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Abstract DNA methylation is a major epigenetic modifi-
cation in the genomes of higher eukaryotes. In vertebrates,
DNA methylation occurs predominantly on the CpG dinu-
cleotide, and approximately 60% to 90% of these dinucleo-
tides are modified. Distinct DNA methylation patterns,
which can vary between different tissues and developmen-
tal stages, exist on specific loci. Sites of DNA methylation
are occupied by various proteins, including methyl-CpG
binding domain (MBD) proteins which recruit the enzy-
matic machinery to establish silent chromatin. Mutations in
the MBD family member MeCP2 are the cause of Rett
syndrome, a severe neurodevelopmental disorder, whereas
other MBDs are known to bind sites of hypermethylation in
human cancer cell lines. Here, we review the advances in
our understanding of the function of DNA methylation,
DNA methyltransferases, and methyl-CpG binding proteins
in vertebrate embryonic development. MBDs function in
transcriptional repression and long-range interactions in
chromatin and also appear to play a role in genomic sta-
bility, neural signaling, and transcriptional activation. DNA
methylation makes an essential and versatile epigenetic
contribution to genome integrity and function.

Introduction

DNA methylation is a covalent modification of DNA cata-
lyzed by DNA methyltransferase enzymes (DNMTs). In
vertebrate genomes, the addition of a methyl group occurs
exclusively on the cytosine within CG dinucleotides (re-
ferred to as CpG), with 60–90% of all the CpGs methylated
in mammals (Bird 1986). The exceptions are CpG islands,
CpG-enriched sequences that frequently coincide with gene
promoter regions and generally are unmethylated. DNA
methylation in higher eukaryotes is usually associated with
a repressed chromatin environment, while in the prokaryote
kingdom both cytosine and adenine methylation have been
described as a part of the host restriction system (Wilson
and Murray 1991). Proper DNAmethylation is a prerequisite
for normal development and is involved in various processes
such as gene repression, imprinting, X-chromosome inactiva-
tion, suppression of repetitive genomic elements, and carci-
nogenesis (Bird 2002). Sites of DNA methylation recruit
methyl-CpG binding domain proteins (MBDs) and several
structurally unrelated methyl-CpG binding zinc-finger pro-
teins of the Kaiso family (Kaiso/ZBTB33, ZBTB4 and
ZBTB38, cf. Fig. 1). These proteins generally are thought to
associate with histone deacetylase activity and establish
silent chromatin (Table 1). Here, we review the recent
developments in the field of DNA methylation-dependent
silencing with special emphasis on the role of MBDs in
vertebrate development. DNA methylation, MBDs, and their
roles in disease have been more extensively reviewed
elsewhere (Clouaire and Stancheva 2008; Hendrich and
Tweedie 2003; Klose and Bird 2006; Lopez-Serra and
Esteller 2008).
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DNA methylation: distribution and dynamics

DNA methylation in different species

Vertebrate genomes are highly methylated, but many
invertebrates have a low genomic DNA methylation content
and a few species like Caenorhabditis elegans and Dro-
sophila melanogaster appear (virtually) methylation-free
(Tweedie et al. 1997). Likewise, both Schizosaccharomyces
pombe and Saccharomyces cerevisiae are devoid of DNA
methylation (Antequera et al. 1984; Proffitt et al. 1984), but
the filamentous fungus Neurospora crassa utilizes a silenc-
ing pathway in which the establishment of DNA methylation
is dependent on the H3K9 histone-methyltransferase dim-5
(Tamaru and Selker 2001). A study mapping DNA methyl-
ation in the Neurospora genome revealed that most of the
methylated sequences correspond to transposon relics
(Selker et al. 2003), in line with a role for DNA methylation
in preventing the reactivation of parasitic genomic sequences
in eukaryotes (Bestor and Tycko 1996; Yoder et al. 1997).
Species such as D. melanogaster which have very little
DNA methylation display a relatively high mutation rate due
to the vulnerability of their genome to genomic transposition
(Yoder et al. 1997). Although the DNA methylation mark
does not seem to be particularly abundant in Drosophila, two
potential DNA methyltransferase genes have been discov-
ered (Hung et al. 1999). In contrast to the vertebrate
DNMT2, which has mostly been associated with RNA
methyltransferase activity (Goll et al. 2006; Rai et al. 2007),
deletion of Dnmt2 from the fly genome resulted in

abolishment of DNA methylation whereas its overexpression
induced hypermethylation on CpT and CpA dinucleotides
(Kunert et al. 2003). A single functional homolog of the
mammalian MBD2 and MBD3 proteins has also been
discovered in Drosophila (Roder et al. 2000). GST pull-
downs as well as yeast two-hybrid assays showed that fly
MBD2/3 protein interacts with the Mi-2/NuRD complex via
the p55 and Mi-2 subunits (Marhold et al. 2004a). The
generation of the MBD2/3 mutant allele resulted in viable
and fertile flies which however showed some displacement
of Mi-2 from genomic loci (Marhold et al. 2004b). Band-
shifts using MBD2/3 and its mammalian MBD2 homolog
demonstrated that fly MBD2/3 interacts with CpT/A
methylated, but not CpG-methylated oligonucleotides, while
the mammalian MBD2 interacted only with the CpG
methylated probes. Also, immunohistochemistry experi-
ments suggest that embryos treated with the DNA methyl-
ation inhibitor 5-azacytidine display a loss of MBD2/3 foci
which normally overlap with the DNA staining (Marhold et
al. 2004b). Collectively, these data indicate that Drosophila
MBD2/3 might be functionally more similar to MBD2 than
to MBD3. However, further experiments will be needed in
order to determine whether MBD2/3 targets the Mi-2/NuRD
complex to the sites of CpT/A methylation or if such a
complex is mainly targeted by protein–protein interactions. It
is possible that DNA methylation only plays an auxiliary
role, for example, during development; the 5-methylcytosine
content of the Drosophila genome as assessed by liquid
chromatography showed the highest signal in the early
embryo (Lyko et al. 2000).While the Drosophila genome

