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Abstract  

Background: DNA methylation may regulate pre-mRNA transcriptional initiation and processing, 

thus affecting gene expression. Unlike animal cells, plants, especially Arabidopsis thaliana, have 

relatively low DNA methylation levels, limiting our ability to observe any correlation between DNA 

methylation and pre-mRNA processing using typical short-read sequencing. However, with newly 

developed long-read sequencing technologies, such as Oxford Nanopore Technology Direct RNA 

sequencing (ONT DRS), combined with whole-genome bisulfite sequencing, we were able to 

precisely analyze the relationship between DNA methylation and pre-mRNA transcriptional initiation 

and processing using DNA methylation-related mutants.  

Results: Using ONT DRS, we generated more than 2 million high-quality full-length long reads of 

native mRNA for each of the wild type Col-0 and mutants defective in DNA methylation, identifying a 

total of 117,474 isoforms. We found that low DNA methylation levels around splicing sites tended to 

prevent splicing events from occurring. The lengths of the poly(A) tail of mRNAs were positively 

correlated with DNA methylation. DNA methylation before transcription start sites or around 

transcription termination sites tended to result in gene-silencing or read-through events. 

Furthermore, using ONT DRS, we identified novel transcripts that we could not have otherwise, since 

transcripts with intron retention and fusion transcripts containing the uncut intergenic sequence 

tend not to be exported to the cytoplasm. Using the met1-3 mutant with activated constitutive 

heterochromatin regions, we confirmed the effects of DNA methylation on pre-mRNA processing. 

Conclusion: The combination of ONT DRS with whole-genome bisulfite sequencing was a powerful 

tool for studying the effects of DNA methylation on splicing site selection and pre-mRNA processing, 

and therefore regulation of gene expression.  

 

Keywords: 

DNA methylation, Oxford Nanopore Technology Direct RNA sequencing (ONT DRS), bisulfite 

sequencing, met1-3 mutant, pre-mRNA processing, intron retention, constitutive heterochromatin, 

long-read sequencing, poly(A) tail  
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Background 

Pre-mRNA processing, including capping, splicing, polyadenylation site selection, and poly(A) tailing, 

occurs following transcription to produce mature mRNAs for subsequent translation (1), and it is 

linked to, and affected by, epigenetic modifications (2). Indeed, DNA methylation plays a role in pre-

mRNA processing, particularly for splicing site selection, which has been reported in animal systems 

(3-5). DNA methylation also affects poly(A) site selection, because CCCTC-binding factor (CTCF), a 

transcription factor that regulates the 3-D structure of chromatin, only binds to unmethylated DNA, 

and avoids methylated targets at the 3’ end of the gene (6). Recently, nascent RNA profiling in 

Arabidopsis showed that more intron retention events could be observed with this method than 

with RNA-seq of mature mRNAs (7), since introns can still be spliced in the nucleus after 

transcription. A similar phenomenon was also observed in animal systems, called detained intron (8). 

In addition, detained introns and post-transcriptionally spliced introns are resistant to degradation 

by the Non-sense Mediated Decay (NMD) pathway because of the retention of these intron-

containing transcripts in the nucleus (7, 8). However, the relationship between intron retention and 

DNA methylation around the splicing sites remains to be addressed.  

A poly(A) tail is an important signature of mature mRNAs, and facilitates mRNA export to the 

cytoplasm for translation (9). The length of a poly(A) tail has also attracted attention for its 

implications in mRNA stability. It was found that a short poly(A) tail is a conserved feature of 

housekeeping genes (10), as confirmed by whole-transcriptomic poly(A) length sequencing (PAL SEQ) 

(11). A longer poly(A) tail may facilitate mRNA degradation via the exosome pathway, which is 

dependent on a poly(A) binding protein (PABPN1) and poly(A) polymerases (PAPs - specifically PAPα 
and PAPγ in mammalian systems) (12).  The poly(A) tail extension in the nucleus is controlled by a 

poly(A) binding protein which regulates the interaction between poly(A) polymerase and cleavage, 

and a poly(A) specificity factor (13). However, the role of DNA methylation on poly(A) tail length 

determination remains unclear.  

Typically in RNA sequencing, mRNAs are first reverse-transcribed to synthesize the first-strand 

complementary DNA (cDNA) which are then used as templates to amplify cDNA (14). The amplified 

cDNA can then be subjected to Sanger sequencing, next-generation sequencing, or third-generation 

sequencing (e.g. PacBio (15)] or ONT cDNA sequencing (7)) to determine mRNA sequences. Although 

the classical method helps us determine gene expression levels and understand pre-mRNA 

processing, its limitations prevent us from fully understanding mRNA molecular traits. For example, 

current commercially available reverse transcriptases may not reverse-transcribe RNA molecules 

longer than 12,000 nt (https://www.thermofisher.com/hk/en/home/life-science/cloning/cloning-

learning-center/invitrogen-school-of-molecular-biology/rt-education/reverse-transcription-

setup.html), so it cannot provide cDNAs longer than 12,000 nt for sequencing. Moreover, some 

modifications and secondary structures of RNA molecules may inhibit the activity and/or decrease 

the fidelity of reverse transcriptases (16-18), and thus we may not get the full-length cDNAs of these 

RNA molecules. In recent years, Oxford Nanopore developed a novel sequencing method, Oxford 

Nanopore Technology Direct RNA sequencing (ONT DRS), to directly sequence native RNA molecules, 

which is therefore not limited by RNA molecular lengths and can document modifications on RNA 

bases (19). ONT DRS has been well used in both animal (20) and plant systems (21, 22), resulting in 

many new insights into RNA molecules. Although base-calling for ONT DRS is still not as accurate as 

next-generation sequencing, if a well-annotated reference genome is available, the imperfect base-

calling should not interfere with downstream analyses (21).  
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DNA methylation is a crucial epigenetic mark determining gene expression and heterochromatin 

maintenance (23), but there is a difference between DNA methylation patterns in mammalian and 

plant systems. In mammalian cells, DNA methylation occurs mainly in the CG context, while in plants, 

DNA methylation may occur in the CG, CHG and CHH contexts. In A. thaliana, DNA methyltransferase 

1 (MET1) is responsible for CG methylation, so loss-of-function mutants of MET1 will nearly 

eliminate CG methylation genome-wide. Chromomethylase 3 (CMT3) is mainly responsible for 

maintaining CHG methylation, while domain-rearranged methyltransferase 1 (DRM1), DRM2, and 

CMT2 are responsible for de novo CHH methylation (24). Therefore knocking out all four genes 

(DRM1, DRM2, CMT2 and CMT3) would almost completely deplete CHG and CHH methylation in the 

ddcc mutant (3). In A. thaliana, the DREAM complex, containing TCX5 (Tesmin/TSO1-like CXC 

domain-containing protein 5) and TCX6, could inhibit the expressions of MET1, CMT3, and some 

other DNA methylation-related genes, such as VIM1 (VARIANT IN METHYLATION 1) (25). Thus, the 

double mutant tcx5tcx6 does not have a functional DREAM complex, resulting in increased genome-

wide DNA methylation (25). In this study, we used these DNA methylation-related mutants in a 

combination of ONT DRS and whole-genome bisulfite sequencing to investigate DNA methylation 

effects on pre-mRNA transcription initiation and processing, and found that it played a key role in 

pre-mRNA transcription initiation, splicing site selection, transcription termination site selection, and 

poly(A) length determination. We also found that for fusion transcripts, if the transcribed intergenic 

regions were not spliced, these transcripts tended to remain in the nucleus, but if they were fully 

spliced, they would be exported to the cytoplasm. Using the activated constitutive heterochromatin 

in met1-3, we further confirmed the relationship between DNA methylation and pre-mRNA 

transcriptional initiation and processing we observed in the euchromatin regions.  

