
UCLA
UCLA Previously Published Works

Title
DNA methylation age of blood predicts all-cause mortality in later life.

Permalink
https://escholarship.org/uc/item/7828n61r

Journal
Genome biology, 16(1)

ISSN
1474-7596

Authors
Marioni, Riccardo E
Shah, Sonia
McRae, Allan F
et al.

Publication Date
2015

DOI
10.1186/s13059-015-0584-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7828n61r
https://escholarship.org/uc/item/7828n61r#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH Open Access

DNA methylation age of blood predicts all-cause
mortality in later life
Riccardo E Marioni1,2,3†, Sonia Shah3,4†, Allan F McRae3,4†, Brian H Chen5,6†, Elena Colicino7†, Sarah E Harris1,2,

Jude Gibson8, Anjali K Henders9, Paul Redmond10, Simon R Cox1,10, Alison Pattie10, Janie Corley10, Lee Murphy8,

Nicholas G Martin9, Grant W Montgomery9, Andrew P Feinberg11,12, M Daniele Fallin11,13, Michael L Multhaup11,

Andrew E Jaffe13,14, Roby Joehanes5,15,16, Joel Schwartz7,17, Allan C Just7, Kathryn L Lunetta5,18, Joanne M Murabito5,19,

John M Starr1,20, Steve Horvath21,22†, Andrea A Baccarelli7,17†, Daniel Levy5,6†, Peter M Visscher1,3,4†,

Naomi R Wray3*† and Ian J Deary1,10*†

Abstract

Background: DNA methylation levels change with age. Recent studies have identified biomarkers of chronological

age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of

biological age.

Results: Here we test whether differences between people’s chronological ages and estimated ages, DNA methylation

age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage)

was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four

cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a

21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class,

hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with

a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability

of Δage was 0.43.

Conclusions: DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality

independently of health status, lifestyle factors, and known genetic factors.

Background
DNA sequence variants and epigenetic marks that are

associated with changes in gene expression contribute

to interindividual variation in complex phenotypes.

Epigenetic mechanisms such as DNA methylation, charac-

terized by the addition of a methyl group to a cytosine

nucleotide primarily at cytosine-phosphate-guanine (CpG)

sites, play essential roles during development, acting

through the regulation of gene expression [1]. Unlike

genomic variants, such as single nucleotide polymor-

phisms (SNPs), levels of DNA methylation vary across

the life course [2-6]. DNA methylation levels are influ-

enced by lifestyle and environmental factors [7], as well

as by genetic variation [8,9].

Age-related changes in DNA methylation are also well

documented, and two recent studies used methylation

measures from multiple CpG sites across the genome to

predict chronological age in humans [10,11]. Hannum

et al. created an age predictor based on a single cohort

in which DNA methylation was measured in whole

blood [10]. Horvath developed an age predictor using

DNA methylation data from multiple studies (including

the Hannum dataset) and multiple tissues [11]. In both

studies, the difference between methylation-predicted

age and chronological age (that is, Δage) was put forth as

an index of disproportionate ‘biological’ aging and was

hypothesized to be associated with risk for age-related

diseases and mortality [10,11]. Weidner et al. [12]

* Correspondence: naomi.wray@uq.edu.au; i.deary@ed.ac.uk
†Equal contributors
3Queensland Brain Institute, The University of Queensland, Brisbane 4072,

QLD, Australia
1Centre for Cognitive Ageing and Cognitive Epidemiology, University of

Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK

Full list of author information is available at the end of the article

© 2015 Marioni et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Marioni et al. Genome Biology  (2015) 16:25 

DOI 10.1186/s13059-015-0584-6

mailto:naomi.wray@uq.edu.au
mailto:i.deary@ed.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


proposed an age predictor based on three CpGs taken

from a methylation array with fewer total CpG sites than

the Hannum and Horvath models (27 k probes versus

450 k probes). To date, however, no study has tested

whether DNA methylation-based Δage or other genome-

wide DNA methylation biomarkers are significant pre-

dictors of all-cause mortality.

Here, we tested the association of two DNA methyla-

tion measures of Δage (using the Hannum and Horvath

predictors) with all-cause mortality in four cohorts: the

Lothian Birth Cohorts of 1921, and 1936 [13-15], the

Framingham Heart Study [16,17], and the Normative

Aging Study [18,19]. In addition, we estimated the herit-

ability of Δage using the Brisbane Systems Genetics Study

(BSGS) [20].

Results
The association between Δage (DNA methylation-pre-

dicted age minus chronological age) and mortality was ex-

amined in four cohorts: Lothian Birth Cohort 1921

(LBC1921) (N = 446, ndeaths = 292), Lothian Birth Cohort

1936 (LBC1936) (N = 920, ndeaths = 106), the Framingham

Heart Study (FHS) (N = 2,635, ndeaths = 238), and the

Normative Aging Study (NAS) (N = 657, ndeaths = 226).