Fig. 1 Two families of proteins that bind methylated DNA. a Methyl-
CpG binding proteins (MBDs): MBD proteins display homology
within their MBD domains, while the transcription repression domains
(TRD) described for MeCP2, MBD1, and MBD2 are non-
homologous. In addition to its MBD domain, MBD1 is able to bind
unmethylated DNA via its third CxxC zinc-finger motif. MBD2
features a characteristic stretch of glycine and arginine residues (GR)
and has juxtaposed MBD and TRD domains. MBD3 is, due to a

mutation in the MBD domain, not able to bind methylated CpGs in
mammals. MBD4, a thymine glycosylase, contains a C-terminal
glycosylase domain used for excision-based DNA repair. b Kaiso
protein family: three members of the Kaiso protein family have been
described so far. Kaiso, ZBTB4, and ZBTB38 share a triple zinc-
finger domain and a BTB/POZ domain which in case of ZBTB4
contains a 60 amino acid insertion. Furthermore, ZBTB4 and ZBTB38
contain respectively three and seven additional zinc-fingers
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appears to be largely depleted of DNA methylation, other
insect species such as the cabbage moth Mamestra brassi-
cae, the peach potato aphid Myzus persicae, and the mealy
bug Planococcus citri seem to utilize DNA methylation
(Field et al. 2004). Also, significant amounts of DNA
methylation along with a MBD2/3 homolog have been

identified in the silkworm moth Bombyx mori (Patel and
Gopinathan 1987; Uno et al. 2005). A functional DNA
methylation system containing both Dnmt1 and Dnmt3 as
well as a functional ortholog of the mammalian MBD family
has been described in the honeybee, Apis melifera (Wang et
al. 2006). In the honeybee, DNA methylation plays an

Table 1 Biochemical interactions of methyl CpG binding proteins

Protein Interacting partner Effects of the interaction Reference

MeCP2 Sin3A, HDACs Transcriptional repression Jones et al. (1998), Nan et al. (1998)

c-ski, N-CoR Transcriptional repression Kokura et al. (2001)

HMGB1 Unknown Dintilhac and Bernues (2002)

Sin3B, HDAC2 Transcriptional repression Rietveld et al. (2002)

Dnmt1 Targeting of maintenance
DNA methylation?

Kimura and Shiota (2003)

H3K9 methyltransferase Transcriptional repression Fuks et al. (2003b)

CoREST complex Repression of neural genes Ballas et al. (2005), Lunyak et al. (2002)

Brm (SWI/SNF complex) Transcriptional repression Harikrishnan et al. (2005),
Hu et al. (2006)

YB-1 Alternative splicing Young et al. (2005)

ATRX Epigenetic regulation required
for neural development

Nan et al. (2007)

HP1 Transcriptional repression during
myogenic differentiation

Agarwal et al. (2007)

CREB1 Transcriptional activation Chahrour et al. (2008)

MBD1 MPG DNA repair Watanabe et al. (2003)

Suv39h1-HP1 Transcriptional repression Fujita et al. (2003)

MCAF1, MCAF2, SETDB1, CAF-1 p150 Transcriptional repression,
inheritance of epigenetic states

Ichimura et al. (2005), Reese et al. (2003),
Sarraf and Stancheva (2004)

PML-RARα, HDAC3 PML-RARα-mediated silencing Villa et al. (2006)

MBD2 Mi-2, MTA1-3, P66α/β, HDAC1/2,
RbAp46/48, DOC-1, PRMT5, MEP50
(NuRD complex)

Transcriptional repression Brackertz et al. (2002), Le Guezennec
et al. (2006), Zhang et al. (1999)

Sin3A Transcriptional repression Boeke et al. (2000)

Tax Transcriptional activation Ego et al. (2005)

TACC3, HATs, pCAF Transcriptional activation Angrisano et al. (2006)

GCNF Oct-4 silencing Gu et al. (2006)

Dnmt1 Targeting of maintenance
DNA methylation?

Tatematsu et al. (2000)

RFP Enhancement of transcriptional
repression

Fukushige et al. (2006)

MBD3 Mi-2, MTA1-3, P66α/β, HDAC1/2,
RbAp46/48, DOC-1 (NuRD complex)

Transcriptional repression Le Guezennec et al. (2006), Wade et al.
(1999), Zhang et al. (1999)

Dnmt1 Targeting of maintenance
DNA methylation?

Tatematsu et al. (2000)

CDK2AP1, GCNF Oct-4 silencing Deshpande et al. (2009), Gu et al. (2006)

MBD4 Sin3A, HDAC1 Transcriptional repression Kondo et al. (2005)

FADD Genome surveillance/apoptosis? Screaton et al. (2003)

MLH1 DNA repair Bellacosa et al. (1999)

RFP Enhancement of transcriptional
repression

Fukushige et al. (2006)

Kaiso Tcf3 Suppression of Wnt signaling Ruzov et al. (2009)

p120 Wnt signaling? Daniel and Reynolds (1999), Prokhortchouk
et al. (2001)

N-CoR Transcriptional repression Yoon et al. (2003)
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important role in the organization of social structures as well
as labor division (Kucharski et al. 2008). In bee communi-
ties, young worker bees feed a privileged subset of larvae
with a substance called royal jelly (Schmitzova et al. 1998).
Larvae nurtured with royal jelly develop into queens, while
other bees of the same clonal origin become worker bees
(Barchuk et al. 2007; Colhoun and Smith 1960). The larvae
treated with small interfering RNA targeting a de novo DNA
methyltransferase, Dnmt3, developed into queens with fully
functional ovaries, while a control RNA did not induce that
effect (Kucharski et al. 2008). This finding highlights the
function of DNA methylation in phenotypic plasticity and
also shows an elegant way of how epigenomes respond to
environmental signals in order to determine different
developmental fates. Vertebrates such as Xenopus laevis
and zebrafish, Danio rerio, are known to have a high content
of genomic DNA methylation as well as functional DNMTs
and MBDs (McGowan and Martin 1997; Rai et al. 2006;
Stancheva and Meehan 2000; Veenstra and Wolffe 2001).
DNA methylation is also employed in mammal-specific
ways. A phenomenon observed in both eutherians and
marsupials is parental imprinting, which is allele-specific
gene expression in which the expression status of an allele is
determined by its parental origin (Reik et al. 2001; Wood
and Oakey 2006). The differential expression status of
maternal and paternal alleles is controlled by DNA methyl-
ation. Defects in imprinting are related with severe diseases
such as the Beckwith–Wiedemann, Prader–Willi, and
Angelman syndromes and various types of cancer (Bittel
and Butler 2005; Lalande and Calciano 2007; Rainier et al.
1993; Weksberg et al. 2003). The imprints are established
already during gametogenesis (Bourc’his et al. 2001; Delaval
and Feil 2004). Developmental dynamics of DNA methyl-
ation and its function in vertebrates will be discussed in more
detail below.