 

Results  

Oxford Nanopore Technologies Direct RNA Sequencing (ONT DRS) revealed the pattern of gene 

expression disruption by T-DNA 

Our previous ONT DRS study indicated that ONT DRS can effectively sequence native full-length RNA 

molecules (21) and thus capture relatively accurately real-time RNA dynamics at the time of harvest 

of the plant materials. In this study, we extracted RNA from 12-day-old seedlings of the DNA 

methylation-related mutants, met1-3 (26), ddcc (3) and tcx5tcx6 (25) along with wild type (Col-0), to 

profile the relationship between DNA methylation and pre-mRNA transcription initiation and 

processing using ONT DRS combined with whole-genome bisulfite sequencing (BS-Seq). The ONT DRS 

library of each genotype contained more than 2 million full-length reads with a single flow cell 

(R9.4.1), except for tcx5tcx6, for which more than 2 million full-length reads were obtained with two 

flow cells. The read quality and average length were similar to our previous ONT DRS data (21); 

Additional file 1: Table S1).  

Most of these DNA methylation-related mutants were produced by T-DNA insertions, except tcx6 

which was created via CRISPR-Cas9-mediated gene editing (25). Since our ONT DRS can sequence 

full-length RNA molecules, we wanted to know if we could use this technique to decipher how T-

DNA insertions affected the expression of the mutated genes. We used the ONT DRS full-length 

reads covering the T-DNA-inserted genes to examine the transcriptional dynamics of these genes. 

For the MET1 gene in met1-3 and the CMT3 gene in the ddcc quadruple mutant, the DNA sequences 

on both sides of the T-DNA insertion sites were well-transcribed, but we could find no reads 

spanning both sides of the insertion sites. It seems that the pre-insertion-site mRNAs were 

transcribed using the promoter of the affected gene for initiation, while those post-insertion-site 
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mRNAs were transcribed starting from within the inserted T-DNA, and reads from both sides of the 

insertion sites were clearly separated by the T-DNA due to its unusually long sequence (Additional 

file 2: Fig. S1). For DRM2 and CMT2 in the ddcc mutant, only transcripts initiated at the original 

promoters of these affected genes and ending before the insertion sites could be found. No post-

insertion-site transcripts were obtained (Additional file 2: Fig. S1). One explanation for this 

phenomenon may be that intact T-DNAs always include transcription termination sites (TTSs) in their 

sequences, so even though the T-DNAs may be short enough for readthrough, the transcripts that 

were initiated from upstream of the insertion sites will still be terminated within the T-DNA. For 

transcribing the sequences downstream of the insertion sites, even if sometimes the TTSs within the 

T-DNA sequences may be lost due to truncation during insertion into target genes (27), the 

introduced promoters within the T-DNA sequences may be used for initiating transcription. For the 

DRM1 gene in the ddcc mutant, only one post-insertion-site read was obtained. The DRM1 gene was 

not usually expressed in Col-0 in normal conditions. No read was mapped to the TCX5 locus in the 

tcx5tcx6 double mutant, although the gene contains a T-DNA insertion as verified by genotyping. All 

the above data confirmed that the mutants used in the study cannot produce full-length functional 

transcripts from the T-DNA-inserted genes.  

 

Whole-genome bisulfite sequencing (BS-seq) combined with ONT DRS indicated a negative 

correlation between DNA methylation and gene expression in constitutive heterochromatin 

regions 

To investigate the relationship between DNA methylation and gene expression, we first evaluated 

the alterations in genome-wide DNA methylation patterns in the DNA methylation-related mutants, 

using our data from BS-seq and those downloaded from the GEO database (accession 

no. GSE137754 for the tcx5tcx6 mutant). The differential DNA methylation regions (DMRs) between 

the mutants and wild type were identified on all five chromosomes (Fig. 1, Additional file 2: Fig. S2). 

The results showed that CG methylation was nearly eliminated in met1-3 mutants since the MET1 

gene was knocked out, this being especially obvious in the centromeric regions in the CG context. 

Effects on DNA methylation in the CHG and CHH contexts in the centromeric regions could also be 

observed in this mutant, but to a much lower degree (Fig. 1, Additional file 2: Fig. S2). In the ddcc 

quadruple mutant, most CHG and CHH methylations were reduced, particularly in the centromeric 

regions. However, DNA methylation in the CG context in the ddcc quadruple mutant was only slightly 

affected in the centromeric regions and genome-wide (Fig. 1, Additional file 2: Fig. S2). The DNA 

methylation patterns of tcx5tcx6 were also analyzed using the published BS-seq data using 12-day-

old seedlings (25), same as what was used for ONT DRS in this study. The DNA methylation in 

tcx5tcx6 seedlings increased slightly in the CG and CHG contexts, and decreased slightly in the CHH 

context for all 5 chromosomes (Fig. 1, Additional file 2: Fig. S2). All the observed DMR patterns were 

as expected for these DNA methylation-related mutants.  

To investigate DNA methylation effects on gene expression, we analyzed differentially expressed 

regions (DERs) between mutants and the wild type control (Col-0) using the ONT DRS data. After 

mapping the DERs to the chromosomes, we observed a striking activation in the hypomethylated 

centromeric regions in all five chromosomes in the met1-3 mutant, but not in other mutants (Fig. 1, 

Additional file 2: Fig. S2). Although DERs are not always tightly coupled with the methylation level, 

down-regulated DERs generally has slightly higher DNA methylation, as seen in the tcx5tcx6 double 

mutant (Fig. 1, Additional file 2: Fig. S2). Our results showed that DNA methylation, especially in the 

CG context, had a strong negative correlation with gene expressions in the constitutive 

heterochromatin regions (centromeric regions), but such a negative correlation could not be 
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established in euchromatin regions (Fig. 1, Additional file 2: Fig. S2), since DNA methylation in the 

gene body and the promoter may have different effects on gene expression (28, 29).  

 

DNA methylation was positively correlated with poly(A) tail length 

The poly(A) tail is crucial for mRNA stability and export to the cytoplasm (30). Our ONT DRS results 

clearly showed the difference in poly(A) tail lengths among housekeeping genes (31), other (non-

housekeeping) genes, and transposable element (TE) genes in all four genotypes (Fig. 2). In general, 

in all the genotypes, the housekeeping genes had a slightly shorter poly(A) tail (with a mode of about 

60 nt) than other (non-housekeeping) genes, which is consistent with recent reports of highly 

expressed genes tending to have a shorter poly(A) tail (10, 11, 32), and the actual values were similar 

to previous reports of the poly(A) lengths of Arabidopsis housekeeping genes (11). On the other 

hand, transcripts from TE regions tended to have the longest poly(A) tails in all the genotypes (Fig. 