The mean ages of the cohorts were 79.1 (SD 0.6), 69.5

(SD 0.8), 66.3 (SD 8.9), and 72.9 (SD 6.9) years, respect-

ively. The Hannum predicted values were higher than

the participants’ chronological ages by a mean of 2 to

6 years (SDs approximately 5 years) across the four

cohorts. The Horvath predicted values were lower than

the chronological ages in LBC1921 and LBC1936 partic-

ipants by 4 to 5 years (SD approximately 6 years) but

very similar to chronological age in the FHS (−0.60 years;

SD 5.2) and the NAS (0.6 years; SD 5.8). A third

predictor, based on the Weidner predictor was also ex-

amined, although it had a low correlation with chrono-

logical age (LBC1921: Pearson R = 0.02; LBC1936: Pearson

R = −0.03; FHS: Pearson R = 0.25; NAS: Pearson R = 0.43)

and very large absolute median differences (LBC1921:

29.9 years, LBC1936: 19.8 years, FHS: 12.6 years, NAS:

18.4 years) so was not examined further. A full de-

scription of the cohorts is provided in Table 1 and

Additional file 1. Combining information from these

studies, the correlation between chronological age and

predicted age was 0.83 for the Hannum measure and

0.75 for the Horvath measure (Figure 1). The correl-

ation between the Hannum and Horvath predictors

was 0.77.

Methylation age acceleration predicts mortality

In the meta-analyzed results across the four cohorts, a

5-year higher Hannum Δage was associated with a 21%

(95% CI (1.14, 1.29), P <0.0001) greater mortality risk

after adjustment for chronological age and sex (Figure 2).

The corresponding increase in mortality risk for the

Horvath Δage was 11% (95% CI (1.05, 1.18), P = 0.0003).

Kaplan-Meier survival curves for the Horvath and

Hannum Δage (split into highest versus lowest quartile,

for descriptive purposes only) in these models are pre-

sented in Figure 3 for the LBC1921 sample, which was

the study with the greatest number of deaths. The plot

illustrates the higher mortality rate for those with

higher Δage.

Association between methylation age indicators and

white blood cell counts

It is well known that blood cell types have distinct methy-

lation profiles [21,22]. A sensitivity analysis adjusting for

white blood cell counts (basophils, eosinophils, mono-

cytes, lymphocytes, and neutrophils) resulted in mostly

minor differences to the results (Additional file 2).

In addition to the five white blood cell types, we also

examined the association between estimated naive T cell

abundance and Δage. However, to prevent spurious cor-

relations between Δage, which by definition correlates

negatively with age, and cell counts, we used age ac-

celeration defined as the residuals from a regression

of predicted age on chronological age. There were

stronger associations with these measures and the

Hannum predictor (naive CD4+ T cells, average cor-

relation r = −0.35, naive CD8+ T cells, average r = −0.34)

compared to the Horvath predictor (r = −0.20, and −0.20,

respectively). After adjustment for naive T cells, both pre-

dictors were still significantly associated with mortality.

Naive T cell count was also associated with mortality in

addition to the Hannum predictor (Additional file 3).

Chronological age had a significant negative relationship

with the abundance of naive T cells (on average r = −0.12

for CD8+ and r = −0.10 for CD4+ T cells, Additional

file 3).

The moderately strong correlation between naive T

cell abundance and the Hannum predictor suggests that

the latter keeps track of the age-related decline of cer-

tain T cell populations. This makes sense in light of the

facts that: (1) the Hannum predictor was constructed on

the basis of DNA methylation data from whole blood;

and (2) that naive T cells diminish with age due to age

related thymic involution. In contrast to the Hannum

predictor, the Horvath predictor exhibits a weaker rela-

tionship with naive T cell abundance, which probably re-

flects the fact that it was constructed on a range of

different tissues and cell types.

Adjusting for demographic variables and risk factors

Sensitivity analyses were performed to control for po-

tentially confounding variables: smoking, education,

childhood IQ (LBC1921 and LBC1936 only), social

class (LBC1921 and LBC1936 only), APOE (LBC1921,
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LBC1936, and NAS only), cardiovascular disease, high

blood pressure, and diabetes. When entered together

in a fully adjusted model (Figure 2) the meta-analyzed

hazards ratio (HR) per 5-year increment was 1.16 (95%

CI (1.08, 1.25), P = 6.0x10-9) for the fully adjusted

Hannum Δage and 1.09 (95% CI (1.02, 1.15), P = 0.0069)

for the fully adjusted Horvath Δage. In the LBC data-

sets, which were the only datasets to contain informa-

tion on all of the covariates, inclusion of the covariates

one at a time made very little difference to basic, age-,

and sex-adjusted results (Additional file 4).