DNA methyltransferases in embryonic development

The DNA methylation mark in vertebrates is set by three
DNMT family members: DNMT1, DNMT3a, and
DNMT3b. DNMT3a and DNMT3b fall in the group of de
novo methyltransferases, enzymes that are able to methylate
previously unmethylated CpG sequences, while DNMT1
functions as a maintenance methylase, copying the pre-
existing methylation marks onto the new strand during
replication (Jeltsch 2006). Although generally thought of as
a maintenance methylase, DNMT1 has also been shown to
function as a de novo DNA methyltransferase (Fatemi et al.
2002; Gowher et al. 2005; Liang et al. 2002; Pradhan et al.
1999). In addition, two non-canonical family members,
DNMT2 and DNMT3L, have been discovered (Aapola et
al. 2000; Okano et al. 1998). Various functional studies
demonstrated the importance of DNMTs for early verte-

brate development (Li et al. 1992; Okano et al. 1999;
Stancheva et al. 2001).

The DNMT1 gene was targeted in embryonic stem (ES)
cells and in mouse embryos (Li et al. 1992). Both affected
ES cells and embryos showed significantly reduced levels
of DNA methylation. The loss of DNMT1 proved to be
lethal with the majority of embryos not passing mid-
gestation, although the ES cells remained viable and
proliferative (Li et al. 1992). Dnmt1o, a variant transcribed
from an oocyte-specific promoter, expressed in oocytes and
preimplantation embryos, is required for zygotic mainte-
nance of imprinting (Howell et al. 2001). In X. laevis
embryos, the genome of DNMT1-depleted embryos was
hypomethylated and the embryos displayed a premature
expression pattern of several mesodermalmarkers. (Stancheva
and Meehan 2000). This also led to p53-induced apoptosis
and embryonic lethality (Stancheva et al. 2001). Similar
observations have been made on cultured fibroblasts derived
from conditional DNMT1 mouse knockouts that undergo
p53-dependent programmed cell death (Jackson-Grusby et
al. 2001). The DNMT1-depleted fibroblasts showed a
reactivation of placental and germ line markers pointing
out the role of DNMT1 for tissue-specific gene expression
and embryonic development. The DNMT1 knockdown in
zebrafish (Rai et al. 2006) appears to recapitulate the effects
observed in mice and Xenopus with ~40% of the embryos
dying upon DNMT1 depletion. An interesting finding was
that the response to DNMT1 deficiency was largely organ-
specific. One of the most affected organs was the gut, where
the reduced intestinal differentiation was accompanied by the
loss of expression of fabp2, a marker of terminally
differentiated epithelial cells. Although markers of eye
development such as otx-2 and otx-5 appeared to be
expressed at similar levels in both control embryos and
DNMT1 morphants, histological evidence suggested a
severe disorganization of retinal structures. This study
emphasizes the importance of DNMT1 for tissue-specific
gene expression and development. DNMT1 has been
reported to interact with methyl-CpG binding proteins as
well as with HDACs and histone methyltransferases to
repress transcription (Fuks et al. 2003a; Kimura and
Shiota 2003; Tatematsu et al. 2000). In addition, DNMT1
has been found to interact with the Rb tumor suppressor
protein to repress transcription from promoters containing
E2F binding sites (Robertson et al. 2000), linking DNMT1
to a growth regulatory pathway that frequently is disrupted
in cancer.

DNMT2 is the best conserved methyltransferase al-
though its exact function remains a topic of debate.
DNMT2 appears to be dispensable for de novo DNA
methylation in mouse ES cells (Okano et al. 1998), while in
vitro experiments detected only a weak methyltransferase
activity (Hermann et al. 2003). Interestingly, a recent study
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found that DNMT2 can function as a tRNA methyltransfer-
ase that specifically methylates cytosine 38 in the anticodon
loop (Goll et al. 2006). Although the exact function of this
cytoplasmic methylation event remains unclear, another
study described the requirement for DNMT2 cytoplasmic
activity in early zebrafish development (Rai et al. 2007).
The DNMT2 knockdown was not lethal; however DNMT2
morphant embryos displayed a range of developmental
defects including brain and retina abnormalities. DNMT2
isolated from zebrafish was able to methylate an RNA
species of ~80 bp, which by size might correspond to
transfer RNA (tRNA). It is not known how many RNA
species can be methylated by cytoplasmic DNMT2.

DNMT3a and DNMT3b targeting in mice revealed that
both de novo DNA methyltransferases are essential for
early mouse development (Okano et al. 1999). Although
the expression patterns of DNMT3a and DNMT3b are
largely overlapping, the functions that they carry out do not
seem to be completely redundant since both knockouts
turned out to be lethal. DNMT3a-depleted mice appeared
normal after birth but died at 4 weeks of age. On the other
hand, no DNMT3b knockouts were recovered at birth. The
double knockout induced a more severe phenotype since
the affected embryos showed developmental defects at E8.5
and died shortly after gastrulation. Furthermore, both
DNMT3a and DNMT3b proved to be essential for the
lineage-specific DNA methylation of Rhox6 and Rhox9
cluster genes, with DNMT3b contributing slightly more to
the amount of methylation established (Oda et al. 2006).
Taken together, these data indicate that some but not all of
the functions are shared by both enzymes. This finds further
support in the fact that mutations in DNMT3b, but not
DNMT3a, cause a recessive autosomal disorder called
immunodeficiency, centromeric instability, and facial ab-
normalities (ICF) syndrome. ICF syndrome is associated
with hypomethylation of satellites II and III which results in
expansion of juxtacentromeric heterochromatin and forma-
tion of complex multiradiate chromosomes (Xu et al. 1999).
Besides the DNMT3a and DNMT3b methyltransferases,
another family member has been described in the last
couple of years. DNMT3L is a catalytically inactive DNMT
which is known to associate with both DNMT3a and
DNMT3b to establish regions of maternal imprinting (Hata
et al. 2002). Furthermore, DNMT3L is able to recruit
histone deacetylases through its PHD zinc-finger-like motif
and possibly directs repression onto newly established
imprints (Aapola et al. 2002; Deplus et al. 2002).