2). Although the poly(A) tail lengths varied among different transcripts, there was no significant 

difference in the lengths of poly(A) tails in the same transcript category among genotypes 

(Additional file 2: Fig. S3). Since DNA methylation in the TE regions tends to be hypermethylated, 

and the transcripts from these regions tend to have a longer poly(A) tail, we wanted to test whether 

the length of the poly(A) tail is correlated with the level of DNA methylation in the corresponding 

genomic regions. We first analyzed the distribution of DNA methylation levels in the genomic regions 

corresponding to the housekeeping genes, other genes and TE genes for all four genotypes 

(Additional file 2: Fig. S4). The CHG and CHH methylation data showed that housekeeping genes 

tended to have the lowest DNA methylation level, while the regions encoding TEs had the highest in 

nearly all genotypes, except in ddcc which had almost no CHG and CHH methylation. CG methylation 

of housekeeping genes was the highest among the three categories of genes, while there was no 

significant difference in CG methylation levels for TE and other genes across all genotypes, except 

met1-3 which had next to no CG methylation at all (Additional file 2: Fig. S4). It is known that poly(A) 

tail formation requires poly(A) polymerases to function at the cleavage sites produced by Cleavage 

and Poly(A) Specificity Factor 73 (CPSF-73) (33, 34), and that the activity of poly(A) polymerases may 

be affected by DNA methylation around the TTS because the processing of the 3’ ends of pre-mRNAs 

is concurrent with transcription (35). Therefore, we compared DNA methylation levels around the 

TTS of the genomic regions corresponding to the three kinds of transcripts. From our results, it is 

clear that DNA methylation around the TTS is highest for TE genes, and lowest for housekeeping 

genes in all contexts, including CG, CHG and CHH, in nearly all genotypes, except for CHG and CHH 

methylation that were abolished in the ddcc quadruple mutant and CG methylation which was 

abolished in the met1-3 mutant (Fig. 3). The results strongly suggested that DNA methylation was 

positively correlated with poly(A) tail length.    

 

DNA methylation levels may determine the usage of splicing sites 

We adapted the published algorithm, TrackCluster (TC) (1, 9), for use in analyzing RNA splicing sites 

in A. thaliana and renamed it TC-RENO (https://github.com/HKU-BAL/TC-RENO). Using TC-RENO, we 

identified 8,881 intron retention events, 263 extra exon events, and 729 exon-skipping events 

among all four genotypes. The numbers of events in each of these categories of alternative splicing 

that were unique to one genotype were far lower than the numbers of those that were common to 

all four different genotypes (Additional file 2: Figs. S5-S7). This is also true when we compared each 

of the mutants separately to Col-0. The unique events in Col-0 may reflect the loss of such events in 

the mutants, and unique events in mutants but not in Col-0 indicate a gain of such events. Generally, 

there was no obvious difference between the amount of loss or gain of these events in any mutants 
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compared to the wild type, except for a slightly higher gain than loss of extra exon events and exon-

skipping events in ddcc and met1-3, and a slightly higher loss than gain of extra exon and exon-

skipping in tcx5tcx6 (Additional file 2: Fig. S6, Fig. S7). For intron retention events, there was a slight 

decrease in gain compared to loss of unique intron retention events in all mutants (Additional file 2: 

Fig. S5). To understand this phenomenon, we calculated the number of donor sites and acceptor 

sites for each sample. Not surprisingly, most of the splicing sites (both donor and acceptor sites) 

belonged to splicing sites common to all four genotypes (Additional file 2: Fig. S8, Fig. S9), while 

met1-3 and tcx5tcx6 had a slightly higher number of unique splicing sites compared to Col-0 and 

ddcc.  

 

Common events between Col-0 and mutants or among genotypes are mostly obvious events, and 

intron retention events are indeed the most common alternative splicing events in A. thaliana (36). 

Here we performed whole-genome BS-seq for Col-0 as well as ddcc and met1-3 and downloaded the 

BS-seq data of tcx5tcx6 conducted at the same developmental stage as the ONT DRS here using 

tcx5tcx6 seedlings, to investigate the DNA methylation patterns around the splicing sites of the 

intron retention events at the corresponding loci and at those housekeeping and other gene loci 

corresponding to the fully spliced events. Surprisingly, we found that DNA methylation in the CG 

context around the splicing sites of intron-retained genes was distinctively lower than that around 

fully spliced sites of housekeeping genes and other genes (Fig. 4) in nearly all genotypes except for 

met1-3, since CG methylation in the mutant was nearly eliminated (Fig. 1, Additional file 2: Fig. S2). 

CHH and CHG methylation around the splicing sites (donor or acceptor) on the intron sides had 

slightly higher DNA methylation in intron-retained genes than those in housekeeping and other 

genes without intron retention events, except for the ddcc mutant where CHG and CHH methylation 

were nearly eliminated (Fig. 4). Since all the samples displayed the same pattern, we concluded that 

DNA methylation does play a role in intron retention, and the correlation is only with DNA 

methylation around the splicing sites, regardless of genotype.  

 

ONT DRS is a powerful tool for finding novel transcripts 

Using TC-RENO, we identified 117,474 transcript isoforms in all four genotypes. The number of 

unique transcript isoforms in each genotype is slightly different (e.g. 2,248 and 1,318 unique 

transcript isoforms were found in met1-3 and tcx5tcx6, respectively, while only 170 and 270 unique 

transcript isoforms were identified in Col-0 and ddcc, respectively), but is far lower than the number 

of isoforms common to all four genotypes (77,037) (Additional file 2: Fig. S10).  

 

The previous TC algorithm for ONT DRS reads cannot find the novel transcripts which cover a 

genomic region without any annotation except the chromosomal positional information. In our 

hands, met1-3 activated constitutive heterochromatin are similar with such regions. To  well identify 

those transcripts from constitutive heterochromatin, we used the TC-RENO to identified them after 

minimap2 (37) alignment, and extracted the related transcript sequence information based on 

Arabidopsis near perfect genome TAIR10 for further analysis (38). The advantage of ONT DRS in 

finding novel transcripts which may not be identified with other RNA-seq technologies, especially for 

transcripts that span several genes and unannotated genomic regions got embodied. To confirm 

these novel transcript isoforms, we chose several targets that cover several gene regions to design 

primers and perform nested RT-PCR to avoid false positive results.  

 

The first target was a novel transcript containing the first exon from At4g04810, and the second and 

third exons from At4g04830 (Fig. 5A). The second and third exon of At4G04810, the whole genic 
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region of At4G04820 and the first exon of At4G04830 became the intron of the novel transcript. 

Using nested RT-PCR, we got the expected amplified fragment sizes in the first and second rounds of 

PCR (Fig. 5A). The second example is a novel transcript that had two exons, one from the middle 

exon of At5g56010 and a second one from the last exon of At5g56030. The last exon of At5g56010 

and the whole genic region of At5g56020 together with the first two exons of At5g56030 became an 

intron of the novel transcript. With nested RT-PCR, the existence of this novel transcript was 

confirmed (Fig. 5B). We also chose a met1-3-specific novel transcript that had two unidentified 

exons distant from the other five exons which corresponded to the last five exons of At2g22670 and 

confirmed it using nested RT-PCR (Fig. 5C). Another novel transcript isoform, present only in ddcc 

and met1-3, spanned At2g11405, At2g11410 and At2g11420, but none of the exons were from 

these genes. Instead, all eight exons of the novel transcript were from annotated intergenic regions, 

with small exons and much larger introns, similar with the mammalian gene structure. This was also 

confirmed using nested RT-PCR (Fig. 5D). These results indicated that ONT DRS is a powerful way to 

find novel transcript isoforms that may be missed by other RNA-seq technologies.  