Separate age-adjusted Cox models for men and women

are presented in Additional file 5; there was no notable

difference in the relation of Δage to survival by sex. Sensi-

tivity analyses that excluded deaths within the first 2 years

of follow-up made negligible differences to the effect size

and significance of the Δage associations (Additional

file 6).

We tested the associations between Δage and several

key covariates (Additional file 7). With the exception of

sex, where women had significantly lower Δage estimates

than men, there were no consistent associations with the

covariates. There was some evidence for an association

between the Hannum (but not Horvath) Δage and child-

hood IQ and social class, although these covariates were

assessed in only the two LBC cohorts.

Heritability of methylation Δage

Using data from the BSGS cohort, the estimated herit-

ability for the Horvath and Hannum Δage was 0.43 (SE

0.07, P = 9×10−13) and 0.42 (SE 0.07, P = 4×10−10), re-

spectively, indicating that approximately 40% of inter-

individual differences in Δage are due to genetic factors.

The contribution to heritability broken down across

relationship classes is given in Figure 4, and is consist-

ent with an additive genetic model of inheritance.

Discussion
The difference between DNA methylation predicted age

and chronological age (Δage) using two sets of epigenetic

markers [10,11] is a heritable trait that is associated with

an increased risk of mortality in four independent co-

horts of older individuals. This association is independ-

ent of life-course predictors of aging and death such as

possession of the e4 allele of APOE, education, child-

hood IQ, social class, diabetes, high blood pressure, and

cardiovascular disease. Moreover, there was no clear as-

sociation between these factors and Δage.

A strength of our study is that we evaluate two distinct

epigenetic biomarkers of aging (Δage) one from DNA

methylation in whole blood, and one based on results

across multiple tissues. The associations between Δage

and mortality were stronger for the blood-based pre-

dictor but the two measures became comparable after

adjusting for naive CD8 T cell abundances (Additional

file 3). It is well known that immunosenescence is ac-

companied by diminishing naive T cells due to thymic

involution and that the aging immune system is a pre-

dictor of human longevity [23,24]. While it is possible

that the association between accelerated epigenetic age

and all-cause mortality is mediated by changes in blood

cell composition, we think that this is unlikely for the

following reasons. First, the Horvath measure only ex-

hibited a weak relationship (average r = −0.20) with naive

T cell abundance which reflects its definition and applic-

ability to most tissues and cell types. Second, both

Table 1 Summary details of the four analysis cohorts

LBC1921 LBC1936 FHS NAS

N 446 920 2,635 657

ndeaths 292 106 238 226

Time to death (years) 7.2 (3.5) 4.4 (2.2) 6.0 (1.2) 10.5 (3.3)

Age (years) 79.1 (0.6) 69.5 (0.8) 66.3 (8.9) 72.9 (6.9)

Sex (male) 176 (40%) 465 (51%) 1200 (46%) 657 (100%)

Hannum methylation age (years) 85.0 (5.6) 75.8 (5.0) 68.2 (8.7) 77.6 (6.7)

Hannum Δage (years) 5.9 (5.6) 6.2 (5.1) 1.9 (4.8) 4.6 (4.8)

Hannum median error (years) 5.5 6.4 1.9 4.6

Horvath methylation age (years) 73.7 (6.2) 66.0 (5.8) 65.7 (8.3) 73.5 (7.4)

Horvath Δage (years) −5.4 (6.3) −3.6 (5.8) −0.6 (5.2) 0.6 (5.8)

Horvath median error (years) 6.0 4.7 0.69 3.4

Tissue sample Whole blood Whole blood Whole blood Buffy coat

Methylation array Illumina 450 k Illumina 450 k Illumina 450 k Illumina 450 k

FHS: Framingham Heart Study, LBC: Lothian Birth Cohort, NAS: Normative Aging Study.
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measures remained significant predictors of mortality in

multivariate regression models that adjusted for naive T

cell abundances.

Given the similarity of the findings for the two epigen-

etic biomarkers of aging, it is a credible hypothesis that

Δage is an epigenetic biomarker of the pace of biological

aging throughout life.

Nearly all biological and lifestyle factors that we stud-

ied did not materially influence either the Hannum or

Horvath Δage across the four cohorts. Specifically, vascu-

lar insults, as measured by diabetes and hypertension,

which are linked to cognitive decline, dementia, and

death [25-27], were not associated with Δage. There were

sex differences, with men having higher Δage than

women, which is consistent with previous findings [10].

Childhood IQ and social class were modestly associated

with Δage in the two Lothian Birth Cohorts; an increased

IQ in childhood and a less deprived social class were as-

sociated with lower Δage in later life, although these were

driven almost entirely by LBC1936. These correlated

variables have been repeatedly associated with a range of

health inequalities, including mortality [28], and it is

possible that Δage might offer insight into the mecha-

nisms by which they are linked to health outcomes.

Conclusions
There is continued interest in identifying new risk fac-

tors, environmental, genetic, and epigenetic that can im-

prove our ability to predict disease and mortality.