Dynamic changes in DNA methylation
during vertebrate development

Although stable and inheritable in somatic cells, global
DNA methylation patterns are dynamic during the mam-

malian life cycle. Global remodeling of DNA methylation
occurs twice in mammals, during gametogenesis and
preimplantation development (Morgan et al. 2005). The
first erasure of DNA methylation marks takes place during
gametogenesis, when also the imprinted marks are reset.
This involves a wave of remethylation which is needed to
establish the parental imprints. The second demethylation
event takes place during preimplantation development and
does not affect imprinted regions (Mann and Bartolomei
2002). When compared to the oocyte genome, the sperm
genome is highly methylated, which correlates well with its
inactive chromatin state and compact structure (Morgan et
al. 2005). Immunohistochemistry and bisulfate conversion
experiments in mice showed that the male pronucleus gets
rapidly demethylated shortly after fertilization (Mayer et al.
2000; Oswald et al. 2000), while the maternal genome
displays a slow but progressive drop in DNA methylation
levels consistent with passive demethylation. Later during
implantation, the global DNA methylation levels of both
the paternal and the maternal contributions to the genome
increase (Meehan 2003). Such developmental changes in
the DNA methylation content of the embryo have been
described in other placental mammals as well (Dean et al.
2001). By contrast, the Xenopus paternal genome does not
get actively demethylated after fertilization despite the
occurring changes in the chromatin structure (Stancheva et
al. 2002). Moreover, the global DNA methylation content
as well as DNA methylation of specific loci remains high
and unchanged during embryogenesis from early blastula
stages onwards (Veenstra and Wolffe 2001). However,
some DNA methylation remodeling has been reported for a
number of developmentally regulated promoters (Stancheva
et al. 2002). Likewise, southern blotting of repetitive DNA
and bisulfate sequencing of single copy genes demonstrated
the absence of global demethylation in zebrafish embryonic
development (Macleod et al. 1999). Immunohistochemistry
experiments with an anti-5-methylcytosine antibody, how-
ever, showed a reduction in signal to almost undetectable
levels 1.5–2 h post fertilization (hpf) and a reappearance at
2.5 hpf (MacKay et al. 2007). Possible explanations for this
discrepancy include (subtle) differences in the stages and
sequences analyzed and methodological differences in
detection of DNA methylation. A demethylase activity
involving an AID deaminase, MBD4 glycosylase, and
Gadd45a has recently been reported in late gastrula to
segmentation stage (8–13 hpf) zebrafish embryos (Rai et al.
2008). Gadd45a has been associated with demethylation
events (Barreto et al. 2007; Schmitz et al. 2009). However,
Gadd45a knockout in mice did not result in global or site-
specific hypermethylation (Engel et al. 2009) and the role
of Gadd45a in demethylation is disputed (Jin et al.
2008). An equally controversial DNA demethylase function
has been proposed for the MBD2 and MBD3 proteins
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(Bhattacharya et al. 1999; Boeke et al. 2000; Brown et al.
2008; Detich et al. 2002; Hendrich et al. 2001; Ng et al.
1999; Wade et al. 1999; Wolffe et al. 1999). To what extent
the observations concerning active demethylation can be
reconciled, and how DNA methylation and demethylation
are targeted or regulated, and what the physiological role of
DNA demethylation is in vertebrate development, are
issues that await further clarification.

DNA methylation and histone modifications provide a
link between chromatin and tissue-specific transcriptional
programs (Kiefer 2007; Lunyak et al. 2004; Palacios and
Puri 2006; Rupp et al. 2002). Until recently, most of the
DNA methylation studies have been performed on individ-
ual genomic loci. However, new high-throughput technol-
ogies have allowed us to investigate thousands of CpG
methylation sites across the genome and collect tissue-
specific as well as age- and sex-dependent DNA methyla-
tion signatures. A bisulfate conversion approach combined
with BeadArray technology identified DNA methylation
epigenotypes specific for distinct cell populations (Bibikova
et al. 2006a; Bibikova et al. 2006b). Out of 1,536 CpG sites
selected from 5′ regulatory regions of 371 genes, 49 sites
from 40 genes were identified as potential DNA methyla-
tion markers. The differential DNA methylation patterns
observed on those sites were sufficient to discriminate
between human ES cells, differentiated cells, somatic cells,
and cancer cells. Another study using bisulfate DNA
sequencing of chromosomes 6, 20 and 22 on samples
derived from 12 different healthy tissues, including fetal
liver and fetal skeletal muscle, identified a number of genes
carrying DNA methylation patterns specific to fetal tissues
(Eckhardt et al. 2006), while a relatively new technique
which uses the combination of methylated DNA immuno-
precipitation (MeDIP) and microarray hybridization proved
to be quite efficient in generating global DNA methylation
data and assessing the differences between normal and
transformed cells (Weber et al. 2005). When compared to
primary fibroblasts and normal colon mucosa, the SW48
colon carcinoma cell line was found to be hypermethylated
at ~200 unique genes. The same study also revealed
hypomethylation of the inactive X chromosome when
compared to its active counterpart while hypermethylation
was detectable only on a subset of gene-rich regions (Weber
et al. 2005). “Next generation” sequencing tools combined
with methylation-specific enzyme digestion also found their
application in global DNA methylation profiling (Brunner
et al. 2009). The study revealed minimal, although
significant, changes in DNA methylation content during
human liver differentiation. While the in vivo fetal liver
development was characterized by a slight decrease in
DNA methylation, the in vitro differentiation of human ES
cells was marked by both de novo methylation and
demethylation events (Brunner et al. 2009). In conclusion,

distinct DNA methylation patterns exist on specific ge-
nomic loci, depending on lineage and differentiation
potential.

Methyl-CpG binding proteins and embryonic
development

Generally, two different mechanisms by which DNA
methylation represses gene expression have been identified.
A first, direct mechanism is based on the alteration of
transcription factor binding sites by DNA methylation. A
methylated target sequence can interfere with the binding of
transcription factors such as E2F or CREB, thereby
preventing transcriptional activation (Campanero et al.
2000; Iguchi-Ariga and Schaffner 1989). A more elaborate
mechanism features recruitment of methyl-CpG binding
proteins which associate with various chromatin modifiers
to establish a repressive chromatin environment (Fuks et al.
2003b; Jones et al. 1998; Nan et al. 1998; Wade et al. 1999;
Zhang et al. 1999). These proteins read and interpret the
epigenetic signals and provide a connection between DNA
methylation and chromatin modification. In this section, we
will review proteins that feature a MBD and the structurally
unrelated zinc-finger proteins sharing a BTB/POZ domain
that are known to bind methylated DNA (Fig. 1). The MBD
family proteins have been comprehensively studied through
the years and their characterization unraveled specific
functions carried out by each family member (see also
Tables 1 and 2). Mutations in the MBD family founder,
methyl-CpG binding protein 2 (MeCP2), are the cause of
the Rett syndrome (RTT), an X-linked neurodevelopmental
disorder (Amir et al. 1999). Other MBD family proteins
have been shown to bind aberrantly hypermethylated
promoters in various human cancer cell lines (Ballestar et
al. 2003). The MBD was initially identified as the minimal
part of the MeCP2 protein required to bind methylated
DNA (Nan et al. 1993), and homology searches with the
MeCP2 MBD amino acid sequence led to the discovery of
four additional proteins, MBD1, MBD2, MBD3, and
MBD4 (Hendrich and Bird 1998). A non-conserved
transcription repression domain has been identified in
MeCP2, MBD1, and MBD2 (Fig. 1). Apart from its MBD
domain, MBD1 protein can bind DNA via its CxxC3 zinc-
finger domain (Jorgensen et al. 2004), which shows
noticeable sequence resemblance with the CxxC domains
of DNMT1 (Pradhan et al. 2008). All MBD proteins
preferentially bind methylated rather than unmethylated
DNA, except mammalian MBD3 (Saito and Ishikawa
2002) and the long form of the amphibian MBD3 (MBD3
LF), which due to an insertion in the MBD, is not able to
specifically recognize DNA methylation (Wade et al. 1999).
Generally, the affinity of MBD proteins for methylated
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DNA is three- to tenfold higher than for unmethylated
DNA and may as well depend on the sequence context
(Fraga et al. 2003). Experiments involving in vitro binding
site selection revealed a requirement of human MeCP2 for
an A/T-rich sequence following the CpG methylation site
(Klose et al. 2005). Apart from the well-studied MBD
family, other proteins have been identified that preferen-
tially bind methylated DNA (Arita et al. 2008; Avvakumov
et al. 2008; Daniel et al. 2002; Filion et al. 2006;
Prokhortchouk et al. 2001; Sharif et al. 2007; Woo et al.
2007).