 

DNA methylation may obscure potential transcription start sites (TSSs) and transcription 

termination sites (TTSs) 

It is known that DNA methylation in some promoter regions may prevent transcription initiation, 

since DNA methylation-sensitive transcription factors cannot bind to their targets on the promoters 

to start transcription (39). For example, for WRKY transcription factors to bind to defense gene 

promoters, they need Repressor of Silencing 1 (ROS1) to demethylate DNA (40). Since the DNA 

methylation related-mutants used in this study have genome-wide effects on DNA methylation, we 

wanted to see if we could uncover some cryptic promoters in the genomes of these mutants by ONT 

DRS. Using TC-RENO, we identified a total of 89,248 TSSs among the four genotypes, with the 

parameter being >50 bp between two clustered TSSs, with 61,002 (>68%) of all identified TSSs being 

common to all four genotypes, and between 68,027 and 72,032 TSSs common to Col-0 and one of 

the mutants (Additional file 2: Fig. S11). The results indicated that DNA methylation had some 

effects on TSS. To determine these DNA methylation effects in each mutant, we analyzed the unique 

TSSs in each genotype. The met1-3 mutant (with 1,472 unique TSSs) and the tcx5tcx6 double mutant 

(with 1,056 unique TSSs) had more unique TSSs than the ddcc quadruple mutant and the wild type, 

with 175 and 78 unique TSSs, respectively (Additional file 2: Fig. S11). To explore whether the DNA 

methylation levels of the unique TSSs were lower at the promoters of the mutants than at the 

promoters of Col-0, we selected those unique TSSs uniquely expressed in the mutants and plotted 

the DNA methylation levels around these TSSs in the same regions between Col-0 and the mutants. 

The results showed that DNA methylation levels around these unique TSSs in met1-3 and ddcc were 

dramatically lower than those in the same regions in Col-0 in all contexts (Fig. 6). For these TSSs in 

met1-3 and ddcc, it is clear that DNA methylation could mask potential TSSs. However, for the 

tcx5tcx6 double mutant, the difference in DNA methylation levels between Col-0 and tcx5tcx6 was 

not easily discernible, although there seemed to be a very slight decrease in DNA methylation at the 

CHH context in tcx5tcx6. Whole-genome DNA methylation analysis indicated that the tcx5tcx6 

double mutant had decreased CHH methylation levels genome-wide, although CHG and CG 

methylation in tcx5tcx6 was increased compared to Col-0 (Fig. 1). In addition, all the DNA 

methylation levels around these TSSs of tcx5tcx6 were far lower than those around these TSSs in 

met1-3 and ddcc (Fig. 6). These results show that the tcx5tcx6-specific TSSs always occurred in low 

DNA methylation regions, and therefore decreased CHH methylation may play a key role in 

transcription start. It is also possible that some specific transcription factors specifically expressed in 

tcx5tcx6 are responsible for promoting transcription start in the double mutant.  
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Previous studies found that altering the intronic heterochromatin status may affect the selection of 

alternate poly(A) sites (41, 42). Therefore, TTS selection could be regulated by the surrounding 

chromatin status that is in turn influenced by epigenetic marks including DNA methylation. It has 

recently been found that in mammalian cells, TTS selection is determined by DNA methylation status 

around the sites, since the regulator of chromatin 3-D structure, CTCF, cannot bind to methylated 

DNA to recruit the cohesion complex to form chromatin loops for proximal APA (alternative poly(A)) 

formation (6). Based on this information, we hypothesized that the DNA methylation level around a 

TTS is lower than that of its surroundings, and that a novel TTS indicates an alteration in the DNA 

methylation status compared to the corresponding region without a TTS. Consequently, we 

compared the number of TTSs among the four genotypes. TTSs common to all four genotypes 

(32,927) accounted for the majority of all identified TTSs (43,452), while met1-3 had the most unique 

TTSs (1,472) (Additional file 2: Fig. S12). To further evaluate the correlation between DNA 

methylation and TTS selection, we chose transcript isoforms which bypassed a putative TTS and 

terminated at the TTS of the next downstream gene, being essentially fusion transcripts. By 

examining the DNA methylation level around the putative TTS and in the intergenic region up to the 

TSS of the second gene, we found that the methylation level in this stretch of DNA was significantly 

higher than the level in the intergenic regions of two “normal” neighboring genes with two unique 

transcripts (Fig. 7).   

 

Intron-retained and fusion transcripts were detained in the nucleus 

Alternative splicing is regarded as a resource of protein diversity (43). In mouse neurons, the 

profiling of ribosome-associated transcript isoforms was used to distinguish between different 

neurons (44), which shows the importance of transcript isoforms mediated by alternative splicing in 

development. However, another study, which profiled ribosome-associated alternatively spliced 

transcripts, indicated that most of the low-abundance transcripts in a transcriptome were likely not 

translated (45). Although intron retention is a frequent alternative splicing event in A. thaliana (46), 

the relative abundance of intron-retained transcripts is low, and only a few of them can be 

translated (47). A recent study suggested that post-transcriptionally spliced introns are not exported 

into the cytoplasm in plant (7) as detained introns reported in animal systems (8). Intron-retained 

transcripts were found to frequently introduce premature termination codons (PTCs), which may 

activate non-sense mediated decay (NMD) pathways (48). To investigate the fate of intron-retained 

transcripts in Arabidopsis, the subcellular distribution of several targets, including transcripts from 

the housekeeping gene ACT7, were examined to see in which cellular compartment the intron-

retained transcripts were located. Our results showed that all intron-retained transcripts were 

detained in the nucleus irrespective of genotype (Fig. 8). The only difference among genotypes is the 

frequency of occurrence for the intron retention events and whether the transcripts could be further 

processed to produce normal transcripts. For example, there were consistently fewer reads of the 

intron-retained transcripts of ACT7 and At1g02750 in Col-0 than in other genotypes, but consistently 

more intron-retained transcripts of At3g06620 in Col-0 than in ddcc and tcx5tcx6 (Fig. 8). In addition, 

most of the intron-retained transcripts in met1-3 were likely not further processed to form mature 

transcripts in the nucleus, since no intron-spliced transcripts could be found in the nucleus in met1-3 

(Fig. 8). This may be due to lower CG methylation levels in the met1-3 mutant, and therefore not 

being able to slow down the transcriptional rate for mark-adding in post-transcriptional processing.  

Fusion transcripts of two neighboring genes is a result of the transcriptional readthrough of the 

upstream gene (49). Previously, we identified some fusion transcripts that spanned the neighboring 

two or more genes in Col-0 with ONT DRS (21). Here in the DNA methylation-related mutants, we 

identified more intron-retained transcripts, some of which were genotype-specific events. In 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441938doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441938
http://creativecommons.org/licenses/by/4.0/


addition, the intergenic regions of some of these fusion transcripts were spliced out in post-

transcriptional processing while some others remained intact. Therefore, we wanted to know 

whether splicing out the intergenic regions is critical for exporting fusion transcripts to the 

cytoplasm. Therefore, we designed PCR primers to cover the intergenic regions of fusion transcripts. 

Our results showed that fusion transcripts with intact intergenic regions remained in the nucleus and 

were not exported into the cytoplasm for translation, and they were also not further processed in 

the nucleus (Fig. 8, Additional file 2: Fig. S13). Fusion transcripts whose intergenic regions were cut, 

however, were exported to the cytoplasm (Additional file 2: Fig. S13). 

 

DNA methylation and pre-RNA transcriptional initiation and processing in the activated 

constitutive heterochromatin regions in the met1-3 mutant 

Constitutive heterochromatin is highly condensed chromatin and limits the access by transcription 

factors (50), so they are normally highly silenced chromatin regions full of transposable elements 

and repetitive sequences (50). However, in met1-3, CG methylation was nearly completely 

abolished, while CHG and CHH methylation were slightly reduced (Fig. 1, Additional file 2: Fig. S2). 

Since DNA methylation has been linked to chromatin accessibility (51), its overall reduction may 

have enabled the constitutive heterochromatin to be activated in met1-3 (Fig. 1, Additional file 2: 

Fig. S2). Although DNA methylation in the CG context was nearly eliminated in the activated 

constitutive heterochromatin regions, there remained a relatively high level of CHG and CHH 

methylation. Therefore, investigation into the relationship between DNA methylation and pre-mRNA 

transcriptional initiation and processing should focus specifically on the activated heterochromatin 

regions instead of the euchromatin regions with low DNA methylation.  