Epidemiological studies have identified numerous mea-

sures from across the human life-course that are associ-

ated with an increased risk of mortality. These include

health factors such as cardiovascular disease, diabetes,

and hypertension [27], genetic factors such as presence

of the APOE e4 allele [29], lifestyle variables such as

smoking [30] and education [31], behavioral traits such

as cognitive ability [31,32], the personality trait of con-

scientiousness [33], and candidate biomarkers of age

such as telomere length [34,35]. Here, we report on an

epigenetic biomarker that is predictive of human mortal-

ity, after accounting for known risk factors. We found

that two heritable DNA methylation-based measures of

the difference between epigenetic age and chronological

age are significant predictors of mortality in our meta-

analysis of four independent cohorts of older people.

Figure 1 Plot of predicted methylation age against

chronological age and plot of Hannum versus Horvath

predicted methylation age. *To prevent the potential identification

of individual participants, only FHS data points with chronological

ages between 45 and 85, and NAS data points between ages 56

and 100 are displayed. r = Pearson correlation coefficient. FHS:

Framingham Heart Study, LBC: Lothian Birth Cohort, NAS: Normative

Aging Study.
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Individual genetic or environmental exposures that drive

the associations are not yet known, but they appear not

to be clearly linked to classic life-course risk factors. The

difference between DNA methylation age and chrono-

logical age predicts mortality risk over and above a

combination of smoking, education, childhood IQ, social

class, APOE genotype, cardiovascular disease, high blood

pressure, and diabetes. It may therefore be possible to

think of DNA methylation predicted age as an ‘epigen-

etic clock’ [11] that measures biological age and runs

alongside, but not always in parallel with chronological

age, and may inform life expectancy predictions. Our

Figure 3 Survival probability by quartiles of Δage in LBC1921 adjusted for sex, and chronological age. LBC: Lothian Birth Cohort.

Figure 2 Meta-analysis results of Δage versus mortality. The basic adjusted models controlled for chronological age, sex (NAS had only male

participants), and laboratory batch (FHS only). The fully adjusted models controlled for chronological age, sex, smoking, education, childhood IQ

(LBC1921 and LBC1936 only), social class (LBC1921 and LBC1936 only), APOE (LBC1921, LBC1936, and NAS only), cardiovascular disease, high

blood pressure, and diabetes. CI: confidence interval, FHS: Framingham Heart Study, HR: hazard ratio, LBC: Lothian Birth Cohort, NAS: Normative

Aging Study, W: fixed effect weight.
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results imply that epigenetic marks, such as gene methy-

lation, are like other complex traits: influenced by both

genetic and environmental factors and associated with

major health-related outcomes.

Materials and methods
Cohort descriptions

The Lothian Birth Cohort 1921

Data were from the Lothian Birth Cohort 1921

(LBC1921), which is the basis of a longitudinal study of

aging [13,15]. Participants were born in 1921 and most

completed a cognitive ability test at about the age of

11 years in the Scottish Mental Survey 1932 (SMS1932)

[36]. The SMS1932 was administered nationwide to al-

most all 1921-born children who attended school in

Scotland on 1 June 1932. The cognitive test was the

Moray House Test No. 12, which provides a measure of

general cognitive ability and has a scoring range between

0 and 76. The LBC1921 study attempted to follow up in-

dividuals who might have completed the SMS1932 and

resided at about the age of 79 years in the Lothian re-

gion (Edinburgh and its surrounding areas) of Scotland;

550 people (n = 234, 43% men) were successfully traced

and participated in the study from the age of 79 years.

To date, there have been four additional follow-up waves

at average ages of 83, 87, 90, and 92 years. The cohort

has been deeply phenotyped during the later-life waves,

including blood biomarkers, cognitive testing, and

psycho-social, lifestyle, and health measures [13]. Gen-

ome wide single nucleotide polymorphisms and exome

chip data are also available. DNA methylation measured

in subjects at an average age of 79 (n = 514) was used for

analyses in this report.

Lothian Birth Cohort 1936

The methylation mortality survival analysis was investi-

gated in a second study, the Lothian Birth Cohort 1936

(LBC1936) [13,14]. All participants were born in 1936.

Most had taken part in the Scottish Mental Survey 1947

at a mean age of 11 years as part of national testing of

almost all children born in 1936 who attended Scottish

schools on 4 June 1947 [37]. The cognitive test adminis-

tered was the same Moray House Test No. 12 used in

the SMS1932. A total of 1,091 participants (n = 548, 50%

men) who were living in the Lothian area of Scotland

were re-contacted in later life. Extensive phenotyping

has also been carried out in this study, with data collec-

tion waves at three time points [13]. Genome-wide sin-

gle nucleotide polymorphisms and exome chip data are

also available. DNA methylation was measured in 1,004

subjects at Wave 1 (mean age, 70 years). To date, there

have been two additional follow-up waves at average

ages of 73 and 76 years.