MeCP2

Several molecular roles have been described for MeCP2:
transcriptional repression, activation of transcription, nucle-
ar organization, and splicing. These roles will be elaborated
further in the following sections. Alongside with different
functions, myriad interactions have been reported (Table 1).
Most of these interactions have been isolated under low
stringency conditions as MeCP2 does not form a single
stable complex (Klose and Bird 2004), but may interact
with other proteins in a context-dependent fashion. It is
probably the flexible secondary and tertiary structure of the
MeCP2 protein which allows it to carry out so many
diverse functions, as MeCP2 appears to be a highly
disordered protein (Adams et al. 2007).

Transcriptional repression by MeCP2

In addition to binding methylated DNA, MeCP2 associates
with various co-repressor complexes such as Sin3a, NCoR,
and c-Ski at the sites of its occupance (Jones et al. 1998;
Kokura et al. 2001). When targeted to promoter DNA,
MeCP2 causes strong transcriptional repression, suggesting
that MeCP2 might serve as a global transcriptional silencer

(Jones et al. 1998; Nan et al. 1998). Transcriptional
profiling of MeCP2-null mice brains, however, displayed
only subtle changes in gene expression (Tudor et al. 2002).
Such a finding was confirmed in a later study where RNA
isolated from the cerebellum of MeCP2 mutant mice has
been subjected to microarray hybridization (Jordan et al.
2007). Interestingly, special AT-rich sequence binding
protein 1 (SATB1) was identified as one of the few genes
upregulated in two MeCP2-null mouse models. SATB1 is
known to specifically bind to nuclear matrix attachment
regions (MARs) and mediate formation of chromatin loops,
a feature that has been attributed to the MeCP2 protein as
well (Horike et al. 2005; Weitzel et al. 1997). The most
considerable change in expression was attributed to the
Irak1 gene, which showed a twofold increase in expression.
Likewise, a global expression study using cultured fibro-
blast cell lines from two RTT patients revealed only 49
upregulated and 21 downregulated potential MeCP2 tar-
gets, some of which were known to be expressed in brain
tissues (Traynor et al. 2002). However, striking differences
were observed in different clones obtained from the same
RTT patients, which may be indicative of epigenetic
instability. Collectively, these data may indicate that
MeCP2 is not strictly involved in (global) transcriptional
repression. Recent expression profiling of hypothalamus
isolated from MeCP2-null mice or mice overexpressing
MeCP2 suggests that MeCP2 can activate transcription on
the majority of its targets rather than repressing them
(Chahrour et al. 2008). Although it is likely that some genes
were affected indirectly in these experiments, chromatin
immunoprecipitation (ChIP) showed that MeCP2 binds to
promoter regions of some of the activated targets. This
activation has been suggested to involve the transcriptional
activator CREB-1. These results are highly surprising given
the known role of MeCP2 in transcriptional repression.
However, it has also been reported that the majority of

Table 2 Phenotypes caused by loss of function of methyl-CpG binding proteins

Protein Model system Experimental approach Phenotype Reference

MeCP2 Mus musculus Knockout Neural, RTT-like phenotype Guy et al. (2001)

Xenopus laevis Antisense knockdown Improper neural patterning, embryonically lethal Stancheva et al. (2003)

MBD1 Mus musculus Knockout Minor neural defects, increased genomic instability Zhao et al. (2003)

MBD2 Mus musculus Knockout Mild maternal phenotype, abnormal differentiation,
reduced tumorigenesis

Hendrich et al. (2001),
Sansom et al. (2003)

MBD3 Mus musculus Knockout Failure in differentiation of pluripotent cells
embryonically lethal

Hendrich et al. (2001),
Kaji et al. (2007)

Xenopus laevis Antisense knockdown Defective eye formation, embryonically lethal Iwano et al. (2004)

MBD4 Mus musculus Knockout No apparent phenotype, increased mutation rate Millar et al. (2002),
Wong et al. (2002)

Kaiso Mus musculus Knockout No apparent phenotype, reduced tumorigenesis Prokhortchouk et al. (2006)

Xenopus laevis Antisense knockdown Premature activation of zygotic transcription Ruzov et al. (2004)
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MeCP2 bound promoters have low DNA methylation and
are actively expressed (Yasui et al. 2007). Moreover, a
context-dependent function of MeCP2 may be supported by
evidence that MeCP2-mediated transcriptional repression
depends on developmental stage (OB and GJCV, manu-
script in preparation), reinforcing the notion that MeCP2 is
not a constitutive repressor.

Apart from the “global” MeCP2 function, its role in the
regulation of specific loci has been characterized. The
brain-derived neurotrophic factor (BDNF) promoter III
appears to be tightly regulated by MeCP2. Studies
performed on mouse and rat neuron cultures showed that
MeCP2 vacates its binding site in the BDNF promoter upon
membrane depolarization and calcium influx in postmitotic
neurons, allowing transcription to proceed (Chen et al.
2003; Martinowich et al. 2003). Western blotting of neural
lysates revealed that neuron depolarization causes MeCP2
phosphorylation and dissociation from the BDNF promoter.
Once the activation signal is lost, MeCP2-mediated
transcriptional repression is quickly restored. Furthermore,
both studies showed that MeCP2 recruits chromatin
remodeling activities to repress transcription from BDNF
promoter III (Chen et al. 2003; Martinowich et al. 2003).
MeCP2 can be phosphorylated at serine 421 residue by a
CaMKII kinase and this phosphorylation is required for the
activity-dependent BDNF transcription (Zhou et al. 2006).
Moreover, phosphorylation of serine 80 is important for the
association of MeCP2 with chromatin, and dephosphoryla-
tion of this residue is triggered by calcium influx in neurons
(Tao et al. 2009).

