errors.	At	
a	time	when	more	and	more	exhaustive	guides	of	best	practices	on	
the	subject	are	emerging	(Knight	et	al.,	2018;	Pollock,	Glendinning,	
Wisedchanwet,	&	Watson,	2018;	Taberlet	et	al.,	2018),	and	where	
DNA	sequencing	costs	are	rapidly	decreasing,	we	should	be	always	
mindful	 of	 the	 adage	 “better	 safe	 than	 sorry”.	 This	 note	 does	 not	
mean	to	imply	that	the	systematic	use	of	the	highest	technical	and	
analytical	 standards	 is	 reasonable	nor	 the	universal	 remedy	 for	all	
the	 challenges	 associated	 with	 DNA	 metabarcoding.	 Rather,	 we	
strongly	 encourage	 researchers	 and	 end‐users	 to	 adopt	 reflective	
decision‐making	when	designing	 their	 experiment	 and	 to	 critically	
appraise	their	results,	with	the	ultimate	aim	to	prove	the	robustness	
and	reproducibility	of	their	conclusions.
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