The Framingham Heart Study

Framingham Heart Study (FHS) is a community-based

longitudinal study of participants living in and near

Framingham, MA, at the start of the study in 1948

[16]. The Offspring cohort comprised the children and

spouses of the original FHS participants, as described

previously [17]. Briefly, enrollment for the Offspring

cohort began in 1971 (n = 5,124), and in-person evalua-

tions occurred approximately every 4 to 8 years there-

after. The current analysis was limited to participants

from the Offspring cohort who survived until the

eighth examination cycle (2005 to 2008) and consented

to genetics research. DNA methylation data of periph-

eral blood samples collected at the eighth examination

cycle were available in 2,741 participants.

The Normative Aging Study

The US Department of Veterans Affairs (VA) Normative

Aging Study (NAS) is an ongoing longitudinal cohort

established in 1963, which included men who were aged

21 to 80 years and free of known chronic medical condi-

tions at entry [18,19]. Participants were subsequently in-

vited to medical examinations every 3 to 5 years. At

each visit, participants provided information on medical

history, lifestyle, and demographic factors, and under-

went a physical examination and laboratory tests. DNA

samples were collected from 1999 to 2007 from the 675

Figure 4 Heritability of methylation Δage. (A) Intra-class correlation

of Hannum and Horvath Δage across relationship class. (B) Heritability

of Hannum and Horvath Δage in BSGS data. Both plots show estimates

with standard errors. *Pseudo-independent pairs. r represents the

degree of relatedness.
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active participants and used for DNA methylation ana-

lysis. We excluded 18 participants who were not of

European descent or had missing information on race,

leaving a total of 657 individuals.

Brisbane Systems Genetics Study

The Brisbane Systems Genetic Study (BSGS) [20] is a co-

hort comprising adolescent monozygotic (MZ) and di-

zygotic (DZ) twins, their siblings, and their parents.

They were originally recruited into an ongoing study of

the genetic and environmental factors influencing cogni-

tion and pigmented nevi. DNA methylation was mea-

sured on 614 individuals from 117 families of European

descent. Families consist of adolescent monozygotic

(MZ; n = 67 pairs) and dizygotic (DZ; n = 111 pairs) twins,

their siblings (n = 119), and their parents (n = 139). Chil-

dren have a mean age of 14 years (age range, 9–23 years)

and parents 47 years (age range, 33–75 years).

Ethics

LBC consent

Following informed consent, venesected whole blood

was collected for DNA extraction in both LBC1921 and

LBC1936. Ethics permission for the LBC1921 was ob-

tained from the Lothian Research Ethics Committee

(Wave 1: LREC/1998/4/183). Ethics permission for the

LBC1936 was obtained from the Multi-Centre Research

Ethics Committee for Scotland (Wave 1: MREC/01/0/

56), the Lothian Research Ethics Committee (Wave 1:

LREC/2003/2/29). Written informed consent was ob-

tained from all subjects.

FHS consent

All participants provided written informed consent at

the time of each examination visit. The study protocol

was approved by the Institutional Review Board at Bos-

ton University Medical Center (Boston, MA, USA).

NAS consent

The NAS study was approved by the Institutional Review

Boards (IRBs) of the participating institutions. Participants

have provided written informed consent at each visit.

BSGS consent

The BSGS study was approved by the Queensland Institute

for Medical Research Human Research Ethics Committee.

All participants gave informed written consent.

DNA methylation measurement

In all cohorts, bisulphite converted DNA samples

were hybridised to the 12 sample Illumina Human-

Methylation450BeadChips [38] using the Infinium HD

Methylation protocol and Tecan robotics (Illumina, San

Diego, CA, USA).

LBC1921 and LBC1936 DNA methylation

DNA was extracted from 514 whole blood samples in

LBC1921 and from 1,004 samples in LBC1936. Samples

were extracted at MRC Technology, Western General

Hospital, Edinburgh (LBC1921) and the Wellcome Trust

Clinical Research Facility (WTCRF), Western General

Hospital, Edinburgh (LBC1936), using standard methods.

Methylation typing of 485,512 probes was performed at

the WTCRF. Raw intensity data were background-

corrected and methylation beta-values generated using the

R minfi package [39]. Quality control analysis was per-

formed to remove probes with a low (<95%) detection rate

at P <0.01. Manual inspection of the array control probe

signals was used to identify and remove low quality sam-

ples (for example, samples with inadequate hybridization,

bisulfite conversion, nucleotide extension, or staining sig-

nal). The Illumina-recommended threshold was used to

eliminate samples with a low call rate (samples with

<450,000 probes detected at P <0.01). Since the LBC sam-

ples had previously been genotyped using the Illumina

610-Quadv1 genotyping platform, genotypes derived from

the 65 SNP control probes on the methylation array using

the wateRmelon package [40] were compared to those ob-

tained from the genotyping array to ensure sample integ-

rity. Samples with a low match of genotypes with SNP

control probes, which could indicate sample contamin-

ation or mix-up, were excluded (n = 9). Moreover, eight

subjects whose predicted sex, based on XY probes, did

not match reported sex were also excluded.