Rett syndrome and neural development

Multiple model systems have been developed to elucidate
the molecular functions of MeCP2 and the etiology of RTT
disease. RTT is a progressive neurodevelopmental disorder
involving a maturational arrest of brain development and
synaptic proliferation (Amir et al. 1999; Johnston et al.
2001). The animal model that has yielded the most results
is the mouse MeCP2 knockout which exhibits severe
neurological symptoms resembling those of RTT patients,
including limb clasping and breathing difficulties, as well
as reduced brain size and body weight (Chen et al. 2001;
Guy et al. 2001). The symptoms mostly occurred between 5
and 6 weeks of age, while MeCP2-null mice eventually
died after 2 to 3 months (Chen et al. 2001; Guy et al. 2001).
Conditional MeCP2 depletion in postmitotic neurons
resulted in similar, although less severe neural defects
suggesting that mature neurons do not function properly in
the absence of MeCP2 (Chen et al. 2001). Further
functional studies showed that mice carrying an MeCP2
mutation (MeCP2308) which results in the truncation of the
C-terminal domain exhibit many RTT features such as

motor dysfunction and seizures (Shahbazian et al. 2002),
while overexpression of MeCP2 in transgenic mice resulted
in a severe postnatal, neural phenotype (Collins et al. 2004).
Altogether, the data obtained from MeCP2 manipulation in
mice suggest that the mammalian central nervous system
requires well-balanced MeCP2 levels for its proper func-
tion. Such a finding is of great importance for therapeutic
strategies aiming to re-establish correct MeCP2 levels. It is
interesting to note that mice and humans show a different
sensitivity to heterozygosity for MeCP2. In both humans
and mice, MeCP2 is located on the X chromosome, which
due to random X inactivation causes mosaicism in affected
females. MeCP2 mutations in males usually result in
congenital encephalopathy and death in the first 2 years
(Geerdink et al. 2002; Zeev et al. 2002). In mice, the lack
of any functional MeCP2 (males MeCP2−/y, females
MeCP2−/−) results in a RTT-like phenotype rather than
encephalopathy, whereas heterozygous females (MeCP2+/−)
remain viable and fertile (Guy et al. 2001). However, a
number of heterozygous MeCP2-null female mice dis-
played some RTT features at a later stage (Chen et al. 2001;
Guy et al. 2001).

BDNF, an in vivo target of MeCP2 (see above), is
important for synaptic plasticity (An et al. 2008; Kuczewski
et al. 2009; Smart et al. 2003). To assess the contributions
of improper BDNF signaling to the RTT phenotype, Chang
and colleagues examined the phenotypes of conditional
BNDF mutants as well as the effects of BDNF over-
expression on the MeCP2-null mice (Chang et al. 2006).
The BDNF mutants displayed many features of the RTT
model mice including reduced brain size and hind limb
clasping while the overexpression of BDNF in MeCP2
mutant brains resulted in increased life span and a gain of
locomotor functions. This shows that correct BDNF
signaling is crucial for maintaining normal brain functions
and that its alteration contributes to the RTT phenotype.
These and other studies (Giacometti et al. 2007; Guy et al.
2007) suggest that MeCP2-depleted neurons do not suffer
irreversible damage, and that the restoration of MeCP2
levels can lead to reduction of neurological symptoms in
mice. MeCP2 expression in postmitotic neurons was able to
rescue the RTT-like phenotype (Luikenhuis et al. 2004), in
line with earlier observations that MeCP2 depletion in
postmitotic neurons induces RTT-like symptoms (Chen et
al. 2001). An alternative therapeutic approach which
ameliorates the RTT phenotype has also been recently
described (Tropea et al. 2009). Peritoneally injected insulin-
like growth factor 1 (IGF-1) peptide increased the life span
of MeCP2 mutant mice and led to the improvement of their
heart condition and locomotor functions. IGF-1, unlike
other potential target molecules such as BDNF, is able to
cross the blood–brain barrier which makes it a suitable
candidate for therapy.
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In comparison with mice, Xenopus embryos display a
much earlier requirement for MeCP2. Morpholino antisense
knockdown of MeCP2 and overexpression of two common
RTT mutants demonstrated the requirement for MeCP2
during primary Xenopus neurogenesis (Stancheva et al.
2003). Embryos lacking MeCP2 and embryos overexpress-
ing the RTT truncation mutant display altered neural
patterning due to the aberrant expression of the Hairy2a
(hes4) neural repressor and do not survive past the
neurulation stage (Stancheva et al. 2003). The Hairy2a
repressor is a component of the Notch/Delta signaling
pathway (Davis et al. 2001), and its expression inhibits
genes such as N-β-tubulin involved in neural differentia-
tion. Balanced expression of Hairy2a appears to be crucial
for proper neural patterning, as both MeCP2 knockdown
(Hairy2a upregulation) and R168 MeCP2 mutant over-
expression (Hairy2a downregulation) result in aberrant
expression of neural markers (Stancheva et al. 2003). It is
interesting to note that in both mice and Xenopus, MeCP2
takes part in neural signaling events albeit in different
stages and developmental context. However, this aspect of
MeCP2 function may not capture all its activities, which is
discussed in the next paragraph.

MeCP2, nuclear organization, and splicing

The number of functions attributed to the MeCP2 protein
has grown during the last couple of years, well beyond
transcriptional repression (Chadwick and Wade 2007;
Dhasarathy and Wade 2008). An MeCP2 ChIP cloning
and sequencing approach revealed a number of sequences
mapping to the imprinted gene cluster on chromosome 6
(Horike et al. 2005), which includes the Dlx5–Dlx6 locus.
That locus was of particular interest since the maternally
imprinted gene Dlx5 is involved in the pathway synthesiz-
ing γ-aminobutyric acid (GABA) which is produced less in
RTT patients. Both Dlx5 and Dlx6 were found somewhat
upregulated in the cortex of MeCP2-null mice, and the
main reason for that seemed to be the loss of silent
chromatin loops on the imprinted allele; the formation of
the loops depended on the presence of MeCP2. However, a
later study showed that in a number of systems, Dlx5 and
Dlx6 are expressed from both alleles (Schule et al. 2007).
Biallelic expression of Dlx5 was also reported in lympho-
blasts originating from autistic spectrum disorder patients
and healthy control individuals (Nakashima et al. 2009).