Since we have already found that poly(A) tail length was positively correlated with DNA methylation, 

we wondered whether poly(A) tail length was also positively correlated with DNA methylation in the 

transcripts from constitutive heterochromatin regions. We retrieved the transcripts with poly(A) tail 

lengths more than 250 nt (long poly[A]) and those less than 100 nt (short poly[A]) from the activated 

heterochromatin regions in met1-3 specifically and compared the DNA methylation levels around 

the TTS between these two groups. We found that the DNA methylation levels around the TTSs of 

the long poly(A) transcripts were higher than those around the TTSs of short poly(A) transcripts (Fig. 

9). In addition, the poly(A) tail lengths of the transcripts from the activated heterochromatin regions 

in met1-3 with very high CHG and CHH methylation were distinctively longer than those of the 

transcripts from the euchromatin regions that could also be transcribed in Col-0 (Additional file 2: 

Fig. S14). The results confirmed the positive correlation between DNA methylation and poly(A) tail 

length.  

Since the DNA methylation levels around the splicing sites of intron-retained transcripts were found 

to be lower than those around fully spliced sites earlier, we then wanted to know whether the 

splicing sites (both donor and acceptor sites) of the intron-containing transcripts from the activated 

constitutive heterochromatin regions of met1-3 also had lower DNA methylation levels. The results 

showed that DNA methylation around splicing sites of intron-containing transcripts did have lower 

CHG and CHH methylation levels than around fully spliced sites in the corresponding transcripts (Fig. 

10). The results confirmed that lower DNA methylation around splicing sites may be the cause of 

intron retention events.  
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Discussion 

DNA methylation and poly(A) tail length 

The poly(A) tail may facilitate mature mRNA export from the nucleus to the cytoplasm (32) and 

promote translational efficiency (52). Interestingly, our results showed that the transcripts from TE 

genes had much longer poly(A) tails than those from other genes. Normally, poly(A) is added 

immediately after the TTS during 3’ end processing that takes place concurrently with transcription 

(13), while the chromosomal regions encoding TEs are always hypermethylated. A previous study 

showed that poly(A) polymerase 1 (PAPS1) can interact with the RNA-directed DNA methylation 

(RdDM) pathway (53) which mediates de novo CHH methylation. Our results showed that CHH 

methylation levels were highest around the TTSs of TE genes and lowest around those of 

housekeeping genes, especially in the met1-3 mutant (Fig. 3). Therefore, some RdDM pathway 

components may sustain PAPS1 to complete co-transcriptional processing, thus facilitating poly(A) 

tail formation. Alternatively, DNA methylation around TTSs may prevent PAPS1 from escaping from 

the chromatin scaffold. However, poly(A) tails can also be added by the non-canonical poly(A) 

polymerases, TRF4 and TRF5, in yeast (54), with the resulting RNAs subjected to degradation via 

exosome (54). A. thaliana has a TRF4/5 homolog, TRL (At5g53770), which has been suggested to be 

able to add a poly(A) tail for a variety of RNAs for degradation via exosome (55). Therefore further 

investigation is required to determine whether TE transcripts with a longer poly(A) tail tend to be 

degraded.   

DNA methylation, intron retention, and alternative splicing site selection 

Alternative splicing is a common mechanism for regulating gene expression (56), with intron 

retention being one of the most common type (36). The retained introns in mRNAs have been 

further classified as either non-sense-mediated decay pathway (NMD)-sensitive or NMD-resistant. 

For example, retained introns in mRNAs in animal cells (8) and post-transcriptionally spliced introns 

in plant mRNAs (7) are resistant to NMD. NMD-resistant introns were not detected in the cytoplasm 

in this study, since they were retained in the nucleus as was confirmed with RT-PCR (Fig. 8). Since 

pre-mRNA processing, including alternative splicing, is co-transcriptionally regulated, chromatin 

accessibility may affect the transcription rate, as well as co-transcriptional splicing (2). In A. thaliana, 

although the DNA methylation levels in exons are considerably lower than those in mammalian 

exons (57), CG methylation in the gene body is also generally higher than in the surrounding 

chromatin, especially for housekeeping genes (58). In plants, constitutively transcribed genes 

normally have hypermethylated exons, and they are generally not inducible or development-related 

genes (58). Here we found that around the putative splicing sites, CG methylation was always lower 

at the intron-retained transcripts than at the fully spliced transcripts of housekeeping and other 

genes (Fig. 4), which supports a previous hypothesis that DNA methylation around splicing sites may 

slow down transcription (4), and thus give spliceosome enough time to find the splicing sites to 

splice the introns. These results indicated that DNA methylation is important for splicing site 

selection, either via slowing down the transcriptional rate with a roadblock created by a methylated 

DNA binding protein, such as meCP2 (5), to facilitate splicing site targeting by the spliceosome, or via 

a spliceosome-interacting heterochromatin protein, such as the mammalian HP1, to recruit splicing 

factors (59).  

Intron retention and the export of mRNA from nucleus to cytoplasm 

It is known that transcripts with retained introns or post-transcriptionally spliced introns cannot be 

exported to the cytoplasm (7, 8), but some intron-containing transcripts can be processed post-
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transcriptionally to remove the intron and therefore are able to be exported from the nucleus (8). 

However, here we observed that some intron-containing transcripts had a lower chance of being 

further processed in the nucleus to remove the intron post-transcription, especially in met1-3 where 

CG methylation was almost completely eliminated (Fig. 8). One possible explanation for this 

variation is that low or no DNA methylation in the met1-3 mutant may result in quicker transcription, 

leaving no time to form a junction complex to mark the splicing sites for further processing by a 

spliceosome after transcription, and the intron is therefore unspliced. On the other hand, in the 

tcx5tcx6 mutant with increased CHG and CG methylation, intron-containing transcripts could more 

easily be further processed in the nucleus (Fig. 8). Fusion transcripts with an unspliced intergenic 

region may be regarded as intron-containing transcripts, and thus cannot be exported to the 

cytoplasm. Since the intergenic region does not have putative splicing sites, it cannot be marked by 

factors to be recognized by the post-transcriptional splicing complex. Therefore, these fusion 

transcripts cannot be further processed in the nucleus in order to be exported to the cytoplasm (Fig. 

8D, Additional file 2: Fig. S13). At the same time, fusion transcripts with spliced-out intergenic 

regions were regarded as normal transcripts and thus could be exported from the nucleus 

(Additional file 2: Fig. S13).  

ONT DRS can detect novel transcripts, especially those from highly silenced genomic regions 

ONT DRS can sequence native RNA molecules without being limited by the length of the sequenced 

RNA molecules. Here, RNA molecules longer than 13,000 nt transcribed from the locus At4g17140 

were sequenced, and, using the ONT DRS results, the misannotated splicing sites were corrected 

(21). Using ONT DRS, we could obtain full-length, corrected transcript isoforms in Col-0 and met1-3. 

Hence ONT DRS is a powerful tool for finding very long full-length RNA molecules which may not be 

detected using other sequencing technology. Other RNA-seq technologies need to covert RNA 

molecules to cDNA, where the maximal reverse-transcribable length of RNA molecules by current, 

commercially available, reverse transcriptases is less than 12,000 nt. ONT DRS is also a powerful 

technology for finding hidden transcripts that have never been reported because their DNA 

templates cover large genomic regions, and their gene structures do not resemble the typical plant 

gene structure. An example is the novel transcript present in met1-3 and ddcc, which spanned 

At2g11405, At2g11410 and At2g11420, as well as the large intergenic region of At2g11410 and 

At2g11420 (Fig. 5). The gene structure of this novel transcript resembles the mammalian gene 

structure, with very long introns and very short exons (Fig. 5).  