FHS DNA methylation

Peripheral blood samples were collected at the eighth

examination samples (2005 to 2008). Genomic DNA was

extracted from buffy coat using the Gentra Puregene

DNA extraction kit (Qiagen) and bisulfite converted

using EZ DNA Methylation kit (Zymo Research Corpor-

ation). DNA methylation quantification was conducted

in two laboratory batches. Methylation beta values were

generated using the Bioconductor minfi package with

background correction. Sample exclusion criteria in-

cluded poor SNP matching of control positions, miss-

ing rate >1%, outliers from multi-dimensional scaling

(MDS), and sex mismatch. Probes were excluded if

missing rate >20%. In total, 2,635 samples and 443,304

CpG probes remained for analysis.

NAS DNA methylation

DNA was extracted from buffy coat using the QIAamp

DNA Blood Kit (QIAGEN, Valencia, CA, USA). A total

of 500 ng of DNA was used to perform bisulfite conversion

using the EZ-96 DNA Methylation Kit (Zymo Research,

Orange, CA, USA). To limit chip and plate effects, a two-

stage age-stratified algorithm was used to randomize sam-

ples and ensure similar age distributions across chips and
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plates; we randomized 12 samples - which were sampled

across all the age quartiles - to each chip, then chips were

randomized to plates (each housing eight chips). Quality

control analysis was performed to remove samples where

>1% of probes had a detection P value >0.05. The

remaining samples were preprocessed using the Illumina-

type background correction without normalization as

reimplemented in the Bioconductor minfi package, which

was used to generate methylation beta values [39]. All

485,512 CpG and CpH probes were in the working set.

BSGS DNA methylation

DNA was extracted from peripheral blood lymphocytes

by the salt precipitation method [41] from samples that

were time matched to sample collection of PAXgene

tubes for gene expression studies in the Brisbane Sys-

tems Genetics Study [20]. Bisulphite converted DNA

samples were hybridized to the 12 sample Illumina

HumanMethylation450 BeadChips using the Infinium

HD Methylation protocol and Tecan robotics (Illumina,

San Diego, CA, USA). Samples were randomly placed

with respect to the chip they were measured on and to

the position on that chip in order to avoid any confound-

ing with family. Box-plots of the red and green intensity

levels and their ratio were used to ensure that no chip

position was under- or over-exposed, with any outlying

samples repeated. Similarly, the proportion of probes with

detection P value less than 0.01 was examined to confirm

strong binding of the sample to the array. Raw intensity

values were background corrected using the Genome Stu-

dio software performing normalization to internal controls

and background subtraction.

Mortality ascertainment

LBC mortality ascertainment

For both LBC1921 and LBC1936, mortality status was ob-

tained via data linkage from the National Health Service

Central Register, provided by the General Register Office

for Scotland (now National Records of Scotland). Partici-

pant deaths and cause of death are routinely flagged to the

research team on approximately a 12-weekly basis.

FHS mortality ascertainment

Deaths that occurred prior to 1 January 2013 were

ascertained using multiple strategies, including routine

contact with participants for health history updates,

surveillance at the local hospital and in obituaries of

the local newspaper, and queries to the National Death

Index. We requested death certificates, hospital and

nursing home records prior to death, and autopsy re-

ports. When cause of death was undeterminable, the

next of kin were interviewed. The date and cause of

death were reviewed by an endpoint panel of three

investigators.

NAS mortality ascertainment

Regular mailings to study participants have been used to

maintain vital-status information, and official death certifi-

cates were obtained for decedents from the appropriate

state health department. Death certificates were reviewed

by a physician, and cause of death coded by an experi-

enced research nurse using ICD-9. Both participant deaths

and cause of death are routinely updated by the research

team and last update available was 31 December 2013.

Covariate measurement

LBC covariates

Mortality-associated variables assessed in LBC1921 and

LBC1936 were used as covariates in the statistical

models: educational attainment, age-11 cognitive ability,

APOE e4 status (carriers versus non-carriers), smoking

status, and the presence or absence of diabetes, high

blood pressure, or cardiovascular disease. Age-11 cogni-

tive ability (age-11 IQ) was measured in 1932 for

LBC1921 and in 1947 for LBC1936 using the Moray

House Test Number 12, described above. All other vari-

ables were measured at the late-life baseline waves (age

79 years for LBC1921 and age 70 years for LBC1936).