MeCP2 has also been described as a splice regulator,
interacting with YB-1, a component of messenger ribonu-
cleoprotein particles, in brain nuclear extracts (Young et al.
2005). This association proved to be sensitive to RNAse
treatment, implying that the MeCP2–YB-1 complex
requires RNA for its formation or stability. Microarray
splicing analysis of cerebral cortex mRNA isolated from

RTT mutant mice showed a number of aberrantly spliced
genes, including Dlx5. The exact function of the MeCP2–
YB1 interaction remains unknown; however, it is interest-
ing to note that several links exist between proteins
associated with DNA methylation-mediated repression and
RNA processing (Goll et al. 2006; Jeffery and Nakielny
2004). Moreover, chicken MeCP2 (ARBP) displays high
affinity for matrix/scaffold attachment regions (MARs/
SARs; Weitzel et al. 1997), and the nuclear matrix is also
associated with the RNA splicing machinery (Chabot et al.
1995; Wagner et al. 2003; Zeitlin et al. 1987). It is therefore
tempting to speculate that MeCP2, chromatin looping, and
RNA splicing are functionally linked. It is possible that an
architectural role of MeCP2 unifies the diverse set of
molecular functions attributed to this protein (repression,
activation, splicing, organizing long-range interactions),
similar to how the insulator binding protein CTCF causes
activation or repression of transcription in a context and
DNA methylation-dependent fashion (Bartkuhn and
Renkawitz 2008; Wallace and Felsenfeld 2007).

MBD1

MBD1 is the largest MBD family member and it also
represses transcription through its repression domain like
other family members. It is known to act as a transcriptional
repressor both in vivo and in vitro, and depending on the
splicing isoform, it can bind methylated as well as
unmethylated DNA (Fujita et al. 2000; Ohki et al. 1999).
Like the other family members, MBD1 associates with
chromatin modifiers such as the Suv39h1–HP1 complex to
enhance DNA methylation-mediated transcriptional repres-
sion (Fujita et al. 2003). The functional importance of
MBD1 was demonstrated in human HeLa cells, where
MBD1 was shown to associate with the H3K9 methyl-
transferase SETDB1 (Sarraf and Stancheva 2004). During S
phase the MBD1–SETDB1 complex is recruited to chro-
matin by the chromatin assembly factor CAF1 to establish
new H3K9 methyl marks. The removal of DNA methyla-
tion disrupts the formation of MBD1–SETDB1–CAF1
interaction on the p53BP2 promoter, which leads to the
loss of H3K9 methylation. The cooperation of MBD1 and
CAF1 (p150) had been described before (Reese et al. 2003)
as well as the involvement of CAF1 in replication-coupled
histone mark deposition (Mello and Almouzni 2001). The
MBD1–SETDB1 complex formation is negatively regulat-
ed by PIAS1 and PIAS3 SUMO-ligases and sumoylated
MBD1 is no longer able to form the complex (Lyst et al.
2006). Since a sumoylated MBD1 can bind methylated
DNA but fails to recruit SETDB1, it is possible that the
balance between SETDB1 and the SUMO ligase deter-
mines the extent of MBD1-dependent repression of
methylated DNA sequences. An MBD1 mouse knockout
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has been obtained, but no severe developmental defects
were found. MBD1-null mice had a normal morphology and
appeared healthy, although they carried a number of minor
neural defects like reduced hippocampal neurogenesis and
had problems with spatial learning. Another interesting
feature of this knockout was reduced genomic stability and
an increase in expression of the Intracisternal-A particle
retrotransposon (Zhao et al. 2003). As H3K9 methylation is
involved in the silencing of genomic repetitive elements
(Martens et al. 2005; Mikkelsen et al. 2007), the lack of
proper H3K9 methylation may have led to reactivation of
retrotransposon sequences in the MBD1-null mice.

MBD2

The third member of the MBD family, MBD2, is a 44-kDa
protein which shares extensive sequence homology with
MBD3 (Wade 2001). MBD2 is able to bind methylated
CpGs in vitro and in vivo and confer DNA methylation-
mediated transcriptional silencing through its repression
domain (Boeke et al. 2000; Ng et al. 1999). The repression
established by MBD2 is sensitive to HDAC inhibitors, in
line with its association with HDAC1 and HDAC2 in the
Mi-2/NuRD chromatin remodeling complex (Zhang et al.
1999). MBD2-null mice developed normally and remained
viable and fertile, although MBD2-null mothers failed to
nurture their pups properly (Hendrich et al. 2001). The
connection between the loss of MBD2 and the observed
maternal behavior is unclear. A recent study involving a
triple MeCP2/MBD2/Kaiso mouse knockout showed no
phenotype except a minor delay in neural differentiation,
ruling out redundancy as an explanation for the absence of
a phenotype when knocked out separately (Martin Caballero
et al. 2009). MBD2, however, does play a role in helper T-
cell differentiation (Hutchins et al. 2002). Normally, the
induction of IL-4 during differentiation requires the GATA3
activator, however, in MBD2-null mice Gata-3 is no longer
needed for IL-4 induction and as a result IL-4 is ectopically
expressed in undifferentiated helper T cells (Hutchins et al.
2002). A recent study showed that MBD2 influences X-
chromosome inactivation (Barr et al. 2007). Expression of
the X-linked non-coding Xist gene inactivates the X-
chromosome in cis, so the active X-chromosome has to
silence its own Xist allele in order to prevent inactivation.
MBD2 null cells displayed a low level reactivation of Xist
expression, whereas the depletion of MBD1, MeCP2, and
Kaiso did not induce Xist upregulation. Interestingly,
MBD2 antisense targeting in cultured cells showed that
MBD2-depleted, lung, or colorectal cancer cell lines fail to
develop tumors once injected into nude mice (Campbell et
al. 2004); moreover, mouse models for intestinal tumori-
genesis show a reduced tumorigenesis rate in the absence of
MBD2 (Sansom et al. 2003).