Constitutive heterochromatin regions, which consist of TEs and repetitive sequences, are tightly 

silenced in the wild type. However, in met1-3, the repressive epigenetic mark of CG methylation is 

nearly eliminated and therefore the chromatin status of these regions is altered (51), thus giving 

access to transcription factors and DNA-dependent RNA polymerase II to initiate transcription. As it 

was pointed out previously, short-read sequencing technologies would not be able to recognize 

transcripts of TE genes or those with multiple repetitive sequences. On the other hand, ONT DRS can 

sequence full-length native RNA molecules regardless of transcript lengths or sequences, so it 

provides a good solution for detecting the transcript isoforms from these heterochromatin regions, 

and opens a window into the relationship between DNA methylation and pre-mRNA transcriptional 

initiation and processing. Although observations on the transcript isoforms from the activated 

constitutive heterochromatin regions are complicated by the presence of CHG and CHH 

hypermethylation in met1-3, the conclusions we drew with respect to transcriptional initiation, 

intron retention and poly(A) tail length of transcripts from the activated constitutive 

heterochromatin regions of met1-3 are still consistent with those we made with respect to the 

euchromatin regions.  
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Conclusions  

This study elucidated the relationship between DNA methylation and pre-mRNA transcriptional 

initiation and processing. Transcription initiation requires hypomethylation of the promoter regions, 

while lower DNA methylation around splicing sites tend to cause intron retention events. DNA 

methylation around the TTS correlates well with longer poly(A) tail length. All these observations 

regarding the relationship between DNA methylation and pre-mRNA transcriptional initiation and 

processing were made possible with ONT DRS in combination with BS-seq, and further confirmed 

with transcripts from the activated constitutive heterochromatin regions in the DNA methylation-

deficient mutant, met1-3.  

 

Methods 

Plant materials 

Seeds of Arabidopsis thaliana wild type Col-0 seeds and DNA methylation-related mutants, met1-3, 

ddcc (3) and tcx5tcx6 (25), were surface-sterilized with 50% commercial bleach and 0.01% Triton X-

100 for 10 minutes, and then washed 5 times with sterilized H2O. The sterilized seeds were sown on 

½ Murashige and Skoog (MS) plates with 1% sucrose and 0.6% agar (Millipore-Sigma cat# A1296). 

After stratification at 4oC for 48 hours, they were placed in a growth chamber with 16 h light/8 h 

dark for 12 days. The seeds of met1-3 (Arabidopsis Biological Research Center - ABRC) are 

heterozygous, from which we generated first-generation homozygous seeds for this study. The seeds 

for the ddcc quadruple mutant were provided by Professor Xiaofeng Cao (Institute of Genentics and 

Developmental Biology, Chinese Academy of Sciences), and those for the tcx5tcx6 double mutant 

were a gift from Dr. Xinjian He (National Institute of Biological Sciences, Beijing).  

DNA/RNA extraction 

Twelve-day-old seedlings of col-0, met1-3, ddcc and tcx5tcx6 were harvested and ground to a 

powder in liquid nitrogen, and genomic DNA were extracted with GeneJET Plant Genomic DNA 

purification kit (ThermoFisher, Cat# K0791) and RNA were extracted with Trizol.  

For total RNA extraction, 1 ml Trizol was added to each 100 mg of frozen ground plant material and 

mixed well. The solution was incubated at room temperature for 5 min, and then 200 μL chloroform 

was added. The mixture was incubated at room temperature for an additional 3 min, before being 

centrifuged at 4oC at 12,000 g for 10 min, after which the supernatant was transferred to a fresh 

tube and mixed with an equal volume of isopropanol at room temperature on the HulaMixer 

(Thermo Fisher Scientific) at low speed for 10 min. The RNA was pelleted via centrifugation at 4oC at 

12,000 g for 15 min. After washing with 75% ethanol, 100 μL RNase-free H2O was used to dissolve 

the RNA pellet. The resulting RNA was digested with RNase-free DNase I (NEB, M0303S), and purified 

with acidic phenol (125:24:1 (phenol:chloroform:isoamyl), pH4.5, Thermo Fisher Scientific, Cat# 

AM9722) via Phase Lock Gel light (5PRIME, Cat# 2302820). The aqueous supernatant was 

transferred to a fresh tube and mixed with lithium chloride to a final concentration of 2.5 M. The 

mixture was incubated at -20 oC for 1 h, and then it was centrifuged at 4 oC for 30 min at 12,000 g. 

The resulting RNA pellet was washed twice with 75% ethanol, and then dissolved in RNase-free H2O.  
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For poly(A) RNA extraction, 75 μg of purified total RNA in 100 μL RNase-free H2O was used to isolate 

mRNAs with Dynabeads™ mRNA Purification Kit (Thermo Fisher Scientific, Cat# 61006) following the 

manufacturer’s manual.  

RNA extraction from the nuclear and cytoplasmic fractions of the same sample 

Total RNA extraction from the nuclear and cytoplasmic fractions of the same plant sample was 

carried out according to a published protocol (60). Briefly, 1 g of tissue from X-day-old Arabidopsis 

seedlings was ground into a powder in liquid nitrogen, and then mixed with 2 mL lysis buffer (20 mM 
Tris-HCl, pH7.5, 20 mM KCl, 2 mM EDTA, 2.5 mM MgCl2, 25% glycerol, 250 mM sucrose, 5 mM DTT 
and 1/100X protease inhibitor cocktail, [Millipore-Sigma, Cat# P9599]). After filtration with 2 layers 

of Miracloth, the flowthrough was centrifuged at 1,500 g at 4oC for 10 min, and the supernatant was 

transferred to a fresh tube and further centrifuged at 10,000 g for 10 min at 4oC. The resulting 

supernatant was collected as the cytoplasmic fraction and was extracted with Trizol to isolate 

cytoplasmic RNAs for RT-PCR. The pellet from the initial 1,500 g spin was washed 8 times with 8 mL 

each nuclear suspension buffer 1 (20 mM Tris-HCl, pH7.4, 2.5 mM MgCl2 and 0.2% Triton X-100), and 

then resuspended with 500 μL nuclear resuspension buffer 2 (20 mM Tris-HCl, pH7.5, 10 mM MgCl2, 

250 mM sucrose, 0.5% Triton X-100, 5 mM 2-mercaptoethanol and 1X protease inhibitor cocktail 

[Millipore-Sigma, Cat# P9599]), and carefully overlaid on top of 500 μL of nuclear resuspension 

buffer 3 (20 mM Tris-HCl, pH7.5, 10 mM MgCl2, 1.7 M sucrose, 0.5% Triton X-100, 5 mM 2-

mercaptoethanol and 1x protease inhibitor cocktail [Millipore-Sigma, Cat# P9599]). The sample was 

centrifuged at 16,000 g at 4oC for 45 min. The final pellet was used for nuclear RNA extraction with 

Trizol.  

ONT DRS library construction and sequencing 

900ng purified mRNAs from each sample were used to construct an ONT DRS library with Nanopore 

ONT DRS SQK-RNA002 kit. The manual for ONT DRS library construction was strictly followed except 

that the RNA CS was replaced with mRNA from samples. The constructed ONT DRS library was 

loaded onto FLO-MIN106 flowcell (R9.4.1), and run in the MinION sequencing platform.  