APOE was genotyped from venous blood using PCR

amplification of a 227-bp fragment of the APOE gene,

which contains the two single nucleotide polymorphisms

that are used to define the e2, e3, and e4 alleles [42] in

LBC1921, and by TaqMan technology (Applied Biosys-

tems, Carlsbad, CA, USA) in LBC1936. Subjects were

then categorized by the presence or absence of the e4 al-

lele. Social class was based on the most prestigious occu-

pation held by the participant prior to retirement. It was

grouped into five categories in LBC1921 and six categor-

ies in LBC1936, where Class III was split into manual

and non-manual professions [43,44]. It was treated as a

continuous variable with lower values representing the

more prestigious classes. The other variables were deter-

mined via self-report: number of years of education

(measured as a continuous variable), diabetes (yes/no),

high blood pressure (yes/no), cardiovascular disease (yes/

no), and categorical smoking status (current/ex-smoker,

never smoked).

Given the known influence of blood cell count on

methylation [21], we adjusted for five types of white

blood cell count (basophils, monocytes, lymphocytes, eo-

sinophils, and neutrophils) that were measured at on the

same blood that was analyzed for methylation. These

data were collected and processed the same day; tech-

nical details are reported in McIllhagger et al. [45].

FHS covariates

At the eighth in-person examination visit participants

completed a questionnaire that inquired about their edu-

cation, occupation, smoking status, and disease status.
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Highest levels of educational attainment was assessed by

eight categories - no schooling, grades 1 to 8, grades 9

to 11, completed high school or GED, some college but

no degree, technical school certificate, associate degree,

Bachelor’s degree, graduate or professional degree. Smok-

ing status was dichotomized as current/past smokers and

those who reported to never have smoked. Diabetes was

defined as having fasting blood glucose ≥126 mg/dl or

current treatment for diabetes. Hypertension was defined

as having systolic blood pressure ≥140 mmHg, diastolic

blood pressure ≥90 mmHg, or current treatment for

hypertension. Cardiovascular disease was determined by a

panel of three physicians, who reviewed participants’ med-

ical records, laboratory findings, and clinic exam notes.

NAS covariates

At each in-person examination visit, participants com-

pleted a questionnaire that enquired about their smoking

status, education, diabetes (self-reported diagnosis and/or

use of diabetes medications), and diagnosis of coronary

heart disease (validated on medical records, ECG, and

physician exams). High blood pressure was defined as an-

tihypertensive medication use or SBP ≥140 mmHg or

DBP ≥90 mmHg at study visit. APOE-e4 allele status was

assessed through genotyping on a Sequenom MassArray

MALDI-TOF mass spectrometer.

Estimated naive T cell abundance

In LBC1921, LBC1936, FHS, and NAS, we considered

the abundance of defined different subtypes of T cells:

Naive T cells were defined as RA+ IL7 Receptor + cells.

Central Memory T cells = RA negative IL7 Receptor

positive Effector memory = RA negative IL7 Receptor

negative. To estimate the naive T cells in our cohort

studies, we used a prediction method that was developed

on an independent dataset. The predictor of T cell counts

(that is, naive CD4 T cell count) was found by applying a

penalized regression model (elastic net) to regress T cell

counts (dependent variable) on a subset of CpGs reported

in Supplemental Table 3 from Zhang et al. [46]. By apply-

ing this resulting penalized regression model to our data,

we arrived at predicted T cell counts.

Data availability

LBC methylation data have been submitted to the European

Genome-phenome Archive under accession number

EGAS00001000910; phenotypic data are available at

dbGaP under the accession number phs000821.v1.p1.

The FHS and NAS data are available at dbGaP under

the accession numbers phs000724.v2.p9 phs000853.v1.

p1, respectively. BSGS methylation data are available

from the NCBI Gene Expression Omnibus under ac-

cession number GSE56105.

Statistical analyses

Two measures of DNA methylation age (mage) were cal-

culated. The Horvath [11] mage uses 353 probes com-

mon to the Illumina 27 K and 450 K Methylation arrays

using data from a range of tissues and cell types. The

Hannum [10] mage is based on 71 methylation probes

from the Illumina 450 K Methylation array derived as

the best predictors of age using data generated from

whole blood. Of the Hannum age predictor probes, 70,

71, and 71 were included in the LBC, NAS, and FHS

data, respectively. mage was calculated as the sum of the

beta values multiplied by the reported effect sizes for the

Hannum predictor. For the Horvath predictor, mage was

determined in all cohorts using the online calculator

(http://labs.genetics.ucla.edu/horvath/dnamage/). A third

predictor, based on the three probes highlighted in the

Weidner et al. paper [12], was also examined although,

due to its poorer predictive accuracy, it was not included

for the main analyses. To account for technical variabil-

ity in the measurement of the methylation CpGs in the

LBC studies, mage was adjusted for plate, array, position

on the chip, and hybridisation date (all treated as fixed

effect factors) using linear regression. In a sensitivity

analysis, additional adjustments were made for white

blood cell counts (the number of basophils, monocytes,

lymphocytes, eosinophils, and neutrophils per volume of

blood) or DNA methylation-estimated cell counts, as de-

scribed elsewhere [21]. The residuals from these models

were added to the mean predicted methylation age to

give the new, adjusted measure of mage. The two methy-

lation age predictors contained six overlapping probes.