MBD3

Mammalian methyl-CpG binding protein 3 (MBD3), which
in contrast to amphibian MBD3 is not able to bind
methylated DNA, is an essential subunit of the Mi-2/NuRD
chromatin remodeling complex (Saito and Ishikawa 2002;
Zhang et al. 1999). MBD2 and MBD3 associate with Mi-2/
NuRD in a mutually exclusive way, thereby forming two
distinct complexes (Denslow and Wade 2007; Feng and
Zhang 2001; Le Guezennec et al. 2006). The association of
an MBD related to mammalian MBD2/3 with NuRD has
been conserved in Drosophila, highlighting the importance
of this interaction (Marhold et al. 2004a, b). In spite of the
striking sequence similarity between MBD2 and MBD3,
the two proteins do not carry out redundant functions
during early development. In contrast to MBD2-null mice
which only displayed a mild maternal phenotype as
discussed above, MBD3-null embryos are severely affected
at day 8.5 and die. MBD3-null ES were seriously
compromised in their ability to differentiate (Kaji et al.
2006; Kaji et al. 2007) as they failed to shut down the
expression of undifferentiated ES cell markers such as
Oct4, Nanog, and Rex1. In line with that observation,
embryonic bodies formed from MBD3-null cells did not
express markers like Brachyury and Gata6. Aberrant gene
expression in MBD3-null cells is the most probable reason
why cells of the inner cell mass fail to develop into late
epiblast after implantation (Kaji et al. 2007). Interestingly,
MTA-3, a cell type-specific subunit of an MBD3-
containing Mi-2/NuRD complex, proved to be indispens-
able for the B lymphocyte differentiation program (Fujita et
al. 2004). MBD3 knockdown in X. laevis embryos severely
disrupted embryogenesis (Iwano et al. 2004). A morpholino
antisense inhibiting the translation of both MBD3 and
MBD3LF (the long form of MBD3), injected at low
concentrations, induced a defective eye formation pheno-
type which occurred due to the misregulation of the Pax6
gene. In contrast to mammals where both MBD2 and
MBD3 interact with Mi-2/NuRD, Xenopus MBD3 but not
MBD2 has been shown to be a subunit of the Mi-2/NuRD
complex (Wade et al. 1999).

MBD4

The last member of the MBD family, MBD4, is a thymine
glycosylase which acts as a DNA repair protein and targets
sites of cytosine deamination (Hendrich et al. 1999). The
CpG dinucleotide is under-represented in methylated
genomes. The reason for that is spontaneous hydrolytic
deamination of methylated cytosine which causes mCpG-
TpG transitions (Bird 1980), whereas non-methylated CpG
mutates to UpG. MBD4 is able to excise and repair both
mutated nucleotides (Hendrich et al. 1999). In line with this
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function, mutations in MBD4 have been found in various
human carcinomas associated with microsatellite instability
(Riccio et al. 1999). MBD4-null mice had a two to three
times higher number of mCpG-TpG transitions showing
that MBD4 acts to reduce the mCpG-TpG mutation rate
(Millar et al. 2002; Wong et al. 2002). This relatively mild
mutator phenotype suggests that other thymine glycosylases
might carry out similar functions. In both studies, mice
appeared healthy and did not show any physical abnormal-
ities. Only when crossed with mice carrying a germline
mutation in the Apc (adenomatous polyposis coli) gene, the
MBD4-null animals showed accelerated tumor formation
(Millar et al. 2002) or accelerated tumor progression (Wong
et al. 2002). The potential function of MBD4 as a
transcriptional repressor was demonstrated by a series of in
vitro repression assays (Kondo et al. 2005). LexA-MBD
fusions, when targeted to reporter constructs, showed that
MBD4 is capable of silencing transcription with the same
efficiency as MBD2 and MeCP2 (Kondo et al. 2005).
Furthermore, this MBD4-directed repression was mediated
by interactions with Sin3 and HDAC1, well-known partners
of the MBD family members. Whether this transcriptional
potential of MBD4 reflects its physiological role still needs
to be tested. Also, a recent study in zebrafish provided
evidence for a role of MBD4 in active demethylation (Rai et
al. 2008). It will be interesting to see whether MBD4 can act
in a similar way in higher organisms and whether other
thymine glycosylases can carry out similar functions.

Kaiso (ZBTB33), ZBTB4, and ZBTB38

Besides the MBD family, other proteins such as Kaiso,
ZBTB4, and ZBTB38 that are able to preferentially or
specifically bind methylated DNA through zinc-finger
domains have also been described (Filion et al. 2006;
Prokhortchouk et al. 2001). Since its discovery, Kaiso has
been attributed a number of important functions. Kaiso
antisense knockdown in X. laevis caused a premature
activation of zygotic transcription which eventually led to
apoptosis and developmental arrest (Ruzov et al. 2004).
This phenotype closely resembled the one induced by the
DNMT1 antisense depletion (Stancheva and Meehan 2000),
suggesting that DNA methylation-mediated repression
mechanisms are partly responsible for repression of
embryonic transcription before the mid-blastula transition.
A Kaiso knockout in mice resulted in no apparent
abnormalities (Prokhortchouk et al. 2006). However, when
Kaiso-null mice were crossed with ApcMin/+ mice suscep-
tible for intestinal tumorigenesis, Kaiso knockouts dis-
played a delayed onset of tumor formation. Functional
studies in mammals and amphibians (Prokhortchouk et al.
2006; Ruzov et al. 2004; Ruzov et al. 2009) suggest that the
biological roles of Kaiso are not conserved. In addition to

Kaiso, two other zinc-finger proteins capable of binding
methylated DNA have been identified (Filion et al. 2006).
ZBTB4 and ZBTB38 require only one methylated CpG for
binding, unlike Kaiso which requires two. Both ZBTB4 and
ZBTB38 are able to repress transcription in transfection
assays, and whereas they display considerably different tissue
expression profiles, both of them accumulate in the brain.

Concluding remarks

MBD proteins were initially described as interpreters of the
DNA methylation mark. However, they seem to affect
normal development and (patho) physiology by a wide
variety of mechanisms, some of which are yet to be
characterized. Developmental requirements for methyl-
CpG binding protein function differ among species.
Generally, MBD depletion in Xenopus causes more severe
developmental defects than in mice. The exception is
MBD3 which, in spite the lack of specific DNA-
methylation binding, is indispensable for early mouse
development. In humans, MeCP2 inactivation on one of
the X chromosomes causes Rett syndrome in girls, whereas
boys with a MeCP2 mutation are affected even more
severely. In that respect, mice are less sensitive to loss of
MeCP2 because a Rett-like phenotype is observed only
when both MeCP2 alleles are deleted (Chen et al. 2001;
Guy et al. 2001). Notwithstanding the differences observed
upon MeCP2 depletion, it is interesting that both Xenopus
and mice employ MeCP2 for gene regulation in response to
neural signaling (Martinowich et al. 2003; Stancheva et al.
2003). Encouraging advances have been made in reversing
Rett-like symptoms in mice (Giacometti et al. 2007; Guy et
al. 2007; Luikenhuis et al. 2004; Tropea et al. 2009). A
better insight in the action of MeCP2 at the molecular
genomic level may unify the diverse processes MeCP2 has
been attributed a function. In the near future, a greater
understanding of methyl-CpG binding protein function will
require integrated analyses of genome-wide binding pro-
files, long-range interactions in chromatin, and the regula-
tory role of posttranslational modifications. The rewards
will be manifold, as DNA methylation makes an essential
epigenetic contribution to genome integrity and function.
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