Nested RT-PCR for novel transcript and transcript variant identification 

For each sample, 1 μg of total RNA was used to perform reverse transcription (RT) with 

EasyScript® First-Strand cDNA Synthesis SuperMix (TransGen Biotech, Cat# AE301-02) for novel 

transcript identification. The resulting cDNA was used for two rounds of nested PCR. The first round 

was performed with forward primer and reverse primer 1 (RP1), following protocol X (*include the 

volumes of each component: primers, cDNA and PCR reagents, plus the PCR steps). Then 1 μL of the 

PCR product was diluted with 30 μL distilled deionized H2O (dd H2O). Then 1 μL of the diluted 

mixture was used as a template for the second round of PCR with forward primer and RP2, following 

this protocol. Then the first and second-round PCR products were resolved in a 1.7% agarose gel and 

stained with Gel red dye and documented with the Biorad Chemidoc system.  

For RT-PCR of nuclear RNAs and cytoplasmic RNAs, an equal amount of total RNA from the 

cytoplasmic fraction of each genotype, and an equal amount of total RNA from the nuclear fraction 

of each genotype, was used. The amount of cytoplasmic RNA used was two times that of the nuclear 

RNA. The RT and PCR reactions were performed as described above.  

Bisulfite sequencing (BS-seq) 

The BS-seq library was constructed by BGI Company. Briefly, 1 μg of genomic DNA from each sample 

(col-0, ddcc and met1-3) was fragmented to 200-300 bp, and the fragmented genomic DNA was 
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confirmed in 1.5% agarose gel, and purified with the MiniElute PCR purification kit (QIAGEN, Cat. No. 

/ ID: 28006X4). The purified genomic DNA fragments were end-repaired and had an A-tail added to 

the 3’ end. Then the A-tailed DNA fragments were ligated with a methylated adapter sequence and 

purified again with the QIAGEN MiniElute PCR purification kit. The purified adapter-added genomic 

DNA was subjected to bisulfite conversion using the EZ DNA Methylation-Gold kit (Zymo Research, 

Cat#: D5005). Then the treated genomic DNA was resolved in a 1.5% agarose gel, and fragments in 

the 320 to 420 bp range were purified with the QIAquick Gel extraction kit (QIAGEN, Cat#:28706). 

The purified genomic DNA fragments were amplified by several rounds of PCR, and the resulting PCR 

products of 320-420 bp in length were resolved in a 1.5% agarose gel and purified for the BS-seq 

library. After validation of the library, they were sequenced on the BGI sequencing platform.  

Base-calling and pre-filtering of Nanopore long reads 

The raw reads from ONT DRS were base-called using Guppy basecaller (version 3.4.4) (61) with the 

high accuracy model (rna_r9.4.1_70bps_hac.cfg). Low-quality reads with the Phred quality score 

below 7 were removed.  The polya subprogram of nanopolish (version 0.13.2) (62) was used to filter 

out reads with truncated 3′ ends (reads with QC tags “READ_FAILED_LOAD”, “SUFFCLIP”, or 
“NOREGION”), and to estimate the poly(A) tail length. The filtered reads were randomly sub-sampled 

to a similar depth of coverage before all the reads were combined for transcriptome reconstruction. 

The reads were mapped to the Araport11 reference genome using Minimap2 (version 2.17-r941) (37) 

with the parameters “-ax splice -k14 -uf  --junc-bed  --junc-bonus 9”. Only unique alignments were 
considered for further analyses. 

Transcript isoform identification and quantification analysis 

In order to adapt to the purpose of our study, the tool TC-RENO was optimized using the basics of 

TrackCluster (63) with modifications in the clustering method and the addition of novel functions. The 

detailed TC-RENO designs and the associated codes are available on GitHub (https://github.com/HKU-

BAL/TC-RENO). 

The isoforms were detected by TC-RENO with default parameters. Their supported read counts 

provided in the output were then used to compute the CPM (counts-per-million) per isoform in each 

sample using edgeR (version 3.24.2) (64). 

For visualization, the per-site expression level was calculated by summing the CPM of its supported 

isoforms. It was then used to obtain an average within each non-overlapping 20,000-bp sliding window 

based on Araport11. After pairwise comparison between each mutant and Col-0, the differential 

expression regions (DERs), represented as log2 fold-change and defined as the difference between the 

average CPM per window, were presented in a chromosome-level plot. 

Genome-wide methylation-calling using bisulfite sequencing data 

The paired-end whole-genome bisulfite sequencing data were aligned to the Araport11 reference 

genome and the methylated 5mCs (5-Methylcytosine) were extracted using the default setting “-p --

no_overlap --comprehensive --cytosine_report” of Bismark (version 0.22.3) (65). For each sample, 

the CG, CHG and CHH Bismark outputs were formatted into separate BigWig files, including 

methylated genomic positions, methylation allele frequencies (MAF) and strand information for 

downstream analyses.  

Similar to the calculation of DERs, the differential methylation regions (DMRs) were calculated using 

the corresponding average MAF for CG, CHG and CHH per non-overlapping 20,000-bp sliding window 

in each sample, and were presented in a chromosome-level plot.   
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Discovery of alternative splicing events 

The regions within 25 bp, 50 bp, 5 bp and 5 bp of the transcription start sites (TSSs), transcription 

termination sites (TTSs), and acceptor and donor sites of mRNA isoforms, respectively, were 

separately merged into clusters. To determine intron retention (IR), exon skip and extra exon events, 

novel isoforms were mapped to genes in the reference genome. Isoforms with ≥ 50% of exons 
intersecting with the exons of the gene in Araport11 were regarded as a member of the gene. If an 

isoform intersected with multiple genes, the similarity score was computed as: Score = {   (Iexon ∩ Gexon) Iexon⁄  +  (Iexon ∩ Gexon) Gexon⁄ , Gexon > Iexon ∩ Gexon(Iexon ∩ Gexon) Iexon⁄  + Gexon Iexon ∩ Gexon     ⁄ , Gexon < Iexon ∩ Gexon 

between the isoform, I, and the gene, G, such that the isoform was assigned to the gene with the 

highest similarity score. Subsequently, the exons and introns of each novel isoform were compared 

against the TAIR-defined canonical transcript of the assigned genes to detect alternative splicing 

events. 

 Detection of met1-3 activated constitutive heterochromatin regions 

The met1-3 activated constitutive heterochromatin regions were defined as the transcribed regions 

in the met1-3 genome with high CG MAFs that were not found in Col-0. The isoforms expressed in 

met1-3 that did not intersect with the reads from Col-0 were extracted, except for the isoforms with 

ultra-long introns (>10,000 bp). The remaining isoforms were intersected with each other using 

bedtools (version 2.29.2 (66) with the parameters “-s -f 0.5”. The overlapping isoforms were clustered 

together to form a transcribed region. The first TSS and the last TTS were defined as the start and end 

positions of the region respectively. Regions with >0.8 of the average CG MAF of Col-0 on the coding 

strand were considered to be met1-3 activated constitutive heterochromatin regions. 

Poly(A) tail length analysis  

To compare the poly(A) tail length of reads at the gene level, the same method for isoform assignment 

as described above was applied to assign reads to genes. Then, to compare the poly(A) length between 

the heterochromatin and euchromatin regions of met1-3, the met1-3 reads were identified in the 

activated constitutive heterochromatin regions if at least 50% of their alignment overlapped with the 

regions. Furthermore, the TTS sites of the reads in the met1-3 activated consitutive heterochromatin 

regions were sorted according to whether their poly(A) tails were longer than 250 nt (i.e. long poly[A]) 

or shorter than 100 nt (i.e. short poly[A]). The TTS sites shared by both long and short poly(A) reads, 

or sites with no more than 3 supporting reads were excluded. The MAF distribution patterns on the 

coding strand were compared between the two types of TTS sites. 