A methylation-based age acceleration index (Δage) was

calculated for all subjects, defined as the adjusted

methylation age in years minus chronological age at

sample collection in years (Δage =mage - chronological

age).

Cox proportional hazards regression models were used

to test the association between the Horvath and Hannum

measures of Δage and mortality, adjusting for age at sam-

ple collection, and sex. Cox models in FHS further ad-

justed for laboratory batch (fixed effect) and used a robust

variance estimator to account for familial relatedness.

Hazard ratios for Δage were expressed per 5 years of

methylation age acceleration. Schoenfeld residuals were

examined to test the proportional hazards assumption.

Sensitivity analyses, also using Cox proportional hazards

regression, excluded deaths within the first 2 years of

follow-up to eliminate the potential influences of (fatal)

acute illness on the methylation measurements. Analyses

to account for possible confounders/mediators included

potential life-course predictors of mortality: age-11 IQ

(LBC only), education in years, social class (LBC only),

APOE e4 carrier status (LBC and NAS), smoking status,

and self-reported diabetes, high blood pressure, and
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cardiovascular disease. A fully adjusted model was tested,

in which all variables were entered together. Chrono-

logical age- and sex-adjusted linear regression models

were used to explore the relationship between Δage and

the additional covariates; for example, does methylation

age acceleration depend on smoking or diabetes?

The results from the individual cohorts were meta-

analyzed using the ‘meta’ package in R [47]. The co-

horts were weighted based on the standard errors of

the log hazard ratios. There was no evidence of cohort

heterogeneity in the primary Cox model analyses

according to the DerSimonian-Laird estimator of

between-study variance so fixed effects models were

considered.

All analyses were performed in the statistical soft-

ware R [48] with the Cox models utilizing the 'survival'

library [49].

Finally, we calculated the heritability of Δage in the

BSGS cohort. As mage was a better predictor of chrono-

logical age in the adult compared to adolescent samples,

the difference between methylation age and chrono-

logical age was firstly standardized within generations

(parents and offspring). Regression models were fitted to

methylation age removing the effects of age and sex.

Additionally, the regression on the adolescent samples

included age2 to account for the non-linearity between

chronological and methylation age [11]. The residuals

from these regressions were standardized to have a

variance of 1 before combining the generations. See

Additional file 8 for a graphical representation of the

correction performed.

For each probe, the Intra Class Correlation of Δage for

the various relative pairs was calculated using ANOVA

as follows:

ICC ¼
MSB−MSW

MSB þMSW

where MSB is the Mean Square Between pairs and MSW

is the Mean Square Within. The confidence intervals

were based on the number of pseudo-independent rela-

tive pair for each relationship.

The heritability for each probe was estimated by parti-

tioning its variance into additive genetic (Va) and environ-

mental (Ve) component by fitting a linear mixed model of

the form

y ¼ μþ Zaþ e

where y is the vector of adjusted methylation age, a is

the additive genetic effects and e is the unique environ-

mental effects (residuals). The model was fitted using

QTDT [50].

Additional files

Additional file 1: Contains a table with summary information for

the additional covariate data in the four cohorts.

Additional file 2: Contains a table with the white blood cell-adjusted

associations of Horvath and Hannum Δage with mortality.

Additional file 3: Presents the results from the analyses that

accounted for differences in naive T cell abundance. It contains a

table and cohort specific figures that assess the association between

naive T cell abundance and age acceleration, chronological age, and

mortality. Cox model output is also included to show the association

between methylation age acceleration and mortality after adjusting for

naive T cells.

Additional file 4: Contains a table of the associations of Δage (per

5 years) with mortality in LBC1921 and LBC1936 after individual

adjustment for covariates. The basic adjustment model controls for

age and sex. A separate Cox model adjusting for age, sex, and a single

covariate was analyzed along with a saturated model that included age,

sex, and all covariates together.

Additional file 5: Contains a figure with the meta-analysis results of

sex-stratified, age-adjusted models of Δage against mortality.

Additional file 6: Contains a figure with the meta-analysis results of

age- and sex-adjusted Δage against mortality with a 2-year time lag.

Additional file 7: Contains a table with the associations of Δage

with known mortality risk factors. Separate linear regression analyses

were performed for each covariate. All models adjusted for sex except for

NAS, which only had male participants. Analysis of FHS data was adjusted

for laboratory batch and family structure.

Additional file 8: Contains a figure illustrating the model fitting in

BSGS to create residuals from a regression of predicted age against

chronological age. A quadratic chronological age term was included in

the adolescent model along with chronological age and sex (red line). A

linear model adjusting for age and sex was included in the adult model

(blue line).
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