Distribution of MAFs in fusion and normal genes 

A transcript was annotated as a fusion if it overlapped with at least 50% of one independent exon in 

two or more genes on the same strand of the same chromosome. The genes associated with the 

identified fusion transcripts were defined as fusion genes, while two adjacent expressed genes with a 

gap of fewer than 1,000 bp and not covered by fusion transcripts were considered to be normal genes. 

The MAF on the coding strand between the normal and fusion genes was compared.  
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Figure Legends 

Fig. 1. Comparative distributions of the differential expression regions (DER) and differential 

methylation regions (DMR) along Chromosome 1 (Chr1) between individual DNA methylation-

related mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis at the CHH, CHG and CG 

contexts. 

 

Fig. 2. Distributions of poly(A) tail lengths of housekeeping genes, transposable element (TE) genes, 

and other genes in the DNA methylation-related mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-

0) of Arabidopsis.  

 

 

Fig. 3. DNA methylation patterns around the transcriptional termination sites (TTSs) of housekeeping 

genes, TE genes and other genes in the DNA methylation-related mutants (met1-3/ddcc/tcx5tcx6) 

and wild type (Col-0) of Arabidopsis at the CHH, CHG and CG contexts. 

 

Fig. 4. DNA methylation patterns around splicing sites in wild type (Col-0) and DNA methylation-

related mutants (met1-3, ddcc and tcx5tcx6) of Arabidopsis. A. DNA methylation patterns around 

donor sites. B. DNA methylation patterns around acceptor sites. Splicing sites without intron 

retention from housekeeping genes and those from other, non-housekeeping, genes, as well as 

splicing sites with intron retention (IR) are shown in the CHH, CHG and CG contexts.   

 

Fig. 5. Confirmation of ONT DRS-identified novel transcript isoforms in DNA methylation-related 

mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis by nested RT-PCR and 

visualized by chemiluminescence detection. A. A novel transcript that combined the first exon from 

one gene with two final exons from another gene that was two loci downstream, with the remaining 

exons of these two genes and the entire genic region of the intervening gene forming an intron of 

this transcript. B. A novel transcript with the second intron of the first gene combined with the final 
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intron of the third gene, and the intervening exons of these two genes along with the entire genic 

region of the intervening gene becoming the intron of this transcript. C. A met1-3-specific novel 

transcript containing two unidentified exons together with the five final exons of At2g22670. (*This 

gene was not labeled in panel C in the figure.) D. A ddcc and met1-3-specific novel transcript 

containing eight short exons from intergenic regions and spanning three genes. FP, forward primer; 

RP1, RP2, reverse primers for nested PCR. Green arrows indicate the primer orientations. 

 

Fig. 6. Comparisons between average DNA methylation levels in individual DNA methylation-related 

mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis around transcription start sites 

(TSSs). AF, allele frequency. 

 

Fig. 7. DNA methylation patterns in the intergenic regions corresponding to fusion transcripts (both 

cut and uncut) and normal transcripts (without readthrough) in individual DNA methylation-related 

mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis at the CHH, CHG and CG 

contexts.  

 

Fig. 8. Localization of intron-retained transcripts and noncut fusion transcripts of selected genes of 

DNA methylation-related mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis in the 

nucleus and in the cytoplasm. The transcripts were first reverse-transcribed and amplified by PCR. The 

PCR products were separated on agarose gel and visualized by chemiluminescence detection. 

 

Fig. 9. DNA methylation patterns around transcription termination sites (TTSs) of transcripts with a 

poly(A) tail longer than 250nt (long poly[A]) and with a poly(A) tail length shorter than 100nt (short 

poly[A]) from activated constitutive heterochromatin of the DNA methylation-deficient mutant, 

met1-3, of Arabidopsis at the CHH, CHG and CG contexts. AF, allele frequency.  

 

Fig. 10. DNA methylation levels around the splicing sites of fully-spliced versus intron-retained (IR) 

transcripts from the activated constitutive heterochromatic regions of the DNA methylation-

deficient mutant, met1-3, of Arabidopsis at the CHH, CHG and CG contexts.  
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Fig. 1. Comparative distributions of the differential expression regions (DER) and differential 

methylation regions (DMR) along Chromosome 1 (Chr1) between individual DNA methylation-

related mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis at the CHH, CHG and CG 

contexts. 
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Fig. 2. Distributions of poly(A) tail lengths of housekeeping genes, transposable element (TE) genes, 

and other genes in the DNA methylation-related mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-

0) of Arabidopsis.  

 

Fig. 3. DNA methylation patterns around the transcriptional termination sites (TTSs) of housekeeping 

genes, TE genes and other genes in the DNA methylation-related mutants (met1-3/ddcc/tcx5tcx6) 

and wild type (Col-0) of Arabidopsis at the CHH, CHG and CG contexts. 
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Fig. 4. DNA methylation patterns around splicing sites in wild type (Col-0) and DNA methylation-

related mutants (met1-3, ddcc and tcx5tcx6) of Arabidopsis. A. DNA methylation patterns around 

donor sites. B. DNA methylation patterns around acceptor sites. Splicing sites without intron 

retention from housekeeping genes and those from other, non-housekeeping, genes, as well as 

splicing sites with intron retention (IR) are shown in the CHH, CHG and CG contexts.   
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Fig. 5. Confirmation of ONT DRS-identified novel transcript isoforms in DNA methylation-related 

mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis by nested RT-PCR and 

visualized by chemiluminescence detection. A. A novel transcript that combined the first exon from 

one gene with two final exons from another gene that was two loci downstream, with the remaining 

exons of these two genes and the entire genic region of the intervening gene forming an intron of 

this transcript. B. A novel transcript with the second intron of the first gene combined with the final 

intron of the third gene, and the intervening exons of these two genes along with the entire genic 

region of the intervening gene becoming the intron of this transcript. C. A met1-3-specific novel 

transcript containing two unidentified exons together with the five final exons of At2g22670. (*This 

gene was not labeled in panel C in the figure.) D. A ddcc and met1-3-specific novel transcript 

containing eight short exons from intergenic regions and spanning three genes. FP, forward primer; 

RP1, RP2, reverse primers for nested PCR. Green arrows indicate the primer orientations. 
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Fig. 6. Comparisons between average DNA methylation levels in individual DNA methylation-related 

mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis around transcription start sites 

(TSSs). AF, allele frequency. 

 

 

Fig. 7. DNA methylation patterns in the intergenic regions corresponding to fusion transcripts (both 

cut and uncut) and normal transcripts (without readthrough) in individual DNA methylation-related 

mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis at the CHH, CHG and CG 

contexts.  
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Fig. 8. Localization of intron-retained transcripts and noncut fusion transcripts of selected genes of 

DNA methylation-related mutants (met1-3/ddcc/tcx5tcx6) and wild type (Col-0) of Arabidopsis in the 

nucleus and in the cytoplasm. The transcripts were first reverse-transcribed and amplified by PCR. The 

PCR products were separated on agarose gel and visualized by chemiluminescence detection. 

 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.29.441938doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441938
http://creativecommons.org/licenses/by/4.0/


 

Fig. 9. DNA methylation patterns around transcription termination sites (TTSs) of transcripts with a 

poly(A) tail longer than 250nt (long poly[A]) and with a poly(A) tail length shorter than 100nt (short 

poly[A]) from activated constitutive heterochromatin of the DNA methylation-deficient mutant, 

met1-3, of Arabidopsis at the CHH, CHG and CG contexts. AF, allele frequency.  
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Fig. 10. DNA methylation levels around the splicing sites of fully-spliced versus intron-retained (IR) 

transcripts from the activated constitutive heterochromatic regions of the DNA methylation-

deficient mutant, met1-3, of Arabidopsis at the CHH, CHG and CG contexts.  
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